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Summary: We discuss evaluation of causal effects with missing data due to death. Frangakis et al. (2007)

proposed an approach for estimating the causal effects of interest under some assumptions. In this paper, we

discuss the identifiability of the joint distribution including potential outcomes and show conditions and relaxed

assumptions for identifiability. Then we propose the EM algorithms to find the maximum likelihood estimates of

parameters with and without restrictions. Further we remove certain assumptions so that some parameters cannot

be identified, and thus we discuss the bounds of causal effects. Our approach is evaluated via simulations, and

applied to NSCOT data.

Key words: Causal inference; Missing due to death; Identifiability; EM algorithm; Bounds

1



Identifiability of causal effects for binary variableswith data missing due to death 1

1. Introduction

In many follow-up studies, we may be interested in the causal effects of a treatment on survival

of individuals in different populations classified by a covariate. Values of the covariate may be

missing due to death. The National Study on the Costs and Outcomes of Trauma Centers (NSCOT)

in MacKenzie et al. (2006) is an example for the motivation. In the NSCOT, the treatment is

the transport time (quickly or slowly) from the moment of injury in traffic accidents to arrival at

the hospital, and the covariate is the activities of daily living (ADL), which evaluates a person’s

physical condition (poor or good). We want to evaluate the causal effects of the transport time on

the survival of injured persons for the different populations classified by the ADL. Here ADL is

used as a moderator to evaluate the affection to the causal effects. The transport time was recoded

for every injured person, but the ADL was missing if the injured person died. Data missing due to

death makes causal effects unidentifiable. Many investigators discussed the problem and proposed

approaches for statistical inference with data missing due to death (Zhang and Rubin (2003),

Frangakis et al. (2007), Xie and Murphy (2007)). Some assumptions on the causal mechanisms

have to be made to identify the parameters of interest (Angrist, Imbens, and Rubin (1996)).

In this paper, we discuss assumptions required for identifiability of the distribution for the

case with data missing due to death. Frangakis et al. (2007) proposed an approach for estimat-

ing causal effects which requires a strong monotonicity assumption that individuals are either

‘protectable’ by the effective treatment or else ‘always survivors’. This assumption is not proper

in some studies where there may be individuals of ‘never survivors’. We shall relax the strong

monotonicity assumption to the ordinary monotonicity and no-interaction assumptions, and we

show the identifiability of the distribution with data missing due to death. We propose the EM

algorithm for finding the maximum likelihood estimates (MLEs) of the parameters with restrictions

under the assumptions, and further we discuss the bounds of causal effects without requiring the

assumptions.
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In Section 2, we describe notation and the ignorable assignment (IA) assumption which is

used in the whole paper. In Section 3, we show the identifiability of the joint distribution under

the strong monotonicity (SM) assumption and give the EM algorithm for finding the MLEs. In

Section 4, we relax the strong monotonicity assumption to two weak assumptions and propose

the EM algorithm for finding the MLEs with restrictions. In Section 5, removing these two weak

assumptions and only keeping the ignorable assignment assumption, we present the significative

bounds of causal effects although we cannot identify the joint distribution or causal effects. We

evaluate our approach by simulations in Section 6. In Section 7, we apply our approach to the

NSCOT data. Some theoretical proofs are given in Appendixes.

2. Notation

Let A be a binary covariate to denote people’s health status. A = 1 means a poor physical condition,

and A = 0 a better one. However, the value of A may be missing due to death. Let a binary Z

denote a treatment assignment. Z = 0 represents a standard treatment and Z = 1 represents a more

effective one, such as a shorter transport time. Let S obs be the observed survival status: S obs = 1

for survival, and 0 for death. An individual’s S obs is measured after the treatment Z is assigned.

Let S (z) denote the potential survival status if the individual were assigned to the treatment level

z. Define S ′ = (S (0), S (1)) as a vector of potential survival outcomes. The average causal effect

(ACE) of treatment Z on the survival S is defined as E[S (1) − S (0)]. The observed survival status

S obs = S (Z) is one of the two potential survival outcomes S (0) and S (1): S obs = S (1) for Z = 1 and

S obs = S (0) for Z = 0. For an individual, only one element of S ′ can be observed. There are four

possible potential outcomes: (1, 1) for ‘always survivors’, (0, 1) for ‘protectable’, (0, 0) for ‘never

survivors’ and (1, 0) for ‘defiers’.

In causal inference, the basic stable unit treatment value assumption (SUTVA, Rubin (1980))

is often made, which means that there is no interference between units and only one version of
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potential outcome of a certain treatment. Let X be a set of covariates such that the following

ignorable assignment assumption holds.

Assumption 1: The ignorable assignment (IA) assumption. The external factor Z is independent

of (A, S ′) conditional on covariates X, denoted as Z y (A, S ′ = (S (0), S (1))) | X .

For example, the IA assumption may mean that the ambulance men might decide the assignment

of transport time Z only based on the injury severity or other obvious factors X, but not the

individuals’ ADL A or the potential survival outcome S ′. X can be chosen as the reasons for

the remaining variability of Z.

Without loss of generality, it is assumed that the observed data are already within covariates

strata X = x, and hereafter we omit the explicit conditioning on X in the distributions. By the IA

assumption, we can get the following factorization of the joint distribution of Z, S obs, S ′ and A

P(Z, A, S ′, S obs) = P(Z)P(A | Z)P(S ′ | A,Z)P(S obs | Z, A, S ′)

= P(Z)P(A)P(S ′ | A)P(S obs | Z, S ′). (1)

The second equality holds because Z y (A, S ′) and S obs is completely determined by Z and S ′.

That is, P(S obs | Z, A, S ′) = P(S obs | Z, S ′) = 1 or 0. Although Z and S obs are fully observed,

A may be missing due to death and the potential outcome S ′ = (S (0), S (1)) cannot be observed

completely. Thus the joint distribution is not identifiable if there are no other assumptions. In this

paper, we discuss what conditions are required for the identifiability of the joint distribution (1) and

present estimation approaches. When the joint distribution is identifiable, various causal effects of

treatments are also identifiable, such as the average causal effect of treatment Z on survival S

within level A = a: E[S (1) − S (0) | A = a] = P(S (1) = 1 | A = a) − P(S (0) = 1 | A = a).

