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1. Introduction

The purpose of this note is to present the “modern” proof of the purity result of
Kazhdan-Lusztig [KL2] . It relies on two main ingredients:

• The Decomposition Theorem of Beilinson-Bernstein-Deligne-Gabber ([BBD],
Thm.5.4.5, 6.2.5);

• The fibers of the Demazure resolution of a Schubert variety are paved by
affine spaces (see below).

The first ingredient is quite deep, and we will not say anything much about its
proof, using it simply as a “black box”. The second ingredient is elementary, and
we take this opportunity to present a simple and self-contained proof which works
equally well for both finite and affine flag varieties. Other proofs can be found in
[Gau] and [Haer].

The original proof in [KL2] is more elementary than the present one, in that it
does not require the Decomposition theorem. However, it is easier to remember the
present proof and to understand “how it works”. More importantly, the present
proof applies equally well to both the finite flag variety and to the affine flag variety,
thereby giving a uniform treatment valid for both situations where this kind of result
holds.

2. Statement of the theorem

We will discuss the case of the finite flag variety. As stated above, everything
goes over, mutatis mutandis, for affine flag varieties.

Let X = G/B, a projective Fq-variety which is defined over Fq. Let us denote
the obvious base point by e0. For any x ∈ W , let Y (w) = Bwe0, a locally closed
subvariety of X isomorphic to A`(w), called a Schubert cell. Let us define a
Schubert variety to be X(w) = Y (w), the closure of Y (w) in X. Clearly X(w)
is an irreducible variety defined over Fq, and in general it is singular. Recall that
the closure relations are given by the Bruhat order: for v, w ∈ W , we have v ≤ w
if and only if Y (v) ⊂ X(w). Therefore X(w) is a stratified space whose strata are
the various Y (v) with v ≤ w.

Let Frq denote the absolute Frobenius morphism for the scheme X relative to
its field of definition Fq: on points it is the identity map, and on the structure sheaf
OX , it is the map f 7→ f q. In projective coordinates [x0 : x1 : · · · : xn], this induces
the map xi 7→ xq

i . It induces an endomorphism on the étale cohomology groups with

compact support H i
c(X,Q`) (which are the étale cohomology groups H i(X,Q`),

since X is a complete variety). In a similar way, Frq induces an endomorphism on

the stalk Fx at a closed point x ∈ X(Fq), where F is a Q`-sheaf on X which is
1



2 THOMAS J. HAINES

defined over Fq. More generally, we get a Frobenius endomorphism Frq on any stalk

Fx, for any object F in the derived category Db
c(X,Q`) of “bounded complexes of

constructible Q`-sheaves on X”, as long as F is “defined over Fq” in a suitable sense.
Given such an object F , let HiF be the i-th cohomology sheaf; for x ∈ X(Fq), we
get the Frobenius endomorphism Frq on the stalk HiFx. This a finite dimensional

Q`-space, and so the trace

Tr(Frq;H
iFx)

is a well-defined element of Q`. It does not depend on the choice of geometric point
x over x, and so in the sequel we will suppress the notation x and write simply x
when discussing stalks of constructible Q`-sheaves.

Let ICw = j!∗Q`, the Goresky-MacPherson middle extension of the constant
sheaf Q` along the open embedding j : Y (w) ↪→ X(w). The complex ICw is an
object of the derived category Db

c(X(w),Q`), and is defined over Fq in a suitable
sense that we may speak of the endomorphism Frq acting on its cohomology stalks,
as above. We will call ICw the intersection complex for the variety X(w).
Our normalization is such that ICw is not perverse, but its cohomological shift
ICw[`(w)] by `(w) degrees to the left, is perverse. In fact ICw[`(w)] is the unique
Verdier self-dual1 object in Db

c(X(w),Q`) with the properties

(1) ICw[`(w)]|Y (w) = Q`[`(w)]; and

(2) for every stratum Y (v) 6= Y (w) in X(w), we have Hi(ICw)[`(w)]|Y (v) = 0
for all i ≥ −dim Y (v).

In what follows, we will denote by Hi(X(w)) the i-th cohomology sheaf of ICw.
Now we can state the purity theorem.

