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Abstract. We prove that the essential dimension of the spinor group
Spinn grows exponentially with n and use this result to show that qua-
dratic forms with trivial discriminant and Hasse-Witt invariant are more
complex, in high dimensions, than previously expected.

1. Introduction

Let K be a field of characteristic different from 2 containing a square
root of −1, W(K) be the Witt ring of K and I(K) be the ideal of classes
of even-dimensional forms in W(K); cf. [Lam73]. By abuse of notation, we
will write q ∈ Ia(K) if the Witt class on the non-degenerate quadratic form
q defined over K lies in Ia(K). It is well known that every q ∈ Ia(K) can be
expressed as a sum of the Witt classes of a-fold Pfister forms defined over
K; see, e.g., [Lam73, Proposition II.1.2]. If dim(q) = n, it is natural to ask
how many Pfister forms are needed. When a = 1 or 2, it is easy to see that
n Pfister forms always suffice; see Proposition 4.1. In this paper we will
prove the following result, which shows that the situation is quite different
when a = 3.

Theorem 1.1. Let k be a field of characteristic different from 2 and n ≥ 2 be
an even integer. Then there is a field extension K/k and an n-dimensional
quadratic form q ∈ I3(K) with the following property: for any finite field
extension L/K of odd degree qL is not Witt equivalent to the sum of fewer
than

2(n+4)/4 − n− 2
7

3-fold Pfister forms over L.

Our proof of Theorem 1.1 is based on new results on the essential di-
mension of the spinor groups Spinn proven in §3 which are of independent
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by MIUR.

1



2 BROSNAN, REICHSTEIN, AND VISTOLI

interest. In particular, Theorem 3.3 gives new lower bounds on the essential
dimension of Spinn and, in many cases, computes the exact value.

Acknowledgements. We would like to thank the Banff International Re-
search Station in Banff, Alberta (BIRS) for providing the inspiring meet-
ing place where this work was started. We are grateful to A. Merkurjev
and B. Totaro for bringing the problem of computing the Pfister numbers
Pfk(a, n) to our attention and for contributing Proposition 4.2. We also
thank N. Fakhruddin for helpful correspondence.

2. Essential dimension

Let k be a field. We will write Fieldsk for the category of field extensions
K/k. Let F : Fieldsk → Sets be a covariant functor.

Let L/k be a field extension. We will say that a ∈ F (L) descends to
an intermediate field k ⊆ K ⊆ L if a is in the image of the induced map
F (K)→ F (L).

The essential dimension ed(a) of a ∈ F (L) is the minimum of the tran-
scendence degrees tr degk K taken over all fields k ⊆ K ⊆ L such that a
descends to K.

The essential dimension ed(a; p) of a at a prime integer p is the minimum
of ed(aL′) taken over all finite field extensions L′/L such that the degree
[L′ : L] is prime to p.

The essential dimension edF of the functor F (respectively, the essential
dimension ed(F ; p) of F at a prime p) is the supremum of ed(a) (respectively,
of ed(a; p)) taken over all a ∈ F (L) with L in Fieldsk.

Of particular interest to us will be the Galois cohomology functors, FG

given by K  H1(K,G), where G is an algebraic group over k. Here, as
usual, H1(K,G) denotes the set of isomorphism classes of G-torsors over
Spec(K), in the fppf topology. The essential dimension of this functor is a
numerical invariant of G, which, roughly speaking, measures the complexity
of G-torsors over fields. We write edG for ed FG and ed(G; p) for ed(FG; p).
Essential dimension was originally introduced in this context; see [BR97,
Rei00, RY00]. The above definition of essential dimension for a general
functor F is due to A. Merkurjev; see [BF03].

Recall that an action of an algebraic group G on an algebraic variety k-
variety X is called “generically free” if X has a dense open subset U such
that StabG(x) = {1} for every x ∈ U(k).

Lemma 2.1. If an algebraic group G defined over k has a generically free
linear k-representation V then ed(G) ≤ dim(V )− dim(G).

