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SUMMARY

We consider nonparametric regression with a mixture of continuous and discrete ex-

planatory variables where realizations of the response variable may be missing. An impu-

tation based nonparametric regression estimator is proposed. We show that the proposed

approach leads to a leading order variance benefit, whereas smoothing the categorical vari-

ables gives a second order variance improvement. We also demonstrate the applications of

the proposed approach through numerical simulations and two practical examples.
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1 Introduction

Nonparametric regression with continuous covariate has been extensively explored in the

last two decades; see Härdle (1990) and Fan and Gijbels (1996) for comprehensive overviews.

In practice, discrete covariate from qualitative observations often arises from various sce-

narios including many social and economic studies. Discrete kernel smoothing for nonpara-

metric distribution estimation was originally proposed in Aitchison and Aitken (1976). Its

theoretical properties are evaluated in Hall (1981) and Hall and Wand (1988). Recently,

there are increasing interests of nonparametric inference with mixed continuous and dis-

crete covariates. These include Li and Racine (2003) for distribution function estimation,

Hall, Racine, and Li (2004) for conditional density estimation and variable selection; see Li

and Racine (2007) for overviews in econometrics.

Missing values are often encountered in practice. Adequately incorporating data missing

mechanism is important for valid and efficient inferences (Little and Rubin, 2002). For para-

metric inference, the impact of missing data is well documented. For overviews and recent
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developments, see Little and Rubin (2002), Robins et al. (1995), Wang and Chen (2009) and

Qin, Zhang, and Leung (2009) and references therein. For nonparametric inference with

missing values, existing works are mainly confined to situation with only continuous ran-

dom variables. These include Titterington and Mill (1983) on various imputation schemes

for density estimation, Cheng (1994), Chu and Cheng (1995) and Gonzalez-Manteiga and

Perez-Gonzalez (2004) on the conditional mean imputation in estimating regression func-

tion and overall mean of the response variable; see also Müller (2009) and Efromovich

(2011) for recent development.

In this paper, we consider nonparametric regression with both continuous and discrete

covariates, say X, where the response variable Y may be missing. We start from studying

a nonparametric regression that ignores the portion of data with missing values, which we

call complete-cases based estimator. Here “complete” means non-missing values which is

a convention in the missing value literature. Although this estimator is still consistent,

its efficiency is affected by an inflation of the variance due to its ignoring the incomplete

portion of data with missing values. To improve the estimation efficiency, we propose an

imputation based nonparametric regression estimator that accommodates both continuous

and discrete covariates. Although the variances of both estimators have the same order

of magnitude, the imputation based estimator has a smaller variance in the leading order

than the complete-cases based estimator, which relates to a feature in approaches of Cheng

and Peng (2006) and Cheng et al. (2007). We also conduct a second order asymptotic

analysis, which reveals that smoothing the discrete covariates leads to an desired variance

reduction in the second order. A comprehensive application of the proposed approach

has been implemented in the case study reported in Chen, Tang, and Mule (2010) for

the US Census dual system accuracy and coverage evaluation where the main concern is

on the population size estimation. The focus of this paper, however, is on properties of

nonparametric regression with mixed covariates in the presence of missing values.

The paper is organized as follows. Section 2 outlines the nonparametric kernel regression

estimators with mixed covariates. The issue of missing values and their imputation are

considered in Section 3. Section 4 reports a theoretical analysis on the imputation based

nonparametric regression. Construction of confidence band and data adaptive smoothing

are also considered. Simulation results are reported in Section 5 followed by data analyses

in Section 6. All the technical proofs are deferred to the Appendix.

2 Nonparametric Regression with mixed covariates

Let {(Xi, Yi)}
n
i=1 be independent and identically distributed random vectors such that Xi =

(Xi1, · · · , Xid) is a d-dimensional explanatory variable and Yi is a univariate response.

Without loss of generality, we write Xi = (Xc
i , X

u
i ) where Xc

i consists of dc continuous
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covariates while Xu
i consists of du unordered categorical ones, where dc + du = d. Our

target is to estimate the nonparametric regression function

m(x) = E(Yi|Xi = x),

with heteroscedastic conditional variance σ2(x) = var(Yi|Xi = x). Here x = (xc, xu)

inherits the same partition of Xi.

To smooth continuous covariates, we apply a dc-dimensional kernel K which is a radially

symmetric probability density function in Rdc . We define Kh(u) = h−dcK(u/h). Here h is

a bandwidth that controls the amount of smoothness. For simplicity in presentation, we

consider the product kernel in our studies, i.e. K(u) =
dc
∏

i=1
K1(ui) for u = (u1, · · · , udc),

where K1(·) is some symmetric univariate density function. The product kernel can be

generalized to a multivariate kernel by the formulation in Scott (1992).

Smoothing categorical variables is designed to efficiently utilize data information from

some neighborhood that may share similar characteristics with the target; see Aitchison and

Aitken (1976), Hall (1981) and and Hall et al. (2004). For smoothing unordered categorical

covariates, we use the discrete kernel originally proposed by Aitchison and Aitken (1976).

Other formulation of discrete kernels is available in Li and Racine (2007). Suppose Xu
ij ,

the j-th component of Xu
i , takes cj discrete values in {0, 1, ..., cj − 1}. The bandwidth for

smoothing Xu
ij is λj and the kernel weight at a xuj is

λjI(X
u
ij = xuj ) +

1− λj

cj − 1
I(Xu

ij 6= xuj )

where I(·) is the indicator function. As shown in the Appendix, this way of discrete

kernel smoothing has advantage in quantifying the second order reduction in variance. The

bandwidth λj takes values within [c−1
j , 1]. Assigning λj = c−1

j leads to a uniform weight

irrespective to the difference between Xu
ij and xuj , whereas λj = 1 gives a kernel weight

of 1 if Xu
ij = xuj and zero otherwise which coincides with the standard frequency weight.