3. Identifiability and Estimation under the Strong Monotonicity Assumption

In order to identify the joint distribution of Z, S obs, S ′ and A, we introduce the following strong

monotonicity assumption which was required in Frangakis et al. (2007).
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Assumption 2: The strong monotonicity (SM) assumption. Preventability of deaths from external

factor: Individuals are either ‘protectable’ or ‘always survivors’, which means S (1) = 1.

This SM assumption excludes ‘never survivors’ and ‘defier’ patients which is stronger than the

ordinary monotonicity assumption, i.e. S (0) 6 S (1). This preventability, when combined with

the ignorable assignment, is testable from the observed data. Because under these assumptions,

individuals assigned to the effective treatment (i.e., Z = 1) must all survive, which means that all

injured persons would stay alive as long as they were transported to the hospital quickly, whereas

among those assigned to the standard treatment, some die and some survive. However, this SM

assumption may be impractical, and we relax it to two weak assumptions in Section 4.

To obtain the identifiability of the distribution in (1), we only need to show the identifiability of

P(A) and P(S ′|A) since Z is always observed and P(S obs|Z, S ′) is determined by Z and S ′. First

we show the identifiability of P(A). Besides the fully observed S obs and Z, by the SM assumption,

all individuals in the treatment group of Z = 1 are survival and thus their A is also observed.

Then we have P(A = 1 | Z = 1) = P(A = 1 | Z = 1, S obs = 1) which can be identified by

the proportion of individuals who have poor physical condition (A = 1) among those transported

to the hospital quickly (Z = 1). Although some values of A are missing due to death among

those individuals who are not transported to the hospital quickly, by the IA assumption, we have

P(A = 1) = P(A = 1 | Z = 1), which can be identified by using survival individuals. Thus P(A) is

identifiable.

Next we show the identifiability of P(S ′ | A). By the SM assumption, we have that P(S ′ =

(1, S (0)) | A) = P(S (0) | A) and P(S ′ = (0, S (0)) | A) = 0. Thus we only need to show the

identifiability of P(S (0) | A). From the independence Z y (A, S ′), we have for a = 0 and 1

P(S (0) = 0 | A = a) =
P(S (0) = 0, A = a)

P(A = a)

=
P(S obs = 0, A = a | Z = 0)

P(A = a | Z = 1)
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=
P(A = a | Z = 1) − P(S obs = 1, A = a | Z = 0)

P(A = a | Z = 1)
. (2)

It is identifiable since P(A = a | Z = 1) can be identified under the SM assumption and P(S obs =

1, A = a | Z = 0) = P(A = a|S obs = 1, Z = 0)P(S obs = 1 | Z = 0) is also identifiable. Thus we show

that P(S ′ | A) is identifiable.

[Table 1 about here.]

[Table 2 about here.]

After showing the identifiability, we propose the EM algorithm for finding the MLEs of the

distribution. The frequencies can be represented by the three-way contingency table given in Table

1 Xie and Murphy (2007). Fzsa denotes the frequency of individuals with values Z = z, S obs = s

and A = a; and Fzs+ denotes the corresponding marginal frequency of Z = z and S obs = s. ‘?’

means an unobservable frequency. By the SM assumption, we have F100 = F101 = 0, that is, no

individuals would die if they were carried to the hospital rapidly (i.e., Z = 1). In Table 2, we give

the potentially completely frequencies fzas0 s1 which denotes the frequency with potential values

Z = z, A = a, S (0) = s0 and S (1) = s1. Generally, the fzas0 s1 is unobserved since we cannot observe

both S (0) and S (1) for any single individual. The corresponding probabilities for the potential

frequencies are given in the last column of Table 2, where pZ = P(Z = 1), pA = P(A = 1) and

θa = P(S ′ = ‘always survivors’ | A = a) = P(S (0) = 1 | A = a) for a = 0 and 1. For Table 2,

assume that the distributions of f0001, f1011 and f1111 are all binomial with sizes F00+, F110 and F111

respectively. Below we describe the EM algorithm. At the E-step, we find the expectations of the

unobserved potential frequencies of the (t + 1)th iteration as follows

f t+1
0001 = E( f0001 | data, θt) = F00+ ×

(1 − pt
A)(1 − θt0)

(1 − pt
A)(1 − θt0) + pt

A(1 − θt1)
,

f t+1
1011 = E( f1011 | data, θt) = F110 × θt0,

f t+1
1111 = E( f1111 | data, θt) = F111 × θt1,
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where pt
A and θta denote the estimates obtained at the tth iteration. At the M-step, the estimates of

parameters can be updated as follows

pt+1
Z =

F110 + F111

N
,

pt+1
A =

F00+ − f t+1
0001 + F011 + F111

N
,

θt+1
1 =

(F011 + f t+1
1111)/N

pt+1
A

,

θt+1
0 =

(F010 + f t+1
1011)/N

1 − pt+1
A

.

Note that the estimator of pZ is in invariable in the iterations. The EM algorithm will be evaluated

by simulation in Section 6.

4. Estimation under Relaxed Assumptions

The SM assumption of S (1) = 1 may be impractical in real applications. In this section, we relax it

to two weaker assumptions of monotonicity and no-interaction. The three-way contingency table

shown in Table 3 describes the structure of observed data without the SM assumption. Different

from Table 1, the frequencies F100 and F101 are not equal to 0 but missing due to death.

[Table 3 about here.]

4.1 Relaxed Assumptions

We first relax the SM assumption to the monotonicity assumption and explain that it is not sufficient

for identification. Then we make a no-interaction assumption to improve the identifiability. Both

of them are weaker than the SM assumption.

Assumption 3: The monotonicity (M) assumption. Assume that S (0) 6 S (1), which means par-

tial preventability of deaths from external factor. That is, individuals can be stratified into three

strata: ‘never survivors’, ‘protectable‘ or ‘always survivors’.
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The monotonicity assumption allows that there may be ‘never survivors’ individuals who would

die no matter how they are treated. This assumption may be more practical than the SM assumption.

