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SUMMARY

We evaluate three population size estimators, including the post-stratification and lo-

gistic regression estimators which has been or will be implemented in the US Census dual

system surveys. Conditions that ensure consistency of these two Census population size

estimators are provided. We also study a local post-stratification estimator based on a

nonparametric kernel estimates to the Census enumeration functions, which is shown to be

consistent under weaker conditions. The performances of these estimators are evaluated

numerically via simulation studies and an empirical analysis based on the 2000 Census

Accuracy and Coverage Evaluation data.

Key words: Capture-recapture; Correlation Bias; Erroneous enumeration; Kernel smooth-

ing; Model bias; Population size estimation.

1 INTRODUCTION

The decennial US Census is a major source of information providing counts of the whole

population and sub-populations defined by states, congressional districts and variables from

demographical and racial information. A comprehensive account on the Census taking in

the US is given in Anderson and Feinberg (2002). As a large scale data collection, two types

1We thank the US Census Bureau for supporting our research and allowing access to the ACE research

data. The project was supported by a National Science Foundation grant SES-0518904.
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of survey errors are inevitably present in the Census. One type is the error of omission

that occurs when genuine Census persons are missed (omitted) and causes a net population

under-count. The another type is the enumeration errors (EEs) due to enumerations of

invalid Census persons, for instance fictitious or duplicate persons and valid Census persons

but enumerated in wrong location. The EEs tend to inflate the Census count. Both errors

can reduce the accuracy of the census population counts significantly (Hogan, 2003).

To gain information on the extent of these errors, the Census Bureau has conducted

dual system capture-recapture surveys, as early as from the 1950 Census (Anderson and

Feinberg, 2002). The early dual system surveys focused on estimating the population

undercounts caused by the error of omission. Later surveys since 1990 had an added

agenda of detecting EEs; see Hogan (1993, 2003). The first of the dual systems surveys

is largely the Census itself but restricted to randomly selected sample block clusters of

the Census. The Census enumerations obtained over the selected block clusters form the

E sample. A primary purpose of the E sample is to identify and measure the EEs via

extensive records checking and follow-up. The second survey is an independent post-census

enumeration on the same sample block-clusters occupied by the E sample, which gives rise

to the P sample. The E and P samples form a capture-recapture design by carrying out

comprehensive matching between E and P samples. The enumerations appeared in both

samples are “recaptures”, which together with enumerations appeared only in the P sample

are used to estimate the E sample enumeration (capture) probability, which can be used to

quantify the error of omission. See Hogan (1993, 2000a, 2000b), Haberman et al. (1998),

Bell (1993), Darroch et al. (1993), Chao and Tsay (1998), Brown and Zhao (2008) and Chen

et al. (2010) for more specific discussions and methods of estimation on the Census dual

system surveys. We also refer to Wolter (1986) and Pollock (1991) on capture-recapture

based population size estimation. Anderson and Feinberg (1999) contains a comprehensive

account on some critical issues and controversies surrounding the Censuses. The US is

not the only country that conducts the dual system surveys to gain information on the

accuracy of the census counts. Australia, New Zealand, Turkey, Switzerland and the UK

also carry out similar dual system surveys to evaluate their national censuses; see (Census
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Customer Service, 2002; Dunstan et al., 2001; Ayhan and Ekni, 2003; Rhind, 2003).

Like many population surveys, human or wildlife, the errors of omission and enumera-

tions do not occur homogeneously across the population. Certain sections of the population

are more prone to the errors than others, making the errors to be heterogeneous. Racial

Original (RO), Age (A), Sex (S), housing Tenure (T), and geographical Region (R) (hence

ROASTR) are covariates which are known to contribute to the heterogeneity for the US

population (Hogan, 1993, 2003). Modeling the probabilities of the two errors as functions

of the covariates (for instance ROASTR) has been a main task of the Census dual system

estimation.

The method employed in the dual system estimation prior to the 2010 Census had been

the post-stratification (PS) (Hogan, 1993). Given a set of covariates, for instance ROASTR,

the PS subdivides the support of the covariates into non-overlapping post-strata where a

population size estimate for each post-strata is obtained using the classical Petersen’s esti-

mator. The rationale is that the PS makes the enumerations within each post-strata more

homogeneous. However, Hogan (1993, 2003) showed that the PS was not able to achieve

satisfactory homogeneity within each post-stratum, especially with respect to continuous

covariates like age. To overcome the limitation of the PS, the Census Bureau has decided to

implement a logistic regression approach in the 2010 Census dual system estimation (Bell

and Cohen, 2009).

Logistic regression offers more flexibility than the PS and allows extrapolation in areas

with sparse observations. It was applied in analyzing the 1990 dual system data by Alho

et al. (1993) followed by a set of extensive research as in Mule et al. (2007). However, as

a model based approach, a risk of the logistic regression approach is using a mis-specified

model, which may produce a systematic bias in the population estimation.

We study the properties of PS and logistic regression in a unified framework incorpo-

rating the features of the US Census dual system surveys. The conventional theory on

population size estimation (Wolter, 1986; Pollock, 1991) concerns primarily with the omis-

sion error only. In this paper, we try to evaluate the impacts of both omission errors and
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the EEs. We show that PS and logistic regression are subject to different forms of bias due

to model mis-specifications unless rather stringent conditions are satisfied.

To alleviate the bias due to model mis-specification, we carry out a study on a non-

parametric local post-stratification (local PS) recently proposed by Chen et al. (2010) in

an empirical study for the 2000 Census Accuracy and Coverage Evaluation (A.C.E.) data.

Instead of having fixed post-strata as in the PS, the local PS effectively produces local post-

strata via nonparametric kernel smoothing method without a specific parametric model.

The local post-stratum shrinks when the number of observations in the defined target stra-

tum and its neighborhood gets larger, allowing the removal of the heterogeneity in the dual

system surveys. We show that the local PS leads to consistent population size estimation,

under much weaker conditions than those for the PS and the logistic regression.

This paper is structured as follows. Section 2 overviews the dual population size estima-

tion. The properties of the population size estimators using the PS, the logistic regression

and the local PS are reported in Sections 3, 4 and 5 respectively. Section 6 reports some

simulation results. An empirical study on the 2000 Census A.C.E. data is given in Section

7. All technical details are deferred to the Appendix.

2 DUAL SYSTEM ESTIMATION FOR THE US CENSUS

Let C be the set of census records, U be the set of genuine persons on the Census day, and

X denoting a set of covariates contributing to the heterogeneity in the Census enumera-

tions. Estimating the size of U and sizes of sub-populations are the main objectives of the

Census. The Census enumeration probability for the ith person in U with covariate Xi is

p(Xi) = P (i ∈ C|Xi). Clearly, 1− p(Xi) is the probability of omission for the i-th person.

If the numeration function p(x) were known and there were no erroneous enumerations,

the Horvitz-Thompson type estimator
∑

i∈C

p−1(Xi) would be an consistent and unbiased es-

timator for the size of U . However, p(x) is unknown in reality and needs to be estimated

based on the E and P samples with a capture-recapture design. Let E and P denote the

sets of enumerations by the E and P samples respectively.
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The enumerations appeared in both samples are “recaptures”, which together with enu-

merations appeared only in the P sample are used to estimate the E-sample enumeration

(capture) function p(x) that can be used to quantify the omission error. After a compre-

hensive matching operation consisting of computer matching and fields follow-ups, each

P-sample person is classified as (i) a match to an E-sample person (recapture), (ii) not a

match or (iii) unresolved. Unresolved matches can be viewed as missing response variables,

which we will ignore in this paper to simplify our expedition without altering the main con-

clusions of the paper. The matching process gives rise to the P-sample data {(Yi, Xi)}
np

i=1

where np is the P-sample size and Yi = 1 (or 0) if the i ∈ P with covariate Xi matches (or

does not match) to an E-sample record. Since E(Yi|Xi) = p(Xi), the enumeration function

p(·) can be estimated by binary regression.