Theorem 2.0.1 (Kazhdan-Lusztig [KL2]). For every v ≤ w, and every closed point

y ∈ Y (v)(Fq), we have Hi(X(w))y = 0 for odd i, and for even i all the eigenvalues

of Frq on Hi(X(w))y are equal to qi/2.

3. The fibers of the Demazure resolution are paved by affine spaces

Let w ∈ W and choose a reduced expression w = s1 · · · sr. Let X̃(w) be the
subscheme of (G/B)r consisting of r-tuples (g1B, g2B, . . . , grB) such that for all
i, we have g−1

i−1gi ∈ BsiB, the closure of BsiB in G (by convention, g0 = 1).
Projection onto the r-th factor gives a projective birational morphism

πs•
: X̃(w) → X(w),

called the Demazure resolution. Since X̃(w) is non-singular (being a succession
of P1-bundles), πs•

is a resolution of the singularities of X(w).
We recall the notion of paving by affine spaces. We say a scheme Z is paved by

affine spaces provided that there is a finite filtration by closed subspaces Z = ZN ⊃
ZN−1 · · · ⊃ Z1 ⊃ Z0 = ∅, such that each difference Zj − Zj−1 is a (topological)
disjoint union of certain affine spaces Anji .

It is convenient to think of X as the space of all Borel subgroups in G. We
identify the coset gB ∈ X with the Borel subgroup gB := gBg−1. Further, we will

write g1B
w

−→ g2B when g−1
1 g2 ∈ BwB and g1B

≤w
−→ g2B when g−1

1 g2 ∈ BwB.

1In the category D
b,Weil
c (X, Q`), the self-dual intersection complex is the Tate-twist

ICw[`(w)](
`(w)

2
).



THE KAZHDAN-LUSZTIG PURITY THEOREM 3

Proposition 3.0.2. For each v ≤ w and any point yB ∈ Y (v), the fiber π−1
s•

( yB)
is paved by affine spaces.

Proof. We argue by induction on r = `(w). Since πs•
is B-equivariant (with respect

to the obvious left-actions of B), we may as well assume yB = vB.
Consider an element (B1, · · · , Br−1,

vB) in π−1
s•

( vB). We have

B
v

−→ vB
≤sr−→ Br−1.

It follows that Br−1 ∈ Y (v) ∪ Y (vsr). We consider the map

p : π−1
s•

( vB) → Y (v) ∪ Y (vsr)

given by (B1, B2, . . . , Br−1,
vB) 7→ Br−1.

We will examine the subsets Im(p)∩Y (v) and Im(p)∩Y (vsr), and we will show
that

(a) each of these is an affine space (either empty, a point, or A1); one of them
(denoted A1) is closed (and possibly empty) and the other (denoted A2) is
open and dense in Im(p);

(b) let πs′
•

denote the Demazure resolution associated to the reduced word
s′• = s1 · · · sr−1; if A1 6= ∅, then A1 belongs to the image of πs′

•
; furthermore,

we have p−1(A1) = π−1
s′
•

(A1), and p : p−1(A1) → A1 is simply the morphism

πs′
•

: π−1
s′
•

(A1) → A1 (similar remarks apply to A2); and

(c) the morphism πs′
•

: π−1
s′
•

(A1) → A1 is trivial (similarly for A2).

This will be enough to prove the proposition. Indeed, applying p−1 to the de-
composition

Im(p) = A1 ∪ A2

gives us a decomposition

π−1
s•

( vB) = p−1(A1) ∪ p−1(A2)

where the first subset is closed (possibly empty) and the second is open. Further-
more, the triviality statement in (c) together with our induction hypothesis applied
to πs′

•
show that p−1(A1) and p−1(A2) are each paved by affine spaces. Putting all

this together, we see that π−1
s•

( vB) is indeed paved by affine spaces.
To verify (a-c), we need to consider various cases. The cases break up according

to whether v < vsr or vsr < v in the Bruhat order. We will break these cases
up further, using the following general fact about the Bruhat order: v ≤ s1 · · · sr

implies that either v ≤ s1 · · · sr−1 or vsr ≤ s1 · · · sr−1 (or both). Thus we get the
following four cases:

Case 1 : v < vsr.
Case 1a : v < vsr ≤ s1 · · · sr−1;
Case 1b : v ≤ s1 · · · sr−1 and vsr £ s1 · · · sr−1.