The monotonicity assumption has one more stratum (S (0), S (1)) = (0, 0) than the SM assumption,

and thus the relaxation induces more parameters to be estimated and causes some distributions

unidentifiable. The three strata ‘never survivors’, ‘protectable’ and ‘always survivors’ are denoted

by their initial letters: ‘n’, ‘p’ and ‘a’. The probabilities of these principal strata can be identified

as follows

P(S ′= n)=P(S (1) = 0) = P(S obs = 0 | Z = 1),

P(S ′= a)=P(S (0) = 1) = P(S obs = 1 | Z = 0),

P(S ′= p)=1−P(S ′= n)−P(S ′= a)=P(S obs= 1 |Z=1)−P(S obs= 1 |Z = 0).

From the above formulas, we can see that the identifiability of P(S ′ | A) and P(S (z) | A) is

equivalent under the monotonicity assumption. In addition, by Z y (A, S ′), the distribution of A in

the ‘protectable’ stratum can be identified by

P(A = 1 | S ′ = p)=
P(A = 1)−P(A = 1, S ′= n)−P(A = 1, S ′= a)

P(S ′ = p)

=
P(A = 1 | Z = 1)−P(A = 1, S ′= n | Z = 1)−P(A = 1, S ′= a | Z = 0)

P(S obs = 1 | Z = 1) − P(S obs = 1 | Z = 0)

=
P(A = 1, S obs = 1 | Z = 1) − P(A = 1, S obs = 1 | Z = 0)

P(S obs = 1 | Z = 1) − P(S obs = 1 | Z = 0)
.

For the ‘always survivors’ stratum, we can identify the distribution of A as follows

P(A = 1 | S ′ = a) = P(A = 1 | S (0) = 1) = P(A = 1 | S (0) = 1,Z = 0)

= P(A = 1 | S obs = 1, Z = 0).

But the distribution of A in the ‘never survivors’ stratum cannot be identified because A is always

missing for this stratum. Furthermore, this means that we cannot identify P(A) or P(S ′ | A). In

order to improve identifiability, we propose the following no-interaction assumption.

Assumption 4: The no-interaction (NI) assumption. The odds ratios (OR) of survival status with

respect to physical condition in both standard and effective treatments are the same, that is ORS obsA|Z=1 =
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ORS obsA|Z=0, which is equivalent to

P(S obs = 1, A = 1 | Z = 1)P(S obs = 0, A = 0 | Z = 1)
P(S obs = 1, A = 0 | Z = 1)P(S obs = 0, A = 1 | Z = 1)

=
P(S obs = 1, A = 1 | Z = 0)P(S obs = 0, A = 0 | Z = 0)
P(S obs = 1, A = 0 | Z = 0)P(S obs = 0, A = 1 | Z = 0)

.

The no-interaction assumption means that the physical condition A has the same association with

the survival S conditional on the treatment Z. The assumption holds for the logistic regression of

S obs on A and Z which does not include the interaction between A and Z. Also the no-interaction

assumption is implied by the SM assumption since the SM assumption means F100 = F101 = 0

which implies the no-interaction assumption of F111F100F010F001 = F110F101F011F000.

4.2 Identifiability

We first prove the identifiability of the full joint distribution (1) under the assumptions which are

weaker than the SM assumption.

Theorem 1: The joint distribution of Z, S obs, S ′ and A can be identified under the IA, M and NI

assumptions.

This theorem means that the joint distribution of the full variables can be determined uniquely

by the distribution of incompletely observed variables. For the contingency table in Table 3, we

have four unobserved frequencies {Fz0a, for z, a = 0, 1}, and others are observable. Given the

observed marginal frequencies F00+ and F10+, two of the unobserved frequencies are free. From

the IA and NI assumptions, we have two equations, and thus we can solve these equations to get

{Fz0a}. Further under the monotonicity assumption, we can identify the joint distribution of Z, S obs,

S ′ and A. For example, from (1), we have P(Z = 1, A = 0, S ′ = n, S obs = 0) = P(Z = 1)P(A =

0)P(S (1) = 0 | A = 0) = P(Z = 1)P(A = 0)P(S obs = 0 | A = 0, Z = 1), which can be identified by

(F1++/N) × (F++0/N) × (F100/F1+0).
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[Table 4 about here.]

The structure of potentially complete data with principal strata of survival S ′ is illustrated in the

first five columns of Table 4. The potential frequency fzas0 s1 denotes the frequencies completely

categorized by the all potential variables, and the corresponding probabilities are given in the last

column. The SM assumption restricts that the stratum S ′ = (0, 0) is empty, but the monotonicity

assumption does not. For simplifying the notation, we define the parameters pZ = P(Z = 1),

pA = P(A = 1), θs′a = P(S ′ = s′ | A = a) for s′ = n, p, a and for a = 0, 1, where θn1 + θp1 + θa1 =

θn0 + θp0 + θa0 = 1. The joint distribution (1) can be expressed by these parameters. The proof

of Theorem 1 in Appendix does not only show the identifiability, but also gives a method for the

moment estimation of these parameters.

4.3 The EM algorithm

In this subsection, we give the EM algorithm for finding the MLEs of all parameters in Table 4. In

the M-step of our approach, the problem of finding MLEs of multiple parameters with restrictions

is reduced to a problem of maximizing an objective function with a single parameter and without

restrictions. Assuming that all probabilities are positive, from the no-interaction assumption, we

can have

P(S obs = 1, A = 1,Z = 1)P(S obs = 0, A = 0,Z = 1)
P(S obs = 1, A = 0,Z = 1)P(S obs = 0, A = 1,Z = 1)

=
P(S obs = 1, A = 1,Z = 0)P(S obs = 0, A = 0,Z = 0)
P(S obs = 1, A = 0,Z = 0)P(S obs = 0, A = 1,Z = 0)

⇔ pZ pA(1− θn1)·pZ(1−pA)θn0

pZ(1−pA)(1− θn0)·pZ pAθn1
=

(1−pZ)(1−pA)(1− θa0)·(1−pZ)pAθa1

(1−pZ)(1−pA)θa0 ·(1−pZ)pA(1− θa1)

⇔θn0θa0(1 − θn1)(1 − θa1) = θn1θa1(1 − θn0)(1 − θa0),

and finally we get a restriction θn1θa1θp0 = θp1θn0θa0. For the potentially complete data in Table 4,

from the joint distribution (1), we have the likelihood function

L(pZ , pA, θn1, θp1, θa1, θn0, θp0, θa0)
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∝ p
NZ1
Z (1 − pZ)NZ0 p