Different from that in conventional capture-recapture experiments, the primary purpose

of the E sample is to identify and measure the EEs via extensive record-checking and

follow-ups. For each i ∈ E , let ei be the EE indicator such that ei = 1 (0) if it is correct

(erroneous) enumeration. We will ignore the missing values in the E sample from un-

resolved cases as well. Previous research (Hogan, 2003) revealed analogous heterogeneity

in EEs caused by a set of covariates Z. Here Z can have different covariates from X in

modeling the enumeration function p(·). For instance, the non-response follow-up code is

a unique Z-covariate that provides more information on those who did not respond to the

census mail-out questionnaires (Belin et al., 1993; Cantwell and Childers, 2001). We denote

the E-sample data by {(ei, Zi)}
ne

i=1 where ne is the E-sample size. The correct enumeration

function e(Zi) = P (ei = 1|Zi) quantifies the heterogeneity in the EEs and can be estimated

by performing binary regression on the E sample data.

Let N be the size of the true population U , and Ñ be the size of the nominal population

Ũ consisting of the true population U and the erroneous population Ue. Let U = Z ∪ X

be the combined covariates in the E and the P samples. To characterize the statistical

properties of the estimators, we assume that {Ui}
Ñ
i=1 is a random sample from a super-

population. This assumption is commonly used in studying survey samples from finite

populations (Fuller, 2009). Let fU(u) be the probability density function of U , and fZ(z)
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and fX(x) be the marginal density functions of Z and X respectively. The true population

size is then given by

N = Ñ

∫

e(z)fZ(z)dz. (2.1)

Given consistent estimators ê(z) and p̂(x) based on the E and P samples respectively, the

population size can be estimated by

N̂ =
∑

i∈E

πiê(Zi)

p̂(Xi)
(2.2)

where πi is the known E-sample survey weight for the sample block cluster where the ith

person resides. Moreover, let NS be the population size of a small area S, for instance a

state or congressional district. Then, NS can be estimated by

N̂ =
∑

i∈E∩S

πiê(Zi)

p̂(Xi)
. (2.3)

A comprehensive study on the dual system estimation for small areas is given in Brown

and Zhao (2008). If the impact of EEs were ignored by regarding e(z) ≡ 1, then (2.2)

would actually estimate Ñ instead of N , and hence would cause an over-estimation of the

true population size. Despite their presence, EEs have been largely ignored in most of the

conventional capture-recapture experiments mainly because data information on the EEs

are not available, either due to limited resource or lack of awareness.

In this paper, we study population size estimator (2.2) based on the three methods in

estimating the two enumeration functions e(z) and p(x): the PS, the logistic regression and

the local PS. Without loss of generality, we set πi ≡ 1, which effectively makes U to be the

population occupied by the E sample. Evaluation for the estimator with survey weighs πi

can be made using the standard approach in survey sampling (Fuller, 2009).

3 POST-STRATIFICATION

As in the case of the Census 2000 A.C.E. revision II (US Census Bureau, 2004), Zi and Xi

could differ such that the post-strata created for e(z) and p(x) may not be the same.

Let X1,X2, . . . ,XK1
denote post-strata obtained by a stratification scheme on X, and
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Z1,Z2, . . . ,ZK2
be post-strata by stratifying Z. Let Ui = Xi ∪ Zi be the combined co-

variates for the i-th person and U1, . . . ,UK be the post-strata by stratifying with respect

to Ui, where K is larger than K1 and K2 as the post-strata on U are finer. For each Uk,

let X (k) and Z(k) be respectively the X- and Z-strata that intercepts with Uk. Strati-

fying based on two sets of covariates is more general and involved technically; and it also

introduces extra sources of bias as we will show shortly.

At a given stratum Uk, let nk and n1(k) be the numbers of E-sample persons in Uk and

Z(k) respectively, n1c(k) be the number of correct enumerations in Z(k). Then the PS

estimator for the correct enumeration on Uk is êk = n1c(k)/n1(k). Similarly, let n2(k) be

the size of P in X (k) and n12(k) be the numbers of matches in X (k). The PS estimator for

the enumeration probability in Uk is p̂k = n12(k)/n2(k). Subsequently, the PS estimator of

the total population size N is

N̂ps =
K
∑

k=1

nk

êk
p̂k
. (3.1)

To characterize the property of (3.1), we define ψ(z) = E{p(X)|Z = z} be the projection

of p(X) onto the space of Z, and g(x) = P (i ∈ P|Xi = x) be the P-sample enumeration

function which is the P-sample counterpart of p(x). To measure the heterogeneity on Uk,

we define

η1k =

∫

Z(k)

e(z)ψ(z)fZ(z)dz, η2k =

∫

Z(k)

ψ(z)fZ(z)dz, η3k =

∫

X (k)

p(x)g(x)fX(x)dx,

η4k =

∫

X (k)

g(x)fX(x)dx and η5k =

∫

Uk

p(x)fU(u)du.

A measure of heterogeneity on Uk is αk = η1k(η4k/η3k)(η5k/η2k), which generalizes the one

proposed in Chen and Lloyd (2000) by incorporating EEs.

Theorem 1 Under Conditions C.1-C.3 in the Appendix,

E(N̂ps) = Ñ

K
∑

k=1

αk +O(1) and V ar(N̂ps) = ÑV +O(1). (3.2)

where V is a bounded quantity whose expression is given in (A.4).

The above theorem indicates that V ar(N̂ps/N) = V Ñ/N2 + o(N−1) = O(N−1) which

converges to zero as N → ∞. However, the form of the mean rings alarm. Since N is given

7



by (2.1), N̂ps is asymptotically unbiased to N if and only if
∑K

k=1 αk =
∫

e(z)fZ(z)dz or

equivalently
K
∑

k=1

η1k(η5k/η2k)(η4k/η3k) =

∫

e(z)fZ(z)dz. (3.3)

As η1k is the averaged correct enumeration function over Uk, a bias will occur on the popu-

lation size estimator on Uk if the product of η4k/η3k and η5k/η2k is not one. Consequently,

the relative bias of the PS estimator is

Ñ{

K
∑

k=1

αk −

∫

e(z)fZ(z)dz}/N,

which does not converge to zero even as N → ∞. The issue of bias becomes more apparent

in the following two cases.

Case 1: Z = X, namely both enumeration functions p(·) and g(·) have identical covari-

ates, which is typical for conventional PS. In this case, the post-strata X (k) = Z(k) = Xk

and ψ(z) = p(x). Hence, (3.3) reduces to

K
∑

k=1

∫

Xk
e(x)p(x)fX(x)dx

∫

Xk
g(x)fX(x)dx

∫

Xk
p(x)g(x)fX(x)dx

=

∫

e(x)fX(x)dx. (3.4)

If p(x) is piece-wise constant over {Xk}
K
k=1, then regardless the functional form of e(z) and

the P-sample enumeration function g(x), (3.4) is valid and hence the PS estimator N̂ps will

be asymptotically unbiased.

Case 2: Z 6= X. In this case, the post-strata X (k),Z(k) and Uk are different. To ensure

(3.3), both p(x) and e(z) have to be piece-wise constant over their respective post-strata,

which is more demanding than that in Case 1.

In summary, to ensure unbiasedness and hence consistency, the PS estimator requires

either p(x) or both p(x) and e(z) to be piece-wise constant over the post-strata. These

requirements are difficult to attain in the presence of any continue covariates, for instance

the age and mail return rates. The PS used in the 2000 A.C.E. had five age strata which

is unable to capture the heterogeneity induced by the age. Figures 1 and 2 provide clear

evidence of the age effect by plotting p(x) and e(z) as a function of the age for selected

values of other ROASTR covariates using the 2000 A.C.E. data.
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4 LOGISTIC REGRESSION

Logistic regression is an addition to the 2010 Census dual system estimation (Bell and

Cohen, 2009) by assuming parametric logistic models for e(z) and p(x). Let t(Z) =

{t1(Z), · · · , tm(Z)}
T and s(X) = {s1(X), . . . , sq(X)}T denote some known transforma-

tions of the covariates Z and X respectively. Then, e(z) and p(z) are logistic in terms of

t(z) and s(x) respectively, namely

e(z; θ1) =
exp{tT (z)θ1}

1 + exp{tT (z)θ1}
and p(x; θ2) =

exp{sT (x)θ2}

1 + exp{sT (x)θ2}

where θ1 and θ2 are respectively m and q dimensional unknown parameters. Mule et al.

