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Summary. By the criterion for surrogates proposed by Prentice (1989), a null

treatment effect on a surrogate implies a null treatment effect on a true endpoint.

In this paper, we show that there may exist simultaneously a positive treatment

effect on a surrogate satisfying Prentice’s criterion but a negative treatment ef-

fect on a true endpoint while the surrogate has a positive association with the

endpoint or a positive causal effect on the endpoint. With or without requiring

Prentice’s criterion, we discuss what conditions are required to qualitatively assess

the causal effect of treatment on an unobserved endpoint in terms of an observed

surrogate. Rather than a correlation between a surrogate and an endpoint, we re-

quire stricter measurements of association for the qualitative assessment. Further

we show that these conditions can be satisfied by generalized linear models and

Cox’s proportional hazard models.
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1. Introduction

In a clinical trail where measuring a true endpoint is prohibitively expensive or infeasible,

an easily and early available surrogate is often used to reduce the trial cost and duration.
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Criteria for validating surrogates are very important for the design of clinical trials. In recent

years, there have been a number of papers questioning the validity of surrogates, and many

examples of surrogates causing problems in clinical trials have been found, such as CD4 counts

for survival time in AIDS studies, bone mass for fracture in osteoporosis studies (Fleming and

DeMets, 1996; Baker, 2006; Manns et al., 2006; Alonso and Molenberghs, 2008).

Prentice (1989) proposed a criterion for surrogates which ensures that a test of null hy-

pothesis of no treatment effect on a surrogate is also a valid test of the corresponding null

hypothesis of no treatment effect on a true endpoint. A critical condition of the criterion is

that a true endpoint is conditionally independent of a treatment given a surrogate, hereafter

called Prentice’s criterion. Berger (2004) discussed whether Prentice’s criterion can validate

surrogate endpoints. Frangakis and Rubin (2002) and Rubin (2004) proposed a principal

surrogate criterion based on principal stratification. Lauritzen (2004) proposed a strong sur-

rogate criterion in terms of a causal network. Chen et al. (2007) showed that for a principal

or strong surrogate, it is possible that a treatment has a positive effect on the surrogate which

in turn has a positive effect on a true endpoint, but the treatment may have a negative effect

on the true endpoint, which is called the surrogate paradox. Many approaches were proposed

to quantitatively evaluate the treatment effect on a true endpoint under assumptions that the

ratio of treatment effects on the true endpoint and on the surrogate (called the relative effect)

or the density of the true endpoint conditional on the surrogate has been estimated from

previous studies or validation trials and that these estimates can be applied to future studies

(Burzykowski et al., 2005). In real applications, it may be problematic to extrapolate these

estimates from the previous studies to future studies. Chen et al. (2007) and Ju and Geng

(2009) discussed conditions for qualitatively assessing a treatment effect on a true endpoint

with a surrogate based on the causal network presented by Lauritzen (2004) without satisfying

Prentice’s criterion. These conditions contain unobserved confounders, and thus they need to

be verified by prior knowledge but cannot be tested even if observations of the true endpoint

are available. VanderWeele and Robins (2009) discussed transitive relations of non-negative

(or say non-strictly positive) effects among variables in a known causal network.

In this paper, we discuss Prentice’s criterion and conditions for surrogates via the coun-
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terfactual model (Rubin, 1974; Holland, 1986). We first show that a surrogate satisfying

Prentice’s criterion cannot be used to avoid phenomena of the surrogate paradox or to de-

termine the sign of treatment effect on a true endpoint. Then we discuss what conditions

are required to qualitatively assess a treatment effect on a true endpoint with or without

requiring Prentice’s criterion, and we show the implication and equivalence relations between

the sign (positive, non-negative or null) of treatment effect on a surrogate and the sign of

treatment effect on a true endpoint. With requiring Prentice’s criterion, we propose some

additional conditions and models to qualitatively assess a treatment effect on a true endpoint

in terms of a surrogate. Intuitively, a condition required for a surrogate is that there exists a

correlation between the surrogate and the endpoint. We shall illustrate that the correlation

as an additional condition besides Prentice’s criterion is not sufficient, and we shall show that

stricter measurements of association between a surrogate and a true endpoint are necessary

for the qualitative assessment. Generally, Prentice’s criterion ensures only an implication

relation that a null treatment effect on a surrogate implies a null treatment effect on a true

endpoint, but it ensures neither that the converse holds nor that a positive treatment effect

on a surrogate implies a positive treatment effect on a true endpoint even if there is a strong

association between the surrogate and the true endpoint. We shall show that an equivalence

relation between the signs of treatment effects on an endpoint and on a surrogate holds if

the surrogate satisfies Prentice’s criterion, has the stricter association with the endpoint and

follows a distribution from the one-parameter exponential family. Unlike Chen et al. (2007)

and Ju and Geng (2009), these conditions and models for surrogates can be tested if there

are validation trials in which the true endpoint is observed. We neither need to consider

latent confounders which affect both surrogates and endpoints, nor need to assume that the

estimates are available from previous studies and are applicable to future studies. Further

we show that these additional conditions can be satisfied by generalized linear models and

Cox’s proportional hazard models. A treatment effect on an unobserved true endpoint can

be assessed qualitatively by using an observed surrogate which satisfies the conditions and

models. The sign of treatment effect on the true endpoint may be determined by the sign of

treatment effect on the surrogate based on the prior knowledge on conditional independence
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and models.

