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Abstract

We propose here a novel method of factor profiling (FP) for ultra high dimen-

sional variable selection. The new method assumes that the correlation structure

of the high dimensional data can be well represented by a set of low-dimensional

latent factors (Fan et al., 2008). The latent factors can then be estimated con-

sistently by eigenvalue-eigenvector decomposition. They should be profiled out

subsequently from both the response and predictors. Such an operation is re-

ferred to as FP. Obviously, FP produces uncorrelated predictors. Thereafter, the

method of sure independent screening (Fan and Lv, 2008, SIS) can be applied

immediately. This leads to profiled independent screening (PIS). PIS is shown

to be selection consistent, even if the predictor dimension is substantially larger

than the sample size. To further improve PIS, a novel method of profiled se-

quential screening (PSS) is proposed. PSS shares similar strength as forward

regression (Wang, 2009a) but is computationally even simpler. Numerical stud-

ies are presented to corroborate our theoretical findings.
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1. INTRODUCTION

For many modern datasets, the predictor dimensions are found substantially larger

than the sample sizes. As a consequence, classical methods, such as the ordinary

least squares (OLS), are no longer immediately applicable. Then, dimension reduction

becomes the central theme of high dimensional data analysis, for which the idea of

variable selection has been found very useful (Fan and Li, 2006).

Under a fixed dimension setup, best subset selection in conjunction with two pop-

ular criteria has been widely used in practice. Those two criteria are, respectively, the

AIC (Akaike, 1973) and BIC (Schwarz, 1978). Despite its usefulness, such a method suf-

fers from high computational cost (Tibshirani, 1996), estimation instability (Breiman,

1996), and also complicated stochastic property (Fan and Li, 2001; Hjort and Claeskens,

2003). As computationally efficient alternatives, various shrinkage methods have been

developed and gained a lot of popularity in the past decade. Those methods include, for

example, the nonnegative garrotte (Breiman, 1995; Yuan and Lin, 2007), the LASSO

(Tibshirani, 1996; Knight and Fu, 2000; Zhao and Yu, 2006), the bridge regression (Fu,

1998; Huang et al., 2007), the SCAD (Fan and Li, 2001; Fan and Peng, 2004; Wang

et al., 2007), the elastic net (Zou and Hastie, 2005), the adaptive LASSO (Zou, 2006;

Zhang and Lu, 2007; Wang and Leng, 2007), one-step sparse estimation (Zou and Li,

2008), the adaptive elastic net (Zou and Zhang, 2009), and others. Without any doubt,

those methods are useful. Many of them have been shown to be consistent for model

selection, but under the constraint that the predictor dimension should be no more

than the sample size. In contrast, if the predictor dimension is much larger than the

sample size, none of them has been shown to be selection consistent under a general

design condition (Leng et al., 2006; Zhao and Yu, 2006).

In addition to those shrinkage methods, Fan and Lv (2008) developed the theory
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of sure independent screening (SIS). They show that the simple method of marginal

correlation estimation is effective for variable screening. Given the fact that SIS is

computationally very simple, such a nice property is not only practically useful but

also theoretically appealing. Subsequently, Fan and Lv (2008) refer to it as a SIS

property, which is also known as screening consistency by Wang (2009a). For a further

improved performance, Wang (2009a) investigated another classical variable screening

method, that is, forward regression (FR). Wang (2009a) proves that FR also enjoys

the SIS or screening consistency property. Our experience suggests that both SIS and

FR are useful methods but with two common limitations. Firstly, neither of them

is selection consistent (Shao, 1997; Shi and Tsai, 2002). In fact, both of them suffer

nonignorable overfitting effects. In other words, to get all relevant variables correctly

discovered, both methods might have positive probabilities to have some irrelevant

variables included. Secondly, neither of them can handle endogeneity problem, which

means that the residual might be correlated with the predictor. Such types of problems

are very often found in economics related datasets (Wooldridge, 2001). Consequently,

we are motivated to develop a new method, which is capable of handling ultra high

dimensional data even in presence of endogeneity problem.

To this end, we propose here a novel method of factor profiling (FP). Our method

is well motivated by empirical evidences. Specifically, for many ultra high dimensional

datasets, their first few eigenvalues are found to be substantially larger than the rest.

Such an observation suggests that the high-dimensional predictors’ correlation struc-

ture might be represented by a low-dimensional latent factor model (Fan et al., 2008).

If those latent factors can be estimated consistently, they can be profiled out from both

the predictors and the responses subsequently. For convenience, we refer to such an

operation as FP. The consequence of FP is that the profiled predictors are no longer
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correlated with each other. Furthermore, FP leads to uncorrelated residuals and thus

the problem of endogeneity is fixed. Thereafter, SIS together can be used immediately.

This leads to profiled independent screening (PIS). We show that PIS is consistent for

model selection. In fact, its performance can be further improved considerably, if rele-

vant predictors’ regression effects can be eliminated from the response in a sequential

manner. This leads to de-noised new responses and models. As a result, the selection

accuracy can be further improved. We refer to such a method as profiled sequential

screening (PSS). Obviously, PSS shares similar computational flavor as FR (Wang,

2009a). Nevertheless, PSS is even simpler because the factor profiled predictors are

already uncorrelated; see Section 3.3 for a more detailed discussion.

The rest of the article is organized as the follows. Next section introduces FP

together with its theoretical properties. The methods of PIS and PSS are investigated

in Section 3. Numerical studies are reported in Section 4 and concluding remarks are

given in Section 5. Technical details are left to the Appendix.

2. FACTOR PROFILING THEORY

2.1. Model and Notations

Let Yi ∈ R1 be the response collected from the ith (1 ≤ i ≤ n) subject and

Xi = (Xi1, · · · , Xip)
> ∈ Rp be the associated p-dimensional predictor. We assume

throughout the rest of this article that the predictor dimension p is ultra high and thus

is substantially larger than the sample size n. To model the regression relationship

between Yi and Xi, we assume further

Yi = X>
i θ + εi, (2.1)
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where εi is a random noise with mean 0 and variance σ2
ε ; θ = (θ1, · · · , θp)

> ∈ Rp is a

p-dimensional coefficient vector and its true value is given by θ0 = (θ01, · · · , θ0p)
> ∈ Rp.

To model the predictor’s correlation structure, we follow Fan et al. (2008) and assume

Xi = BZi + X̃i, (2.2)

where Zi = (Zi1, · · · , Zid)
> ∈ Rd is a d-dimensional latent factor, B = (bjk) ∈ Rp×d

is the loading matrix, and X̃i = (X̃i1, · · · , X̃ip)
> ∈ Rp represents the information

contained in Xi but missed by Zi. For X̃i we assume that cov(X̃i) is a diagonal

matrix, that is cov(X̃ij1 , X̃ij2) = 0 for any j1 6= j2. We assume further that E(Yi) =

E(Xij) = E(X̃ij) = 0 and var(Yi) = var(Xij) = 1 ≥ σ̃2
j = var(X̃ij). In addition to

that, we require cov(Zi) = I, where I stands for an identity matrix with an appropriate

dimension. For example, we should have I ∈ Rd×d here because Zi ∈ Rd. Otherwise,

we can always re-define Zi = cov−1/2(Zi)Zi and B = Bcov1/2(Zi), so that the condition

cov(Zi) = I can be well satisfied.

To reflect the endogeneity problem, we allow that εi to be correlated with Xi

through the common factor Zi as

εi = Z>
i α + ε̃i, (2.3)

where α = (α1, · · · , αd)
> ∈ Rd is a d-dimensional vector and its true value is given

by α0 ∈ Rd. Moreover, ε̃i is some random noise independent of both Zi and X̃i. We

then should have var(ε̃i) = σ̃2
ε ≤ var(Yi) = 1. Because εi might be correlated with

Xi, the traditional OLS estimate is biased, even if the predictor dimension is fixed

and the sample size is infinite (Wooldridge, 2001). However, the story changes, if Zi

can be eliminated from both Yi and Xi. Specifically, define a profiled response as
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Ỹi = Yi − Z>
i γ0 with γ0 = B>θ0 + α0. Next, refer to X̃i and ε̃i as a profiled predictor

and noise, respectively. We then have

Ỹi = X̃>
i θ0 + ε̃i. (2.4)

For model (2.4), not only X̃i and ε̃i are mutually uncorrelated, but also different

predictors (i.e., X̃ij1 and X̃ij2 for any j1 6= j2) are mutually uncorrelated. Subsequently,

the unknown regression coefficients can be estimated by SIS. This seems to be a fairly

appealing procedure due to its computational simplicity. In fact, as we are going to

prove later, its theoretical properties are also excellent.

The above discussion motivates us to develop a FP methodology. Before we in-

troduce the details, some notations need to be defined. Let Y = (Y1, · · · , Yn)> ∈ Rn

be the response vector, X = (X1, · · · , Xn)> ∈ Rn×p be the design matrix, and E =

(ε1, · · · , εn)> ∈ Rn be the noise vector. Their profiled versions are defined similarly,

which are denoted by Ỹ, X̃, and Ẽ , respectively. Next, define Xj = (X1j, · · · , Xnj)
> ∈

Rn to be the jth column of X. Similarly, X̃j is the jth column of X̃. By models (2.1),

(2.2), and (2.3), we know that

Y = Zγ0 + Ỹ = Zγ0 + X̃θ0 + Ẽ and X = ZB> + X̃, (2.5)

where Z = (Z1, · · · , Zn)> ∈ Rn×d is the design matrix of the latent factor. By (2.5),

we know that the effects due to Z can be eliminated as long as one can estimate S(Z)

accurately, where S(A) stands for the linear subspace spanned by the column vectors

of an arbitrary matrix A. More specifically, if S(Z) is known, a projection matrix onto

its orthogonal complement can be constructed. Denote such a projection matrix by

Q(Z) = I −H(Z) ∈ Rn×n, where H(Z) = Z(Z>Z)−1Z> ∈ Rn×n is another projection
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matrix but onto S(Z). We can then get Q(Z)Y = Q(Z)Xθ0 + Q(Z)E , which serves as

an approximation towards the ideal model (2.4). As a result, we should focus on the

factor subspace S(Z) directly.