(2007) and Chen et al. (2010) considered logistic regression models with 86 main effects

and interactions from the ROASTR to analyze the 2000 Census A.C.E data. Their models

also include interactions between the four discrete variables (racial origin, sex, tenure and

region) in ROASTR with six parametric polynomial splines. The parametric splines model

the age effect continuously instead of keeping it fixed over post-strata as in the PS.

The conditional binary log likelihoods to estimate the unknown parameters θ1 and θ2

are

ln1(θ1) =
∑

i∈E

[ei log{e(Zi; θ1)}+ (1− ei) log{1− e(Zi; θ1)}] and

ln2(θ2) =
∑

i∈P

[Yi log{p(Xi; θ2)}+ (1− Yi) log{1− p(Xi; θ2)}]. (4.1)

Let θ̂1 and θ̂2 be the maximum likelihood estimates based on (4.1) based on the E and P

samples respectively. the logistic regression population size estimator is

N̂l =
∑

i∈E

e(Zi; θ̂1)

p(Xi; θ̂2)
. (4.2)

Let θ∗1 and θ∗2 be the probability limits of θ̂1 and θ̂2 as N → ∞ and R(z; θ∗2) =

E
{

p(X)
p(X;θ∗

2
)

∣

∣

∣
Z = z

}

. The properties of N̂l is summarized in the following theorem.

Theorem 2 Under Conditions C.1, C.2 and C.4 given in the Appendix,

E(N̂l) = Ñ

∫

Z

e(z; θ∗1)R(z; θ
∗
2)fZ(z)dz +O(1),

V ar(N̂l) = ÑVl +O(1)
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where Vl = T0 + T1 + T2 + T3 whose expression is given in (A.5) in the Appendix.

Like the PS estimator N̂ps, the variance of N̂l is expected and does not create any issues.

An potential issue comes with respect to the mean of N̂l. The condition that ensures the

logistic regression estimator N̂l to be asymptotically unbiased is

∫

e(z; θ∗1)R(z; θ
∗
2)fZ(z)dz =

∫

e(z)fZ(z)dz. (4.3)

Since R(z; θ∗2) is the ratio of the true enumeration p(x) and p(x, θ2), this condition basically

requires both e(z; θ1) and p(x; θ2) are the correct specifications of e(z) and p(x) respectively.

This is clearer when X = Z as (4.3) becomes

∫

e(x; θ∗1)
p(x)

p(x; θ∗2)
fX(x)dx =

∫

e(x)fX(x)dx. (4.4)

Requiring that both e(z; θ1) and p(x; θ2) are correct specifications maybe viewed as restric-

tive as requiring the two enumeration functions e(z) and p(x) to be piece-wise constant by

the PS. When e(z) 6= e(z; θ1) and/or p(x) 6= p(x; θ2), N̂l is subject to a systematic relative

bias

Ñ

{
∫

Z

e(z; θ∗1)R(z; θ
∗
2)fZ(z)dz −

∫

Z

e(z)fZ(z)dz

}

/N

which does not diminish to zero even as N → ∞. How to find reasonable parametric

models for p(x) and e(x) based on the empirical data is the main challenge for the logistic

regression estimation.

5 LOCAL POST-STRATIFICATION

We evaluate in this section the local post-stratification approach formulated based on non-

parametric regression estimations of e(z) and p(x). We will demonstrate that, unlike the

PS and the logistic regression estimators, the local PS estimator is free of the systematic

bias and is consistent under much weaker conditions.

The method that supports the local PS is the nonparametric regression, which has been

extensively studied (Härdle, 1990; Fan and Gijbels, 1996) for continuous covariate. The

idea behind the nonparametric regression is the locally weighted least square by a kernel
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function K and a smoothing bandwidth h that controls the amount of smoothness of the

resulting nonparametric regression estimate. In the context of estimating p(x), if all the

covariates in Xi are continuous, one can choose a kernel K(x) which is a radially symmetric

probability density function in Rd and d is the dimension of X. The Nadaraya-Watson

kernel estimator

p̂(x) =

∑

i∈P K
(

x−Xi

h

)

Yi
∑

i∈P K
(

x−Xi

h

) (5.1)

is the locally weighted least square estimator that minimizes

∑

i∈P

K

(

x−Xi

h

)

(Yi − a)2. (5.2)

with respect to a. The applications of nonparametric regression methods in estimating the

population size with continuous covariate were considered in Chen and Lloyd (2000, 2002)

and Huggins and Hwang (2007).

As commonly encountered in surveys of social and economic studies, the covariate

Xi and Zi in the Census dual system surveys are mostly unordered discrete rather than

being continuous. Indeed, four out the five covariates in ROASTR are discrete. Unordered

discrete covariates can be also smoothed using the kernels proposed in Aitchison and Aitken

(1976). Suppose the d-dimensional covariate Xi = (Xc
i , X

u
i ) where Xc

i is dc-dimensional

continuous and Xu
i is du-dimensional unordered discrete. Similarly, in estimating e(z), we

write Zi = (Zc
i , Z

u
i ) where Z

c
i is of qc-dimensional continuous and Zu

i is of qu-dimensional

unordered discrete.

Let Xu
ij denote the jth component of the unordered discrete Xu

i = (Xu
i1, · · · , X

u
imu

);

and it takes cj discrete values {0, 1, ..., cj − 1}. Let λj be the smoothing bandwidth taking

values in [c−1
j , 1]. The kernel weight that smooths Xu

ij at a x
u
j is

λjI(X
u
ij = xuj ) +

1− λj
cj − 1

I(Xu
ij 6= xuj )

where I(·) is the indicator function. Assigning λj = c−1
j leads to a uniform kernel weight

irrespective to the difference between Xu
ij and xuj , whereas λj = 1 gives a kernel weight of

1 if Xu
ij = xuj and zero otherwise, which is the same as the standard frequency weight. The

values between c−1
j and 1 offer a range of choices for utilizing data information from the

neighboring cells.
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By multiplying the discrete kernel components, we have the productive kernel that

“smooths” the entire categorical component Xu
i :

L(xu, Xu
i ;
~λ) =

du
∏

j=1

{λjI(X
u
ij = xuj ) +

1− λj
cj − 1

I(Xu
ij 6= xuj )}, (5.3)

where xu = (xu1 , · · · , x
u
mu

) and ~λ = (λ1, · · · , λdu) is the bandwidth vector. The overall

kernel weight drawn from Xi = (Xc
i , X

u
i ) at x = (xc, xu) is

K

(

xc −Xc
i

h

)

L(xu, Xu
i ;
~λ). (5.4)

When estimating p(x), the kernel (5.4) effectively defines a local post-stratum around

each x = (xc, xu). Around each xu (the central stratum), there exists a ring of post-strata

which have only one different component from xu. They are called the nearest neighbors

of xu. More generally, the kth nearest neighbors of xu consists of those strata having k

different components from xu. The discrete kernels assigns the largest weight to the central

stratum, and decreasing weights to other strata as their distances to xu increase. This is

similar in principle to continuous kernel weight allocation by K
(

xc−Xc
i

h

)

which allocates

higher weights near xc when |(xc −Xc
i )/h| is smaller.

Applying the kernel (5.4) instead of the continuous kernel K in (5.2), we have the kernel

estimator of p(x)

p̂(x) =

∑

i∈P Kh1
(xc −Xc

i )L(x
u, Xu

i ;
~λ1)Yi

∑

i∈P Kh1
(xc −Xc

i )L(x
u, Xu

i ;
~λ1)

(5.5)

where h1 and ~λ1 = (λ11, . . . , λ1du) are respectively the smoothing bandwidths. A similar

operation on Zi leads to

ê(z) =

∑

i∈E K
(

zc−Zc
i

h2

)

L(zu, zui ;
~λ2)ei

∑

i∈E K
(

zc−Zc
i

h2

)

L(zu, Zu
i ;
~λ2)

(5.6)

where ~λ2 = (λ21, . . . , λ2qu). Here without loss of generality we assume X and Z have the

same number of continuous covariates. Two sets of bandwidths (h1, ~λ1) and (h2, ~λ2) are

utilized in the kernel estimation of p(x) and e(z) respectively, reflecting that different levels
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of smoothness may be applied to different functions. The smoothing parameters (hk, ~λk)

by minimizing respectively the cross-validation (CV) scores:

CVp(h1, ~λ1) = n−1
∑

i∈P

{Yi − p̂
(−i)

h1,~λ1

(Xi)}
2 and CVe(h2, ~λ2) = n−1

∑

i∈E

{ei − ê
(−i)

h2,~λ2

(Xi)}
2,

where p̂
(−i)

h1,~λ1

(x) and ê
(−i)

h2,~λ2

(x) are the estimators of p(x) and e(x) after excluding the ith

observation.