In Section 2, we introduce definitions and notation, and then we give an example to

illustrate that a phenomenon of the surrogate paradox can occur for a surrogate which satisfies

Prentice’s criterion. In Section 3, we present conditions for qualitatively assessing a treatment

effect on a true endpoint in terms of a surrogate. In Section 4, we discuss conditions for

surrogates under some commonly used models, such as the generalized linear models and

Cox’s proportional hazard models. We show an application to a breast screening study to

illustrate our results in Section 5. Finally discussions are given in Section 6. All proofs of

theorems are presented in Appendix.

2. Definitions and Notation

Let T denote a treatment, Y a true endpoint, and S a candidate surrogate for the true

endpoint. We only compare two levels t′ and t′′ of a treatment T every time. For a treatment

T with more than two levels, we can compare its levels pairwise, and thus without loss

of generality we assume that T is binary with values 0 or 1. In this paper, we consider

randomized trials.

Prentice’s criterion for surrogates requires that an endpoint Y is independent of a treat-

ment T conditionally on the surrogate S, denoted as Y T |S. Let T S denote the indepen-

dence of T and S. Under the Prentice’s criterion, it can be shown that T S implies T Y .

Another condition of Prentice’s criterion for surrogates is that there exists an association or

a correlation between a surrogate S and a true endpoint Y , denoted as S/ Y . We first show

an example to illustrate that the sign of treatment effect on an unobserved true endpoint

cannot be predicted by the sign of the observed effect on a surrogate which satisfies Prentice’s

criterion, even if there exists a strong positive association between the surrogate and the true

endpoint.

Example 1. Consider a trial with a treatment T , a candidate surrogate S and a true end-

point Y . The joint distribution of T , S and Y is given in Table 1. From the joint distribution,

we can obtain that Prentice’s criterion Y T |S is satisfied. Although the correlation between

S and Y is quite strong (r(S, Y ) = 0.762 > 0), we have a positive correlation between T and S
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(r(T, S) = 0.056) but a negative correlation between T and Y (r(T, Y ) = −0.039). For a ran-

domized trial, the correlations r(T, S) and r(T, Y ) can also be used as causal measurements.

Thus it shows a phenomenon of the surrogate paradox.

Table 1: The joint distribution of T , S and Y satisfying Prentice’s criterion

S = 0 S = 1 S = 2

T = 0 T = 1 T = 0 T = 1 T = 0 T = 1

Y = 0 0.144 0.270 0.032 0.012 0.004 0.012

Y = 1 0.016 0.030 0.128 0.048 0.076 0.228

Below we define causal measurements via the counterfactual model (Rubin, 1974; Hol-

land, 1986) and corresponding association measurements. Let Yt and St denote the potential

outcomes of the true endpoint and the surrogate under a treatment T = t respectively. As-

sume that the observed outcomes of Y and S are equal to the potential outcomes Yt and St

respectively when the treatment T = t is really assigned, that is, Y = Yt and S = St for the

really treatment T = t. First we introduce an average causal effect (ACE) and a prima facie

average causal effect (FACE) as measurements of causation and association respectively. Let

X and Z be variables and Zx a potential outcome of Z under X = x.

Definition 1. (ACE and FACE) For x > x′, an average causal effect of X on Z is

defined as

ACE(X → Z|X = x,X = x′) = E(Zx)− E(Zx′),

and the corresponding prima facie average causal effect of X on Z is defined as

FACE(X → Z|X = x,X = x′) = E(Z|x)− E(Z|x′).

E(Zx) is the average of the potential outcomes which would be obtained if the treatment

X = x were assigned to all individuals including those taking other treatments x′ ̸= x.

Without randomization or any untestable assumption, E(Zx) and ACE(X → Z|X = x,X =

x′) are unidentifiable. Unlike E(Zx), E(Z|x) is the average of outcomes of individuals only in

the treatment group of X = x, which is identifiable by the mean of observed outcomes Z in

the treatment group.
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Theorem 1. If FACE(X → Z|X = x,X = x′) ≥ 0 for all x > x′, then the correlation

between X and Z is non-negative (i.e., r(X,Z) ≥ 0). Further if FACE(X → Z|X = x,X =

x′) > 0 with a positive probability for some x > x′, then the correlation between X and Z is

positive (i.e., r(X,Z) > 0). The converse also holds when X is a binary variable.

FACE(X → Z|X = x,X = x′) for all x > x′ are pairwise measurements of association,

and a correlation is a single summarized measurement of association. Thus all FACEs together

describe a stricter association than a correlation.

Next we introduce a distributional causal effect (DCE) and a prima facie distributional

causal effect (FDCE).

Definition 2. (DCE and FDCE) For x > x′, a distributional causal effect of X on Z for

a specific threshold z is defined as the difference of cumulative distributions of the potential

outcomes

DCE[X → (Z > z)|X = x,X = x′] = P (Zx > z)− P (Zx′ > z),

and a prima facie distributional causal effect of X on Z is defined as

FDCE[X → (Z > z)|X = x,X = x′] = P (Z > z|x)− P (Z > z|x′).