2.2. Determining Factor Dimension

To estimate S(Z) accurately, it is necessary to specify its dimension (denoted by

d0) correctly. Because in real practice the value of d0 is unknown, one has to estimate

it based on data. As a simple and effective solution, we proposed here a method of

maximum eigenvalue ratio criterion (Luo et al., 2009, MERC). Specifically, let (λ̂j, V̂j)

be the jth (1 ≤ j ≤ n) leading eigenvalue-eigenvector pair for the matrix XX>/(np) ∈
Rn×n. Practically, they can be easily obtained by eigenvalue-eigenvector decomposition.

By definition, we should have λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n. Because the true factor dimension

is d0, intuitively we should expect that first d0 eigenvalues to be relatively large while

the rest to be comparatively small. Thus, if we define an eigenvalue ratio criterion as

λ̂j/λ̂j+1 with λ̂0 = 1 and 1 ≤ j ≤ (n − 1), we should expect its maximum value to

happen at j = d0. Consequently, the true structure dimension can be estimated by

d̂ = argmax0≤j≤dmax
(λ̂j/λ̂j+1), where dmax is a pre-specified maximum factor dimension.

We call d̂ a MERC estimator.

In theory, we can allow dmax = n−1; see the subsequent Theorem 1 and its detailed

technical proofs in Appendix D. However, with finite data and limited computational

precision, very often the last few eigenvalues (e.g., λ̂n) might be estimated badly.

Thus, practically it is useful to pre-specify a maximum factor dimension dmax. Our

experience suggests that the MERC’s finite sample performance is rather insensitive

to the choice of dmax, as long as the last few eigenvalues are excluded. For example, we

always set dmax to be the smallest integer such that (
∑dmax

j=1 λ̂j)/(
∑n

j=1 λ̂j) ≥ 99%. The

resulting performance is excellent. Although the idea of MERC is intuitive and simple,
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whether it is statistically sound needs to be further justified theoretically. Then, the

following theorem rigorously proves that MERC can indeed estimate d0 consistently;

see Appendix D for a detailed proof.

Theorem 1. Assume technical conditions (A1)–(A3) as given in the Appendix A, then

we should have P (d̂ = d0) → 1 as n →∞.

2.3. Estimating Factor Subspace

By Theorem 1, we know that the true factor dimension d0 can be estimated consis-

tently. With a correctly specified factor dimension (i.e., d = d0), we can subsequently

construct a least squares type objective function as

O(Z, B) = (np)−1

p∑
j=1

∥∥Xj − Zβj

∥∥2

with βj = (bj1, · · · , bjd)
> ∈ Rd. We know immediately that B = (β1, · · · , βp)

> ∈ Rp×d.

Then, S(Z) can be estimated by minimizing O(Z, B) with respect to both Z ∈ Rn×d

and B ∈ Rp×d. Specifically, for a fixed Z, O(Z, B) can be minimized by setting

B = B̂ = (β̂1, · · · , β̂p) and β̂j = (Z>Z)−1(Z>Xj) ∈ Rd, which leads to the following

profiled objective function

O(Z) = O(Z, B̂) = (np)−1

p∑
j=1

X>j Q(Z)Xj = (np)−1tr
{

Q(Z)
(
XX>

)}
, (2.6)

where tr(A) stands for the trace of an arbitrary square matrix A. One can then verify

that (2.6) can be minimized by setting Ẑ = (V̂1, · · · , V̂d) ∈ Rn×d; see Lemma L6 in the

Appendix B. Subsequently, S(Z) can be estimated by S(Ẑ).

To quantify the estimation accuracy of S(Ẑ), the following two discrepancy mea-
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sures are considered. They are, respectively,

D1(Z, Ẑ) = n−1tr
{
Z>Q(Ẑ)Z

}
and D2(Z, Ẑ) = tr

{
H(Z)−H(Ẑ)

}2

.

Obviously, S(Ẑ) = S(Z) implies that D1(Z, Ẑ) = D2(Z, Ẑ) = 0. In addition to that,

D2(Z, Ẑ) = 0 also implies that S(Z) = S(Ẑ); see Xia (2007) and Wang and Xia (2008).

It is worthwhile to point out that the first discrepancy measure D1(·, ·) is not symmetric

about its two arguments. In other words, it is not necessary that D1(Z, Ẑ) = D1(Ẑ,Z).

However, the second one D2(·, ·) is. We consider those two measures simply because

they both are extensively used in subsequent theoretical development; see for example

Appendix D. Then, next theorem says that both of them converge towards 0 at the

rate of Op(n
−1). See Appendix C for a detailed proof.

Theorem 2. Assume d = d0 and the technical conditions (A1)–(A3) as given in the

Appendix A, then we should have both D1(Z, Ẑ) = Op(n
−1) and D2(Z, Ẑ) = Op(n

−1).

3. PROFILED VARIABLE SELECTION

We define a generic notation M = {j1, · · · , jd∗} to represent a candidate model,

which includes Xij for every j ∈ M as relevant variables. We use |M| to denote the

corresponding model size. Thus, |M| = d∗ for this case. We then define the full model

as MF = {j : 1 ≤ j ≤ p} and the true model as MT = {j : θ0j 6= 0}.

3.1. Profiled Independent Screening

By Theorem 1 we know that the factor dimension d0 can be estimated consistently.

With a correctly specified factor dimension (i.e., d = d0), Theorem 2 further indicates

that the factor subspace S(Z) can be estimated accurately. Thereafter, we can get

factor profiled data as Ŷ = Q(Ẑ)Y ∈ Rn and X̂ = Q(Ẑ)X, with X̂ = (X̂1, · · · , X̂p) ∈
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Rn×p. Similarly, the factor profiled noise is given by Ê = Q(Ẑ)E . Subsequently, the

simple method of SIS can be applied to Ŷ and X̂ directly, and the resulting estimate is

path consistent (Leng et al., 2006). We refer to such a method as PIS. More specifically,

PIS estimates θj by θ̂j = (n−1X̂>j X̂j)
−1(n−1Ŷ>X̂j). Without loss of generality, we

assume further that the predictor indices have been appropriately re-labeled so that

|θ̂1| > |θ̂2| > · · · > |θ̂p|. Then, a solution path is given by M = {M(k) : 0 ≤ k ≤ p}
with M(0) = ∅ and M(k) = {1, · · · , k} for 1 ≤ k ≤ p. The following theorem implies

that M and thus PIS is path consistent (Leng et al., 2006), that is, P (MT ∈ M) → 1

as n →∞. See Appendix E for a detailed proof.

Theorem 3. Assume d = d0 and the technical conditions (A1)–(A3) as given in the

Appendix A, then we should have max1≤j≤p |θ̂j − θ0j| = Op(
√

log p/n) as n →∞.

3.2. A Bayesian Information Criterion

Previous subsection proves that PIS is path consistent, which implies that P (MT =

M(|MT |)) → 1 as n → ∞. However, for a real application, the value of |MT | is

unknown. Thus, even if the solution path is given, one still needs a statistically sound

criterion to decide which model in M is mostly plausible. To this end, we proposed

here the following heuristic BIC-type selection criterion,

BIC(M) = log RSS(M) + |M| · log n · (log p/n), (3.1)

where RSS(M) = ‖Ŷ − ∑
j∈M θ̂jX̂j‖2 is the residual sum of squares. Then the best

model can be selected as M̂ = argminM∈MBIC(M). Comparing (3.1) against the

following traditional BIC criterion (Schwarz, 1978),

BIC∗(M) = log RSS(M) + |M| · log n · (1/n),
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we find that the only difference lies in the last penalization factor, where the classical

BIC criterion uses 1/n while we consider log p/n. The classical BIC criterion uses 1/n

because the uniform convergence rate of the OLS estimator (for example) is Op(1/
√

n),

under a fixed dimension setup (Shao, 1997). However, the story changes under an

ultra high dimensional setup. By Theorem 3, the uniform convergence rate of the PIS

estimator is of a considerably higher order as Op(
√

log p/n). Consequently, a heavier

penalty factor is inevitable (Chen and Chen, 2008). This motivates us to replace the

traditional factor 1/n by log p/n, which leads to (3.1). Our numerical experiences, as

reported in Section 4, suggests that (3.1) works fairly well.

3.3. Profiled Sequential Screening

As we mentioned earlier, the performance of PIS can be further improved, if the

relevant predictor’s regression effects can be sequentially removed from the response.

To this end, we propose here a profiled sequential screening method (PSS). Specifically,

the detailed algorithm is given below.

Step (1) (Initialization). SetM∗
(0) = ∅ and Ŷ(0) = Ŷ, i.e., the factor profiled response.

Step (2) (Sequential Screening).

(2.1) (Estimation). In the kth step (k ≥ 1), we are given M∗
(k−1) and also

Ŷ(k−1). Then, for every j ∈ MF\M∗
(k−1), estimate its regression coef-

ficient as θ̂
(k)
j = {Ŷ(k−1)>X̂j}/‖X̂j‖2 and its correlation coefficient with

the response as ζ̂
(k)
j = {Ŷ(k−1)>X̂j}/{‖Ŷ(k−1)‖ · ‖X̂j‖}.