NA1
A (1 − pA)NA0θNn1

n1 θ
Np1

p1 θ
Na1
a1 θ

Nn0
n0 θ

Np0

p0 θ
Na0
a0 ,

where NZz = #{Z = z} denotes the frequency of Z = z, Ns′a = #{S ′ = s′, A = a} = f0as0 s1 + f1as0 s1

denotes the frequency of S ′ = s′ = (s0, s1) and A = a in the whole population, and NAa = Nna +

Npa+Naa. Since the parameters (pZ , pA) are distinct to the parameters θ = (θn1, θp1, θa1, θn0, θp0, θa0),

the likelihood function can be factorized into L(pZ , pA, θ) ∝ L(pZ , pA)L(θ). Thus we can find MLEs

of these parameters separately, and we have the MLE p̂Z = NZ1/N and p̂A = NA1/N. The likelihood

function of the parameters θ is

L(θ) ∝ θNn1
n1 θ

Np1

p1 θ
Na1
a1 θ

Nn0
n0 θ

Np0

p0 θ
Na0
a0 .

The parameters θ should satisfy the restrictions θn1 + θp1 + θa1 = θn0 + θp0 + θa0 = 1 and θn1θa1θp0 =

θp1θn0θa0. Using the Lagrange multiplier method, the objective function is l = log L(θ)+λ(θn1θa1θp0−

θp1θn0θa0) and the restriction θn1 + θp1 + θa1 = θn0 + θp0 + θa0 = 1 is considered in the calculation.

The EM algorithm for finding the MLEs under the restrictions can be described as follows.

E-step: Compute the expectations conditional on the observed data and the current estimates of

parameters. In the (t + 1)th iteration, the incomplete data F000, F100, f0000, f0100, f1001 and f1101 in

Table 4 can be estimated by

E(F000 | data, θt) = F00+ ×
(1 − pt

A)(θtn0 + θ
t
p0)

(1 − pt
A)(θtn0 + θ

t
p0) + pt

A(θtn1 + θ
t
p1)
,

E(F100 | data, θt) = F10+ ×
(1 − pt

A)θtn0

(1 − pt
A)θtn0 + pt

Aθ
t
n1
,

E( f0000 | data, θt) = E(F000 | data, θt) ×
θtn0

θtn0 + θ
t
p0
,

E( f0100 | data, θt) = (F00+ − E(F000 | data, θt)) ×
θtn1

θtn1 + θ
t
p1
,

E( f1001 | data, θt) = F110 ×
θtp0

1 − θtn0
,

E( f1101 | data, θt) = F111 ×
θtp1

1 − θtn1
,

where θt denotes the current estimate from the M-step in the tth iteration.

M-step: Maximize the likelihood function L(θ). The frequencies {Ns′a} for the likelihood function
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L(θ) can be obtained according to Table 4. For simplicity, we omit the superscript t of N t which

denotes the tth iteration. We consider the following two cases separately:

(1) For the case of Nn1Na1Np0 = Np1Nn0Na0 = 0, it is obvious that θt+1
s′a = Ns′a/NAa for s′ = n, p, a

and a = 0, 1 maximize L(θ), and they satisfy the restriction θn1θa1θp0 = θp1θn0θa0.

(2) Otherwise for the case of Nn1Na1Np0 , 0 or Np1Nn0Na0 , 0, we find the partial derivatives of l

with respect to each θs′a and set them to 0. Then we obtain the following estimation equations

λθn1θa1θp0 = λθp1θn0θa0 =
Np1θn1 − Nn1θp1

θn1 + θp1
=

Nn0θp0 − Np0θn0

θn0 + θp0
,

Nn1 + λθn1θa1θp0

θn1
=

Np1 − λθn1θa1θp0

θp1
=

Na1 + λθn1θa1θp0

θa1
,

Nn0 + λθp1θn0θa0

θn0
=

Np0 − λθp1θn0θa0

θp0
=

Na0 + λθp1θn0θa0

θa0
.

From the above formulas, we can express θp1, θa1, θn0, θp0, θa0 by the following functions of

θn1

θp1 = −
NA1 + Np1

Np1 + Na1
(θn1 −

Nn1 + Np1

NA1 + Np1
),

θa1 =
Nn1 + Np1

Np1 + Na1
(θn1 −

Nn1 − Na1

Nn1 + Np1
),

θn0 =
NA1 + Nn0

NA1 + NA0

(
θn1 −

Nn1 + Nn0

NA1 + Nn0

θn1 −
Nn1 + NA0

NA1 + NA0

),

θp0 =
Np0 − NA1

NA1 + NA0

(
θn1 −

Nn1 − Np0

NA1 − Np0

θn1 −
Nn1 + NA0

NA1 + NA0

),

θa0 =
NA1 + Na0

NA1 + NA0

(
θn1 −

Nn1 + Na0

NA1 + Na0

θn1 −
Nn1 + NA0

NA1 + NA0

). (3)

Substituting them to the restriction θn1θa1θp0 = θp1θn0θa0, we obtain the likelihood equation

of θn1
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c0θn1(θn1−
Nn1−Na1

Nn1+Np1
)(θn1−

Nn1+NA0

NA1+NA0

)((NA1−Np0)θn1−(Nn1−Np0))

=(θn1 −
Nn1 + Np1

NA1 + Np1
)(θn1 −

Nn1 + Nn0

NA1 + Nn0
)(θn1 −

Nn1 + Na0

NA1 + Na0
), (4)

where c0 = [(Nn1 + Np1)(NA1 + NA0)]/[(NA1 + Np1)(NA1 + Nn0)(NA1 + Na0)] is a positive

constant. Solving the order 4 equation (4) of a single parameter θn1, we can find at most four

real solutions. We show in Appendix that at least one of them satisfy the normal restrictions of

probabilities. Then we compute the other θs′a by those functions of θn1 in (3). Comparing their

likelihood values, we can find θt+1 with the maximum likelihood value in the (t+1)th iteration.

The following theorem shows that the above EM algorithm is correct for finding the MLE of θ

under the restrictions of {θs′a}, and its proof is given in Appendix. Some simulation results of this

EM algorithm will be given in Section 6.

Theorem 2: MLEs of {θs′a} obtained via the above EM algorithm satisfy the likelihood equa-

tions and the restrictions θn1 + θp1 + θa1 = θn0 + θp0 + θa0 = 1 and θn1θa1θp0 = θp1θn0θa0.