Case 2 : vsr < v.
Case 2a : vsr < v ≤ s1 · · · sr−1;
Case 2b : vsr ≤ s1 · · · sr−1 and v £ s1 · · · sr−1.

Before we analyze the various cases, let us make a few preliminary remarks. Let
ξ denote one of the elements v or vsr. It is immediate that Im(p) ⊂ Im(πs′

•
), and

that the latter is simply the union of all Y (y) with y ≤ s1 · · · sr−1. It follows easily
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that Im(p) ∩ Y (ξ) is empty unless ξ ≤ s1 · · · sr−1, in which case it is the variety of
those Borel subgroups B′ which satisfy

B
ξ

−→ B′ ≤sr−→ vB.

To condense notation somewhat, we make the following definitions for any w ∈ W ,
any simple reflection s ∈ W , and any Borel subgroup B0:

P1(B0, s) := {B′ | B0
≤s
−→ B′}

A(B0, w) := {B′ | B0
w

−→ B′}.

(The former (resp. latter) is clearly isomorphic to a copy of P1 (resp. A`(w)), thus
the notation.)

Thus, in the case ξ ≤ s1 · · · sr−1, we have to show

A(B, ξ) ∩ P1( vB, sr)

is always an affine space, and moreover we need to give an explicit description of it
(needed to verify (c)).

To do so, we use the following way to think about the relative position of Borel
subgroups in terms of alcoves for the spherical building associated to G 2. For any
w ∈ W , A(B0, w) is an affine space whose points correspond to those alcoves in
relative position w from the alcove fixed by B0 (more precisely we fix a reduced
expression w = sj1 · · · sjp

; then A(B0, w) consists of the terminal alcoves in the
galleries of length `(w) which start at that alcove, where the wall-crossings of the
gallery are of type (sj1 , sj2 , . . . , sjp

), in that order). The description of P1(B0, s) =
A(B0, s)

∐
A(B0, 1) is similar. Using this description, or simply by using BN-pair

relations, one can easily verify the results in the table below.

Case Im(p) ∩ Y (v) Im(p) ∩ Y (vsr)

1a A( vB, 1) A( vB, sr)

1b A( vB, 1) ∅

2a A( vsr B, sr) A( vsr B, 1)

2b ∅ A( vsr B, 1)

In each case it is clear which piece should be labelled A1 or A2.

At this stage we have verified (a-b) in every case. It remains to check that (c)
holds in the two non-trivial cases 1a and 2a. For each of those cases, we need to
show that πs′

•
: π−1

s′
•

(A2) → A2 is trivial. Let us consider the case 1a, where we

have A2 = {B′ | B′ sr−→ vB}. Any such element B′ can be written in the form

B′ = vusrB

for some unique element u ∈ U ∩ srU , where U is the unipotent radical opposite to
U (to see this, note that conjugation by v−1 reduces us to the special case v = 1,
where the statement is clear). We can then define an isomorphism

π−1
s′
•

(A2) →̃ π−1
s′
•

( vsrB) × A2

by sending (B1, · · · , Br−2,
vusrB) to ( vu−1v−1

B1, . . . ,
vu−1v−1

Br−2,
vsrB)× vusrB.

In order to check that the first factor belongs to π−1
s′
•

( vsrB), we need to check that

2For affine flag varieties, “Borel” would be replaced with “Iwahori”, and we would think instead

about the Bruhat-Tits building for G.
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vuv−1 ∈ U . But if αr denotes the simple positive root corresponding to sr, with
associated root homomorphism xαr

: Ga → U , then we may write u = xαr
(λ) for

some λ ∈ Fq. Then vuv−1 belongs to the image of the homomorphism xvαr
, which

still takes values in U because our assumption v < vsr implies that vαr is a positive
root.

Finally, we note that the case 2a is handled in the same way, but with the roles

of v and vsr interchanged. (Indeed, in that case we have A2 = {B′ | B′ sr−→ vsrB},
and any such B′ can be written as vsrusrB for a unique u ∈ U ∩ srU ; now proceed
as before.) We have now verified (c) in every case, and this completes the proof of
the proposition. ¤

Remark 3.0.3. The above proof is parallel to the proof of Theorem 3.1 in [Ha],
which concerns convolution morphisms related to the affine Grassmannian for G.