(2.2) (Screening). We then find ak = argmaxj∈MF \S(k−1) |ζ̂(k)
j | and update

M∗
(k) = M∗

(k−1)

⋃{ak} accordingly.

(2.3) (Elimination). According to ak, we then get an updated response vector

as Ŷ(k) = Ŷ(k−1) − θ̂
(k)
j X̂j with j = ak.
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Step (3) (Solution Path). Iterating Step (2) for a total of n times, which leads a total

of n+1 nested candidate models. We then collect those models by a solution

path M∗ = {M∗
(k) : 0 ≤ k ≤ n} with M∗

(k) = {a1, · · · , ak} for k > 0.

Step (4) (Model Selection). Select the best model as M̂∗ = argminM∈M∗BIC(M).

As one can see, PSS shares similar computational flavor as FR (Wang, 2009a), in

the sense that the effects of relevant predictors are sequentially profiled out from the

response. However, the difference is that, for FR, the same also needs to be done for

every remaining predictor. Otherwise, they might still correlate with relevant ones

seriously. Fortunately, for PSS this is an unnecessary step, because the factor profiled

predictors are already uncorrelated. That explains why PSS is computationally even

simpler than FR. In fact, we find that the finite sample performance of PSS could be

considerably better than that of PIS.

4. NUMERICAL STUDIES

To evaluate the finite sample performance of the proposed methods, we present

here three simulation experiments and one real example.

4.1. Different Simulation Models

Example 1. This is an example borrowed from Fan and Lv (2008). Specifically, we

fix d0 = 1, p = 5000, and n = 150. Zi is generated from N(0, 1). Xi is then simulated

as (2.2), where bjk = 1 and X̃i follows a p-dimensional standard normal distribution.

Following Fan and Lv (2008), we assume the first |MT | = 3 predictors to be relevant

and their coefficients are given by θ0j = 5 for 1 ≤ j ≤ |MT |. Accordingly, θ0j = 0

for every j > |MT |. Subsequently, Yi is given by (2.1), where εi follows (2.3) with
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α0 = 0.8σε and σ̃ε = 0.6σε. Lastly, σ2
ε is particularly selected so that the signal-to-

noise ratio, i.e., SNR=var(X>
i θ0)/σ

2
ε , is given by 1, 2, or 5.

Example 2. This is another example revised from Fan and Lv (2008) but with a

more sophisticated factor structure. For this example, we have d0 = 2, p = 10000, and

n = 400. Zi ∈ R2 is generated from a bivariate standard normal distribution. Xi is then

simulated as (2.2), where both bjk and X̃ij are independent and identically distributed

as N(0, 1). Subsequently, Yi is given by (2.1), where θ0j = (−1)Raj(4 log n/
√

n + |Rbj|)
for 1 ≤ j ≤ |MT | = 8 and θ0j = 0 for every j > |MT |. Here, Raj is a binary

random variable with P (Raj = 1) = 0.4 and Rbj is another N(0, 1) variable. Lastly, εi

is generated according to (2.3) with α0 = 0.8σε(1/
√

2, 1/
√

2)> ∈ R2 and σ̃ε = 0.6σε.

SNR is 1, 2, or 5.

Example 3. This is an example modified from Tibshirani (1996). We have here d0 =

3, p = 10000, and n = 300. Zi ∈ R3 is generated from a 3-dimensional standard normal

random vector. Xi is then simulated as (2.2), where bjk follows N(0, 1). However, X̃i

follows a p-dimensional normal distribution with E(X̃ij) = 0 and cov(X̃ij1 , X̃ij2) =

0.5|j1−j2|. Subsequently, Yi is given by (2.1) with θ01 = 3, θ04 = 1.5, θ07 = 2, and

θ0j = 0 for any j 6∈ MT = {1, 4, 7}. Lastly, εi is generated according to (2.3) with

α0 = 0.8σε(1/
√

3, 1/
√

3, 1/
√

3)> ∈ R3 and σ̃ε = 0.6σε. Again, SNR=1, 2, or 5. For

this example, the factor model (2.2) is not accurately satisfied, because cov(X̃i) is not

diagonal. Thus, by including this example in our study, we are able to evaluate the

sensitivity of the proposed FP methods towards certain model mis-specification, for

the factor model (2.2).

4.2. Factor Estimation

For each simulation model, a total of 200 random replications are conducted. For

each replication, MERC is used to estimate the structure dimension. We find that the
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percentage of the experiments with d̂ = d0 is always 100%. Obviously, such an excel-

lent performance is achieved at the sample sizes and predictor dimensions as specified

in the previous subsection. Reducing either the sample size and/or predictor dimen-

sion should lead to less favorable performance, which is as expected. Simply speaking,

our unreported simulation experiments suggest that MERC’s performance steadily in-

creases as the sample size and/or predictor dimension increases. All those experiences

confirm that MERC is indeed consistent for factor dimension estimation, which cor-

roborates Theorem 1 very well.

In addition to that, for each simulated dataset, we also get the estimated factor

subspace S(Ẑ). Following Xia (2007) and Wang and Xia (2008), we then quantify

its estimation error by D(Z, Ẑ) = λmax{H(Z) − H(Ẑ)}, where λmax(A) stands for

the maximal absolute singular value of an arbitrary matrix A. The average values

of D(Z, Ẑ) across the 200 simulation replications are given by, 1.42% for Example 1,

1.05% for Example 2, and 1.41% for Example 3, respectively. Those are very small

numbers as compared with similar measures as reported in the past literature; see for

example Xia (2007) and Wang and Xia (2008). We thus know that S(Ẑ) can indeed

capture the factor subspace S(Z) satisfactorily, which corroborates Theorem 2 very

well. Qualitatively similar findings are also obtained for both D1(Z, Ẑ) and D2(Z, Ẑ),

which are not further discussed to save space.

4.3. Selection Consistency

We next consider the performances of SIS, PIS, and PSS for variable selection. We

use a notation M to represent a model selected by one particular method (e.g., PSS),

in conjunction with the proposed BIC criterion (3.1). Following Wang (2009a), we
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evaluate M’s capability in producing sparse solutions by

% of Correct Zeros = 100%×
{∣∣∣

(MF\M
) ⋂ (MF\MT

)∣∣∣
}{∣∣∣

(MF\MT

)∣∣∣
}−1

.

Obviously, this is only one side of M. A method with excellent capability in producing

sparse solutions might also suffer serious underfitting effect (e.g., M = ∅). Thus, it is

also important to consider

% of Incorrect Zeros = 100%×
{∣∣∣

(MF\M
) ⋂

MT

∣∣∣
}∣∣∣MT

∣∣∣
−1

.

The average values for the percentage of correct and incorrect zeros (across the 200

random replications) are reported respectively in the third and fourth columns in Table

1. We define M to be a correctly fitted model if it is exactly the same as the true

model, i.e., M = MT . Then, the average values of the percentage of the correct fits

are reported in the fifth column of Table 1. Next to this column, we also report the

average sizes of the selected models.

As one can see from Table 1, except for Example 1 with SNR=1, PIS always

outperforms SIS considerably, in terms of both the percentages of incorrect zeros and

correct fits. Such a result is not surprising, because by FP, the profiled predictors

utilized by PIS is uncorrelated, which enables independent screening to demonstrate

its best power. In addition to that, by FP, the problem of endogeneity is fixed, which

is another reason. Lastly, we note that the already excellent performance of PIS can

be further improved by PSS to much extend. Some times the relative improvement

margin could be appreciable; see Examples 1 and 2 with signal to noise ratios being

2 and 5. All those numerical evidences suggest that PSS is an even better choice as

compared with SIS and PIS.
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4.4. Estimation Accuracy

Lastly, we gauge the performance of different methods in terms of their estimation

accuracy. It is worthwhile to mention that we do not advocate the use of the marginal

estimator (i.e., θ̂j as proposed in Section 3.1) as our final estimator. This is because

marginal estimator’s estimation accuracy is not optimal, as we have carefully explained

in Section 3.3. We thus propose the following OLS type estimator as the final one to

use. Before we introduce the detail, some notations need to be introduced. For an

arbitrary candidate model M, we use the notation X(M) = (Xj : j ∈ M) ∈ Rn×|M|

to denote its submatrix associated with M. Similarly, θ(M) ∈ R|M| stands for the

corresponding subvector.

Specifically, for a selected model M (e.g., the PSS model), we define an OLS-type

estimator as θ̂M = (θ̂M1 , · · · , θ̂Mp )> ∈ Rp, where θ̂Mj = 0 for every j 6∈ M while

θ̂M
(M)

=
(
X̂>

(M)
X̂(M)

)−1(
X̂>

(M)
Ŷ

)
. (4.1)

Simply speaking, θ̂M is a p-dimensional vector. Its elements associated with irrelevant

predictors (i.e., j 6∈ M) are fixed to be 0. On the other hand, its elements associated

with relevant predictors (i.e., j ∈ M) are fixed to be the OLS estimator θ̂M
(M)

. The

OLS estimator θ̂M
(M)

is computed based on either the profiled data (X̂(M), Ŷ) for PIS

and PSS, or the non-profiled data (X(M),Y) for SIS. Subsequently, we can evaluate its

estimation accuracy by the absolute estimation error
∑p

j=1 |θ0j − θ̂Mj |, whose average

values are summarized in the last column of Table 1.

By Table 1, we find that the absolute estimation error of SIS is always the worst.