For simplicity, when a conditional variable is binary, the condition part in the above

notation is omitted. For example, ACE(T → Y |T = 1, T = 0) is simplified as ACE(T → Y ).

Since T is randomized, we have T Yt and get that P (Yt > y) = P (Yt > y|T = t) = P (Y >

y|T = t) and E(Yt) = E(Yt|T = t) = E(Y |T = t). Thus we obtain that ACE(T → Y ) =

FACE(T → Y ) and DCE[T → (Y > y)] = FDCE[T → (Y > y)]. Similarly we have that

ACE(T → S) = FACE(T → S) and DCE[T → (S > s)] = FDCE[T → (S > s)]. Generally

we neither have ACE(S → Y ) = FACE(S → Y ) nor DCE[S → (Y > y)] = FDCE[S →

(Y > y)] since S is not randomized and there may be some unobserved confounder which

affects both S and Y .

We say that X has a non-negative (non-positive or null) DCE on Z if for any two levels

x > x′, DCE[X → (Z > z)|X = x,X = x′] ≥ (≤ or =) 0 for all z. If, in addition, there exist

a threshold z and a pair of levels x > x′ such that DCE[X → (Z > z)|X = x,X = x′] > (<)0,

then we say that X has a positive (negative) DCE on Z. Similarly we define a positive FDCE.
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Notice that DCE depends on a specific threshold z but the sign (negative, positive or null)

of DCE does not. A positive DCE and a non-negative DCE imply a positive ACE and a

non-negative ACE respectively. However, the converse is not true. Thus DCE describes a

stricter causal measurement than ACE.

As shown in the following example, however, Prentice’s criterion cannot ensure that a

positive DCE of T on S implies a positive DCE of T on Y even if ACE and DCE of S on Y

are positive.

Example 2. Consider a randomized trial of treatment T . Generally, however, a surrogate

S cannot be randomized in the trial, and thus there may be an unobserved confounder U which

affects both the surrogate S and the true endpoint Y and then confounds the causal effect

of S on Y . Consider a joint distribution P (T = t, S = s, Y = y, U = u) given in Table

2. From the marginal distribution of T , S and Y on the bottom line ‘Sum’, we can see

that Prentice’s criterion Y T |S is satisfied. Since T is randomized, we can easily obtain

ACE(T → S) = 0.14 > 0 and ACE(T → Y ) = −0.004 < 0 directly from the corresponding

conditional distributions. ACE(S → Y ) can be obtained by the following standardization

ACE(S → Y ) =

1∑
u=0

P (U = u)[P (Y = 1|S = 1, u)− P (Y = 1|S = 0, u)] = 0.04 > 0,

which also is the DCE for a binary Y . Thus a phenomenon of the surrogate paradox occurs.

That is, the treatment T has a positive effect on the surrogate S, which in turn has a positive

effect on the true endpoint Y , but the treatment T has a negative effect on the endpoint

Y . This example also explains that we cannot simply depict Prentice’s criterion as a causal

network T → S → Y since it may lead to a phenomenon of the surrogate paradox.

Table 2: A phenomenon of the surrogate paradox under Prentice’s criterion

S = 1 S = 0

Y = 1 Y = 0 Y = 1 Y = 0

T = 1 T = 0 T = 1 T = 0 T = 1 T = 0 T = 1 T = 0

U = 1 0.012 0.006 0.048 0.024 0.016 0.028 0.024 0.042

U = 0 0.040 0.020 0.040 0.020 0.128 0.144 0.192 0.216

Sum 0.052 0.026 0.088 0.044 0.144 0.172 0.216 0.258
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In Section 3, we shall discuss additional conditions besides Prentice’s criterion for qualita-

tively assessing the sign of treatment effect on an unobserved endpoint in terms of an observed

surrogate without assumptions on models. In Section 4, we shall show that these additional

conditions are satisfied by commonly used generalized linear models and Cox’s proportional

hazard models.

3. Criteria for surrogates without model assumptions

In this section, without model assumptions, we discuss what conditions are required to

determine the sign of treatment effect on an unobserved endpoint Y by the sign of treatment

effect on an observed surrogate S. Let f(s, t) denote the expectation E(Y |S = s, T = t) of

Y conditional on S = s and T = t. First we discuss the case without requiring Prentice’s

criterion.

Theorem 2. Suppose that

1. f(s, 1) or f(s, 0) monotonically increases in s (i.e., f(s′, 1) ≥ f(s′′, 1) for all s′ > s′′ or

f(s′, 0) ≥ f(s′′, 0) for all s′ > s′′), and

2. f(s, 1) ≥ f(s, 0) for all s.

Then T has a non-negative ACE on Y if T has a non-negative DCE on S.

The supposition 1 requires that the monotonicity property of the expectation of Y in s

holds for only one of treatment groups, and the supposition 2 describes the monotonicity

property in t. If the true endpoint is observed, the suppositions can be checked no matter

whether there is an unobserved confounder which affects both S and Y . Otherwise, we have to

judge them based on prior or domain knowledge as follows. In an application, we can consider

that the suppositions hold if S and T are risk factors or preventive factors to an endpoint

Y . For example, smoking T = 1 increases averagely the amount S of tar deposited in a

person’s lung (i.e., supposition 2 holds), and a larger amount of tar also increases averagely

the probability of lung cancer for a smoking (but maybe not for nonsmoking) population (i.e.,

supposition 1 holds).