The most striking feature of the kernel estimators is that p(x) and e(z) are consistently

estimated without relying on specific parametric assumptions as the kernel estimation al-

lows data speak to tell what the underlying models are. The local PS population size

estimator is

N̂lp =
∑

i∈E

ê(Zi)

p̂(Xi)
. (5.7)

This estimator was implemented in the empirical study reported in Chen et al. (2010) on

the 2000 dual system A.C.E. data. We provide in this paper the properties of this estimator.

A key difference between the PS and the local PS is that the post-strata used in the

PS are fixed whereas the local post strata are adaptive with their sizes shrinking as the

amount of data information increases. The latter is achieved by letting the bandwidths

hk → 0 and each λkj → 1 when N → ∞. The shrinking local post-strata leads to the

removal of the bias caused by the heterogeneity as shown in the next theorem.

We need some notations first. Let D1
au = {yu :

∑dim(au)
j=1 I(yuj 6= auj ) = 1} be a collection

of the nearest neighboring cells to an au whose dimension is dim(au), which is du for xu

and qu for zu; and

βλ(a
u, yu) =

1−
∑dim(au)

j=1 λjI(y
u
j 6= auj )

∑dim(au)
j=1 cjI(yuj 6= auj )− 1

be the discrete kernel weight contributed from cell yu to the cell au. We use∇k to denote the

kth differential operator with respect to the continuous covariates. The following quantities

are needed in describing the bias of N̂lp from smoothing the continuous and the discrete
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covariates in the estimation of e(z):

bec =

∫

tr
[

∇2{e(z)ψ(z)fZ(z)} − e(z)∇2{ψ(z)fZ(z)}
]

ψ(z)
dz and

beu(
~λ2) =

∑

zu∈Zu

∑

yu∈D1

zu

βλ2
(zu, yu)

∫

Zc

ψ(zc, yu)fZ(z
c, yu)

ψ(zc, zu)
{e(zc, yu)− e(zc, zu)}dzc

where ψ(z) = E{p(x)|Z = z}. The corresponding terms from estimating p(x) are

bpc =

∫

X

tr
[

∇2{p(x)g(x)fX(x)} − p(x)∇2{g(x)fX(x)}
]

φ(x)

p(x)g(x)
dx and

bpu(
~λ1) =

∑

xu∈Xu

∑

yu∈D1

xu

βλ1
(zu, yu)

∫

X c

φ(xc, xu)
g(xc, yu)fX(xc, yu)

p(xc, xu)g(xc, xu)
{p(xc, yu)− p(xc, xu)}dxc

where φ(x) = E{e(Z)|X = x}. Furthermore, let σ2
K =

∫

t2K(t)dt, R(K) =
∫

K2(t)dt, h =

min(h1, h2), 1−λ1 = max
1≤j≤du

(1−λ1j), 1−λ2 = max
1≤j≤qu

(1−λ2j) and 1−λ = max(1−λ1, 1−λ2).

The properties of the local PS estimator N̂lp is summarized in the following theorem.

Theorem 3 Under the conditions C.1-C.3 and C.5 given in the Appendix,

E(N̂lp) = N −
1

2
σ2
KÑ(h21b

p
c − h22b

e
c)− Ñ{bpu(

~λ1)− beu(
~λ2)}

+R(K)h−dc

∫

X

φ(x){1− p(x)}

p(x)g(x)
dx+ o{Ñ(h2 + 1− λ) + h−dc}; (5.8)

V ar(N̂lp) = Ñ

{
∫

X

φ(x)2{1− p(x)}{1− g(x)}fX(x)dx

p(x)g(x)
+

∫

Z

e2(z)fZ(z)dz

−

(
∫

Z

e(z)fZ(z)dz

)2

+

∫

Z

e(z){1− e(z)}fZ(z)

ψ(z)

}

+O{Ñ(h2 + 1− λ)}. (5.9)

As Ñ = N/
∫

e(z)fz(z)dz = O(N), the variance of the local post-stratification estimator

is O(N) which is the same order as that of the parametric logistic regression estimator N̂l,

despite the local PS is nonparametric. This is different from other situations where the

kernel estimation has a slower rate of convergence than its parametric counterpart. The

reason for the parametric and the local PS population size estimators having the same rate

of convergence is due to the summation
∑

i∈E

in (5.7).

Note that bpu(
~λ1) = O(1 − λ1) and b

e
u(
~λ2) = O(1 − λ2), and h → 0, (1 − λ1) → 0 and

(1 − λ2) → 0 as N → ∞. The leading order bias of N̂lp as conveyed from (5.8) is at the

order of Nh2 +N(1− λ) + h−dc . And hence the relative bias {E(N̂lp)−N}/N = O{h2 +
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(1− λ) + (Nh)−dc} which diminishes to 0 as N → ∞, implying that N̂lp is asymptotically

unbiased. This together with the result on the variance (5.9) means that

E

(

N̂lp −N

N

)2

→ 0 as N → ∞.

Hence, N̂lp is ratioly consistent to N . We have seen from Theorems 1 and 2 that the

same ratio consistency of N̂ps and N̂l are attained only when Conditions (3.3) and (4.3)

are met respectively. Theorem 3 shows that the consistency of the local PS estimator N̂lp

is achieved under very weak conditions which are no more than requesting the existence

of certain derivatives with respect to the continuous covariates and without requiring the

two enumeration functions e(z) and p(x) to be either piece-wise constant or a specific

parametric form. Although the nonparametric estimation generally requires more data to

allow the data themselves to tell us what the underlying model should be, this is not an

issue here as there are good amount of data in the Census dual system surveys.

6 SIMULATION STUDIES

We report results from simulation studies which were designed to confirm the theoretical

analyses reported in the previous sections. To reflect the Census covariates, we chose

X = (X1, . . . , X5), where X1 ∈ [0, 70] mimicking the age, X2 ∈ {0, . . . , 6} for the racial

origins, X3 ∈ {0, . . . , 4} for the region, and X4, X5 ∈ {0, 1} are for sex and housing tenure

respectively. Then the domain ofX was X = [0, 70]×{0, . . . , 6}×{0, . . . , 4}×{0, 1}2. The Z

covariate was chosen such that Z = (XT , Z6)
T with Z6 ∈ {0, 1}. Here, Z6 was for a covariate

only observable in the E sample. Without loss of generality, we independently generated

{Xi}
Ñ
i=1 and {Zi}

Ñ
i=1 respectively from super-population densities fX and fZ . The super-

population densities were formed by assuming independence and uniformly distribution

among the components in Xi and Zi. The four discrete covariates in Xi produced 112 cells,

whereas the five in Zi determined 224 cells.

We tried to generate heterogeneity in p(x) and e(z) functions to be responsive to that

observed from the empirical estimates on the 2000 A.C.E data, for instance those displayed

in Figures 1 and 2. Let l(x) = 16x2 + 8x3 + 4x4 + 2x5 + 1 be a one-to-one mapping from
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{0, . . . , 6}4×{0, . . . , 4}×{0, 1}2 to {1, . . . , 112}. We chose p(x) = [1+exp{−bp(x); β
(p)}]−1

where

bp(x; β
(p)) = β

(p)
l(x)0 +

6
∑

k=1

β
(p)
l(x)kBk(x1), (6.1)

where Bk(x), for k = 1, . . . , 6, are the basis functions of a cubic B-spline with knots at

{10, 20, 30}. We first generated β
(p)
l(x) = (β

(p)
l(x)0, . . . , β

(p)
l(x)6)

T from N(µp,Σ) independently for

l(x) = 1, . . . , 112 where

µp = (3.0, .5,−.5,−3.5, 3.0,−2.5, 1.0)T and Σ = diag(.2, .001, .001, .2, .1, .1, .1).