The other λj values between c−1
j and 1 offer a range of choices for information combining

for efficiency improvement. The kernel used to smooth the entire categorical component

Xu
i = (Xu

i1, · · · , X
u
idu

) at xu = (xu1 , · · · , x
u
du
) is

L(xu, Xu
i ;
~λ) =

du
∏

j=1

{λjI(X
u
ij = xuj ) +

1− λj

cj − 1
I(Xu

ij 6= xuj )}, (2.1)

where ~λ = (λ1, · · · , λdu) is a bandwidth vector. Finally, the overall kernel weight drawn

from Xi = (Xc
i , X

u
i ) for local estimation at x = (xc, xu) is

Kh(x
c −Xc

i )L(x
u, Xu

i ;
~λ).
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The kernel estimator of m(x) in the absence of missing values is then given by

m̂(x) =

∑n
i=1 Kh (x

c −Xc
i )L(x

u, Xu
i ;

~λ)Yi
∑n

i=1 Kh (xc −Xc
i )L(x

u, Xu
i ;

~λ)
. (2.2)

This is a Nadaraya-Watson type estimator carrying out weighted average of the responses

Yi locally, which allows estimating m(x) without assuming a parametric model.

3 Incorporating Missing Values

Now we consider the situation when the response Yi can be missing. Let δi be the missing

indicator of Yi such that δi = 0(1) for missing (observed) Yi. We concentrate in this study

that the Yi is missing at random (MAR) (Rubin, 1976). MAR is an important notion in

missing data analysis. It means that conditioning on the covariate Xi, the missing mech-

anism of Yi is independent of Yi. In other words, δi and Yi are conditionally independent

given Xi, i.e.

P (δi = 1|Yi, Xi) = P (δi = 1|Xi) =: w(Xi). (3.1)

Here, w(·) is called the missing propensity function of Yi. MAR is weaker and more general

than the so called missing completely at random which assumes that the propensity w(x) is

a constant function. The statistical inference in case of not missing at random often relies

on some parametric model assumption, see for instance the study in (Qin, Leung, and Shao,

2002). In this paper, we do not rely on any parametric model assumption on the missing

propensity function. Instead, we discuss practical remedy to make the MAR assumption

reasonable based on available information from data.

Here we extend the MAR assumption (3.1) to the following form to reflect the reality

of applications by assuming that in addition to Xi, some extra covariate Zi contributes to

the missingness of Yi. Specifically, we assume that Yi is missing at random given (Xi, Zi),

i.e.

P (δi = 1 | Yi, Xi, Zi) = P (δi = 1 | Xi, Zi) =: w(Xi, Zi). (3.2)

The rationale for (3.2) is based on practical considerations to make (3.1) more accommoda-

tive. As a concrete example in the US Census dual system surveys, in addition to a set of

covariates Xi which consists of racial origin, age, sex, housing tenure and region, an oper-

ational variable Zi called match coding group collected during the non-response follow-up

process is also predictive to the data missingness as shown in Belin et al. (1993). We note

that the results in the paper stay and become simpler if (3.2) is valid without Zi, namely

the MAR in (3.1) is valid.

In addition, we assume that the extra covariate Z does not have any predicting power

on the conditional mean function of Y . This assumption is not restrictive because if a part

of Z possesses such power, it should be included in X. In particular, we assume

E(Y |X,Z) = m(X) and var(Y |X,Z) = σ2(X), (3.3)
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Though Zi is invisible in the final results because of the homogeneous assumption (3.3),

the missing mechanism (3.2) is important to ensure consistency of the nonparametric es-

timators. The key implication of (3.2) is that Yi and δi are not conditional independent

without given Zi, i.e. E(Y δ|X) 6= m(X)w(X) where w(x) = E(δ|X = x).

We will consider two estimators of m(x). The first estimator uses only the complete

observations (those with no missing values),

m̂c(x) =

∑n
i=1 Kh (x

c −Xc
i )L(x

u, Xu
i ;

~λ)δiYi
∑n

i=1 Kh (xc −Xc
i )L(x

u, Xu
i ;

~λ)δi
. (3.4)

We call it the complete case estimator. As shown in the Appendix, despite the impact of a

selection bias due to the missingness as specified by w(x), the estimator is still consistent.

The intuitive rationale of the consistency is that (3.4) is a ratio estimator so that the

impacts due to selection bias arising in the numerator and denominator cancel each other.

However, it does not fully utilize data information in Xi. For improvement, in the second

estimator, we impute each missing Yi by m̂c(Xi), which leads to the proposed imputation

based estimator

m̂I(x) =

∑n
i=1 Kh (x

c −Xc
i )L(x

u, Xu
i ;

~λ){δiYi + (1− δi)m̂c(Xi)}
∑n

i=1 Kh (xc −Xc
i )L(x

u, Xu
i ;

~λ)
. (3.5)

In a case that m(x) is constant over the sample space of the covariate X, one can easily

show that m̂c(x) and m̂I(x) are equivalent. In the following discussion, we shall focus on

non-degenerate conditional mean function, i.e. the covariate X is relevant in predicting

the conditional mean function. We note here that as the target of analysis is a conditional

mean function, there is no need to carry out a nonparametric multiple imputation as those

in Gonzalez-Manteiga and Perez-Gonzalez (2004) and Wang and Chen (2009), where the

missing values are imputed for multiple times from a nonparametric estimator of the con-

ditional distribution function. The effect of such a multiple imputation for nonparametric

regression estimation with only continuous covariates is evaluated in Gonzalez-Manteiga

and Perez-Gonzalez (2004), and they find that doing so does not lead to any improvement

in efficiency.

4 Main Results

4.1 Effects of Imputation and Discrete Smoothing

Let f̃(x, z) be the probability density function of (Xi, Zi), f(x) =
∫

f(x, z)dz be the marginal

density of Xi, w̃(x) =
∫

w(x, z)f̃(x, z)dz be the marginally weighted average propensity.