5. Bounds of Causal Effects

As shown in the previous section, only with the IA assumption, we cannot identify the joint

distribution of Z, S obs, S ′ and A. In this section, we remove the M and NI assumptions and give

an approach for finding the lower and upper bounds of the causal effects of interest. By the IA

assumption Z y (A, S ′), we have

E(S (1) |A = a) = P(S (1) = 1 |A = a) = P(S obs = 1 |A = a,Z = 1)

=
P(Z = 0)
P(Z = 1)

P(Z = 1, S obs = 1, A = a)
1

P(Z = 0, A = a)
, and

E(S (0) |A = a) = P(S (0) = 1 |A = a) = P(S obs = 1 |A = a,Z = 0)

=P(Z = 0, S obs = 1, A = a)
1

P(Z = 0, A = a)
.
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Thus the average causal effect of Z on S within level A = a is

E(S (1) − S (0) | A = a)

=
P(Z=1, S obs=1, A = a)P(Z=0)−P(Z=0, S obs=1, A = a)P(Z=1)

P(Z = 1)P(Z = 0, A = a)
.

At the right hand side of this equality, only P(Z = 0, A = a) is unobserved, and we can see that

E(S (1) − S (0) | A = a) is a monotonic function with respect to P(Z = 0, A = a). Note that the sign

of E(S (1)−S (0) | A = a) is decided by the numerator defined as ∆a, which can be directly estimated

from the observed data. In addition, if the monotonicity assumption holds, ∆a is nonnegative, which

implies a consistent nonnegative causal effect. The bounds of E(S (1) − S (0) | A = a) can be

obtained by using the bounds of P(Z = 0, A = a), which can be expressed as (F00a+F01a)/N. Since

F000 + F001 = F00+, we can focus on the bounds of F000. It is obvious that

0 6 F000 6 F00+.

By the IA assumption Z y A, we have P(Z = 0, A = 0)P(Z = 1, A = 1) = P(Z = 0, A = 1)P(Z =

1, A = 0). By replacing P(Z = z, A = a) with (Fz0a + Fz1a)/N, F100 can be represented as a function

of F000: F100 = [F000F1++ + F010(F10+ + F111) − F110(F00+ + F011)]/F0++. Thus by the inequality

0 6 F100 6 F10+, we can find another bound of F000:

[F110(F00+ + F011) − F010(F10+ + F111)]/F1++

6 F000 6 [(F00+ + F011)(F10+F110) − F010F111]/F1++.

Combining the above two sets of bounds, we can take the common range of them as the bounds of

F000: FL
000 6 F000 6 FU

000, where

FL
000 = max {0, [F110(F00+ + F011) − F010(F10+ + F111)]/F1++} and

FU
000 = min {F00+, [(F00+ + F011)(F10+ + F110) − F010F111]/F1++}.

Since F001 = F00+ − F000, we have FL
001 = F00+ − FU

000 6 F001 6 F00+ − FL
000 = FU

001. When ∆a > 0,

the boundary of E(S (1) − S (0) | A = a) is [ (N∆a)/(PZFU
00a) , (N∆a)/(PZFL

00a) ], and the opposite

lower and upper bounds are for ∆a < 0.
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6. Simulation

In this section, we evaluate the estimation approaches presented in Sections 3 and 4 via simulations.

We perform the simulations for two cases, one with the SM assumption and the other without

the SM assumption. Given the true values of parameters, we draw random samples from the

corresponding binomial distribution and estimate the parameters by the EM algorithm. Repeating

this process 1000 times, we find the means and mean squared errors (MSE) of estimates. In Tables

5 and 6, means and MSEs (in brackets) of MLEs of parameters are shown for two different sets of

true parameters under the SM assumption, while the results for two different sets of true parameters

without the SM assumption are given in Tables 7 and 8.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

Let m denote the missing rate. For the data missing due to death, the missing rate depends on

the values of parameters. Since the missing part consists of ‘never survivors’ and the ‘protectable’

assigned to the standard treatment, we have the missing rate m = P(S ′ = n) + P(Z = 0)P(S ′ = p).

Furthermore, under the SM assumption, the missing rate m = (1− pZ)(pA(1−θ1)+ (1− pA)(1−θ0));

without requiring the SM assumption, the rate m = pAθn1+(1−pA)θn0+(1−pZ)(pAθp1+(1−pA)θp0).

Thus the missing rates are 72.9%, 37.5%, 74.0% and 54.5% for Tables 5 to 8 respectively.

For all scenarios, the MSEs decrease as the sample size increases. Comparing MSEs in Tables

5 and 6, for the same assumptions and the same sample size, the MSEs for the case with a larger

missing rate are larger than those for a smaller missing rate. Further the MSEs under the SM

assumption are smaller than those under the IA, M and NI assumptions. All of these results accord

with our intuition.
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7. Results of NSCOT data

The artificial data of NSCOT in Table 9 are generated from the percentages in Table 2 of Frangakis

et al. (2007) since the real data are not available. As defined in Section 2, Z, A and S denote the

treatment, physical condition and survival status respectively. Here X could be the injury severity.

Z = 1 denotes that the transport time is less than 10 minutes. In the NSCOT data, there are no

deaths for people delivered to the hospital within 10 minutes after a critical event (such as an

accident) happened, which is required by the SM assumption. θ1 = P(S (0) = 1 | A = 1) and θ0 =

P(S (0) = 1 | A = 0) are the livability of standard treatment group under poor and good physical

conditions respectively. From the results in Table 10, we can see that θ0 > θ1 means that healthier

persons have a larger survival probability. During the critical event, the high injured persons have

a greater potential risk of death than the low injured ones no matter which physical condition they

have (i.e., 0.4435 < 0.8325 and 0.8427 < 0.9903). For the case of low-injury severity X = 0, the

average causal effects of Z on S (i.e., E(S (1) − S (0) | A = a) = 1 − θa) are 0.168 for the poor

physical condition group A = 1 and 0.010 for the good one A = 0. For the case of high-injury

severity X = 1, the results are 0.557 and 0.157 respectively. Furthermore, we define the relative

ACE: RACE = E(S (1) − S (0) | A = 1)/E(S (1) − S (0) | A = 0) = (1 − θ1)/(1 − θ0), which reflects

the relative effect of treatment between different groups. Then we obtain that RACE = 17.46

conditional on the high-injury severity X = 1 and RACE = 3.54 conditional on the low-injury

severity X = 0. Therefore the treatment is more effective for people in poor health condition (i.e.,

RACE > 1), and the timely succor like transporting to the hospital rapidly is more important when

the persons are in the bad situation X = 1 (i.e., 17.46 > 3.54).