These coefficients were kept fixed once generated. Similarly, let m(z) = 32z2+16z3+8z4+

4z5 + 2z6 + 1 be a 1-1 mapping from {0, . . . , 6}4 × {0, . . . , 4} × {0, 1}3 to {1, . . . , 224}. We

set e(z) = [1 + exp{−be(z; β
(e))}]−1 where

be(z; β
(e)) = β

(e)
m(z)0 +

6
∑

k=1

β
(e)
m(z)kBk(z1). (6.2)

To introduce heterogeneity from Z6, we generated the coefficient vectors β
(e)
1 , β

(e)
3 , . . . , β

(e)
223

iid
∼

N(µe1,Σ) and β
(e)
2 , β

(e)
4 , . . . , β

(e)
224

iid
∼ N(µe2,Σ) with µe1 = (3.0, .8,−.3,−3.5, 3.0,−2, 1)T and

µe2 = (1.0, .8,−.3,−3.5, 3.0,−2, 1)T . The same Σ used for the p(x) coefficients β
(p)
l(x) was

used here. The setting for µe2 induced a much lower e(z) than that by µe1. Again, the

coefficients β
(e)
m(x) were held fixed once generated. We created the P sample enumeration

functions g(x) the same way as p(x).

We implemented the PS and logistic regression estimation as follows. The post-strata

were constructed by subdividing the age range [0, 70] into 4 groups: [0, 10), [10, 25), [35, 50)

and [50, 70]. The four age strata together with the 112 or 224 cells with respect to the

discrete covariates in the P or E sample produced 448 and 672 post-strata respectively. The

PS population size estimates were obtained by (3.1). The logistic regressions estimation

were performed under two models. One had the correct specification as in (6.1) and (6.2),

and the other was mis-specified by replacing (6.1) and (6.2) with the cubic B-splines on x1

and z1 with knots at {10, 20}. The smoothing bandwidths for the local PS were chosen by

the CV method and the population size estimates were obtained by applying (5.7).
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We considered two nominal population sizes Ñ = 500, 000 and Ñ = 1, 000, 000 with 2000

replications respectively in the simulation. We applied the three estimators to estimate the

true population size N and the 224 sub-population sizes determined by the Z-covariates.

Figure 3 presents the average absolute relative bias and the relative root mean square errors

(RMSE) for the sub-population size estimates.

Figure 3 shows that both the PS and logistic regression under the mis-specification

(LR-Mis) endured much larger biases than the the local post-stratification (L-PS) and

the logistic regression under the correct specification (LR-True). The biases with the PS

and LR-Mis did not get smaller when Ñ was doubled to 1 million. These confirmed our

theoretical findings of systematic bias with the PS and a mis-specified logistic regression

model. The systematic bias was so significant that the relative root mean square errors

(right panels) did not converge to zero, causing the two sets of estimates not consistent.

At the same time, the bias and the root mean square errors of the local PS and the logistic

regression estimates got smaller as Ñ was increased indicating the consistency of these

two estimators. The logistic regression under the true specification enjoyed the smallest

relative bias due to its using the true models, with the local PS the second best. The relative

RMSE were largely the same among the four methods when Ñ = 500, 000. However, when

Ñ was increased, both the local PS and the logistic regression using the correct models

were noticeably better due to their reduced bias.

For the estimation of the overall population size N , the absolute average biases (the

standard errors) for PS, LR-True, LR-Mis and L-PS were respectively 1.3(0.16), 0.5(0.19),

1.2(0.16) and 0.8(0.18) for Ñ = 500, 000, and 1.2(0.10), 0.4(0.11), 1.1(0.10) and 0.6(0.11)

for Ñ = 1, 000, 000. Despite doubling the population size, the biases associated with the

PS and the logistic regression using a wrong model were still very large. This is largely

consistent with the results for sub-population estimation reported in Figure 3.

7 ANALYSIS OF THE 2000 A.C.E. DATA

In this section, we applied the three estimation approach on the 2000 A.C.E revision II

data. The covariates used in modeling the E sample enumeration p(x) were ROASTR,
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and those for the correct enumeration e(Z) were ROASTR plus the match coding group

(MCG). Since the MCG covariate is not available outside the E sample, we constructed

the population estimates

N̂ =
∑

i∈C

ê(Xi)

p̂(Xi)

based on the projected correct enumeration function e(Xi) = E{e(Zi)|Xi} that can also be

estimated by a modified local PS method discussed in Chen et al. (2010).

The PS we used had 280 post-strata after combining strata for small racial domains and

for people under 18; see Schindler (2008) for details. The logistic regression employed in the

analysis was the one used in Mule et al. (2007) which has 86 main effects and interactions,

and four spline pieces for the age effect. The smoothing bandwidths h and ~λ in the local

post-stratification were chosen by the CV method as spelt out in Section 5.

Figures 1 and 2 display the estimates of p(x) and e(x) based on the PS, the logistic

regression and the local PS with respect to age while having the discrete covariates fixed at

(Hispanic, Male, Owner, West) and (Asian, Male, Renter, Northeast). The heterogeneity

is clearly seen from the fitted curves, especially from the local PS estimates. By comparing

the two panels in each figure, we see that the Asian Male renters in the Northeast was less

likely to be enumerated and correctly enumerated than the Hispanic Male owner in the

West. The heterogeneous age effect was quite apparent as shown by dips in both functions

between age 17-25 which is known to be the most difficult part of the US population to be

enumerated by the Census. It is observed that the local PS estimates had some agreement

with those of the PS in a global sense. However, the local PS can pick up local heterogeneity

within each stratum. At the same time, the estimates by the logistic regression were much

influenced by the shapes of the age splines used. And the estimates from the PS and the

local PS estimates deviated substantially for the renters.

For a sub-population defined by the discrete covariate yu, its population size can be

estimated by

N̂(yu) =
∑

i∈E(yu)

ê(Zi)

p̂(Xi)

where E(yu) denotes the set of enumerations of the sub-population in the E sample. Let
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|C(yu)| be the census count. A commonly used empirical measure on the Census is the

percentage of undercount u(yu) = {N̂(yu)−|C(yu)|}/N̂(yu). The percentages of undercount

(standard errors) for the two cells considered in Figures 1 and 2 were 1.22 (0.65) for the

PS, 1.71 (0.65) for the logistic regression and 1.31 (0.63) for the local PS for Hispanic

Male Owner in the West, and 3.05 (1.40) for the PS, 4.16 (2.50) for the logistic regression,

and 3.66 (1.66) for the local PS for Asian Male renters in the Northeast. The standard

errors were obtained by the Jackknife variance estimation, (Shao and Tu, 1995; Wolter,

2007). Table 1 provides population undercount estimates for sixteen selected states. While

the three estimates were largely comparable for most of the states, we do see substantial

difference among them in Hawaii, Florida and VA (full spelling here and in the table). While

the local PS and the logistic regression estimates were close in NH and New Jersey, they

were a little different from the PS estimates. While part of the difference may be attributed

to random variation, some can be due to the built-in bias associated with mis-specification

by the PS and logistic regression.

8 DISCUSSION

In this paper, we have assumed that the covariates Xi and Zi, and the statue responses

Yi and ei are all observed completely. In reality, these variables are subject to missing

values. However, the conclusion of our analysis regarding the bias of the three population

size estimators, will remain valid when the missing values are replaced by their imputations

(Chen et al., 2010).

We have evaluated the properties of three dual system population size estimators. While

all three estimators have comparable variance at the order of N , the properties of their

biases are quite different. Our analysis reveals that there can be systematic biases for the

PS and logistic regression estimators when the model assumptions for the two enumeration

functions deviate from the underlying true model. The logistic regression is designed to

improve the PS with an actively parametric modeling on the covariates effects. It represents

a methodological improvement over the PS. Our analysis reveals that the effectiveness of

the logistic regressions in the dual system estimation depend on using logistic models which
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are close to the real underlying models. Hence, selecting a logistic model that is close to

the true model is a crucial step in implementing the approach.