We note that w̃(x) 6= w(x) in general, which reflects the MAR assumption (3.2). We

define the following with respect to the continuous kernel K(·): R(K) =
∫

K2(u)du and

σ2
K =

∫

u2K(u)du. The following quantities are needed to describe effects of smoothing

the discrete covariates. Let Cxu = {su :
∑du

j=1 I(x
u
j 6= suj ) = 1} be the nearest strata whose
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discrete component differs from xu only in one component. For a su ∈ Cxu , define

α(xu, su) =

du
∑

k=1

ckI(x
u
k = suk) and βλ(x

u, su) =

du
∑

k=1

λkI(x
u
k = suk)

where ck is total number of the levels of Xu
ik. For m̂c(x), the bias induced by the smoothing

of the discrete variables is quantified by

b1,u(x;~λ) =
∑

su∈Cu

x

(

1− βλ(x
u, su)

α(xu, su)− 1

[

w̃(xc, su)

w̃(x)
{m(xc, su)−m(x)}

])

,

and the bias by smoothing the continuous variables is

b1,c(x;h) =
1
2h

2σ2
Kw̃−1(x)

(

tr[∇2 {m(x)w̃(x)}]−m(x)tr[∇2{w̃(x)}]
)

,

where tr and ∇ are the trace and differentiation (with respect to xc) operators. Similarly,

the biases of m̂I(x) from smoothing discrete and continuous variables are given by

b2,u(x;~λ) =
f(x)− w̃(x)

f(x)
b1,u(x;~λ) +

∑

su∈Cu

x

(

1− βλ(x
u, su)

α(xu, su)− 1

[

f(xc, su)

f(x)
{m(xc, su)−m(x)}

])

and b2,c(x;h) =
f(x)− w̃(x)

f(x)
b1,c(x;h) +

1
2h

2σ2
Kf−1(x)

(

tr[∇2{m(x)f(x)}]−m(x)tr[∇2{f(x)}]
)

.

Furthermore, let V c
1 (x) = R(K)σ2(x)/w̃(x),

V I
1 (x) =

σ2(x)

f2(x)

[

R(K)w̃(x) + 2R2(K){f(x)− w̃(x)}+R3(K)
{f(x)− w̃(x)}2

w̃(x)

]

and

V I
2 (x) =

σ2(x)

f2(x)

[

R(K)w̃(x) + 3R2(K){f(x)− w̃(x)}+ 2R3(K)
{f(x)− w̃(x)}2

w̃(x)

]

where R2(K) =
∫

K(2)(u)K(u)du, R3(K) =
∫

K(3)(u)K(u)du and K(j)(t) is the jth con-

volution of K(t). The following theorem, whose proof is deferred to the appendix, reports

the properties of m̂c(x) and m̂I(x).

Theorem 1 Under the assumptions given in the Appendix, let λ = mindul=1{λl} and A(~λ) =

2
∑du

j=1(1− λj),

E{m̂c(x)} = m(x) + b1,u(x;~λ) + b1,c(x;h) +O{h2(1− λ)2},

var{m̂c(x)} =
1

nhdc

V c
1 (x)−

A(~λ)

nhdc

V c
1 (x) +

1

nhdc−2
V c
2 (x) +O[n−1h−dc+2{h2 + (1− λ)2}],

E{m̂I(x)} = m(x) + b2,u(x;~λ) + b2,c(x;h) +O{h2(1− λ)2} and

var{m̂I(x)} =
1

nhdc

V I
1 (x)−

A(~λ)

nhdc

V I
2 (x) +

1

nhdc−2
V I
3 (x) +O[n−1h−dc+2{h2 + (1− λ)2}]

where V c
2 (x) and V I

3 (x) are bounded terms associated with second order variances given by

(A.8) and (A.15) in the Appendix.

The implications of Theorem 1 are the following.
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Remark 1. Theorem 1 shows that the imputation based estimator m̂I(x) has smaller

variance than m̂c(x). This can be appreciated by comparing V c
1 (x) and V I

1 (x), which define

the leading order variances of the two estimators. For commonly used symmetric kernel, 0

is the unique maximizer of K and its convolution K(2) and we have R2(K) < R(K) and

R3(K) < R(K); see also Cheng and Peng (2006) and Cheng et al. (2007). Therefore,

V I
1 (x) ≤

R(K)σ2(x)

f2(x)w̃(x)
{w̃(x) + f(x)− w̃(x)}2 = V c

1 (x).

We note here that f(x) − w̃(x) =
∫

{1 − w(x, z)}f̃(x, z)dz ≥ 0. When there is no missing

value, i.e w(x, z) ≡ 1, the theorem implies that the leading variance of the oracle (who

knows all missing Yi) estimator m̂(x) in (2.2) is

(nhdc)−1R(K)σ2(x)/f(x).

Thus, m̂c(x) which ignores the missing values endures a variance inflation by a factor

f(x)/w̃(x). The proposed m̂I(x) removes part of the variance inflation by utilizing missing

value information. Our finding here is more explicit and general than that given in Chu

and Cheng (1995) who considers the case where all covariate are continuous.

As an alternative, one could replace Yi in the numerator of (3.5) also by m̂c(Xi), resulting

in a smoothing twice estimator. In this case, the variance of the resulting estimator can

be further reduced. However, one can show that extra bias arises due to smoothing twice.

This is related to the finding in Cheng and Peng (2006) and Cheng et al. (2007), although

their approaches were proposed for nonparametric regression with no missing data.

Remark 2. By smoothing the categorical variables , both m̂c(x) and m̂I(x) enjoy vari-

ance reductions as shown by the terms involving A(~λ). This is a result of combining data

within neighboring cells defined by the discrete variables. Although the variance reductions

are at the second order (1− λ)/(nhdc), the realized reduction in finite samples can be sub-

stantial, especially when large number of categorical variables in presence resulting in some

cells with sparse observations which is the case for many applications. The second order

result on the effects of smoothing the discrete variables can be viewed as extensions of Hall

(1981) for density estimation for purely discretely-valued random variables for nonparamet-

ric regression with mixed covariates in the absence of missing values. If the regression is

absent of the discrete covariates, the implication of Theorem 1 agrees to that in Chu and

Cheng (1995). And we note that a second order variance reduction is the distinctive benefit

of smoothing the discrete covariate. In finite sample performance, such reduction may be

substantial.