[Table 9 about here.]

[Table 10 about here.]

Below to illustrate our estimation without requiring the SM assumption, we suppose that there

were some persons who would die even if they were delivered quickly, i.e., there existed ‘never
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survivors’. For example, there were F10+ = 2 ‘never survivors’ in high-injury severity group as

shown in Table 11, which does not violate the monotonicity assumption. We have E(S (1) − S (0) |

A = a) = P(S (1) = 1 | A = a) − P(S (0) = 1 | A = a) = P(S ′ = p | A = a). From Table 12,

the ACE is 0.160 for the poor physical condition group A = 1 and 0.004 for the good one A = 0,

and RACE = θp1/θp0 = 39.85. Without requiring the monotonicity nor no-interaction assumption,

we can compute the bounds of ACE for the level A = a with the method presented in Section 5:

E(S (1) − S (0) | A = 0) ∈ (0.0034, 0.0040), while E(S (1) − S (0) | A = 1) ∈ (0.1586, 0.4758). This

means that the causal effects of Z on S are positive conditional on A, and the treatment is more

effective for people in poor health condition (i.e. 0.1586 > 0.0040).

[Table 11 about here.]

[Table 12 about here.]
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Appendix

Proof of Theorem 1

Below we prove Theorem 1 step by step. First at Step 1, we introduce two parameters x1 and x2 to

represent all parameters to be identified. Then at Steps 2 and 3, we get two equations of x1 and x2

from the IA and NI assumptions. At Step 4, we reduce x2 to get a quadratic equation of x1. Finally

at Step 5, we show that there is a unique proper solution of x1. Thus all parameters are identified

by the unique x1.

(1) Define x1 = P(A = 1 | Z = 1, S obs = 0) and x2 = P(A = 1 | Z = 0, S obs = 0), which are not

identifiable due to death without any further assumption. From the definitions of parameters,

we have the following relationships among the parameters

pZ = P(Z = 1)

pA = P(A = 1)=P(A=1, S obs=1 |Z = 1)+x1P(S obs = 0 |Z = 1),

θn1 = P(S ′ = (0, 0) | A = 1) =
x1P(S obs = 0 | Z = 1)

pA
,

θp1 = P(S ′ = (0, 1) | A = 1) = 1 − θn1 − θa1,

θa1 = P(S ′ = (1, 1) | A = 1) =
x2P(S obs = 0 | Z = 0)

pA
,

θn0 = P(S ′ = (0, 0) | A = 0) =
(1 − x1)P(S obs = 0 | Z = 1)

1 − pA
,

θp0 = P(S ′ = (0, 1) | A = 0) = 1 − θn0 − θa0,

θa0 = P(S ′ = (1, 1) | A = 0) =
(1 − x2)P(S obs = 0 | Z = 0)

1 − pA
.
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pZ can always be identifiable from the observed data directly, and other parameters are func-

tions of x1 and x2. Therefore we only need to focus on the identifiability of these two proba-

bilities x1 and x2.

(2) By the IA assumption, we can have the following relationship between x2 and x1:

P(A = 1 | Z = 1) = P(A = 1 | Z = 0)

⇒ P(A = 1, S obs = 1 | Z = 1) + x1P(S obs = 0 | Z = 1)

= P(A = 1, S obs = 1 | Z = 0) + x2P(S obs = 0 | Z = 0)

⇒ x2 = a + bx1 ,

where a = [P(A = 1, S obs = 1 | Z = 1) − P(A = 1, S obs = 1 | Z = 0)]/P(S obs = 0 | Z = 0)

and b = P(S obs = 0 | Z = 1)/P(S obs = 0 | Z = 0), both of which are identifiable. According to

the relationship of x1 and x2, we only need to show that one of them is identifiable. Below we

prove that x1 is identifiable.

(3) By the NI assumption, we have another relationship between x1 and x2

x1(1 − x2)
x2(1 − x1)

=
P(A = 1, Z = 1, S obs = 1)P(A = 0,Z = 0, S obs = 1)
P(A = 1, Z = 0, S obs = 1)P(A = 0,Z = 1, S obs = 1)

.

Since we can observe complete data for every survivor, the right hand side of the above

equation for the survivals S obs = 1 is identifiable, denoted by c. Then we have another equation

cx2(1 − x1) = x1(1 − x2).

(4) Replacing x2 by a + bx1 in the last formula, we obtain a quadratic equation of x1

z1 + z2x1 + z3x2
1 = 0 , (∗)

where the coefficients z1 = ca, z2 = cb− ca+a−1 and z3 = b− cb, which are all identifiable. If

this equation has a unique root in the interval (0, 1) for the probability x1, then x1 is identifiable.

(5) By Table 4, we can use those parameters to express the coefficients in equation (∗) as

a =
pAθp1

pA(θn1 + θp1) + (1 − pA)(θn0 + θp0)
,

b =
pAθn1 + (1 − pA)θn0

pA(θn1 + θp1) + (1 − pA)(θn0 + θp0)
,
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c =
θa0(θp1 + θa1)
θa1(θp0 + θa0)

,

z1

z3
=

pAθn1(1 − θn1)
[pAθn1 + (1 − pA)θn0](θn0 − θn1)

,

z2

z3
=

pAθn1

pAθn1 + (1 − pA)θn0
+

1 − θn1

θn0 − θn1
.

From the last two equalities, we can find the following two real roots of equation (∗)

pAθn1

pAθn1 + (1 − pA)θn0
and

1 − θn1

θn0 − θn1
.

Note that the second root (1 − θn1)/(θn0 − θn1) is outside the interval (0, 1) because all θs′a as

probabilities should be in (0, 1). It is easily to see that the other root belongs to this range.

Furthermore, we have

x1 = P(A = 1 | Z = 1, S obs = 0) = P(A = 1 | Z = 1, S ′ = n)

=
P(A = 1, S ′ = n)

P(S ′ = n)

=
P(A = 1)P(S ′ = (0, 0) | A = 1)

P(A=1)P(S ′ = (0, 0) |A=1)+P(A = 0)P(S ′ = (0, 0) |A = 0)
.