Such a result is not surprising because SIS dose not have the capability to fix the endo-

geneity problem. This leads to poor model selection accuracy and thus unsatisfactory
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estimation accuracy. In contrast, both PIS and PSS are free of such an issue. They

solve the problem by FP. As a result, their estimation accuracy is considerably bet-

ter than that of SIS. Comparatively speaking, PSS is even better, because its is more

accurate in terms of variable selection.

4.5. A Real Example

To conclude our numerical study, we present here a real example. Specifically, this

is a dataset donated by a domestic supermarket located in northern China (Wang,

2009a). It contains a total of n = 464 daily records, where the response is the number

of customers and the predictors are the sales volumes for a total of p = 6398 products.

Prior to the formal analysis, both the response and predictors are log-transformed and

then further standardized to have zero mean and unit variance.

As our first step, we need to estimate the dimension of the latent factor. We find

that the first eigenvalue of the matrix XX>/(np) is as large as λ̂1 = 35.4% while the

second one is as small as λ̂2 = 3.5%. The big difference as demonstrated between λ̂1

and λ̂2 suggests that the true factor dimension might be d0 = 1. Such a conjecture is

formally confirmed by MERC. We then fix d = 1 throughout the rest of this example.

Thereafter, the factor subspace S(Ẑ) can be estimated and the profiled data (Ŷ, X̂)

can be produced.

For a real problem like this, the value of θ0 is unknown. We thus have to rely

on out-of-sample testing to compare different methods’ estimation and/or prediction

accuracy. We then conducted a total of 200 random experiments. For each experiment,

we randomly split the entire dataset D = {1, · · · , 464} into two parts. That is D =

D0

⋃D1 with |D0| = n0 = 400 as the training data and |D1| = n1 = 64 as the testing

data. Accordingly, we write X0 = {Xi : i ∈ D0} ∈ Rn0×p, Y0 = {Yi : i ∈ D0} ∈ Rn0 ,
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X1 = {Xi : i ∈ D1} ∈ Rn1×p, and Y1 = {Yi : i ∈ D1} ∈ Rn1 . Notations for (X̂0, X̂1),

(Ŷ0, Ŷ1), and (Ẑ0, Ẑ1) are defined accordingly.

We apply SIS together with the BIC criterion (3.1) to (X0,Y0), which produces

a candidate model denoted by Msis. With the help of Msis, we then obtain the

OLS estimator θ̂Msis ; see (4.1). Similar estimators are also obtained for PIS and PSS

but based on an expanded design matrix, where Z̃0 is also included as an additional

predictor. Thereafter, the responses in the testing data are predicted, and their median

squared prediction error (MSPE) are summarized. Lastly, each method’s MSPE values

are boxplotted in Figure 1. Obviously, PSS performs the best while SIS is the worst.

Across all the experiments, the sizes of both SIS and PIS models are always one, while

the size of the PSS model is 3 for 94% of the random experiments.

SIS PIS PSS

0.
1

0.
2

0.
3

0.
4

Different Variable Selection Methods

M
S

P
E

Figure 1: The real supermarket example. Boxplots for the median squared prediction
errors (MSPE) based on 200 random replications.
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5. CONCLUDING REMARKS

We note that the idea of FP can be viewed as a non-supervised dimension reduction

technique, in the sense that the response is completely ignored for factor estimation.

As a result, the factors identified by FP might be good for describing a predictor’s

correlation structure but suboptimal for explaining the response; see for example Li

(1991), Cook (1998), Li et al. (2007) and Zhu and Zhu (2009) for some discussions.

Although such a phenomenon never happens to our real data example, but there indeed

exists such a possibility, at least theoretically. Then, developing a supervised FP

method is an interesting future direction.

As one can see, many excellent convergence results have been documented for var-

ious estimation methods, under an ultra high dimensional setup. In contrast, little

has been obtained for their asymptotic distributions. In a recent work of Chen and

Qin (2010), the classical problem of two-sample test has been re-investigated for high

dimensional data. Then, whether similar testing procedure can be developed with FP

is of great interest (Friguet et al., 2009).

We also note that many research efforts on ultra high dimensional data analysis

have been focusing on linear regression. Nevertheless, much limited has been done

for other regression models, which include generalized linear models (Fan and Song,

2009) and various semiparametric models (Härdle et al., 2000). The underlying low

dimensional factor structure, as described by (2.2), should provide a natural bridge

to connect those powerful low-dimensional regression ideas with various ultra high

dimensional problems (Wang, 2009b).

To conclude the article, we point out that our experience with FP is still preliminary

but rather encouraging. Given the fact that clear factor structures have been witnessed

for many ultra high dimensional datasets, we conjecture FP’s wide applicability across

19



a large number of model classes. Further research along this direction is necessary,

promising, and also very exciting!
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Table 1: Detailed Simulation Results

Signal Variable % of % of % of Average Absolute
Noise Selection Correct Incorrect Correct Model Estimation
Ratio Method Zeros Zeros fit Size Error

Example 1
1 SIS 100.0 77.2 0.0 1.0 25.4

PIS 100.0 95.8 0.5 0.1 14.6
PSS 100.0 95.8 0.5 0.1 14.6

2 SIS 100.0 70.3 0.0 1.0 21.3
PIS 100.0 46.3 40.0 1.6 7.9
PSS 100.0 43.3 45.5 1.7 7.4

5 SIS 100.0 67.0 0.0 1.0 18.4
PIS 100.0 0.2 99.5 3.0 1.0
PSS 100.0 0.0 100.0 3.0 0.9

Example 2
1 SIS 100.0 95.9 0.0 1.0 17.6

PIS 100.0 75.6 1.0 1.9 11.5
PSS 100.0 73.6 2.0 2.1 11.2

2 SIS 100.0 93.2 0.0 1.0 16.6
PIS 100.0 47.4 15.0 4.2 7.2
PSS 100.0 41.5 30.0 4.7 6.5

5 SIS 100.0 90.8 0.0 1.1 15.9
PIS 100.0 16.6 34.5 6.7 2.7
PSS 100.0 6.3 80.5 7.5 1.5

Example 3
1 SIS 100.0 92.2 0.0 1.0 8.4

PIS 100.0 53.5 9.5 1.4 3.4
PSS 100.0 49.5 11.5 1.5 3.1

2 SIS 100.0 88.0 1.0 1.0 7.7
PIS 100.0 34.5 24.5 2.0 2.2
PSS 100.0 23.7 44.0 2.3 1.6

5 SIS 100.0 81.8 1.0 1.1 6.8
PIS 100.0 20.2 50.5 2.4 1.4
PSS 100.0 5.3 85.5 2.8 0.6
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APPENDIX

Appendix A. Technical Conditions

To gain theoretical insights about the proposed FP methods and also facilitate an

easy proof, the following conditions are needed.

(A1). (Normality Assumption) Assume that there exists a specification for the factor

model (2.2), such that both the latent factor Z and the profiled predictor X̃

are normally distributed. Furthermore, we assume that there exists a positive

constant σ̃2
min > 0 such that min1≤j≤p σ̃2

j ≥ σ̃2
min.

(A2). (Law of Large Numbers) Assume both the factor loading βj and the variance σ̃2
j

admit the following types of large number laws, that is p−1B>B = p−1
∑

βjβ
>
j =

Σβ + Op(p
−1/2) and p−1

∑
σ̃2

j = σ̃2
0 + Op(p

−1/2), where Σβ ∈ Rd×d is a positive

definite matrix and σ̃2
0 ≥ σ̃2

min > 0 is a positive constant.

(A3). (Predictor Dimension) Assume both the factor dimension d and the true model

size |MT | are fixed while the sample size n → ∞. Moreover, we assume that

ξmin ≤ n−~ log p ≤ ξmax for some 0 < ξmin ≤ ξmax < ∞ and 0 < ~ < 1.

Note that the normality assumptions similar to (A1) have been popularly assumed in

the past literature to facilitate an easy theoretical proof; see for example Fan and Lv

(2008), Zhang and Huang (2008), Bickel and Levina (2008), and Wang (2009a). In

particular, it implies the following exponential inequalities

P

(∣∣∣p−1

p∑
j=1

{
X̃i1jX̃i2j − E

(
X̃i1jX̃i2j

)}∣∣∣ > ν

)
≤ C1 exp(−C2pν

2) (A4.a)

P

(∣∣∣n−1

n∑
i=1

ỸiX̃ij − E(ỸiX̃ij)
∣∣∣ > ν

)
≤ C1 exp(−C2nν2) (A4.b)
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P

(∣∣∣n−1

n∑
i=1

X̃2
ij − σ̃2

j

∣∣∣ > ν

)
≤ C1 exp(−C2nν2), (A4.c)

which play the key roles in the theoretical treatment of essentially any type of ultra

high dimensional problems; see the Lemma A.3 in Bickel and Levina (2008). The

condition (A2) is also reasonable. It can be trivially satisfied if (βj, σj)s for different

1 ≤ j ≤ p are generated independently from some distribution with finite moments.

Lastly, by (A3), we require that the predictor dimension p to be much larger than the

sample size. Nevertheless, (A3) also constraints that log p/n → 0. In addition to that,

(A3) also requires a fixed true model size |MT |. In fact, we can allow |MT | → ∞, as

long as its diverging speed is sufficiently slow; see for example Fan and Lv (2008) and

Wang (2009a). We decide to make here a slightly stronger assumption. Otherwise, our

already lengthy proof would be even more complicated.

Appendix B. Important Lemmas

The following lemmas are useful in the subsequent theorem proofs. We thus present

them firstly. For convenience, the following notations need to be defined. For an arbi-

trary matrix d1×d2 matrix A ∈ Rd1×d2 , we use λmin(A) to denote its minimal absolute

singular value. Recall λmax(A) is its maximal absolute singular value. Furthermore,

we define a matrix norm as ‖A‖2 = tr(A>A) = tr(AA>).