Remark 3. The theorem also contains results on the bias of the estimators. The bias

terms have contributions from both discrete and continuous components. By a closer look

at the bias terms bj,u(·) and bj,c(·) where j = 1, 2, we may find that the feature of the
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bias has two sources. One is the behaviors of m(·, su), w(·, su) and f(·, su) in neighboring

cells su around the target cell xu; and the other is the derivatives of m(·, xu), w(·, xu) and

f(·, xu) in the local cell defined by xu. We note that when discrete covariate is incorporated,

the bias in m̂I(·) may not necessarily be worsen. The optimal bandwidths (h, 1 − ~λ) that

minimize the mean square error (MSE) or the mean integrated square error (MISE) satisfy

h ∼ n−1/(4+dc) and (1 − ~λ) ∼ n−2/(4+dc), which means that ~A(λ) ∼ n−2/(4+dc) as well.

These rates coincide with those obtained in Hall, Racine, and Li (2004) when there is no

missing values.

Remark 4. When du is fixed and finite, we see from Theorem 1 that the variances of

m̂I(·) and m̂c(·) are O(n−1h−dc) which is coincident with that of a dc dimensional continuous

covariate smoothing. This illustrates another advantage of smoothing discrete covariate

being less restrictive to the curse of dimensionality (Li and Racine, 2007). When there is

no continuous covariate, the regression function estimates the overall mean of each category

formed by the combinations of discrete covariate. In such case, m̂c(x) and m̂I(x) have the

same variance of O(n−1) in the leading order of magnitude.

4.2 Simultaneous Confidence Bands

To assess the level of uncertainty, we study how to obtain simultaneous confidence bands

for the nonparametric regression estimates in the presence of discrete covariate and missing

values. When all components of data are available, simultaneous confidence bands for kernel

smoothing methods have been studied extensively; see for example Bickel and Rosenblatt

(1973), Eubank and Speckman (1993), Xia (1998) and Zhao and Wu (2008) and reference

therein.

We follow the convention in existing confidence band theory (Eubank and Speckman,

1993; Xia, 1998) by considering dc = 1 and X c = (0, 1) for simplicity, and extend the theory

to the mixed covariate case. Following Theorem 1, it can be shown following the approach

in Cheng et al. (2007) that as n → ∞,
√

nh

V I
1 (x)

{m̂I(x)−m(x)− b2,u(x,~λ)− b2,c(x, h)}
d
→ N(0, 1).

Thus the confidence band for m(·, xu) can be constructed for each xu ∈ X u. Because du is

fixed and finite, for each xu ∈ X u,

lim
n→∞

P

[

sup
xc∈(0,1)

{√

nh

V I
1 (x)

|m̂I(x)−m(x)− b2,u(x,~λ)− b2,c(x, h)|

}

≤ Ln(α)

]

= 1− α

(4.1)

where Ln(α) =
√

−2 log(h) + (A − zα)/
√

−2 log(h), zα = log log{(1 − α)−1/2} and A =

log
[

{∫

K ′2(u)du/
∫

K2(u)du
}1/2

/(2π)
]

. When ~λ = 1, i.e. without smoothing discrete

covariate, the proof of (4.1) follows the conventional approaches in Bickel and Rosenblatt
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(1973), Xia (1998) and Zhao and Wu (2008). When ~λ is chosen by the cross-validation

method, we observe that the impact on the variance only occurs at the second order, so

that the conventional arguments carries over for (4.1) as well. A similar result for m̂c(x) is

also valid. In applications, V I
1 (x), b2,u(x,

~λ) and b2,c(x, h) are substituted by their consistent

estimators respectively.

4.3 Locally Adaptive Smoothing

In practice, the smoothing parameter (h,~λ) can be chosen by minimizing the cross-validation

score function CV (h, λ) =
∑n

i=1{Yi − m̂
(−i)

h,~λ
(Xi)}

2δi where m
(−i)

h,~λ
(·) is the nonparametric

estimator excluding the ith using observation using (h,~λ). The h and ~λ chosen asymptoti-

cally minimize the mean integrated squared error (MISE) (Hall et al., 2004). For smoothing

continuous covariate, the choice of bandwidth locally adaptive to the smoothness of the un-

derlying regression function was studied in Fan and Gijbels (1995) and Fan, Hall, Martin,

and Patil (1996).

In our study, we use the method proposed in Fan et al. (1996) to choose the bandwidth

that is locally adaptive with respect to the continuous covariate. According to Theorem 1,

the optimal bandwidth h is O(n−1/5) when dc = 1. Suppose there is a collection of functions

G and for each g(·) ∈ G, the corresponding bandwidth is given by h(x) = n−1/5g(x). Then

the locally adaptive bandwidth can be chosen by

min
g∈G

CV (g) =
n
∑

i=1

{

Yi − m̂
(−i)

h,~λ
(Xi)

}2
δi. (4.2)

The G is chosen to be a class of continuous function with certain degrees of derivatives.

According to the theoretical results in Fan et al. (1996), the minimization of the CV function

over a large enough G achieves the optimal bandwidth that is adaptive to the smoothness

of m(x). In our paper, we follow the suggestion in Fan et al. (1996) to formulate G by cubic

spline interpolation in simulation study and data analysis.

5 Simulation Studies

We conduct simulation studies to examine the finite sample performance of the methods.

A natural extension of existing nonparametric regression such as in Li and Racine (2007)

to situation with missing data is corresponding to the m̂c(x) in our paper. Therefore in the

simulation we compare the performance of m̂c(x) and mI(x).