Thus we obtain

x1 =
pAθn1

pAθn1 + (1 − pA)θn0
.

When the sample size is large enough, all the straight estimated values of coefficients from the

observational data will converge to the theoretic true value, and we can identify x1 by solving

equation (∗) to get the unique root which is within the interval (0, 1).

The above proof does not only prove the identifiability but also gives a method for estimating

these parameters. First, we estimate the probabilities by the sample means, next calculate the

coefficients (z1, z2, z3) in equation (∗), then solve this equation to obtain the estimate of x1, and

finally compute estimates of other parameters with the relations between x1 and these parameters.

Proof of Theorem 2

The key point of this proof is to show that the M-step of this EM algorithm is correct for finding θ

which maximizes L(θ) under those restrictions in every iteration when Ns′a , 0.
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Since every conditional probability θs′a should be in the interval [0, 1] and every other θs′a can be

expressed as a function of θn1 as shown in Section 4.3, we have the following inequalities

06θn161,

06θp161⇔Nn1 − Na1

NA1 + Np1
6 θn1 6

Nn1 + Np1

NA1 + Np1
,

06θa161⇔Nn1 − Na1

Nn1 + Np1
6 θn1 6 1,

06θn061⇔θn1 6
Nn1 + Nn0

NA1 + Nn0
,

06θp061⇔



θn1 6
Nn1 + (Nn0 + Na0)/2
NA1 + (Nn0 + Na0)/2

if Np0 > NA1 ,

Nn1−Np0

NA1−Np0
6θn16

Nn1+ (Nn0 + Na0)/2
NA1 + (Nn0 + Na0)/2

if Np0 < NA1 ,

θn1 6
2Nn1 + NA0 − NA1

NA1 + NA0

if Np0 = NA1 ,

06θa061⇔θn1 6
Nn1 + Na0

NA1 + Na0
.

The above boundaries of θn1 can be transformed to the following restrictions

(1) for the case of Np0 < NA1 ,

max
{

0,
Nn1 − Na1

Nn1 + Np1
,

Nn1 − Np0

NA1 − Np0

}
6 θn1

6min
{

Nn1 + Np1

NA1 + Np1
,

Nn1 + Nn0

NA1 + Nn0
,

Nn1 + Na0

NA1 + Na0

}
,

(2) for the case of Np0 > NA1 ,

max
{

0,
Nn1 − Na1

Nn1 + Np1

}
6 θn1

6min
{

Nn1 + Np1

NA1 + Np1
,

Nn1 + Nn0

NA1 + Nn0
,

Nn1 + Na0

NA1 + Na0

}
.

Let f (θn1) and g(θn1) denote the left and right hand sides of the likelihood equation (4), where

f (θn1) and g(θn1) are a quartic polynomial and a cubic one respectively. Note that every element in

the above lower bound of θn1 is the root of equation f (θn1) = 0 and that the three elements in the

above upper bound of θn1 are just the three roots of equation g(θn1) = 0. Let ϕ1 and ϕ2 denote the

lower and upper bound of θn1. Thus we have that ϕ1 is one root of equation f (θn1) = 0 and that ϕ2
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is the smallest root of equation g(θn1) = 0. Since ϕ1 6 ϕ2 and the coefficient of the highest order

term in g(θn1) is 1, we always have g(ϕ1) 6 0. Below we prove that there must exist at least one

root in the required restrictions to satisfy f (θn1) = g(θn1).

(1) When Np0 < NA1 , we have f (θn1) = c1θn1(θn1 −
Nn1 − Na1

Nn1 + Np1
)(θn1 −

Nn1 + NA0

NA1 + NA0

)(θn1 −
Nn1 − Np0

NA1 − Np0
),

where c1 is a positive constant. By the definitions of ϕ1 and ϕ2, we have
Nn1 + NA0

NA1 + NA0

>
Nn1 + Nn0

NA1 + Nn0
>

ϕ2 > ϕ1, which implies that ϕ1 is the second largest root of f (θn1) = 0 and that ϕ2 is smaller

than the largest root
Nn1 + NA0

NA1 + NA0

. Therefore we have f (ϕ2) 6 0.

(2) When Np0 > NA1(> Nn1), we have f (θn1) = c2θn1(θn1 −
Nn1 − Na1

Nn1 + Np1
)(θn1 −

Nn1 + NA0

NA1 + NA0

)(θn1 −
Np0 − Nn1

Np0 − NA1

), where c2 is a negative constant. Since
Np0 − Nn1

Np0 − NA1

> 1 >
Nn1 + NA0

NA1 + NA0

> ϕ2 > ϕ1, ϕ1

is the third largest root of f (θn1) = 0, and ϕ2 is smaller than the second largest root. This also

means f (ϕ2) 6 0.

(3) When Np0 = NA1 , we have f (θn1) = c3θn1(θn1 −
Nn1 − Na1

Nn1 + Np1
)(θn1 −

Nn1 + NA0

NA1 + NA0

), where c3 is a

positive constant. We still have f (ϕ2) 6 0 because ϕ1 is the second largest root of f (θn1) = 0

and ϕ2 is smaller than the largest root
Nn1 + NA0

NA1 + NA0

.

Therefore f (ϕ2) 6 0 holds for all of the above three cases. Let d(θn1) = f (θn1) − g(θn1). We have

d(ϕ1) = 0 − g(ϕ1) > 0 and d(ϕ2) = f (ϕ2) − 0 6 0, and thus there must exist at least one solution

to equation d(θn1) = 0 in the interval [ϕ1, ϕ2] from the property of continuous function d(θn1). In

addition, there are at most four different real solutions to f (θn1) = g(θn1) under the restrictions.