Theorem 2 means that the ACE sign of a treatment T on an unobserved endpoint Y

can be determined by the DCE sign of T on an observed surrogate S if the suppositions are
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satisfied. Since a surrogate and a treatment can be redefined by S∗ = −S and T ∗ = 1−T , we

can apply the theorem to determine the ACE sign of a treatment on an endpoint through the

redefinition of the treatment or/and the surrogate. When the supposition 1 does not hold,

we can try to define S∗ = −S. When the supposition 2 does not hold, we can try to define

T ∗ = 1 − T . Then we check whether the suppositions hold for S∗ or/and T ∗. For example,

if the supposition 1 can be satisfied by defining S∗ = −S and the supposition 2 holds for T ,

then the theorem is also true for S∗ and T .

Notice that Theorem 2 shows an implication relation from a DCE sign of T on S to an

ACE sign of T on Y . The following example explains why a DCE sign of T on S instead of

an ACE sign is necessary.

Example 3. Suppose that P (S = 0|T = 1) = 0.1, P (S = 1|T = 1) = 0.8, P (S =

2|T = 1) = 0.1, P (S = 0|T = 0) = 0.4, P (S = 1|T = 0) = 0.3, P (S = 2|T = 0) = 0.3 and

f(s, t) = s3. Then the suppositions 1 and 2 are satisfied. Instead of a non-negative DCE

of T on S, we have ACE(T → S) = 0.1 > 0, but ACE(T → Y ) = E[f(S, T )|T = 1] −

E[f(S, T )|T = 0] = (0.8 + 0.1× 8)− (0.3 + 0.3× 8) = −1.1 < 0.

For Theorem 2, an expectation of Y may depend on a treatment T = t conditionally on

S = s, that is, f(s, 1) ̸= f(s, 0). This means that there exists a direct effect from T to Y , and

thus Prentice’s criterion is not satisfied.

Next we discuss the condition for determining the sign of ACE of T on Y in terms of a sur-

rogate which satisfies Prentice’s criterion or a weaker condition of the conditional expectation

independence (i.e., E(Y |T = t, S = s) = E(Y |S = s), denoted as Y ET |S).

Theorem 3. Suppose that

1. Y T |S or weakly Y ET |S, and

2. FACE(S → Y |S = s′, S = s′′) ≥ 0 for all s′ > s′′.

Then we have ACE(T → Y ) ≥ 0 if DCE[T → (S > s)] ≥ 0 for all s.

By Theorem 1, the supposition 2 implies a non-negative correlation between S and Y .

Theorem 3 means that under Prentice’s criterion or the conditional expectation independence,

the ACE sign of T on Y can be determined by the DCE sign of T on S. When S is binary,
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the supposition 2 always holds for S or S∗ = −S. For example, if the supposition 2 can

be satisfied by defining S∗ = −S and DCE[T → (S∗ > s)] ≥ 0 for all s, then we can also

determine ACE(T → Y ) ≥ 0. When the condition DCE[T → (S > s)] ≥ 0 in the theorem

does not hold, we can try to define T ∗ = 1−T and check whether the condition holds for T ∗.

If it holds for T ∗, Theorem 3 is also true for T ∗.

If we strengthen the suppositions to that f(s, t) is strictly monotonic in s and FACE(S →

Y |S = s′, S = s′′) > 0 for all s′ > s′′ in Theorems 2 and 3 respectively, then we can get that

a positive DCE of T on S implies a positive ACE(T → Y ).

Below we give an example to illustrate that the supposition 2 of positive FACEs in Theorem

3 cannot be relaxed to a positive correlation between S and Y .

Example 4. Consider the distribution given in Table 3, which satisfies Prentice’s criterion.

We have a quite strong positive correlation between S and Y (r(S, Y ) = 0.706), but the

supposition 2 of Theorem 3 does not hold (FACE(S → Y |S = 2, S = 1) = −0.05). Although

DCE[T → (S > 1)] = 0.1 > 0 and DCE[T → (S > 0)] = 0, we have ACE(T → Y ) =

−0.005 < 0. For correlations, we have r(T, S) = 0.057 but r(T, Y ) = −0.005.

Table 3: The joint distribution of T , S and Y satisfying Prentice’s criterion

S = 0 S = 1 S = 2

T = 0 T = 1 T = 0 T = 1 T = 0 T = 1

Y = 0 0.216 0.324 0.008 0.006 0.012 0.027

Y = 1 0.024 0.036 0.072 0.054 0.068 0.153

Corresponding to Theorems 2 and 3 about ACE on endpoints, we give below Theorems 4

and 5 about DCE on endpoints. Define gy(s, t) = P (Y > y|S = s, T = t).

Theorem 4. Suppose that

1. For each y, gy(s, 1) or gy(s, 0) monotonically increases in s (i.e., for each y, either

[gy(s
′, 1) ≥ gy(s

′′, 1) for all s′ > s′′] or [gy(s
′, 0) ≥ gy(s

′′, 0) for all s′ > s′′]), and

2. gy(s, 1) ≥ gy(s, 0) for all s and y.

Then T has a non-negative DCE on Y if T has a non-negative DCE on S.
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The example of smoking, tar and lung cancer given after Theorem 2 can also be used to

interpret the suppositions in Theorem 4 at a distribution level instead of an expectation level.