Proof. See [Rei00, Theorem 3.4] or [BF03, Lemma 4.11]. ♠
Lemma 2.2. If G is an algebraic group and H is a closed subgroup of
codimension e then

(a) ed(G) ≥ ed(H)− e, and
(b) ed(G; p) ≥ ed(H; p)− e for any prime integer p.
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Proof. Part (a) is [BF03, Theorem 6.19]. Both (a) and (b) follow directly
from [Bro07, Principle 2.10]. ♠

If G is a finite abstract group, we will write edk G (respectively, edk(G; p))
for the essential dimension (respectively, for the essential dimension at p) of
the constant group scheme Gk over the field k. Let C(G) denote the center
of G.

Theorem 2.3. Let G be a finite p-group whose commutator [G,G] is central
and cyclic. Then edk(G; p) = edk G =

√
|G/C(G)|+ rank C(G)− 1 for any

base field k of characteristic 6= p containing a primitive root of unity of
degree equal to the exponent of G.

Note that with the above hypotheses, |G/C(G)| is a complete square. The-
orem 2.3 was originally proved in [BRV07] as a consequence of our study
of essential dimension of gerbes banded by µpn . Karpenko and Merkur-
jev [KM07] have subsequently refined our arguments to show that the es-
sential dimension of any finite p-group over any field k containing a primitive
pth root of unity is the minimal dimension of a faithful linear k-representation
of G. Using [KM07, Remark 4.7] Theorem 2.3 is easily seen to be a special
case of their formula. For this reason we omit the proof here.

3. Essential dimension of Spin groups

As usual, we will write 〈a1, . . . , an〉 for the quadratic form q of rank n
given by q(x1, . . . , xn) =

∑n
i=1 aix

2
i . Let

(3.1) h = 〈1,−1〉

denote the 2-dimensional hyperbolic quadratic form over k. For each n ≥ 0
we define the n-dimensional split form qsplit

n defined over k as follows:

qsplit
n =

{
h⊕n/2, if n is even,
h⊕(n−1/2) ⊕ 〈1〉, if n is odd.

Let Spinn
def= Spin(qsplit

n ) be the split form of the spin group. We will also
denote the split forms of the orthogonal and special orthogonal groups by
On

def= O(qsplit
n ) and SOn

def= SO(qsplit
n ) respectively.

M. Rost [Ros99] computed the following values of ed(Spinn) for n ≤ 14:

ed Spin3 = 0 ed Spin4 = 0 ed Spin5 = 0 ed Spin6 = 0
ed Spin7 = 4 ed Spin8 = 5 ed Spin9 = 5 ed Spin10 = 4

ed Spin11 = 5 ed Spin12 = 6 ed Spin13 = 6 ed Spin14 = 7,

for a detailed exposition of these results; see [Gar08]. V. Chernousov and
J.–P. Serre [CS06] recently proved the following lower bounds:

(3.2) ed(Spinn; 2) ≥

{
bn/2c+ 1 if n ≥ 7 and n ≡ 1, 0 or −1 (mod 8)
bn/2c for all other n ≥ 11.
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(The first line is due to B. Youssin and the second author in the case that
char k = 0 [RY00].)

The main result of this section, Theorem 3.3 below, shows, in particular,
that ed(Spinn) and ed(Spinn; 2) grow exponentially with n.

Theorem 3.3. (a) Let k be a field of characteristic 6= 2 and n ≥ 15 be an
integer.

ed(Spinn; 2) ≥


2(n−1)/2 − n(n−1)

2 , if n is odd,
2(n−2)/2 − n(n−1)

2 , if n ≡ 2 (mod 4),
2(n−2)/2 − n(n−1)

2 + 1, if n ≡ 0 (mod 4).