4. Proof of Theorem 2.0.1

In this section we abbreviate πs•
by π. Since X̃(w) is non-singular, the constant

sheaf Q` is perverse (up to a cohomological shift). The decomposition theorem of
BBD states that Rπ∗(Q`) is a direct sum in the category Db

c(X(w),Q`) of shifts of
irreducible perverse sheaves on X(w):

(4.0.1) Rπ∗(Q`) =
⊕

LZ

i∈Z

IC(Z,LZ)[i]⊕m(i,LZ)

where i ranges over a finite set of integers, Z ranges over closed irreducible subva-
rieties Z ⊂ X(w), and LZ ranges over a finite set of irreducible locally constant
Q`-sheaves on nonsingular open dense subsets of the various subvarieties Z. Such a
pair (Z,LZ) gives rise to an intersection complex IC(Z,LZ) supported on Z, and
all the irreducible perverse sheaves on X(w) are of this form (up to a shift). The
multiplicity m(i,LZ) is a non-negative integer.

Since π is an isomorphism over the dense open subset Y (w) ⊂ X(w), by restrict-
ing everything to Y (w) it is easy to see that the intersection complex ICw must
appear in the above decomposition. Thus for each y, we see that Hi(X(w))y is a
direct summand of the vector space

Rπ∗(Q`)y = Hi
c(π

−1(y),Q`).

Since π−1(y) is paved by affine spaces At, and

Hi
c(A

t,Q`) =

{
0, if i 6= 2t

Q`(−t), if i = 2t,

we immediately get the vanishing of Hi(X(w))y for odd i. (Recall that Q`(d)

denotes the Tate-twist of the constant sheaf: Frq acts on Q`(d) by the scalar q−d ∈
Q`.)

The same argument would give us the eigenvalues of Frq on Hi(X(w))y, provided
that the decomposition in (4.0.1) were compatible with the Galois structures. How-
ever, it is important to note that the decomposition of Rπ∗(Q`) holds in the category
Db

c(X,Q`) where we have forgotten the Galois structures. Therefore we need to ar-
gue in a more abstract fashion, taking care to keep track of Galois structures, as
follows.
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Let Db,Weil
c (X,Q`) denote the category consisting of objects F in Db

c(X,Q`)
equipped with a Weil structure, that is, an isomorphism Fr∗qF →̃ F . The coho-

mology stalks of objects of Db,Weil
c (X,Q`) are equipped with the Frobenius endo-

morphism Frq.

Let P (X,Q`) denote the subcategory of Db
c(X,Q`) consisting of (middle) per-

verse sheaves, and let PWeil(X,Q`) denotes the subcategory of Db,Weil
c (X,Q`) con-

sisting of perverse sheaves equipped with a Weil structure. The category of per-
verse sheaves in P (X,Q`) which are “defined over Fq” is a full subcategory of

PWeil(X,Q`), whose essential image is stable under extensions and subquotients
([BBD], Prop. 5.1.2.).

Let pπ∗ := pH0Rπ∗ denote the perverse version of the proper push-forward de-
rived functor Rπ∗. Suppose temporarily that all the eigenvalues of Frq on Hi pπ∗(Q`)y

are equal to qi/2. We claim that the same then holds for Hi(X(w))y. It is
enough to show that the perverse sheaf IC := IC(X(w))[`(w)] is a subquotient
of pπ∗(Q`)[`(w)], in the category PWeil(X(w),Q`). However, this follows from a
more general result proved in Lemma 10.7 of [GH].