The smoking and the tar are both risk factors to lung cancer at a probability distribution level.

Under Prentice’s criterion of conditional independence, the above result can be simplified as

follows.

Theorem 5. Suppose that

1. Prentice criterion is satisfied, i.e., Y T |S, and

2. FDCE[S → (Y > y)|S = s′, S = s′′] ≥ 0 for all s′ > s′′ and all y.

Then we have DCE[T → (Y > y)] ≥ 0 for all y if DCE[T → (S > s)] ≥ 0 for all s.

Theorems 4 and 5 mean that under the monotonicity property of gy() or Prentice’s cri-

terion, a DCE sign of T on an unobserved endpoint Y can be determined by a DCE sign of

T on an observed surrogate S. Similarly, we can apply Theorems 4 and 5 to determine the

DCE sign of a treatment on an endpoint Y by redefining a treatment and/or a surrogate. If

we strengthen the suppositions in Theorems 4 and 5 to that gy() is strictly monotonic in s

for some y and that S has a positive FDCE on Y , respectively, then a positive DCE T on S

implies a positive DCE of T on Y .

In Theorems 3 and 5, we gave under some suppositions that the sign of DCE of T on S is

sufficient to determine the signs of ACE and DCE of T on Y , but it is not necessary. That is,

there may be a non-negative ACE or DCE of T on Y but DCE[T → (S > s)] < 0 for some s.

Below we shall show that it becomes to be necessary and thus there is an equivalence relation

between the treatment-effect signs if we further suppose that S is from the one-parameter

exponential family conditional on T .

Definition 3. We say that X is from the one-parameter exponential family if its density

function has the form p(x; θ) = C(θ) exp{Q(θ) · x}h(x), where Q is strictly monotonic.

Poisson, binomial and inverse binomial distributions and the normal distribution with an

unknown constant variance belong to the one-parameter exponential family. First for ACE of

T on Y , we give the following stricter result than Theorem 3.

Theorem 6. Suppose that
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1. Y T |S or weakly Y ET |S,

2. FACE(S → Y |S = s′, S = s′′) > 0 for all s′ > s′′, and

3. S is from the one-parameter exponential family conditional on T .

Then ACE(T → S), DCE(T → S) and ACE(T → Y ) have the same sign (null, positive, or

negative).

Next for DCE of T on Y , we give the following stricter result than Theorem 5.

Theorem 7. Suppose that

1. Y T |S,

2. S has a positive FDCE on Y , and

3. S is from the one-parameter exponential family conditional on T .

Then ACE(T → S), DCE(T → S) and DCE(T → Y ) have the same sign (null, positive, or

negative).

According to Theorems 6 and 7, Prentice’s criterion and additional suppositions can ensure

equivalence relations between the signs of treatment effects on surrogates and on endpoints.

Without these additional suppositions, only Prentice’s criterion cannot ensure these equiva-

lence relations unless S is binary. Especially, as shown by Buyse and Molenberghs (1998),

Prentice’s criterion ensures that an independence of T and S implies an independence of T

and Y , but a dependence of T and S does not imply a dependence of T and Y . Thus, rejecting

a null hypothesis T S does not mean rejecting a null hypothesis T Y .

In Theorems 6 and 7, we also obtain from the supposition of the one-parameter exponential

family that ACE and DCE of T on S have the same sign. When S has a normal distribution

conditional on T , it is from the one-parameter exponential family if its variance is the same

for all T = t.

4. Criteria for surrogates with model assumptions

In this section, we first consider generalized linear models (McCullagh and Nelder, 1989)

and Cox’s proportional hazard models (Cox, 1972), and we discuss the condition for qual-
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itatively assessing the causal effect on an unobserved endpoint with a surrogate. Then we

extend the results to hybrid models of them. With model assumptions, we can obtain more

informative results on strict signs of ACE and DCE on a true endpoint.

4.1 Generalized linear models

For generalized linear models and variables from the one-parameter exponential families,

we show that a surrogate satisfying Prentice’s criterion Y T |S (or weakly Y ET |S) can be

used to qualitatively assess or to predict the signs of ACE and DCE on an unobserved true

endpoint Y .

We consider the following extension of generalized linear models:

h1[E(Y |S = s, T = t)] = a1(s) + b1(t) + c1,

h2[E(S|T = t)] = a2(t) + c2,

where h1() and h2() are strictly monotonic increasing link functions. The following corollaries

show the conditions for the equivalence relations between the ACE (DCE) signs on S and on

Y .