We consider three variables in the covariate with X1 continuous following a uniform

distribution on the interval (0, 1), X2, X3 ∈ {0, 1} with P (X2 = 0) = P (X3 = 0) = 0.4.

The conditional mean function was chosen to be

E(Y |X) = m(X) = β0l + β1lX1 + β2l sin
2{2π(X1 − 0.5)}

9



where l = 2X3 + X2 + 1 is a one to one mapping from {0, 1}2 to 1 − 4. The vector

βl = (β0l, β1l, β2l)
T reflects different features with respect to the continuous variable X1

among combinations of discrete variables. The βl was generated from N(µ1,Σ1) and fixed

throughout the simulation, where µ = (1, 0.5, 3.5)T and Σ = diag(0.04, 0.04×0.5, 0.04×3.5).

The Y is generated by Y = m(X) + ǫ where ǫ ∼ N(0, σ2). We attempted two noise

levels σ = 0.3 and σ = 0.6 in the simulation study and the sample sizes were set to be

n = 50, 100, 200. The missing propensity (no extra Z) was specified by

P (δ = 1|X) = {exp{−b(X)}+ 1}−1 where b(x) = θ0l + θ1lx+ θ2lφ

(

x− θ3l
θ4l

)

and φ(x) is the density function of the standard normal distribution. The θl = (θ0l, . . . , θ4l)

was generated from N(µ2,Σ2) and kept fixed during the simulation, and µ2 = (1, 0.5,−0.3,

0.5, 0.1)T and Σ2 = diag(0.01, . . . , 0.01). Using this propensity function, about 30 − 35%

response variables are missing.

The bandwidths for smoothing discrete covariate were chosen by the Cross Validation

method as in Hall et al. (2004). The bandwidth in the simulation with respect to the

continuous covariate is calculated by (4.2) which is adaptive to the smoothness of the

continuous covariate. The cubic spline interpolation was conducted by chosen ten equal

spaced grid points. Then (4.2) is optimized with respect to the ten bandwidths. On each

combination of the discrete covariate, we estimated the conditional mean function on 50

equally spaced grid points. By repeating the simulation 1000 times, we summarized the

bias, variance and mean squared error (MSE) for each point. In Table 1, we report the

averaged squared bias (ABias2), variance (AVar) and MSE (AMSE) for m̂c and m̂I for each

noise level and sample size. From Table 1, we observe that m̂I(x) consistently had smaller

AMSE than m̂c(x) because of its smaller variance, especially when sample size is small.

This confirmed our finding in Theorem 1.

To obtain the simultaneous confidence band by (4.1), we follow the approaches in Xia

(1998) and Zhao and Wu (2008) to estimate σ2(x) , w̃(x) and f(x) using kernel smoothing

method with bandwidths chosen by minimizing corresponding cross-validation methods.

The m′′(x) and f ′(x) were also estimated by kernel smoothing method whose bandwidths

were chosen by the reference rule (Härdle, 1990). Two confidence levels α = 0.1 and

α = 0.05 were studied in the simulation whose results are reported in Table 1. It is seen

from the simulation that the confidence bands had empirical coverage close to the nominal

level when the sample size is reasonably large. When sample size was small, n = 50, the

confidence bands had coverage below the nominal level. This is reasonable considering the

amount of data missing and the fact of slow convergent rate of simultaneous confidence

bands (Zhao and Wu, 2008).
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Coverage

ABias2 AVar AMSE α = 0.1 α = 0.05

n = 50

m̂c 0.048 0.500 0.546 0.863 0.887

m̂I
σ = 0.3

0.051 0.443 0.494 0.871 0.901

m̂c 0.042 0.521 0.564 0.840 0.878

m̂I
σ = 0.6

0.050 0.465 0.515 0.848 0.899

n = 100

m̂c 0.017 0.135 0.152 0.904 0.953

m̂I
σ = 0.3

0.019 0.114 0.133 0.892 0.951

m̂c 0.023 0.175 0.198 0.877 0.926

m̂I
σ = 0.6

0.028 0.151 0.179 0.889 0.943

n = 200

m̂c 0.009 0.045 0.054 0.918 0.956

m̂I
σ = 0.3

0.011 0.038 0.049 0.916 0.959

m̂c 0.017 0.083 0.010 0.909 0.945

m̂I
σ = 0.6

0.021 0.070 0.091 0.903 0.941

Table 1: Simulation results of the averaged squared bias (ABias2), Variance (AVar) and

MSE (AMSE) of m̂c(x) and m̂I(x), and the empirical coverages of the confidence bands for

nominal levels α = 0.1 and α = 0.05.
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6 Data Analysis

6.1 Aids Clinical Trials Group Study 175 Data

We demonstrate the application of proposed approach by an application in the ACGT

175 data considered in Davidian, Tsiatis, and Leon (2005). The data consist of the CD4

counts along with other variables for subjects receiving ZDV (control) and three other

therapies (treatments). We consider the logarithm of the CD4 counts at the 96 week as the

response variable, where 1342 out of 2139 were complete cases and the rest were missing,

because of death, dropout or other reasons. The logarithm of interim CD4 counts at 20

weeks is used as the continuous covariate, and the other covariates are the indicators of

symptoms, prior antiretroviral therapy and Karnofsky score. Although Karnofsky score

is a continuous measurement, it takes only four values (70,80,90,100) where the first two

were rarely observed. So we treat it as a binary variable by dichotomizing it at 100. It is

documented that the covariate can impact the missing mechanism of the response variable

(Davidian et al., 2005).

Biweight kernel K(x) = 15/16(1−x2)2I(|x| ≤ 1) is applied for continuous covariate, and

we chose the smoothing bandwidths by the cross-validation, which led to m̂c(x) and m̂I(x).