Our analysis shows that the local PS estimation is model robust as it produces con-

sistent estimates without specific model assumptions for the two enumeration functions

p(x) and e(z). In addition to producing model-robust population size estimates, the local

PS estimates can be used as empirical checks on the reasonableness of the logistic regres-

sion estimates. This is what we can infer from the case study reported in Section 7, which

showed that at the State level the employed logistic regression may not be too mis-specified

for most states. However, at different population aggregates, for instance the two chosen

in Figures 1 and 2, the estimates can be quite different. This points to some lack of fits

for the logistic regression model. The current plan in the 2010 dual system CCM study

is to use the PS to evaluate the logistic regression estimates. Given the analysis done in

this paper, we advocate for using the local PS instead of the PS to evaluate the logistic

regression estimation.

APPENDIX: TECHNICAL DETAILS

In the Appendix, we use Ii∈E as the indicator for enumeration such that Ii∈E = 1 of

the individual i is enumerated in the E sample. And similarly, Ii∈P is the indicator for

enumeration in the P sample. Consequently, Ii∈EIi∈P = 1 implies i is a recapture (match).

We assume the following conditions in our analysis.

C.1 Let Ui = Xi ∪ Zi be the combined covariates. We assume {Ui}
Ñ
i=1 is a sequence of

independent and identically distributed random variables from a super-population

with density fU .

C.2 (i) The sampling of individuals in E and in P are conditional independent given the

combined covariate X, namely Ii∈E and Ii∈P are independent namely conditioning

on Xi so that E(Ii∈EIi∈P |Xi) = E(Ii∈E |Xi)E(Ii∈P |Xi) = p(Xi)g(Xi); (ii) E(Yi|Ui) =

p(Xi) and E(ei|Ui) = e(Zi) where U = Zi∪Xi is the combined covariates; (iii) that an

individual in E sample being an EE and its enumeration by the Census is conditional
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independent given U so that E(eiIi∈E |Ui) = E(ei|Ui)E(Ii∈E |Ui) = e(Zi)p(Xi).

C.3 p(x), g(x)fX(x) and ψ(z)fZ(z) are all bounded from below by some C > 0 for all x

and z in their support.

C.4 For estimating θ1 and θ2 under the logistic regression models e(x; θ1) and p(x; θ2), let

ℓi1(θ1) =
e(1)(Zi; θ1){ei − e(Xi, θ1)}Ii∈E

e(Zi; θ1){1− e(Zi; θ1)}

ℓi2(θ2) =
p(1)(Xi; θ2){Yi − p(Xi, θ2)}Ii∈P

p(Xi; θ2){1− p(Xi; θ2)}
.

There exist unique θ∗1 and θ∗2 such that E{ℓi1(Zi, θ
∗
1)} = 0 and E{ℓi2(Xi, θ

∗
2)} = 0,

E{ℓi1(θ
∗
1)ℓ

T
i1(θ

∗
1)} and E{ℓi2(θ

∗
2)ℓ

T
i2(θ

∗
2)} are positive definite. In addition, E{ℓ

(1)
i1 (θ

∗
1)}

and E{ℓ
(1)
i2 (θ

∗
2)} are full rank, ℓi1(Zi; θ1) and ℓi(Xi; θ2) are both twice continuously

differentiable with respect to θ1 and θ2 in neighborhoods of θ∗1 and θ∗2, respectively.

In addition, we assume that for θ2 in a neighborhood of θ∗2, p(x; θ2) > C2 for some

C2 > 0 for all x in its support.

C.5 Assume that p(x) and e(z) are twice continuously differentiable in their support.

The continuous kernel K(u) is symmetric probability density function that has finite

second moment. Let h = min(h1, h2), 1−λ1 = max
1≤j≤du

(1−λ1j), 1−λ2 = max
1≤j≤qu

(1−λ2j)

and 1−λ = max{1−λ1, 1−λ2}. We assume as N → ∞, h→ 0, Nhdc/ log2(N) → ∞

and N(1− λ)/ log2(N) → ∞.

C.1 defines the super-population. C.2 specifies the conditional independent between

the selection of person in both samples and defines the enumeration and correct enumer-

ation functions p(x) and e(z) in light of X and Z may differ. C.3. ensures that for each

k = 1, . . . , K,
∫

Uk
p(x)fU(u)du > C1 and

∫

Uk
g(x)fU(u)du > C1 for some C1 > 0. C.4

contains some standard conditions for the asymptotic analysis on the maximum likelihood

estimation. The conditions in C.5 are commonly assumed in the nonparametric regression.
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Proof of Theorem 1

Let η̂1k = Ñ−1
∑

i∈U Ii∈EIi∈ẼIi∈Z(k), η̂2k = Ñ−1
∑

i∈U Ii∈EIi∈Z(k) where Z(k) is the stratum

for estimating e(·). Then êk = η̂1k/η̂2k. By the law of large numbers, η̂1k
p
→ η1k where

η1k =

∫

e(z)p(x)Ii∈Z(k)f(u)du =

∫

Z(k)

e(z)ψ(z)fZ(z)dz.

Similarly η̂2k
p
→ η2k =

∫

Z(k)

ψ(z)fZ(z)dz. Let η̂3k = Ñ−1
∑

i∈U Ii∈EIi∈PIi∈X (k) and η̂4k =

Ñ−1
∑

i∈U Ii∈PIi∈X (k), then p̂k = η̂3k/η̂4k. Apply the law of large numbers, we show

η̂3k
p
→ η3k =

∫

X (k)
p(x)g(x)fX(x)dx and η̂4k

p
→ η4k =

∫

X (k)
g(x)fX(x)dx, and p̂k

p
→ η3k/η4k.

Furthermore, η̂5k = N−1
∑

i∈U Ii∈EIi∈Uk

p
→ η5k =

∫

Uk
p(x)f(u)du. Define N̂k = nkêk/p̂k =

Ñ {η̂5k(η̂1k/η̂2k)/(η̂3k/η̂4k)}, then N̂p =
∑K

k=1 N̂k. Note that

N̂k = Ñ

{

η5kη1kη4k
η2kη3k

+
η1kη4k
η2kη3k

(η̂5k − η5k) +
η5kη1k
η2kη3k

(η̂4k − η4k) +
η5kη4k
η2kη3k

(η̂1k − η1k)

−
η5kη1kη4k
η2kη23k

(η̂3k − η3k)−
η5kη1kη4k
η22kη3k

(η̂2k − η2k) + rk

}

, (A.1)

where rk is a negligible term so that Nrk has finite second moment and hence V ar(rk) =

O(N−2). Therefore, (A.1) implies E(N̂k) = Nαk + O(1) and thus E(N̂p) = Ñ
∑K

k=1 αk +

O(1). This derives the bias of N̂ . Define γjk = ηjk(1− ηjk), j = 1, . . . , 5. It is seen

var(η̂jk) = Ñ−1γjk, j = 1, . . . , 5. (A.2)

Let η6k = E{Ii∈EIi∈ẼIi∈PIi∈Uk
}, η7k = E(Ii∈EIi∈ẼIi∈Uk

), η8k = E(Ii∈EIi∈PIi∈Uk
) and

ωij,k = Ñcov(η̂ik, η̂jk) for i, j = 1, . . . , 5 and i 6= j. (A.3)

Moreover, define c1k = η5kη4k/(η2kη3k), c2k = η5kη1kη4k/(η
2
2kη3k), c3k = η5kη1kη4k/(η2kη

2
3k),

c4k = η5kη1k/(η2kη3k) and c5k = η1kη4k/(η2kη3k). By substituting (A.2) and (A.3) into the

variance of (A.1), we establish

var(N̂l) =
K
∑

i=1

K
∑

j=1

cov(N̂i, N̂j) = V Ñ +O(1) (A.4)
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where V = V1 + V2 + V3 + V 4,

V1 =

K1
∑

k=1

Mp(k){c
2
3kγ3k + c24kγ4k − 2c3kc4kω34,k},

V2 =

K2
∑

k=1

Me(k){c
2
1kγ1k + c22kγ2k − 2c1kc2kω12,k}, V3 =

K
∑

k=1

c25kγ5k,

V4 = −2
K
∑

k=1

{c1kc3kω13,k − c1kc4kω14,k − c1kc5kω15,k − c2kc3kω23,k + c2kc4kω24,k

c2kc5kω25,k + c3kc5kω35,k − c4kc5kω45,k} and

Mp(k) or Me(k) is the total number of cells among U1, . . . ,UK whose X or Z components

belonging to Xk or Zk.