Corollary 1. Suppose that

1. Y T |S or weakly Y ET |S (i.e., b1(t) = 0),

2. a1(s) strictly monotonically increases in s, and

3. S is from the one-parameter exponential family conditional on T .

Then the following statements are equivalent:

1. a2(t) is strictly monotonically increasing (decreasing, zero) in t,

2. T has a positive (negative, null) ACE on S, and

3. T has a positive (negative, null) ACE on Y .

Corollary 2. Suppose that

1. Y T |S,
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2. a1(s) strictly monotonically increases in s, and

3. S given T and Y given S are from the one-parameter exponential families.

Then the following statements are equivalent:

1. a2(t) is strictly monotonically increasing (decreasing, zero) in t,

2. T has a positive (negative, null) DCE on S, and

3. T has a positive (negative, null) DCE on Y .

Ordinarily, for a generalized linear model, the functions a1(s) and a2(t) are defined as

a1s and a2t respectively, and thus the supposition and condition of monotonicity always hold

for T (or T ∗ = 1 − T ) and S (or S∗ = −S). Thus for the generalized linear model and the

one-parameter exponential families, a surrogate satisfying Prentice’s criterion can be used to

qualitatively assess ACE and DCE on an unobserved true endpoint. The monotonicity of

a2(t) and a1(s) means that increasing t increases the expectation of S and that increasing s

increases the expectation of Y respectively, and thus the causal effects DCE and ACE of T on

Y are positive without phenomena of the surrogate paradox occurring. If a1(s) monotonically

decreases, then Corollaries 1 and 2 are also true by defining S∗ = −S.

4.2 Proportional hazard model

In this subsection, we consider the following proportional hazard model under Prentice’s

criterion

λ(y|S = s, T = t) = λ(y|S = s) = λ0(y)[a1(s) + c1],

λ∗(s|T = t) = λ∗
0(s)[a2(t) + c2],

where λ0() and λ∗
0() are baseline hazards. For the model, we have the following equivalence

relation between the signs of DCEs on S and on Y .

Corollary 3. Suppose that a1(s) strictly monotonically decreases in s. Then the following

statements are equivalent:

1. a2(t) is strictly monotonically decreasing (increasing, zero) in t,
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2. T has a positive (negative, null) DCE on S, and

3. T has a positive (negative, null) DCE on Y .

4.3 Hybrid models

The results discussed in the previous subsections on the generalized linear model and the

proportional hazard model can be extended to a hybrid model for which one equation of S or

Y is a generalized linear model and the other is a proportional model, such as

h1[E(Y |S = s, T = t)] = h1[E(Y |S = s)] = a1(s) + c1,

λ∗(s|T = t) = λ∗
0(s)[a2(t) + c2],

or

λ(y|S = s, T = t) = λ(y|S = s) = λ0(y)[a1(s) + c1],

h2[E(S|T = t)] = a2(t) + c2.

Similar to the previous corollaries, a surrogate satisfying Prentice’s criterion can also be used

to qualitatively assess the ACE and DCE on an unobserved endpoint.

5. Application to frequency of breast screening

In this section, we illustrate our conditions for surrogates using the data on breast screen-

ing frequency, breast cancer mortality and tumour size analyzed by Day and Duffy (1996). To

compare the screening effects of a frequency of 3 years with a frequency of 1 year on breast

cancer survival, Day and Duffy (1996) checked the validation of Prentice’s criterion and con-

sidered that tumour size is the most important surrogate for 10-year death. Let T = 0 denote

a screening frequency of 1 year and T = 1 a frequency of 3 years, S denote the tumour size

at diagnosis, and Y denote the true endpoint of cancer death (Y = 1) or not (Y = 0). In

Table 4, the first four columns give the data of their Table 2. From the fourth column, we

know that the supposition 2 of Theorem 3 is satisfied, that is, FACE(S → Y |s′, s′′) > 0

for all s′ > s′′. From the second and third columns, we have that DCE[T → (S > s)] > 0

for all s. Thus we can determine that ACE and DCE of T on Y are positive, which can be
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confirmed by the ACE(T → Y ) = DCE[T → (Y > 0)] = 0.20 − 0.13 > 0 from the last line

of Table 4. Suppose that we have the prior knowledge that the larger tumour at diagnosis

is more dangerous. Then we can use the tumour size as a surrogate for the cancer death to

qualitatively assessing the effect of different screening frequencies on survival so that the costs

and the time duration for the study can be reduced greatly.

Now suppose that Prentice’s criterion does not hold, and our artificial distribution P (Y =

1|s, t) is given in the last two columns of Table 4. By the distribution, we have that the

supposition 1 of Theorem 4 holds, which means that the larger tumour is more dangerous.

Also the supposition 2 of Theorem 4 holds, which means that more frequent screening may

have other positive effect on survival except the pathway through the tumour size. If we have

the prior knowledge, then, by the observed positive treatment effect on the turmour size, we

can determine that the arm of more frequent screening has a positive DCE on survival.

Table 4: Distributions of diagnosed tumour sizes and 10-year death-rates∗

Size (mm) Distributions of tumour size P (s|t) 10-year death-rate P (Y = 1|s, t)

S 3 years (T = 1) 1 year (T = 0) p(Y = 1|s) T = 1 T = 0

1− 9 0.20 0.43 0.02 0.030 0.015

10− 14 0.25 0.21 0.05 0.060 0.038

15− 19 0.21 0.14 0.15 0.200 0.075

20− 29 0.20 0.13 0.35 0.400 0.273

30− 49 0.09 0.07 0.50 0.550 0.436

50+ 0.05 0.02 0.70 0.750 0.575

P (Y = 1|t) 0.20 0.13 0.230 0.103

* The first four columns are from Table 2 of Day and Duffy (1996).