The adaptive bandwidth selected for the continuous variable is close to a constant, due to

the lack of local feature as seen from the estimated regression function. We then estimated

the density function f(x), the marginal propensity function w̃(x), the conditional variance

function σ2(x) and the relevant derivatives by the kernel smoothing methods respectively as

in the simulation study. Based on these estimated quantities, we obtained the confidence

bands from (4.1). Figure 1 displays the nonparametric regression estimates m̂c(x) and

m̂I(x) based on the complete cases and the imputation respectively and the associated

95% confidence bandiwdths. We observe from Figure 1 that heterogeneous patterns of

the conditional mean function with respect to the interim CD4 counts. The estimated

regression functions differ between the control and treatment groups, as well as among

different combinations of the other discrete covariate. The feature of the regression function

found by the nonparametric method is complementary to the additive parametric model

with quadratic predictors considered in Davidian et al. (2005). The m̂c(x) and m̂I(x)

estimates share some similar pattern, though there are some differences at various places.

We note that the width of the confidence bands for m̂I(x) is smaller than that of m̂c(x),

which is expected from our theoretical results. From the confidence band estimates, we

observed a widening trend at the two ends for the two estimates. This is mainly due to the

sparsity of observations towards the both ends.
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Figure 1: The m̂c(x) (dotted lines) and m̂I(x) (solid lines) for the controlled (left panel)

and treated (right panel) subjects with HIV symptoms, experienced prior antiretroviral

treatment and Karnofsky score 100. The dash dotted lines and the dash lines are the

estimated 95% confidence bands for m̂c(x) and m̂I(x).

6.2 Estimating US Census Enumeration Probability Function

We apply the proposed kernel estimators to an ACE revision II research data (US Census

Bureau, 2004) of the 2000 US Census. The ACE study consists of two independent samples

from the US population, namely the E and P samples respectively. The capture-recapture

design is implemented to identify matches between the two samples. The response variable

Y is the match indicator and its conditional mean given the covariate is the important

enumeration probability function. A significant portion of enumerations in the US Census

ACE study has missing match indicator, due to the fact that a definite match or no-match

can not be established between the records in the P and E samples. In the ACE revision II

research data that we will analyze in this paper, missing response accounts for 3.7% of the

enumerations in the P sample and 6.5% in the E sample. These are high comparing with

the overall level of undercounts in the US Census (US Census Bureau, 2004). The data

contain about 60, 000 P-sample cases and 70, 000 E-sample cases, which makes an ideal case

for the nonparametric regression estimation.

In our analysis, the covariates Xi include age (Xi1), sex (Xi2, 2 levels), housing tenure

(Xi3, 2 levels: owner and renter), and racial origins (Xi4, 7 levels: American Indian or

Alaska Natives on Reservation, Off-Reservation American Indian or Alaska Native, His-

panic, Non-Hispanic Black, Native Hawaiian or Pacific Islander, Non-Hispanic Asian and

Non-Hispanic white or other races) and Geographical region (Xi5, 4 levels: Northeast, Mid-

west, South and West). Additional covariates may be included without changing the tune
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of the analysis. The response variable Yi is the match status between the P sample P and

the E sample E , where

Yi =















1(a match) if i ∈ P ∩ E ;

0(not a match) if i ∈ P but not in E ;

?(missing value) if i is an unresolved case.

(6.1)

The interest is in estimating m(x) = E(Yi|Xi = x), the enumeration probability function.

We chose the biweight kernel K(x) = 15/16(1 − x2)2I(|x| ≤ 1) to smooth the age

and the discrete kernel (2.1) to smooth the other categorical covariates. The smoothing

bandwidths were chosen by the cross-Validation (CV) method. In this simplified analysis

and without loss of general focus, we let all the discrete bandwidths λi being equal to one

λ. In a comprehensive case study of the Census ACE data (Chen, Tang and Mule, 2010),

a dedicated two stage bandwidth selection procedure is implemented. Let m̂
(−i)
h,λ (x) be the

estimators of m(x) after excluding the ith data pair (Xi, Yi). Specifically, we define the

cross-validation score based on all complete records

CV (h, λ) = n−1
n
∑

i=1

{Yi − m̂
(−i)
h,λ (Xi)}

2δi. (6.2)

The bandwidths prescribed were h = 5.5 and λ = 0.8, which were the bandwidths used in

the imputation based estimates for m(x) in Figure 2.

It is observed from Figure 2 that the covariate in the analysis contribute to the hetero-

geneity in the enumeration probability function m(x). The age effect was quite apparent

in the estimates for m(x). At the same time, the kernel estimates changes substantially

with respect to the other categorical variables. Figure 2 indicates that Northeast White

Male Owner had an overall higher enumeration probability than Northeast Hispanic Female

owners and Midwest Black Male renters, which might be expected. While these confirm the

effects of these covariates, they do reveal the difficulty in capture the underlying forms of

the functions with respect to these discrete covariates. The wave-like pattern in the m(x)

estimates in some cells suggests some age-heaping in a multiple of 5 or 10 years in age be-

yond 30. Figure 3 displays the kernel estimates for the missing propensity score w(x), which

was as interesting as Figure 2. For instance, the White Male owners had very small chance

of being missing. In contrast, the Hispanic Female owners endured larger missingness while

the Black Male renters experienced the highest missing values among the three.

Both Figures 2 and 3 also reveal challenges that one would face in proposing a reason-

able parametric regression models. There are 112 post-strata based on the four discrete

covariates. The sample size within some of these 112 post-strata can be very small, for in-

stance the Native Hawaiian or Pacific slander. Getting a workable model for each stratum

is quite a task. The task will only grow when more covariates are included. At the same
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time, the figures show that the proposed the kernel estimation is flexible and adaptive to

varying functional forms in m(x). As shown by our theoretical investigation, the kernel

estimates are consistent and reflective to the underlying model structure without imposing

any subjective assumptions.
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Figure 2: Kernel estimates of the enumeration probability m(x) based on m̂I(x). Band-

widths used are h = 5.5 and λ = 0.8.