Proof of Theorem 2

We need to introduce some notations. LetR1(z; θ
∗
2) = E

{

p(X)
p2(X;θ∗

2
)

∣

∣

∣
Z = z

}

, denote e(l)(z; θ1)

and p(l)(x; θ2) be the l-th derivatives of e(z; θ1) and p(x; θ2) with respect to θ1 and θ2. Sim-

ilar to those in studying the PS approach, we define the projected enumeration function

φ(x; θ∗1) = E{e(Z; θ∗1)|X = x}, φ2(x; θ
∗
1) = E{e2(Z; θ∗1)|X = x} and

M1 =

∫

Z

e(1)(z; θ∗1)R(z; θ
∗
2)fZ(z)dz and M2 =

∫

X

p(1)(x; θ∗2)φ(x; θ
∗
1)p(x)fX(x)dx

p2(x; θ∗2)
.

The following quantities are defined to study the variance of (4.2):

D =

∫

e(1)(z; θ∗1){e
(1)(z; θ∗1)}

T [e(z){1− 2e(z; θ∗1)}+ e2(z; θ∗1)]ψ(z)fZ(z)

e2(z; θ∗1){1− e(z; θ∗1)}
2

dz,

C = −

∫

e(2)(z; θ∗1){e(z)− e(z; θ∗1)}ψ(z)fZ(z)

e(z; θ∗1){1− e(z; θ∗1}
dz +D;

B =

∫

p(1)(x; θ∗2){p
(1)(x; θ∗2}

T [p(x){1− 2p(x; θ∗2}+ p2(x; θ∗2)]g(x)fX(x)

p2(x; θ∗2){1− p(x; θ∗2)}
2

dx,

A = −

∫

p(2)(x; θ∗2){p(x)− p(x; θ∗2)}g(x)fX(x)

p(x; θ∗2){1− p(x; θ∗2)}
dx+B

T0 =

∫

Z

e2(z; θ∗1)R1(z; θ
∗
2)fZ(z)dz −

(
∫

Z

e(z; θ∗1)R(z; θ
∗
2)fZ(z)dz

)2

,

T1 =MT
1 C

−1DC−1M1, T2 =MT
2 A

−1BA−1M2 and

T3 = −2

∫

X

φ2(x; θ
∗
1){p

(1)(x; θ∗2)}
TA−1p(1)(x; θ∗2)g(x)fX(x)p

−3(x; θ∗2)dx. (A.5)
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Given Condition C.4, we can show that θ̂1 and θ̂2 converge in probability to θ∗1 and

θ∗2 respectively as N → ∞. We note that if the parametric models e(·, θ1) and p(·, θ2)

are correctly specified, then θ∗1 and θ∗2 are the true parameters of the models. If the

parametric models are mis-specified, θ∗1 and θ∗2 correspond to parameter values of certain

parametric models that are closest to the mis-specified models under the Kullback-Leibler

(KL) distance (White, 1982).

We shall only develop the expansion for θ̂2 and note that the case for θ̂1 follows in

exactly the same way. By definition, the MLE θ̂2 is the root of

0 = Ñ−1
∑

i∈U

p(1)(Xi; θ){Ii∈E − p(Xi; θ)}Ii∈P
p(Xi; θ){1− p(Xi; θ)}

=: Ñ−1
∑

i∈U

ℓi(θ),

where p(1) = ∂p/∂θ. We note that the limit of θ̂2 denoted by θ∗2 satisfies
∫

p(1)(x; θ∗2){p(x)− p(x; θ∗2)}g(x)fX(x)

p(x; θ∗2){1− p(x; θ∗)}
= 0,

where the p(x) and g(x) are the enumeration functions of E and P samples, f(x) is the

density of the super-population. However, we note that p(x) may not equal to p(x; θ∗)

pointwise. This represents the fact that the parametric model may be mis-specified. We

apply Taylor’s expansion on the above equation in a neighborhood of θ∗,

0 = Ñ−1
∑

i∈U

ℓi(θ̂2) = Ñ−1

n
∑

i∈U

ℓi(θ
∗
2) + Ñ−1

∑

i∈U

ℓ
(1)
i (θ∗2)(θ̂2 − θ∗2) +Rn(θ2) (A.6)

where Rn(θ2) is the remainder term whose kth component is given by

Rnk = Ñ−1(θ̂2 − θ∗2)
T{∂2ℓik(θ̃2)/∂θ2∂

T θ2}(θ̂2 − θ∗2)

where ||θ̃− θ∗|| ≤ ||θ̂− θ∗||. Under the regularity conditions, Rn = Op(N
−1) and ÑRn has

bounded second moment. By law of large numbers, Ñ−1
∑

i∈U ℓ
(1)
i (θ∗2)

p
→ E{ℓ

(1)
i (θ∗2)} =:

A(θ∗2). Then, we have

θ̂2 − θ∗2 = A−1(θ2){1 + op(1)}{Ñ
−1
∑

i∈U

ℓi(θ
∗
2) +Rn}. (A.7)

Let B(θ∗2) = E{ℓi(θ
∗
2)ℓ

T
i (θ

∗
2)}, then we have var(θ̂) = Ñ−1A−1(θ∗2)B(θ∗2)A

−1(θ∗2) + o(N−1).

In particular, by letting pθ(x) = p(x; θ) and p
(2)
θ = ∂2p/∂θ∂θT , we have

A(θ) = −

∫

X

p
(2)
θ (p− pθ)gfX
pθ(1− pθ)

+ B(θ) and B(θ) =

∫

X

p
(1)
θ {p

(1)
θ }T{p(1− 2pθ}+ p2θ}gfX

p2θ(1− pθ)2
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where the dummy variable in the integration is suppressed, i.e.
∫

f(x)dx =
∫

f . Next, we

develop the following expansion for N̂l given by (4.2). We have

N̂l =
∑

i∈U

Ii∈E

{

ei(Zi; θ
∗
1)

pi(Xi; θ∗2)
+

{e
(1)
i (Zi; θ

∗
1)}

T (θ̂1 − θ∗1)

pi(Xi; θ∗2)

−
ei(Zi; θ

∗
1){p

(1)
i (Xi; θ

∗
2)}

T (θ̂2 − θ∗2)

p2i (Xi; θ∗2)
+Op(N

−1)

}

. (A.8)

Then E(N̂l) is established from (A.8). To derive the variance part of Theorem 2, we note

that Ii∈E appears in (A.6) and thus a non-ignorable correlation between the first and third

term is induced in (A.8). And we show that the remaining between terms correlations

in (A.8) are negligible. Then by taking variance operation on (A.8), we established the

variance part of Theorem 2.

Proof of Theorem 3

We note that N̂ can be written as N̂ =
∑

i∈U

ê(Zi)
p̂(Xi)

Ii∈E and by Taylor expansion,

N̂ =
∑

i∈U

ê(Zi)

p̂(Xi)
Ii∈E = t1 + t2 − t3 − t4 + t5{1 +Op(1)}, where (A.9)

t1 =
∑

i∈U

e(Zi)Ii∈E
p(Xi)

, t2 =
∑

i∈U

{ê(Zi)− e(Zi)}Ii∈E
p(Xi)

, t3 =
∑

i∈U

e(Zi){p̂(Xi)− p(Xi)}Ii∈E
p2(Xi)

t4 =
∑

i∈U

Ii∈E

p2(Xi)
{ê(Zi)− e(Zi)}{p̂(Xi)− p(Xi)} and t5 =

∑

i∈U

e(Zi)Ii∈E
p3(Xi)

{p̂(Xi)− p(Xi)}
2.