6. Discussions

In this paper, we showed that Prentice’s criterion cannot ensure that the sign of treat-

ment effect on an unobserved true endpoint can be predicted by the sign of treatment effect

on an observed surrogate although it can ensure the validation of tests on null hypothesis of

no treatment effect on an endpoint. We presented some conditions and model assumptions
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to predict or determine the sign of treatment effect on an endpoint with or without requir-

ing Prentice’s criterion. These conditions and models can be tested if the true endpoint is

observed in previous validation trials. We showed in Theorems 3 and 5 that in addition to

Prentice’s criterion, non-negative association measurements FACE and FDCE rather than a

correlation between a surrogate and an endpoint are required for the qualitative assessment.

We remove the assumption of extrapolation that estimates from the previous validation trials

are applicable to future trials. The cases with a direct effect of a treatment on a true endpoint

were also discussed in Theorems 2 and 4 where Prentice’s criterion is not satisfied.

Suppose that a surrogate and an endpoint have a generalized linear model or a proportional

hazard model. Then the surrogate satisfying Prentice’s criterion can be used not only to ensure

the validation of null hypothesis of no treatment effect on an endpoint, but also to predict or

determine the sign of treatment effect on the endpoint.

The criteria proposed by Chen et al. (2007) and Ju and Geng (2009) are based on a causal

network presented by Laurizten (2004), which do not require Prentice’s criterion. Their con-

ditions for surrogates contain unobserved confounders between a surrogate and an endpoint,

and thus they are untestable even if the endpoint is observed. These criteria require prior

knowledge or assumptions on monotonicity of causal effects of a surrogate on an endpoint.

Comparing with these criteria, we can see that the conditions proposed in this paper can

be tested if there are validation trials in which an endpoint is observed. If the endpoint is

never observed, to predict or determine the sign of treatment effect on the endpoint, we need

prior knowledge or assumptions on monotonicity of associations between the surrogate and

the endpoint.

The results on surrogates proposed in this paper can also be applied to an intermediate

variable analysis and instrumental variable methods. These results qualitatively describe the

implication and equivalence relations of causal effects among variables in a causal pathway.
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sity.

Appendix: Proofs of theorems and corollaries

Proof of Theorem 1. Let F (x) = P (X ≤ x) denote the distributional function of X. Then

we have

Cov(X,Z) = E(XZ)− E(X)E(Z) = E{X[E(Z|X)− E(Z)]}

= E{X[E(Z|X)−E(E(Z|X ′))]} = E{E[XFACE(X → Z|X,X ′)]}.

By definition of expectation and exchange of x and x′, the above equation can be written as∫ +∞

−∞

∫ x

−∞
xFACE(X → Z|x, x′)dF (x′)dF (x) +

∫ +∞

−∞

∫ +∞

x
xFACE(X → Z|x, x′)dF (x′)dF (x)

=

∫ +∞

−∞

∫ x

−∞
xFACE(X → Z|x, x′)dF (x′)dF (x) +

∫ +∞

−∞

∫ +∞

x′
x′FACE(X → Z|x′, x)dF (x)dF (x′)

=

∫ +∞

−∞

∫ x

−∞
xFACE(X → Z|x, x′)dF (x′)dF (x) +

∫ +∞

−∞

∫ x

−∞
x′FACE(X → Z|x′, x)dF (x′)dF (x)

=

∫ +∞

−∞

∫ x

−∞
(x− x′)FACE(X → Z|x, x′)dF (x′)dF (x).

Thus we can get Cov(X,Z) non-negative (positive) from the conditions. When X is a binary

variable with values x1 < x2, then the above equation can be written as

Cov(X,Z) = (x2 − x1)P (X = x1)P (X = x2)FACE(X → Z|x2, x1).

Thus we can find that the converse of the theorem is also true. �

Before proving other results, we give four lemmas to be used in the proofs.

Lemma 1. Suppose that X is stochastically larger than Y (i.e.,P (X > c) ≥ P (Y > c)

for all c). Let f be an increasing function, then E[f(X)] ≥ E[f(Y )]. Further if X is strictly

stochastically larger than Y (i.e., P (X > c) > P (Y > c) for some c) and f is strictly increasing,

then E[f(X)] > E[f(Y )].

Proof. From the equation EX =
∫ +∞
0 P (X > x)dx−

∫ 0
−∞ [1− P (X > x)]dx (Chung, 1974,

page 49), we can get E[f(X)]−E[f(Y )] =
∫ +∞
−∞ [P (f(X) > c)− P (f(Y ) > c)]dc. Then we can

get the result from the monotonicity of f and the right continuity of cumulative distribution

functions easily. �
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Lemma 2. Suppose that X1 and X2 are from the one-parameter exponential families with

the density functions in Definition 3. Let p = inf
x∈R

{p(x; θ) > 0} and q = sup
x∈R

{p(x; θ) > 0}. If

E(X1) > E(X2), then X1 is stochastically larger than X2, and further we have P (X1 > c) >

P (X2 > c) for all c ∈ (p, q).