Appendix: Technical Details

Technical Assumptions

Let covariate Xi = (Xc
i , X

u
i ) where X

c
i is a dc-dimensional continuous covariate and Xu

i

is a du-dimensional unordered categorical covariate, X = {X c,X u} be the support of Xi,

where X c and X u are the supports of Xc
i and Xu

i respectively. We assume the model (3.3)

for independent and identically distributed data pairs {(Xi, Zi, Yi)}
n
i=1. And the following

conditions are assumed in Theorem 1.

15



0 10 20 30 40 50 60

0.
88

0.
92

0.
96

1.
00

(a) Overall Age Effect

age

P
ro

pe
ns

ity
 F

un
ct

io
n

0 10 20 30 40 50 60

0.
88

0.
92

0.
96

1.
00

(b) Northeast Hispanic Female Owner

age

P
ro

pe
ns

ity
 F

un
ct

io
n

0 10 20 30 40 50 60

0.
88

0.
92

0.
96

1.
00

(c) Northeast White Male Owner

age

P
ro

pe
ns

ity
 F

un
ct

io
n

0 10 20 30 40 50 60

0.
88

0.
92

0.
96

1.
00

(d) Midwest Black Male Renter

age

P
ro

pe
ns

ity
 F

un
ct

io
n

Figure 3: Kernel estimates of the census missing propensity function w(x). Bandwidths

used are h = 5.0 and λ = 0.8.

C.1 Let K(·) be a dc variates nonnegative, bounded and symmetric probability density

function with bounded second derivative. The smoothing bandwidths satisfy that

h → 0 and max
1≤j≤du

{(1− λj)} → 0 and nhdc/ log(n) → ∞ as n → ∞.

C.2 We assume missing at random in Y , namely P (δ = 1|Y,X,Z) = P (δ = 1|X,Z) :=

w(X,Z), where w(xc, xu, z) ≥ Cw > 0 for a constant Cw and w(xc, xu, z) has bounded

continuous second partial derivative with respect to xc.

C.3 For given xu ∈ X u, m(xc, xu) and the probability density of the covariate f(xc, xu)

have bounded continuous second partial derivatives with respect to xc, and there exist

Cf > 0 such that f(xc, xu) ≥ Cf .

Sketched Proof of Theorem 1.

We sketch the proof of Theorem 1 here where the complete proof with more details

is available in Tang (2008). Let K
h,~λ

(u, v) = Kh (u
c − vc)L(uc, vu;~λ) and define f̂c(x) =
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n−1
∑n

i=1Kh,~λ
(x,Xi)δi and φ̂c(x) = n−1

∑n
i=1Kh,~λ

(x,Xi)δiYi. From (3.4), m̂c(x) = φ̂c(x)/f̂c(x).

We show that

E{f̂c(x)} = w̃(x) + 1
2h

2σ2
Ktr[∇2{w̃(x)f(x)}]− w̃(x)

∑pu

j=1(1− λj)

+
∑

su∈Cu

x

1− βλ(x
u, su)

α(xu, su)− 1
w̃(xc, su) +O{h2(1− λ)2}, (A.1)

var{f̂c(x)} =
1−A(~λ)

nhdc

R(K)w̃(x) +
1

2nhdc−2
S2(K)tr[∇2{w̃(x)f(x)}]

+O(n−1h−dc+2{h2 + (1− λ)2}), (A.2)

E{φ̂c(x)} = m(x)w̃(x) + 1
2h

2σ2
Ktr[∇2{m(x)w̃(x)}]−m(x)w̃(x)

∑pu

j=1(1− λj)

+
∑

su∈Cu

x

1− βλ(x
u, su)

α(xu, su)− 1
m(xc, su)w̃(xc, su) +O{h2(1− λ)2} and (A.3)

var{φ̂c(x)} =
1−A(~λ)

nhdc

R(K)w̃(x){m2(x) + σ2(x)}+
S2(K)tr

(

∇2[{m2(x) + σ2(x)}w̃(x)f(x)]
)

2nhdc−2

+O(n−1h−dc+2{h2 + (1− λ)2}), (A.4)

where Si(K) =
∫

uiK2(u)du. Results in (A.1)-(A.4) indicate that based on the complete

data only, the estimation of the density function f(x) by f̂c(x) is actually biased and so is

the estimation of φ(x) = m(x)f(x) by φ̂c(x). Similarly, we have

cov{φ̂c(x), f̂c(x)} =
1−A(~λ)

nhdc
R(K)m(x)w̃(x) +

S2(K)tr[∇2{m(x)w̃(x)f(x)}]

2nhdc−2

+O(n−1h−dc+2{h2 + (1− λ)2}). (A.5)

Define fc(x) = w̃(x) and φc(x) = m(x)w̃(x). An expansion of m̂c(x) is

m̂c(x) =
φc(x)

fc(x)
+

{φ̂c(x)− φc(x)}

fc(x)
−

φc(x){f̂c(x)− fc(x)}

f2
c (x)

{1 + op(1)}. (A.6)

Taking expectation on (A.6), and from (A.1) and (A.3),

E{m̂c(x)} = m(x) + b1,u(x;~λ) + b1,c(x;h) +O{h2(1− λ)2}. (A.7)

By applying the variance operation on (A.6) and substituting equations (A.2), (A.4) and

(A.5), we summarize that

var{m̂c(x)} =
1

nhdc
V c
1 (x)−

A(~λ)

nhdc
V c
1 (x) +

1

nhdc−2
V c
2 (x) +O(n−1h−dc+2{h2 + (1− λ)2})

and V c
2 (x) =

1

2w̃2(x)

{

S2(K)
(

tr
[

m2(x)∇2{w̃(x)f(x)}+∇2[{m2(x) + σ2(x)}w̃(x)f(x)]

− 2m(x)∇2{m(x)w̃(x)f(x)}
])}

. (A.8)