It remains to show that all the eigenvalues of Frq on the cohomology stalks

Hi pπ∗(Q`)y are qi/2, assuming that Rπ∗(Q`) has this property (as we have already
proved). At this point, we have to bring in the results of [BBD] underlying the
decomposition theorem. Namely, we note that since π is proper, the complex
Rπ∗(Q`) is a pure complex in the sense of [BBD], §5.4. It follows from the proof
of [BBD], Thm. 5.4.5, that the distinguished triangle

pHjRπ∗(Q`)
// pτ≥jRπ∗(Q`)

// pτ≥j+1Rπ∗(Q`)

in Db,Weil
c (X,Q`) becomes a direct sum in Db

c(X,Q`), i.e., after we forget the Galois
structures. On taking cohomology stalks, we get short exact sequences of Q`-spaces
equipped with Weil structures

0 // Hi( pHjK)y
// Hi( pτ≥jK)y

// Hi( pτ≥j+1K)y
// 0,

where for brevity we have written K in place of Rπ∗(Q`).
Note that for j << 0 the middle term is simply HiRπ∗(Q`)y. Now an easy

argument by ascending induction on j shows that for all j, the eigenvalues of Frq

on Hi( pHjRπ∗(Q`))y are equal to qi/2. This applies in particular to pπ∗(Q`)y =
pH0Rπ∗(Q`)y. This completes the proof of Theorem 2.0.1. ¤

5. Application to Kazhdan-Lusztig polynomials

The main application of Theorem 2.0.1 is the geometric description of the Kazhdan-
Lusztig polynomials. Here we will give only the outline of the proof; there are
certain elementary statements which we use without explicit mention, and details
for those can be found in [KL2]. We will now switch to the notation of loc. cit. (for
the most part):

Bw := BwB/B

Bw := BwB/B

Bw := BwB/B ∼= Bw0w

Aw := (the open affine space of Borels opposite to wB) ∼= Bw × Bw.
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Theorem 5.0.4. Let y ≤ w in W . Then

Py,w(q) =
∑

i

dim H2i
yB(Bw) qi =

∑

i

dim IH2i(Bw ∩ By,Q`) qi.

Proof. First of all, for any i ∈ Z the cohomology stalk Hi
yB(Bw) is isomorphic

to the global intersection cohomology group IH i(Bw ∩ By,Q`); this is based on
the B-equivariance of IC(Bw) and the existence of a contracting Gm-action on
Bw ∩Ay ∼= By × (Bw ∩ By) which contracts Bw ∩ By onto the point yB (see [KL2],
§1.4 − 1.5, and Lemma 4.5). Therefore, we just need to check the first equality.

Recall that the Py,w are characterized as the unique family of polynomials in
Z[q] satisfying

(i) Pw,w = 1;
(ii) deg Py,w ≤ (`(w) − `(y) − 1)/2 if y < w;
(iii) qwq−1

y Py,w(q−1) =
∑

y≤z≤w Ry,zPz,w.

By Theorem 2.0.1, it is clear that

Tr(Frq, IC(Bw) yB) =
∑

i

dim H2i
yB(Bw) qi,

and that it satisfies property (i). Property (ii) also follows easily (in light of Theorem
2.0.1, the degree bound is a restatement of the sharp constraints on the support
of HiIC(Bw), in the very definition we gave of the intersection complex ICw =
IC(Bw)). To check (iii) we use Poincare duality for intersection cohomology (a
formal consequence of the fact that IC(Bw) is Verdier self-dual, up to a shift and
Tate-twist). Namely, the Lefschetz trace formula implies that

Tr(Frq, IH•
c (Bw ∩ Ay)) =

∑

y≤z≤w

∑

z′∈(Bz∩Ay)(Fq)

Tr(Frq,H
•
z′(Bw))

=
∑

y≤z≤w

qdimByRy,z(q)Tr(Frq,H
•
z(Bw)).

By Poincaré duality we have

Tr(Frq, IH•
c (Bw ∩ Ay)) = qdim(Bw∩Ay)Tr(Fr−1

q , IH•(Bw ∩ Ay)),

and [KL2], Lemma 4.5 gives us

Tr(Fr−1
q , IH•(Bw ∩ Ay)) = Tr(Fr−1

q ,H•
y(Bw)).

Altogether, we now get

q`(w)−`(y)Tr(Fr−1
q ,H•

y(Bw)) =
∑

y≤z≤w

Ry,zTr(Frq,H
•
z(Bw)).

This shows that the family of polynomials Tr(Frq, IC(Bw) yB) satisfies property
(iii), and thereby completes the proof of the theorem.

¤
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