Proof. The one-parameter exponential families exhibit monotonic increasing likelihood

ratio in θ. From Lemma 3.4.2 (ii) of Lehmann and Romano (2005, Page 70), for any θ > θ′,

we have Pθ(X > x) ≥ Pθ′(X > x) for all x. In addition, from Theorem 3.4.1 (ii) of Lehmann

and Romano (2005, Page 66), we have that for c ∈ (p, q), Pθ(X > c) strictly increases in

θ. Thus from Lemma 1, E(X) also strictly increases in θ. If E(X1) > E(X2), we obtain

θX1 > θX2 , and hence the result follows. �

Lemma 3. Suppose that T is randomized. Let f(s, t) = E(Y |S = s, T = t). Then

ACE(T → Y |T = 1, T = 0) = E[f(ST=1, 1)]− E[f(ST=0, 0)]

Proof. Since T (ST=t, YT=t,S=s), we have

E(YT=t,S=s = y|ST=t = s) = E(YT=t,S=s = y|ST=t = s, T = t) = E(Y = y|S = s, T = t).

We use Ft(s) = P (ST=t ≤ s) to denote the distributional function of ST=t. Then we can get

E(YT=t) = E(YT=t,S=ST=t
) =

∫ +∞

−∞
E(YT=t,S=s|ST=t = s)dFt(s)

=

∫ +∞

−∞
E(Y |S = s, T = t)dFt(s) =

∫ +∞

−∞
f(s, t)dFt(s) = E[f(ST=t, t)].

Thus ACE(T → Y |T = 1, T = 0) = E[f(ST=1, 1)]− E[f(ST=0, 0)]. �

Lemma 4. Let gy(s, t) = P (Y > y|S = s, T = t). For randomized T , we have

DCE(T → (Y > y)|T = 1, T = 0) = E[gy(ST=1, 1)]− E[gy(ST=0, 0)].

Proof. �

Proof of Theorem 2. Since T has a non-negative DCE on S, we can get that ST=1 is

stochastically larger than ST=0. Then from the supposition and Lemma 1, we can get

E[f(ST=1, 1)] ≥ E[f(ST=0, 1)](orE[f(ST=1, 0)]) ≥ E[f(ST=0, 0)].

Then from Lemma 3, we have ACE(T → Y |T = 1, T = 0) ≥ 0. �
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Proof of Theorem 3. Under the conditional expectation independence, we denote f(s) =

f(s, 1) = f(s, 0). Then we can get f(s) increasing from Supposition 2. Since T has a non-

negative DCE on S, we have that ST=1 is stochastically larger than ST=0. Then from Lemmas

1 and 3, we can get

ACE(T → Y |T = 1, T = 0) = E[f(ST=1)]− E[f(ST=0)] ≥ 0. �

Proofs of Theorems 4 and 5. Similar to the proofs of Theorems 2 and 3, we can get the

results from Lemmas 1 and 4. �

In the following proofs, we only show the positive part, and the negative and null parts

can be shown similarly.

Proof of Theorem 6.

1. First, we show that ACE(T → S) > 0 implies DCE(T → S) > 0. ACE(T → S) > 0

means E(ST=1) > E(ST=0). Thus by Lemma 2 and supposition 3, we have DCE(T →

S) > 0.

2. Next, we obtain from Theorem 3 and suppositions 1 and 2 that DCE(T → S) > 0

implies ACE(T → Y ) > 0.

3. Finally, we show that ACE(T → Y ) > 0 implies ACE(T → S) > 0. If ACE(T →

S) ≤ 0, we can get DCE(T → S) ≤ 0 from Lemma 2 and supposition 3. Then we have

ACE(T → Y ) ≤ 0 from Theorem 3 with T ∗ = 1− T . Thus ACE(T → Y ) > 0 implies

ACE(T → S) > 0. �

Proof of Theorem 7. Similar to the proof of Theorem 6, we can use Lemma 2 and Theorem

5 instead of Theorem 3 to prove this theorem. �

Proof of Corollary 1. First, since h2() is strictly monotonically increasing, we can get that

statements 1 and 2 are equivalent. Next, we have that FACE(S → Y |S = s′, S = s′′) > 0 for

all s′ > s′′ since E(Y |S = s) = h−1
1 (a1(s) + c1) strictly monotonically increases in s. Thus by

Theorem 6, statements 2 and 3 are equivalent. �

Proof of Corollary 2. Since the conditional distribution of Y given S is from the one-

parameter exponential family, we have FDCE[S → (Y > y)|S = s′, S = s′′] > 0 for all
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s′ > s′′ and all y from Lemma 2 and supposition 2. Then we can get the result from Theorem

7 similar to the proof of Corollary 1. �

Proof of Corollary 3.

1. First, we show that a2(1) < a2(0) implies a positive DCE of T on S. From the definition

of the hazard function λ, we have P (S > s|T = t) = exp{−
∫ s
0 λ(u|T = t)du} =

[exp{−
∫ s
0 λ0(u)du}]a2(t)+c2 . Since exp{−

∫ s
0 λ0(u)du} is the baseline survival function

and a2(1) < a2(0), we can get a positive DCE of T on S.

2. Next, we have FDCE[S → (Y > y)|S = s′, S = s′′] ≥ 0 for all s′ > s′′ and all y from a

strictly monotonically decreasing a1(s) similarly. Thus by Theorem 5, a positive DCE

of T on S implies a positive DCE of T on Y .

3. Finally, we show that a positive DCE of T on Y implies a2(1) < a2(0). If a2(1) ≥ a2(0),

we can get a non-positive DCE of T on S similar to part 1 of this proof. Then we have

a non-positive DCE of T on Y from Theorem 5 with T ∗ = 1− T . Thus a positive DCE

of T on Y implies a2(1) < a2(0). �
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