Lemma L1. Let A1 ∈ Rq×q and A2 ∈ Rq×q be two arbitrary semi positive definite

matrices with some q > 0. We then have tr(A1A2) ≥ λmin(A1)tr(A2).

Proof. Because A2 is a semi positive definite matrix, its root matrix A
1/2
2 is well

defined. Let (τj,Wj) be the jth eigenvalue-eigenvector pair for A
1/2
2 A1A

1/2
2 . Then,

tr(A1A2) = tr(A
1/2
2 A1A

1/2
2 ) =

q∑
j=1

τj =

q∑
j=1

W>
j

(
A

1/2
2 A1A

1/2
2

)
Wj
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=

q∑
j=1

(
W>

j A
1/2
2

)
A1

(
A

1/2
2 Wj

)
≥ λmin(A1)

q∑
j=1

W>
j A2Wj

= λmin(A1)tr
{

A2

q∑
j=1

WjW
>
j

}
= λmin(A1) · tr(A2),

because
∑

WjW
>
j = I. This completes the proof.

Lemma L2. Let A1 ∈ Rq×q and A2 ∈ Rq×q be two arbitrary matrices, where A2 is

semi positive definite. We then have tr(A1A2) ≤ λmax(A1)tr(A2) ≤ tr(A1)tr(A2).

Proof. Following the same notation and similar steps as in Lemma L1, we can prove

that tr(A1A2) ≤ λmax(A1)tr(A2) ≤ tr(A1)tr(A2), where the last inequality is due to

the fact λmax(A1) ≤ tr(A1). This completes the proof.

Lemma L3. Assume conditions (A1)–(A3), then with probability tending to one, we

should have 2−1σ̃2
min ≤ λmin(p

−1X̃X̃>) ≤ λmax(p
−1X̃X̃>) ≤ 2.

Proof. Note that E(p−1X̃X̃>) = Iσ̄2, where σ̄2 = p−1
∑p

j=1 σ̃2
j →p σ̃2

0 and σ̃2
min ≤

σ̃2
0 ≤ var(Xij) = 1. Furthermore, note that

λmax(p
−1X̃X̃>) ≤ σ̃2

0 + λmax(p
−1X̃X̃> − σ̄2I) + op(1)

λmin(p
−1X̃X̃>) ≥ σ̃2

0 − λmax(p
−1X̃X̃> − σ̄2I) + op(1).

Thus, the conclusion follows if we can prove that ∆ = λmax(p
−1X̃X̃> − σ̄2I) = op(1).

By definition, we have

∆ = sup
η∈Rn:‖η‖=1

∣∣∣∣∣η
>
(
p−1X̃X̃> − σ̄2I

)
η

∣∣∣∣∣ ≤ sup
η∈Rn:‖η‖=1

n∑
i1=1

n∑
i2=1

ηi1ηi2

∣∣∣δ̂i1i2 − δi1i2

∣∣∣,

where η = (η1, · · · , ηn)> ∈ Rn, δ̂i1i2 = p−1
∑p

j=1 X̃i1jX̃i2j, and δi1i2 = σ̄2 if i1 = i2 or 0
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if i1 6= i2. We can further bound the above quantity by

≤
(

sup
η∈Rn:‖η‖=1

n∑
i1=1

n∑
i2=1

ηi1ηi2

)(
max

1≤i1,i2≤n

∣∣δ̂i1i2 − δi1i2

∣∣
)

= sup
η∈Rn:‖η‖=1

(
n∑

i=1

ηi

)2 (
max

1≤i1,i2≤n

∣∣δ̂i1i2 − δi1i2

∣∣
)

≤ n · max
1≤i1,i2≤n

∣∣δ̂i1i2 − δi1i2

∣∣. (B.1)

Next, by Bonferroni’s inequality, we have

P

(
n · max

1≤i1,i2≤n

∣∣δ̂i1i2 − δi1i2

∣∣ > ν

)
≤

n∑
i1=1

n∑
i2=1

P
(∣∣δ̂i1i2 − δi1i2

∣∣ > n−1ν
)

≤ n2 · C1 exp
(− C2pn

−2ν2
)

= C1 exp
(− C2pn

−2ν2 + 2 log n
)
, (B.2)

where the first inequality in (B.2) is due to the exponential inequality (A4.a) as implied

by (A1). Next, by (A3) one can verify that −C2pn
−2ν2 +2 log n → −∞, which implies

that the right hand side of (B.2) converges to 0. Combining such a result with (B.2),

we find that ∆ = op(1). This completes the proof.

Lemma L4. Let H ∈ Rq×q be an arbitrary projection matrix with rank K and A ∈ Rq×q

be another arbitrary square matrix. We then have |tr(HA)| ≤ Kλmax(A).

Proof. Because H is a projection matrix with rank K, we should find a set of

orthonormal basis {Wj : 1 ≤ j ≤ K} such that H =
∑

WjW
>
j . We then have

|tr(HA)| = |∑j WjW
>
j A| ≤ ∑K

j=1 |W>
j AWj| ≤ Kλmax(A). This completes the proof.

Lemma L5. Assume conditions (A1)–(A3), we have λmax(p
−1X̃BZ>) →p 0.

Proof. Note that p−1X̃BZ> is a n× n matrix. Denote its (i1, i2)th element by τ̂i1i2 .

Obviously, E(τ̂i1i2) = 0 because X̃ and Z are mutually independent. Following similar
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steps as for (B.1), we can define

Ω = λmax

(
p−1X̃BZ>

)
≤ n max

1≤i1,i2≤n
|τ̂i1i2|. (B.3)

We next find a uniform bound for |τ̂i1i2 |. Specifically, note that

max
1≤i1,i2≤n

|τ̂i1i2 | = max
1≤i1,i2≤n

∣∣∣p−1X̃>
i1

BZi2

∣∣∣ = max
1≤i1,i2≤n

∣∣∣∣∣p
−1

p∑
j=1

X̃i1j

(
d∑

k=1

bjkZi2k

)∣∣∣∣∣

= max
1≤i1,i2≤n

∣∣∣∣∣
d∑

k=1

Zi2k

(
p−1

p∑
j=1

X̃i1jbjk

)∣∣∣∣∣

≤ d
(

max
i,k

Z2
ik

)1/2

· p−1/2 · max
1≤k≤d

max
1≤i≤n

∣∣∣p−1/2

p∑
j=1

X̃ijbjk

∣∣∣.

By (A1), we know that {Z2
ik} with 1 ≤ i ≤ n and 1 ≤ k ≤ d constitutes a total of nd

χ2(1) random variables, where χ2(1) stands for a chi-square distribution with 1 degree

of freedom. Following similar technique as in Wang et al. (2009), we can prove that

maxik Z2
ik ≤ 2 log(nd), with probability tending to one. Thus, the right hand side of

the above inequality is bounded by

≤ d
√

2 log(nd) · p−1/2 · max
1≤k≤d

max
1≤i≤n

∣∣∣p−1/2σ̃−1
ib

p∑
j=1

X̃ijbjk

∣∣∣ (B.4)

= d
√

2 log(nd) · p−1/2 ·
{

max
k,i

χ2(1)
}1/2

≤ d
√

2 log(nd) · p−1/2 ·
√

2 log(nd), (B.5)

where the inequality (B.4) is due to the fact that σ̃2
ib = var(p−1/2

∑p
j=1 X̃ijbjk) =

p−1
∑p

j=1 σ̃2
j b

2
jk ≤ 1. Apply (B.5) back to (B.3), we find that, with probability tending

to one, Ω ≤ (2nd) · log(nd) · p−1/2 → 0 by (A3). This proves the desired lemma

conclusion and completes the proof.

Lemma L6. Assume d = d0, then (np)−1‖H(Ẑ)X‖2 ≥ (np)−1‖H(Z)X‖2.
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Proof. Recall that (λ̂j, V̂j) with 1 ≤ j ≤ n is the jth eigenvalue-eigenvector pair for

the matrix XX>/(np). Recall also Ẑ = (V̂1, · · · , V̂d0) and H(Ẑ) =
∑d0

j=1 V̂jV̂
>
j . Then

(np)−1
∥∥∥H(Z)X

∥∥∥
2

= tr

(
H(Z) ·

{
XX>/(np)

})
= tr

(
Ĥ · Λ̂)

, (B.6)

where Λ̂ = diag(λ̂1, · · · , λ̂n) ∈ Rn×n, Ĥ = V̂>H(Z)V̂, and V̂ = (V̂1, · · · , V̂n) is an

orthonormal matrix. One can verify then Ĥ = (ĥi1i2) with 1 ≤ i1, i2 ≤ n is also a

projection matrix. As a result, we should have 0 ≤ ĥii ≤ 1 for every 1 ≤ i ≤ n. Then,

the last term in (B.6) equals to

(np)−1
∥∥∥H(Z)X

∥∥∥
2

=
n∑

i=1

λ̂iĥii. (B.7)

Note that the rank of Ĥ is d0, which includes that
∑n

i=1 ĥii = d0. Recall that 0 ≤
ĥii ≤ 1. We know then the right hand side of (B.7) is no more than

∑d0

i=1 λ̂i =

(np)−1‖H(Ẑ)X‖2. This completes the proof.

Lemma L7. Assume conditions (A1)–(A3), we have max1≤j≤p ‖X̃j‖2/n = Op(1).