Existing theory on nonparametric regression (Härdle, 1990) ensures that p̂(·)
p
→ p(·) and

ê(·)
p
→ e(·) uniformly over the supports of e(·) and p(·) under Condition C.5. Thus the

expansion (A.9) is valid. Let K
h,~λ

(x, y) = Kh(x
c − yc)L(xu, yu, ~λ), we define

η̂1(z) = Ñ−1

N
∑

j=1

K
h2,~λ2

(z, Zj)Ij∈EIj∈Ẽ , η̂2(z) = Ñ−1

N
∑

j=1

K
h2,~λ2

(z, Zj)Ij∈E ,

η̂3(x) = Ñ−1

N)
∑

j=1

K
h1,~λ1

(x,Xj)Ij∈PIj∈E and η̂4(x) = Ñ−1

N
∑

j=1

K
h1,~λ1

(x,Xj)Ij∈P .

25



Therefore, we show that

E{η̂1(z)} =

∫

K
h2,~λ2

(z, Zj)p(Xi)e(Zi)f(Ui)dUi =

∫

K
h2,~λ2

(z, Zj)e(Zi)ψ(Zi)fZ(Zi)dZi

= e(z)ψ(z)fZ(z) +
1
2
h22σ

2
Ktr[∇

2{e(z)ψ(z)fZ(z)}]

+
∑

yu∈D1

zu

βλ2
(zu, yu)eyu(z

c)ψyu(z
c)fZ,yu(z

c) +O(h22) +O(1− λ2). (A.10)

We may derive E{η̂2(z)}, E{η̂3(x)} and E{η̂4(x)} all similarly. By letting η1(z) = e(z)ψ(z)fZ(z),

η2(z) = ψ(z)fZ(z), η3(x) = p(x)g(x)f(x), η4(x) = g(x)f(x),

ê(z) = e(z) +
η̂1(z)− η1(z)

η2(z)
−
η1(z){η̂2(z)− η2(z)}

η22(z)
{1 + op(1)} and

p̂(x) = p(x) +
η̂3(x)− η3(x)

η4(x)
−
η3(x){η̂4(x)− η4(x)}

η24(x)
{1 + op(1)}. (A.11)

We note that E(t4) = O(h4) +O{(1− λ)2} and

E(t5) = R(K)h−dc

∫

X

φ(1− p)

pg
+ o(h−dc). (A.12)

Hence, the bias part of Theorem 3 is concluded from (A.9) by summarizing (A.10), (A.11)

and (A.12).

To establish the variance of N̂ , we need to derive cov(ti, tj) for i, j = 1, 2, 3. We first

show that

var(t1) =
Ñ
∑

i=1

var

{

e(Zi)Ii∈E
p(Xi)

}

= Ñ

{

∫

X

φ2(z)

p(x)
fX(x)dx−

(
∫

Z

e(z)fZ(z)dz

)2
}

. (A.13)

Define

α1,ab =
Ia∈E

p(Xa)η2(Za)
K

h2,~λ2
(Za, Zb)Ib∈EIb∈Ẽ and α2,ab =

e(Za)Ia∈E
p(Xa)η2(Za)

K
h2,~λ2

(Za, Zb)Ib∈E .

By ignoring smaller order terms, we note from (A.9) and (A.11) that

var(t2) = Ñ−2

Ñ
∑

i=1

Ñ
∑

j=1

Ñ
∑

k=1

Ñ
∑

l=1

cov{(α1,ik − α2,ik), (α1,jl − α2,jl)}.

By the definition of the kernel K(x, y) and the independence assumption, it is true that

var(t2) =



Ñ−2

Ñ
∑

i=1

Ñ
∑

j=1

Ñ
∑

k=1

cov{(α1,ik − α2,ik), (α1,jk − α2,jk)}



 {1 +O(1− λ2)}. (A.14)
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Furthermore, let λ
(b)
a =

∏du
j=1 λ

b
aj, we have

cov{(α1,ik − α2,ik),(α1,jk − α2,jk)} = λ
(2)
2

∫

Z

e(z){1− e(z)}fZ(z)

ψ(z)
+O(h2)

=

∫

Z

e(z){1− e(z)}fZ(z)

ψ(z)
+O(h22) +O(1− λ2)

where λ(2) = 1− 2
∑du

j=1(1− λj) = 1 +O(1− λ2). Therefore,

var(t2) = Ñ

∫

Z

e(z){1− e(z)}fZ(z)

ψ(z)
+O(Ñh22) +O{Ñ(1− λ2)}. (A.15)

Let

α3,ab =
e(Za)Ia∈E

p2(Xa)η4(Xa)
K(Xa, Xb)Ib∈EIb∈P and α4,ab =

e(Za)Ia∈E
p(Xa)η4(Xa)

K(Xa, Xb)Ib∈P .

Similar to (A.14),

var(t3) =



Ñ−2

Ñ
∑

i=1

Ñ
∑

j=1

Ñ
∑

k=1

cov{(α3,ik − α4,ik), (α3,jk − α4,jk)}



 [1 +O{A(~λ1)}]

= Ñ

∫

X

φ2(x){1− p(x)}fX(x)dx

p(x)g(x)
+O(Ñh21) +O{Ñ(1− λ1)}. (A.16)

By Condition C.1,

cov(t1, t2) = O(Ñh22) +O{Ñ(1− λ2)} and cov(t2, t3) = O(Ñh21) +O{Ñ(1− λ2)}. (A.17)

Finally,

cov(t1,t3) = Ñ−1

Ñ
∑

i=1

Ñ
∑

j=1

Ñ
∑

k=1

cov

{

e(Zi)Ii∈E
p(Xi)

, (α3,jk − α3,jk)

}

= Ñ−1

Ñ
∑

i=1

Ñ
∑

j=1

cov

{

e(Zi)Ii∈E
p(Xi)

, (α3,ji − α3,ji)

}

{1 +O(1− λ1)}

= Ñ

∫

X

φ2(x){1− p(x)}fX(x)dx

p(x)g(x)
+O(Ñh21) +O{Ñ(1− λ1)}. (A.18)

In summary of these results (A.13)-(A.18), we conclude the variance part of Theorem 3.
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Figure 1: Estimated p(x) by post-stratification(PS), logistic regression(LR) and the local

post-stratification(L-PS). Dash line: PS, Dotted line: LR and Solid Line: L-PS.
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Figure 2: Estimated e(x) by post-stratification(PS), logistic regression(LR) and the local

post-stratification(L-PS). Dash line: PS, Dotted line: LR and Solid Line: L-PS.
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STATE L-PS PS LR
Northeast Region

CT 1.07(0.26) 1.05(0.26) 1.1(0.27)
NH -0.14(0.29) -0.16(0.29) -0.1(0.3)
NJ 0.86(0.26) 0.83(0.26) 0.94(0.28)
PA 0.71(0.26) 0.7(0.26) 0.74(0.27)

Midwest Region
MI 0.59(0.18) 0.6(0.18) 0.58(0.18)
MN 0.29(0.17) 0.31(0.17) 0.28(0.17)
MO 0.3(0.17) 0.3(0.17) 0.28(0.18)
OH 0.73(0.17) 0.73(0.17) 0.72(0.18)

South Region
FL 1.7(0.24) 1.72(0.24) 1.63(0.25)
MS 1.51(0.24) 1.48(0.24) 1.45(0.24)
OK 2.18(0.27) 2.18(0.26) 2.22(0.28)
VA 2.16(0.23) 2.09(0.22) 2.03(0.24)

West Region
HI 1.13(0.86) 0.92(0.85) 0.87(0.84)
OR 1.21(0.32) 1.18(0.31) 1.2(0.32))
UT 1.28(0.32) 1.21(0.32) 1.32(0.33)
WA 1.2(0.31) 1.16(0.31) 1.19(0.31)

Table 1: State level research estimates of undercount percentage and their standard errors

(in parentheses) for the local post-stratification (L-PS), the post-stratification (PS) and

the logistic regression (LR). The abbreviation...
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