These establishes the first part of Theorem 1.
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We now evaluate the imputation based estimator m̂I(x). Let f̂(x) = n−1
n
∑

i=1

K
h,~λ

(x,Xi) and

φ̂i(x) = n−1
n
∑

i=1

K
h,~λ

(x,Xi)(1− δi)m̂c(Xi) . From (3.5), by letting φ̂I(x) = φ̂c(x) + φ̂i(x),

m̂I(x) = {φ̂c(x) + φ̂i(x)}/f̂(x) = φ̂I(x)/f̂(x). (A.9)

Similar to (A.6), we may establish an expansion for (A.9). Let φI(x) = m(x)f(x), we have

m̂I(x) =
φI(x)

f(x)
+

{φ̂I(x)− φI(x)}

f(x)
−

φI(x){f̂(x)− f(x)}

f2(x)
{1 + op(1)}. (A.10)

We establish that

E{f̂(x)} = f(x) + 1
2h

2σ2
Ktr[∇2{f(x)}]− f(x)

∑pu
j=1(1− λj)

+
∑

su∈Cu

x

1− βλ(x
u, su)

α(xu, su)− 1
f(xc, su) +O{h2(1− λ)2} and

var{f̂(x)} =
1−A(~λ)

nhdc
R(K)f(x) +

1

2nhdc−2
S2(K)tr[∇2{f(x)}]

+O(n−1h−dc+2{h2 + (1− λ)2}). (A.11)

By taking expectation on φ̂I(x), we have

E{m̂I(x)} = m(x) + b2,u(x;~λ) + b2,c(x;h) +O{h2(1− λ)2}.

The following notations of functions are introduced for simplification. Let g1 = 1−w̃
fw̃2 ,

g2 = mw̃f , g3 = 1−w̃
w̃

, g4 = {m2 + σ2}w̃f , g5 = w̃f , g6(x) = {1−w̃}m
w̃

and g7(x) = {1−w̃}m
fw̃2 .

Further, it can be shown that

var{φ̂i(x)} =
1

nhdc

[

R(K){f(x)− w̃(x)}m2(x) +R3(K)σ2(x)
{f(x)− w̃(x)}2

w̃(x)

]

−
A(~λ)

nhdc

[

R(K){f(x)− w̃(x)}m2(x) + 2R3(K)σ2(x)
{f(x)− w̃(x)}2

w̃(x)

]

+
ξ12(K)R(K)

nhdc−2

(

g1g2tr[∇
2{g2}]− g7g2tr[∇

2{g5}]
)

+
1

nhdc−2

{

1
2S2(K)C1 + ξ32(K)C2 + ζ2(K)C3

}

+O(n−1h−dc+2{h2 + (1− λ)2}), (A.12)

where ξij(K) =
∫

ujK(i)(u)K(u)du and ζi(K) =
∫

u1u2K
(i)(u1 + u2)K(u1)K(u2)du1du2,

C1(x) = tr
(

∇2[{1− w̃}{m2(x)f ]
)

,

C2(x) = {1− w̃}σ2(x)ftr[∇2{g3}] +
1
2g

2
3tr[∇

2{g4}] +
1
2g

2
6tr[∇

2{g5}]− g3g6tr[∇
2{g5}],

C3(x) = 2g3∇
T {g3}J∇{g4}+ g6∇

T {g6}J∇{g5}+ g4∇
T {g3}J∇{g3}+ g5∇

T {g6}J∇{g6}

+g6∇
T {g5}J∇{g5} − 2[g6∇

T {g2}J [∇{g3} + g2∇
T {g3}J∇{g6} + g3∇

T {g2}J∇{g6}]. Here

J = 11T for 1 = (1, . . . , 1)T1×dc
. In a similar fashion, we establish that

cov{φ̂c(x), φ̂i(x)} =
{1− 1.5A(~λ)}

nhdc

R2(K){f(x)− w̃(x)}σ2(x)

+
1

nhdc−2
{ζ1(K)C4 +

1
2ξ22(K)C5}+O(n−1h−dc+2{h2 + (1− λ)2}) (A.13)
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where C4(x) = ∇T {g3}J∇{g4}−∇T {g2}J∇{g6} and C5(x) = g4tr[∇
2{g3}]+g3tr[∇

2{g4}]−

g2tr[∇
2{g6}]− g6tr[∇

2{g2}]. Furthermore

cov{φ̂I(x), f̂(x)} =
1−A(~λ)

nhdc
R(K) {m(x){f(x)− w̃(x)}+m(x)w̃(x)}

+
ξ12(K)S0(K)

nhdc−2

(

g3(x)tr[∇
2{g2}]− g6tr[∇

2{g5}]
)

+
1

nhdc−2

{

1
2S2(K)C6 + ζ1(K)C7 +

1
2ξ22(K)C9

}

+O(n−1h−dc+2{h2 + (1− λ)2}), (A.14)

where C6(x) = tr
(

∇2[{1− w}mf ]
)

+tr
[

∇2{g2}
]

, C7(x) = ∇T {g2}J∇{g3}−∇T {g5}J∇{g6}

and C9(x) = g2tr[∇
2{g3}] + g3tr[∇

2{g2}]− g5tr[∇
2{g6}]− g6tr[∇

2{g5}].

Finally, from (A.4), (A.11), (A.12), (A.13) and (A.14), we have

var{m̂I(x)} =
1

nhdc

V I
1 (x)−

A(~λ)

nhdc

V I
2 (x) +

1

nhdc−2
V I
3 (x) +O(n−1h−dc+2{h2 + (1− λ)2}),

V I
3 (x) = S2(K)T1(x) + ξ22(K)T2(x) + ξ32(K)T3(x) + ζ1(K)T4(x) + ζ2(K)T5(x) (A.15)

where T1(x) = 1
2f

−2(x)tr
[

∇2{g4}+ C1(x) +m2(x)∇2{f(x)} − 2m(x)C6(x)
]

, T2(x) = {C5(x) −

m(x)C9(x)}/f
2(x), T3(x) = C2(x)/f

2(x), T4(x) = 2{C4(x)−m(x)C7(x)}/f
2(x) and T5(x) =

C3(x)
f2(x) .

These conclude Theorem 1.
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