Proof. Define σ̂2
j = ‖X̃j‖2/n. Then, the conclusion follows if we can prove that

max1≤j≤p |σ̂2
j − σ̃2

j | = Op(
√

log p/n) = op(1), due to the fact 0 < σ̃2
min ≤ σ̃2

j ≤ 1

and also the condition (A3); To this end, let κ = (2/C2)
1/2. Then, by Bonferroni’s

inequality and (A4.c), we find that

P
(

max
1≤j≤p

∣∣σ̂2
j − σ̃2

j

∣∣ > κ
{

log p/n
}1/2

)
≤

p∑
j=1

P
(∣∣σ̂2

j − σ̃2
j

∣∣ > κ
{

log p/n
}1/2

)

≤ pC1 exp
(
− C2κ

2 log p
)

= C1 exp
{

(1− C2κ
2) log p

}
= C1 exp(− log p) → 0,

as p →∞. Consequently, we know that maxj |σ̂2
j−σ̃2

j | = Op(
√

log p/n). This completes
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the third step and finishes the entire proof.

Appendix C. Proof of Theorem 2

As one can see subsequently, the theoretical proof of Theorem 1 depends on the

result of Theorem 2. In contrast, the proof of Theorem 2 is completely independent

of Theorem 1. We thus present here the proof of Theorem 2 first, and delay that of

Theorem 1 to the next Appendix D.

Recall that we have assumed that d = d0. Then, the desired theorem conclusion

can be proved in three steps. In the first step, we prove that O(Z), i.e., O(·) evaluated

under the true latent factor, should admit the following asymptotic expression, that

is O(Z) = σ̃2
0 + Op(n

−1). See (2.6) for the definition of O(·). In the second step, we

show that O(Ẑ) ≥ σ̃2
0 + λmin(Σβ) ·D1(Z, Ẑ) + Op(n

−1). By definition we should have

O(Z) ≥ O(Ẑ), which immediately implies that D1(Z, Ẑ) = Op(n
−1). In the last step,

we prove D2(Z, Ẑ) = Op(n
−1).

The 1st Step. By the definition of O(Z) and the assumed model (2.2), one can

verify easily that O(Z) = (np)−1
∑p

j=1 X̃>j Q(Z)X̃j. By (A1) we know that X̃j follows

a normal distribution. By definition, Q(Z) is a projection matrix with rank (n − d).

We know then X̃>j Q(Z)X̃j/σ̃
2
j follows a chi-square distribution with (n− d) degrees of

freedom. Consequently, we have

E
{O(Z)

}
= (np)−1

p∑
j=1

E
{
X̃>j Q(Z)X̃j

}
= (np)−1

p∑
j=1

σ̃2
j (n− d)

=

(
1− d

n

) (
p−1

p∑
j=1

σ̃2
j

)
=

(
1− d

n

)
σ̃2

0 + Op(p
−1/2) = σ̃2

0 + Op(n
−1), (C.1)

where the second equality in (C.1) is due to (A2) while the last one is due to (A3).

Furthermore, recall X̃>j Q(Z)X̃j/σ̃
2
j follows a chi-square distribution and the degrees of
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freedom is (n− d). We can then verify that

var
{O(Z)

}
= (np)−2

p∑
j=1

2σ̃4
j (n− d)

=

(
2

np

)(
n− d

n

) (
p−1

p∑
j=1

σ̃4
j

)
≤

(
2

np

)
= O

{
(np)−1

}
, (C.2)

where above inequality is due to the facts (n−d)/n ≤ 1 and σ̃2
j ≤ var(Xij) = 1. Then,

both (C.1) and (C.2) proves that

O(Z) = σ̃2
0 + Op(n

−1). (C.3)

The 2nd Step. We next evaluate the asymptotic behavior of O(Ẑ). By the definition

of O(·) and note Xj = Zβj + X̃j, we have the following.

O(Ẑ) = (np)−1

p∑
j=1

X>j Q(Ẑ)Xj

= (np)−1

p∑
j=1

{
β>j Z>Q(Ẑ)Zβj + X̃>j Q(Ẑ)X̃j + 2X̃>j Q(Ẑ)Zβj

}

= tr

{
n−1

(
Z>Q(Ẑ)Z

) (
p−1

p∑
j=1

βjβ
>
j

)}
+ (np)−1

p∑
j=1

X̃>j X̃j

−(np)−1

p∑
j=1

X̃>j H(Ẑ)X̃j + 2
d∑

k=1

(
(np)−1

p∑
j=1

X̃>j Q(Ẑ)Zkβjk

)
,

where Zk = (Z1k, · · · , Znk)
> ∈ Rn. Then, by Lemma L1, the right hand side of the

above equality is no less than

≥ D1(Z, Ẑ) · λmin

(
p−1B>B

)
+ (np)−1

p∑
j=1

X̃>j X̃j
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−(np)−1tr

(
H(Ẑ)

p∑
j=1

X̃jX̃>j

)
+ 2

d∑

k=1

(
(np)−1

p∑
j=1

X̃>j Q(Ẑ)Zkβjk

)
.

By Lemma L2, the right hand side of the above inequality can be further bounded by

≥ D1(Z, Ẑ) · λmin

(
p−1B>B

)
+ (np)−1

p∑
j=1

X̃>j X̃j (C.4)

−tr
{

n−1H(Ẑ)
}

λmax

(
p−1X̃X̃>

)
+ 2

d∑

k=1

(
(np)−1

p∑
j=1

X̃>j Q(Ẑ)Zkβjk

)
, (C.5)

because p−1X̃X̃> = p−1
∑p

j=1 X̃jX̃>j . In what follows, those four terms involved in (C.4)

and (C.5) will be evaluated separately. Firstly, by (A2), the first term in (C.4) can be

expressed as

D1(Z, Ẑ)λmin

(
p−1B>B

)
= D1(Z, Ẑ)

{
λmin(Σβ) + Op(p

−1/2)
}

. (C.6)

Next, by similar proofs as for (C.3) we know that the second term in (C.4) equals to

σ̃2
0+Op(n

−1). Note that H(Ẑ) is a projection matrix, we thus have tr{n−1H(Ẑ)} = d/n.

On the other hand, by Lemma L3, we know that λmax(p
−1X̃X̃>) = Op(1). Thus, the

first term in (C.5) should be a Op(n
−1). Lastly, we consider the second term in (C.5).

By (A3), d is a fixed number. We thus can consider an arbitrary but fixed k as

∣∣∣∣∣(np)−1

p∑
j=1

X̃>j Q(Ẑ)Zkβjk

∣∣∣∣∣ =

∣∣∣∣∣n
−1

(
p−1

p∑
j=1

βjkX̃j

)>

Q(Ẑ)Zk

∣∣∣∣∣

≤ n−1

∥∥∥∥∥p−1

p∑
j=1

βjkX̃j

∥∥∥∥∥ ·
∥∥Zk

∥∥. (C.7)
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Note X̃i1j1 and X̃i2j2 are mutually uncorrelated, as long as i1 6= i2 or j1 6= j2. Then,

E

∥∥∥∥∥p−1

p∑
j=1

βjkX̃j

∥∥∥∥∥

2

=

(
n

p

) (
p−1

p∑
j=1

β2
jkσ̃

2
j

)

≤
(

n

p

) (
p−1

p∑
j=1

β2
jk

)
= O

(
n/p

)
,

where the above inequality is due to the fact that σ̃2
j ≤ var(Xij) = 1 and the equality

is due to (A2). Supply this result back to (C.7) and also note that ‖Zk‖2/n = O(1),

we should know that

(np)−1

p∑
j=1

X̃>j Q(Ẑ)Zkβjk = Op(p
−1/2). (C.8)

Apply those results, e.g., (C.6) and (C.8), back to (C.5), we obtain that

O(Ẑ) ≥ D1(Z, Ẑ) · λmin(Σβ) + σ̃2
0 + Op(n

−1). (C.9)

Combine together the results of (C.3) and (C.9), we prove the desired theorem conclu-

sion, that is D1(Z, Ẑ) = Op(n
−1).

The 3rd Step. Define Σ̂Z = n−1Z>Z and Z∗ = ZΣ̂
−1/2
Z . We know immediately that

H(Z) = n−1Z∗Z∗> ∈ Rp×p with rank d. We can then write

Op(n
−1) = D1(Z, Ẑ) = n−1tr

(
Z>Q(Ẑ)Z

)
= n−1tr

(
Σ̂

1/2
Z Z

∗>Q(Ẑ)Z∗Σ̂1/2
Z

)
.

Recall Zi ∈ Rd (1 ≤ i ≤ n) are independent random vectors with E(Zi) = 0 and

cov(Zi) = I. We thus have Σ̂
1/2
Z = I + Op(n

−1/2). Then

Op(n
−1) = n−1tr

(
Z∗>Q(Ẑ)Z∗

){
1 + op(1)

}
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= n−1tr
(
Q(Ẑ)Z∗Z∗>

)
{1 + op(1)} =

[
d− tr{H(Ẑ)H(Z)

}]
{1 + op(1)}, (C.10)

where the last equality is due to the fact that H(Z) = n−1Z∗Z∗> is a projection matrix

with rank d. One can check further that

d− tr
{

H(Ẑ)H(Z)
}

=
1

2
tr

{
H(Z)−H(Ẑ)

}2

=
1

2
D2(Z, Ẑ).

Applying this result back to (C.10), we proved that D2(Z, Ẑ) = Op(n
−1). This com-

pletes the entire theorem proof.