(b) Moreover, if char(k) = 0 then

ed(Spinn) = ed(Spinn; 2) = 2(n−1)/2 − n(n−1)
2 , if n is odd,

ed(Spinn) = ed(Spinn; 2) = 2(n−2)/2 − n(n−1)
2 , if n ≡ 2 (mod 4), and

ed(Spinn; 2) ≤ ed(Spinn) ≤ 2(n−2)/2 − n(n−1)
2 + n, if n ≡ 0 (mod 4).

Note that while the proof of part (a) below goes through for any n ≥ 3,
our lower bounds become negative (and thus vacuous) for n ≤ 14.

Proof. (a) Since replacing k by a larger field k′ can only decrease the value
of ed(Spinn; 2), we may assume without loss of generality that

√
−1 ∈ k.

The n-dimensional split quadratic form qsplit
n is then k-isomorphic to

(3.4) q(x1, . . . , xn) = −(x2
1 + · · ·+ x2

n).

over k and hence, we can write Spinn as Spin(q), On as On(q) and SOn

as SOn(q).
Let Γn ⊆ SOn be the subgroup consisting of diagonal matrices. This

subgroup is isomorphic to µn−1
2 . Let Gn be the inverse image of Γn in

Spinn; this is a constant group scheme over k. By Lemma 2.2(b)

ed(Spinn; 2) ≥ ed(Gn; 2)− n(n− 1)
2

.

Thus in order to prove the lower bounds of part (a), it suffices to show that

(3.5) ed(Gn; 2) = ed(Gn) =


2(n−1)/2, if n is odd,
2(n−2)/2, if n ≡ 2 (mod 4),
2(n−2)/2 + 1, if n is divisible by 4.

The structure of the finite 2-group Gn is well understood; see, e.g., [Woo89].
Recall that the Clifford algebra An of the quadratic form q, as in (3.4) is the
algebra given by generators e1, . . . , en, and relations e2i = −1, eiej +ejei = 0
for all i 6= j. For any I = {i1, . . . , ir} ⊆ {1, . . . , n} with i1 < i2 < · · · < ir set
eI

def= ei1 . . . eir . Here e∅ = 1. The group Gn consists of the elements of An

of the form ±eI , where the cardinality r = |I| of I is even. The element −1
is central, and the commutator [eI , eJ ] is given by [eI , eJ ] = (−1)|I∩J | . It is
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clear from this description that Gn is a 2-group of order 2n, the commutator
subgroup [Gn, Gn] = {±1} is cyclic, and the center C(G) is as follows:

C(Gn) =


{±1} ' Z/2Z, if n is odd,
{±1,±e{1,...,n}} ' Z/4Z, if n ≡ 2 (mod 4),
{±1,±e{1,...,n}} ' Z/2Z× Z/2Z, if n is divisible by 4.

Formula (3.5) now follows from Theorem 2.3.
(b) Clearly ed(Spinn; 2) ≤ ed(Spinn). Hence, we only need to show that

for n ≥ 15

(3.6) ed(Spinn) ≤


2(n−1)/2 − n(n−1)

2 , if n is odd,
2(n−2)/2 − n(n−1)

2 , if n ≡ 2 (mod 4),
2(n−2)/2 − n(n−1)

2 + n, if n ≡ 0 (mod 4).

In view of Lemma 2.1 it suffices to show that Spinn has a generically free
linear representation V of dimension

dim(V ) =


2(n−1)/2, if n is odd,
2(n−2)/2, if n ≡ 2 (mod 4),
2(n−2)/2 + n if n ≡ 0 (mod 4).

In the case where n is not divisible by 4 such a representation is given by
the following lemma.

Lemma 3.7. (cf. [PV94, Theorem 7.11]) If n ≥ 15 then, over a field of
characteristic 0, the following representations of Spinn of characteristic 0
are generically free:

(i) the spin representation, of dimension 2(n−1)/2, if n is odd,
(ii) either of the two half-spin representation, of dimension 2(n−2)/2, if

n ≡ 2 (mod 4).