Thus we can solve this equation and then compare the likelihood functions to find the maximum

one.
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Table 1
Frequencies with missing due to death with the SM assumption

Z S obs A = 0 A = 1 Subtotal

0 0 F000 = ? F001 = ? F00+

1 F010 F011 F01+

1 0 F100 = 0 F101 = 0 F10+ = 0
1 F110 F111 F11+

Total N
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Table 2
Potentially completely frequencies under the SM assumption

Z A S ′ Potential fzas0 s1 Probability

0 0 (0,1) f0001 (1 − pZ)(1 − pA)(1 − θ0)
(1,1) F010 (1 − pZ)(1 − pA)θ0

1 (0,1) F00+ − f0001 (1 − pZ)pA(1 − θ1)
(1,1) F011 (1 − pZ)pAθ1

1 0 (0,1) F110 − f1011 pZ(1 − pA)(1 − θ0)
(1,1) f1011 pZ(1 − pA)θ0

1 (0,1) F111 − f1111 pZ pA(1 − θ1)
(1,1) f1111 pZ pAθ1
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Table 3
Frequencies with missing due to death without the SM assumption

Z S obs A = 0 A = 1 Subtotal

0 0 F000 = ? F001 = ? F00+

1 F010 F011 F01+

1 0 F100 = ? F101 = ? F10+

1 F110 F111 F11+

Total N
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Table 4
Potentially complete frequencies under the M assumption

Z A S ′ Potential fzas0 s1 Probability

0 0 (0,0) f0000 (1 − pZ)(1 − pA)θn0

(0,1) F000 − f0000 (1 − pZ)(1 − pA)θp0

(1,1) F010 (1 − pZ)(1 − pA)(1 − θn0 − θp0)
1 (0,0) f0100 (1 − pZ)pAθn1

(0,1) F001 − f0100 (1 − pZ)pAθp1

(1,1) F011 (1 − pZ)pA(1 − θn1 − θp1)
1 0 (0,0) F100 pZ(1 − pA)θn0

(0,1) f1001 pZ(1 − pA)θp0

(1,1) F110 − f1001 pZ(1 − pA)(1 − θn0 − θp0)
1 (0,0) F101 pZ pAθn1

(0,1) f1101 pZ pAθp1

(1,1) F111 − f1101 pZ pA(1 − θn1 − θp1)
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Table 5
Results 1 under the IA and SM assumptions (m = 72.9%)

Sample Size pZ = 0.10 pA = 0.10 θ1 = 0.10 θ0 = 0.20

50 0.101 0.105 0.283 0.204
(0.0009) (0.0097) (0.1818) (0.0030)

100 0.100 0.098 0.209 0.201
(0.0005) (0.0041) (0.0985) (0.0012)

500 0.100 0.100 0.126 0.200
(0.0002) (0.0018) (0.0141) (0.0005)

1000 0.100 0.100 0.105 0.200
(0.0001) (0.0005) (0.0013) (0.0001)
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Table 6
Results 2 under the IA and SM assumptions (m = 37.5%)

Sample Size pZ = 0.50 pA = 0.50 θ1 = 0.20 θ0 = 0.30

50 0.498 0.498 0.197 0.307
(0.0023) (0.0051) (0.0085) (0.0134)

100 0.500 0.499 0.202 0.302
(0.0013) (0.0024) (0.0040) (0.0059)

500 0.500 0.501 0.201 0.302
(0.0005) (0.0010) (0.0016) (0.0027)

1000 0.500 0.500 0.200 0.299
(0.0003) (0.0005) (0.0008) (0.0011)
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Table 7
Results 1 under the IA, M and NI assumptions (m = 74.0%)

Sample Size pZ = 0.10 pA = 0.10 θn1 = 0.20 θp1 = 0.70 θa1 = 0.10 θn0 = 0.10 θp0 = 0.70 θa0 = 0.20

50 0.101 0.112 0.252 0.458 0.289 0.085 0.709 0.206
(0.0009) (0.0111) (0.1186) (0.2081) (0.2071) (0.0092) (0.0112) (0.0030)

100 0.101 0.111 0.207 0.538 0.255 0.090 0.704 0.206
(0.0004) (0.0071) (0.0504) (0.1143) (0.1459) (0.0041) (0.0050) (0.0017)

500 0.100 0.109 0.198 0.651 0.151 0.093 0.703 0.204
(0.0002) (0.0035) (0.0191) (0.0229) (0.0307) (0.0020) (0.0021) (0.0006)

1000 0.100 0.103 0.199 0.690 0.111 0.097 0.702 0.201
(0.0001) (0.0010) (0.0056) (0.0021) (0.0028) (0.0005) (0.0005) (0.0002)
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Table 8
Results 2 under the IA, M and NI assumptions (m = 54.5%)

Sample Size pZ = 0.50 pA = 0.50 θn1 = 0.40 θp1 = 0.40 θa1 = 0.20 θn0 = 0.28 θp0 = 0.42 θa0 = 0.30

50 0.499 0.491 0.354 0.406 0.240 0.261 0.400 0.339
(0.0026) (0.0218) (0.0241) (0.0112) (0.0279) (0.0214) (0.0129) (0.0367)

100 0.500 0.494 0.371 0.411 0.219 0.268 0.416 0.316
(0.0013) (0.0125) (0.0131) (0.0044) (0.0120) (0.0126) (0.0049) (0.0166)

500 0.500 0.495 0.386 0.405 0.209 0.277 0.418 0.305
(0.0005) (0.0060) (0.0056) (0.0017) (0.0042) (0.0061) (0.0018) (0.0060)

1000 0.500 0.497 0.395 0.401 0.204 0.281 0.419 0.301
(0.0001) (0.0017) (0.0015) (0.0005) (0.0010) (0.0019) (0.0005) (0.0017)
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Table 9
The artificial NSCOT data under the SM assumption

Z S obs A = 0 A = 1 Subtotal

X = low-injury severity
0 0 ? ? 17

1 257 72 329
1 0 0 0 0

1 6 2 8
Total 354

X = high-injury severity
0 0 ? ? 24

1 95 5 100
1 0 0 0 0

1 10 1 11
Total 135
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Table 10
Results for the first NSCOT data set

pZ pA θ1 θ0

X = low-injury severity 0.0226 0.2500 0.8325 0.9903
X = high-injury severity 0.0815 0.0909 0.4435 0.8427
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Table 11
The artificial NSCOT data under the IA, M and NI assumptions

Z S obs A = 0 A = 1 Subtotal

X = high-injury severity
0 0 ? ? 24

1 95 5 100
1 0 ? ? 2

1 10 1 11
Total 137
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Table 12
Results for the second NSCOT data set

pZ pA θn1 θp1 θn0 θp0

0.09489 0.22837 0.66326 0.16017 0.00303 0.00411