Appendix D. Proof of Theorem 1

We should prove the theorem conclusion in a total of four steps. Specifically, in the

first step, we show that, with probability tending to one, λ̂1 ≤ κ1 for some positive

constant 0 < κ1 < ∞. We next show that, with probability tending to one, λ̂d0 ≥ κ2

for some 0 < κ2 < ∞. Consequently, as long as n is sufficiently large, we should have

max
j<d0

(λ̂j/λ̂j+1) ≤ λ̂1/λ̂d0 ≤ κ1/κ2 = Op(1). (D.1)

In the third step, we prove that nλ̂d0+1 = Op(1). In the last step we show that, with

probability tending to one, nλ̂n ≥ κ3 for some 0 < κ3 < ∞. Consequently, as long as

the sample size is sufficiently large, we should have

max
j>d0

(λ̂j/λ̂j+1) ≤ λ̂d0+1/λ̂n = (nλ̂d0+1)/(nλ̂n) ≤ (nλ̂d0+1)/κ3 = Op(1). (D.2)

Lastly, by the results from the second and third step, we know that

λ̂d0/λ̂d0+1 = n · λ̂d0/(nλ̂d0+1) ≥ nκ2/Op(1) →p ∞. (D.3)
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Combing the results of (D.1), (D.2), and (D.3) together, we obtain P (d̂ = d0) → 1.

Thereafter, we should present detailed proofs accordingly.

The 1st Step. Recall var(Xij) = 1 and λmax(A) is the maximum eigenvalue of an

arbitrary semi positive definite matrix A. We then have

λ̂1 = λmax

{
(np)−1XX>

}
≤ tr

{
(np)−1XX>

}
= (np)−1

n∑
i=1

p∑
j=1

X2
ij.

Recall the fact that Xij = Z>
i βj + X̃ij. Then, with probability tending to one, the

right hand side of the above inequality can be bounded by

≤
(

2

np

) n∑
i=1

p∑
j=1

{(
Z>

i βj

)2
+ X̃2

ij

}
(D.4)

= 2 · tr
{(

n−1

n∑
i=1

ZiZ
>
i

)(
p−1

p∑
j=1

βjβ
>
j

)}
+

2

np

n∑
i=1

p∑
j=1

X̃2
ij

≤ 2dλmax(Σβ) + 3, (D.5)

where (D.4) is due to Cauchy’s inequality and (D.5) is due to the facts n−1
∑

ZiZ
>
i →p

I, p−1
∑

βjβ
>
j →p Σβ, and (np)−1

∑
X̃2

ij →p σ̃2
0 ≤ var(Xij) = 1. Define κ1 =

2dλmax(Σβ) + 3. This completes the first step proof.

The 2nd Step. Recall (λ̂j, V̂j) is the jth (1 ≤ j ≤ n) eigenvalue-eigenvector pair of

the matrix XX>/(np). Consequently, we have

(
d0∑

j=1

λ̂j

)1/2

= tr1/2
{

H(Ẑ) · (np)−1XX>
}

= (np)−1/2tr1/2
{
X>H(Ẑ)X

}

= (np)−1/2
∥∥H(Ẑ)X

∥∥ ≥ (np)−1/2
∥∥H(Ẑ)ZB>∥∥− (np)−1/2

∥∥H(Ẑ)X̃
∥∥

≥ (np)−1/2
∥∥ZB>∥∥− (np)−1/2

∥∥Q(Ẑ)ZB>∥∥ (D.6)
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−(np)−1/2
∥∥∥
{

H(Ẑ)−H(Z)
}
X̃

∥∥∥− (np)−1/2
∥∥∥H(Z)X̃

∥∥∥. (D.7)

The four terms involved in the (D.6) and (D.7) are then evaluated as the follows.

(np)−1
∥∥ZB>∥∥2

= tr
{(

n−1Z>Z
)(

p−1B>B
)} →p tr(Σβ), (D.8)

according to the condition (A2) and the fact cov(Zi) = I. Next, note that

(np)−1
∥∥Q(Ẑ)ZB>∥∥2

= tr

[
n−1

{
Z>Q(Ẑ)Z

}(
p−1B>B

)]

≤ n−1tr
{
Z>Q(Ẑ)Z

}
· tr(Σβ){1 + op(1)} (D.9)

= D1(Z, Ẑ) · tr(Σβ){1 + op(1)} = Op(n
−1), (D.10)

where the inequality in (D.9) is due to Lemma L2 and the last equality in (D.10) is

due to the first result of Theorem 2. Similarly, we have

(np)−1
∥∥
{

H(Ẑ)−H(Z)
}
X̃

∥∥2
= tr

[{
H(Ẑ)−H(Z)

}2{
X̃X̃>/(np)

}]

≤ tr
{

H(Ẑ)−H(Z)
}2

· λmax

{
X̃X̃>/(np)

}
= Op(n

−1), (D.11)

where the last equality is due to the second result of Theorem 2, Lemma L2, and also

Lemma L3. Lastly, note that

(np)−1
∥∥H(Z)X̃

∥∥2
= (np)−1

p∑
j=1

X̃>j H(Z)X̃j ≤ (np)−1

p∑
j=1

σ̃−2
j X̃>j H(Z)X̃j,

where once again the last inequality is due to the fact that σ̃2
j ≤ var(Xij) = 1. Note
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that cov(X̃j) = σ̃2
j I, we know then σ−2

j X̃>j H(Z)X̃j follows a χ2(d) distribution. Then,

E
{

(np)−1
∥∥H(Z)X̃

∥∥2
}
≤ d

n
, (D.12)

which implies that that last term in (D.7) is a Op(n
−1/2). Applying this result together

with (D.8), (D.10), and (D.11) back to (D.7), we know that

d0∑
j=1

λ̂j ≥ tr(Σβ) + op(1). (D.13)

We next consider what happens to
∑d0−1

j=1 λ̂j. Define Ẑ− = (V̂1, · · · , V̂d0−1) ∈
Rn×(d0−1). We then have the following relationship

(
d0−1∑
j=1

λ̂j

)1/2

= (np)−1/2
∥∥H(Ẑ−)X

∥∥ ≤ (np)−1/2
∥∥H(Ẑ−)ZB>∥∥ + (np)−1/2

∥∥H(Ẑ−)X̃
∥∥

= (np)−1/2
∥∥H(Ẑ−)ZB>∥∥ + op(1), (D.14)

where the above equality is due to the fact (np)−1‖H(Ẑ−)X̃‖2 ≤ (np)−1‖H(Ẑ)X̃‖2 =

op(1), which has been proved in the first step; see (D.12). We use rank(A) denote

the rank of an arbitrary matrix A, while dim(S) to represent the dimension of an

linear subspace S. We know immediately that dim{S(A)} = rank(A). Note that

rank(Z) = d0 while rank{Q(Ẑ−)} = n − d0 + 1. We know immediately that S∗ =

S(Z)
⋂S{Q(Ẑ−)} 6= ∅, because rank(Z) + rank{Q(Ẑ−)} > n. We can then find a set

of orthonormal basis {Uj : 1 ≤ j ≤ n− d0 + 1} such that Q(Ẑ−) =
∑n−d0+1

j=1 UjU
>
j and

U1 ∈ S∗ ⊂ S(Z). Then

(np)−1
∥∥Q(Ẑ−)ZB>∥∥2

= (np)−1tr
{

Q(Ẑ−)
(
ZB>BZ>

)}
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≥ (np)−1tr
{(

U1U
>
1

)(
ZB>BZ>

)}
= n−1U>

1 Z
(
p−1B>B

)
Z>U1

≥ λmin(Σβ) · U>
1

(
ZZ>/n

)
U1 · {1 + Op(n

−1)}. (D.15)

Because U1 ∈ S(Z) and ‖U1‖ = 1, we can then write U1 = Zω1 with 1 = ‖U1‖2 =

ω>1 (Z>Z)ω1. We know then

U>
1 {ZZ>/n}U1 = ω>1

(
Z>Z

)(
n−1Z>Z

)
ω1 = ω>1

(
Z>Z

)
ω1{1 + op(1)} = 1 + op(1),

where the second equality is due to the fact that n−1Z>Z = I + op(1) and the last

one is because ω1(Z>Z)ω1 = ‖U1‖2 = 1. Applying this result back to the right hand

side of (D.15), we know then (np)−1‖Q(Ẑ−)ZB>‖2 ≥ λmin(Σβ) + op(1). Note that

tr(Σβ) + op(1) = (np)−1‖ZB>‖2 = (np)−1‖Q(Ẑ−)ZB>‖2 + (np)−1‖H(Ẑ−)ZB>‖2. We

know then (np)−1‖H(Ẑ−)ZB>‖2 ≤ tr(Σβ)−λmin(Σβ)+op(1). Applying this result back

to (D.14), we find that
∑d0−1

j=1 λ̂j ≤ tr(Σβ) − λmin(Σβ) + op(1). Such a result together

with (D.13) implies that, with probability tending to one, λ̂d0 ≥ λmin(Σβ) + op(1) ≥
κ2 = 2−1λmin(Σβ). This completes the second step proof.

The 3rd Step. In this step, we consider
∑d0+1

j=1 λ̂j. Define Ẑ+ = (V̂1, · · · , V̂d0+1) ∈
Rn×(d0+1). We then have the following relationship

d0+1∑
j=1

λ̂j = (np)−1
∥∥∥H(Ẑ+)X

∥∥∥
2

≤ (np)−1
∥∥∥H(Ẑ+)ZB>

∥∥∥
2

+ (np)−1
∥∥∥H(Ẑ+)X̃

∥∥∥
2

+ 2(np)−1
∣∣∣tr

{
H(Ẑ+)X̃BZ>

}∣∣∣

≤ (np)−1
∥∥ZB>∥∥2

+ (np)−1
∥∥H(Ẑ+)X̃

∥∥2
+ 2n−1(d0 + 1)λmax

{
p−1X̃BZ>

}
(D.16)

= (np)−1
∥∥ZB>∥∥2

+ (np)−1tr
{

H(Ẑ+)X̃X̃>
}

+ op(n
−1) (D.17)
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≤ (np)−1
∥∥ZB>∥∥2

+ (np)−1tr
{

H(Ẑ+)
}

λmax

{
X̃X̃>

}
+ op(n

−1), (D.18)

where (D.16) is due to Lemma L4, (D.17) is due to Lemma L5, (D.18) is due to Lemma

L2. Lastly, note the fact that tr{H(Ẑ+)} = d0 + 1. We can then write the right hand

side of (D.18) as

= (np)−1
∥∥ZB>∥∥2

+

(
d0 + 1

n

)
λmax

{
p−1X̃X̃>

}
+ op(1)

= (np)−1
∥∥ZB>∥∥2

+ Op(n
−1), (D.19)

where the last equality is due to the fact that λmax(p
−1X̃X̃>) = Op(1); see Lemma L3.

Similarly, by Lemma L6, we can prove that

d0∑
j=1

λ̂j = (np)−1
∥∥∥H(Ẑ)X

∥∥∥
2

≥ (np)−1
∥∥∥H(Z)X

∥∥∥
2

≥ (np)−1
∥∥∥H(Z)ZB>

∥∥∥
2

− (np)−1
∥∥∥H(Z)X̃

∥∥∥
2

− 2(np)−1
∣∣∣tr

{
H(Z)X̃BZ>

}∣∣∣

= (np)−1‖ZB>‖2 + Op(n
−1).

This together with (D.19) implies nλ̂d0+1 = Op(1).

The 4th Step. In this step, we would like to evaluate λ̂n, which by definition is the

smallest eigenvalue of XX>/(np). Moreover, note that X = ZB> + X̃. Then,

nλ̂n = λmin

(
p−1XX>

) ≥ λmin

(
p−1X̃X̃>

)− 2λmax

(
p−1X̃BZ>

)
. (D.20)

By Lemma L3, we know that, with probability tending to one, λmin(p
−1X̃X̃>) >

2−1σ̃2
min > 0. In the meanwhile, by Lemma L5, we know that λmax(p

−1X̃BZ>) →p 0.

Those results together with (D.20) implies that there exists a positive constant κ3 > 0
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such that P (nλ̂n > κ3) → 1. This completes the last step proof. The proof of the

entire theorem is also accomplished.

Appendix E. Proof of Theorem 3

Define ρ̃j = E(X̃ijỸi) = σ̃2
j θ0j. By (A1), we know that min σ̃2

j ≥ σ̃2
min > 0. Then,

theorem conclusion follows as long as we can prove that: (1) max1≤j≤p |ρ̂j − ρ̃j| =

Op(
√

log p/n) and (2) max1≤j≤p |σ̂2
j − σ̃2

j | = Op(
√

log p/n), where ρ̂j = Ŷ>X̂j/n and

σ̂2
j = X̂>j X̂j/n. Because the proofs for both statements are very similar, we will supply

the details for the first statement only. More specifically, this can be done in three

steps. In the first step, we prove that the difference between (Ỹ, X̃) and (Ŷ, X̂) is

uniformly small. Subsequently, the same is done for ρ̂j and ρ̂∗j = Ỹ>X̃j/n in the second

step while ρ̂∗j and ρ̃j in the last step.

The 1st Step. Recall Ỹ = X̃θ0 + Ẽ and Ŷ = Q(Ẑ)Zγ0 + Q(Ẑ)(X̃θ0 + Ẽ). Then, the

difference between Ỹ and Ŷ can be decomposed as the follows

Ŷ− Ỹ = Q(Ẑ)Zγ0 +
{

H(Z)−H(Ẑ)
}(
X̃θ0 + Ẽ

)
−H(Z)

(
X̃θ0 + Ẽ

)
.

Then, by Cauchy’s inequality, we find that

n−1
∥∥Ŷ− Ỹ

∥∥2
/3 ≤ γ>0

(
n−1Z>Q(Ẑ)Z

)
γ0

+n−1
(
X̃θ0 + Ẽ

)>{
H(Ẑ)−H(Z)

}2(
X̃θ0 + Ẽ

)
+ n−1

(
X̃θ0 + Ẽ

)>
H(Z)

(
X̃θ0 + Ẽ

)

≤ λmax

(
n−1Z>Q(Ẑ)Z

)
‖γ0‖2 + n−1λmax

{
H(Ẑ)−H(Z)

}2∥∥X̃θ0 + Ẽ
∥∥2

+n−1
(
X̃θ0 + Ẽ

)>
H(Z)

(
X̃θ0 + Ẽ

)
.

Define σ̃2
θ = var(X̃>

i θ0 + ε̃i) ≤ var(Yi) = 1. Then, by the definition of the discrepancy
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measures D1(·, ·) and D2(·, ·), we find that right hand side of the above inequality can

be further bounded by

≤ D1(Z, Ẑ)‖γ0‖2 + D2(Z, Ẑ) · n−1
∥∥∥X̃θ0 + Ẽ

∥∥2

+n−1σ̃−2
θ

(
X̃θ0 + Ẽ

)>
H(Z)

(
X̃θ0 + Ẽ

)
.

By Law of Large Number we know that n−1‖X̃θ0 + Ẽ‖2 = Op(1). By Theorem 2 we

know that both D1(Z, Ẑ) = Op(n
−1) and D2(Z, Ẑ) = Op(n

−1). Furthermore, note that

σ̃−2
θ (X̃θ0+Ẽ)>H(Z)(X̃θ0+Ẽ) follows a chi-square distribution with d degrees of freedom.

Applying those result back to the above inequality, we find that n−1‖Ŷ−Ỹ‖2 = Op(n
−1).

Similarly, because Xj = Zβj + X̃j, we can then prove that

n−1
∥∥X̂j − X̃j

∥∥2
/3 ≤ D1(Z, Ẑ) · ‖βj‖2 + D2(Z, Ẑ)

(
n−1‖X̃j‖2

)
+ n−1 · χ2(d).

Taking maximum over j at the both sides of the above inequality, we find that

max
1≤j≤p

(
n−1

∥∥X̂j − X̃j

∥∥2
)
/3 ≤ D1(Z, Ẑ)

+D2(Z, Ẑ) ·max
j

(
n−1‖X̃j‖2

)
+ n−1 ·max

j
χ2(d),

where the above inequality is partially due to the fact that ‖βj‖2 = var(β>j Zi) ≤
var(Xij) = 1. By Lemma L7, we know that maxj ‖X̃j‖2/n = Op(1). By Wang et al.

(2009) we know that, with probability tending to one, max1≤j≤p χ2(d) ≤ 2 log(pd).

Thus, the right hand side of the above inequality is a Op(log p/n). Thus,

max
1≤j≤p

(
n−1

∥∥X̂j − X̃j

∥∥2
)

= Op

(
n−1 log p

)
and n−1

∥∥Ŷ− Ỹ
∥∥2

= Op(n
−1). (E.1)
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The 2nd Step. We next consider the maximum difference between ρ̂j and ρ̂∗j . More

specifically, it can be bounded as

max
1≤j≤p

∣∣ρ̂j − ρ̂∗j
∣∣ ≤ n−1 max

1≤j≤p

∣∣∣Ŷ>(X̂j − X̃j)
∣∣∣ + n−1 max

1≤j≤p

∣∣∣
(
Ŷ− Ỹ

)>
X̃j

∣∣∣

≤
(
n−1

∥∥Ŷ
∥∥2

)1/2

max
j

(
n−1

∥∥∥X̂j − X̃j

∥∥2
)1/2

+
(
n−1

∥∥Ŷ− Ỹ
∥∥2

)1/2

max
j

(
n−1

∥∥X̃j

∥∥2
)1/2

=
(
n−1

∥∥Ŷ
∥∥2

)1/2

Op

(√
log p/n

)
+ Op(n

−1/2) max
j

(
n−1

∥∥X̃j

∥∥2
)1/2

, (E.2)

due to (E.1). Similarly, we have n−1‖Ŷ‖2 ≤ 2n−1‖Ỹ‖2 + 2n−1‖Ỹ− Ŷ‖2 = Op(1). Next

note that n−1‖Ỹ‖2 →p var(Ỹi) ≤ var(Yi) = 1. Furthermore, note that n−1 maxj ‖X̃j‖2 =

Op(1); see Lemma L7. Apply those results back to (E.2), we find that max1≤j≤p |ρ̂j −
ρ̂∗j | = Op(

√
log p/n). Then, theorem conclusion follows if we can further prove that

max1≤j≤p |ρ̂∗j − ρ̃j| = Op(
√

log p/n).

The 3rd Step. By the exponential inequality (A4.b) as implied by (A1), we know

that there exists two positive constants C1 and C2, such that P (|ρ̂∗j − ρ̃j| > ν) ≤
C1 exp(−C2nν2), where ν is an arbitrary positive number. Let κ = (2/C2)

1/2. Then,

by Bonferroni’s inequality, we have

P
(

max
1≤j≤p

∣∣ρ̂∗j − ρ̃j

∣∣ > κ
{

log p/n
}1/2

)
≤

p∑
j=1

P
(∣∣ρ̂∗j − ρ̃j

∣∣ > κ
{

log p/n
}1/2

)

≤ pC1 exp
(
− C2κ

2 log p
)

= C1 exp
{

(1− C2κ
2) log p

}
= C1 exp(− log p) → 0,

as p →∞. Consequently, we know that maxj |ρ̂∗j−ρ̃j| = Op(
√

log p/n). This completes

the third step and finishes the entire proof.
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