Proof. For n ≥ 27 this follows directly from [AP71, Theorem 1]. For n
between 15 and 25 this is proved in [Po85]. ♠

In the case where n ≥ 16 is divisible by 4, we define V as the sum of
the half-spin representation W of Spinn and the natural representation kn

of SOn, which we will view as a Spinn-representation via the projection
Spinn → SOn. It remains to check that V = W × kn is a generically free
representation of Spinn. Indeed, for a ∈ kn in general position, Stab(a)
is conjugate to Spinn−1 (embedded in Spinn in the standard way). Thus
it suffices to show that the restriction of W to Spinn−1 is generically free.
Since W restricted to Spinn−1 is the spin representation of Spinn−1 (see,
e.g., [Ada96, Proposition 4.4]), and n ≥ 16, this follows from Lemma 3.7(i).
This completes the proof of Theorem 3.3. ♠

Remark 3.8. The characteristic 0 assumption in part (b) is used only in
the proof of Lemma 3.7. It seems likely that Lemma 3.7 (and thus Theo-
rem 3.3(b)) remain true if char(k) = p > 2 but we have not checked this.
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If char(k) 6= 2 and
√
−1 ∈ k, we have the weaker (but asymptoti-

cally equivalent) upper bound ed(Spinn) ≤ ed(Gn), where ed(Gn) is given
by (3.5). This is a consequence of the fact that every Spinn-torsor admits re-
duction of structure to Gn, i.e., the natural map H1(K,Gn)→ H1(K,Spinn)
is surjective for every field K/k; cf. [BF03, Lemma 1.9].

Remark 3.9. A. S. Merkurjev (unpublished) recently strengthened our
lower bound on ed(Spinn; 2), in the case where n ≡ 0 (mod 4) as follows:

ed(Spinn; 2) ≥ 2(n−2)/2 − n(n− 1)
2

+ 2m ,

where 2m is the highest power of 2 dividing n. If n ≥ 16 is a power of 2 and
char(k) = 0 this, in combination with the upper bound of Theorem 3.3(b),
yields

ed(Spinn; 2) = ed(Spinn) = 2(n−2)/2 − n(n− 1)
2

+ n .

In particular, ed(Spin16) = 24. The first value of n for which ed(Spinn) is
not known is n = 20, where 326 ≤ ed(Spin20) ≤ 342.

Remark 3.10. The same argument can be applied to the half-spin groups
yielding

ed(HSpinn; 2) = ed(HSpinn) = 2(n−2)/2 − n(n− 1)
2

for any integer n ≥ 20 divisible by 4 over any field of characteristic 0. Here,
as in Theorem 3.3, the lower bound

ed(HSpinn; 2) ≥ 2(n−2)/2 − n(n− 1)
2

is valid for over any base field k of characteristic 6= 2. The assumptions that
char(k) = 0 and n ≥ 20 ensure that the half-spin representation of HSpinn

is generically free; see [PV94, Theorem 7.11].

Remark 3.11. Theorem 3.3 implies that for large n, Spinn is an example
of a split, semisimple, connected linear algebraic group whose essential di-
mension exceeds its dimension. Previously no examples of this kind were
known, even for k = C.

Note that no complex connected semisimple adjoint group G can have
this property. Indeed, let g be the adjoint representation of G on its Lie
algebra. If G is an adjoint group then V = g × g is generically free; see,
e.g., [Rich88, Lemma 3.3(b)]. Thus edG ≤ dim(G) by Lemma 2.1.

Remark 3.12. Since ed SOn = n− 1 for every n ≥ 3 (cf. [Rei00, Theorem
10.4]), it follows that, for large n, Spinn is also an example of a split,
semisimple, connected linear algebraic group G with a central subgroup Z
such that edG > edG/Z. To the best of our knowledge, this example is
new as well.
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4. Pfister numbers

Let K be a field of characteristic not equal to 2 and a ≥ 1 be an integer.
We will continue to denote the Witt ring of K by W (K) and its fundamental
ideal by I(K). If non-singular quadratic forms q and q′ over K are Witt
equivalent, we will write q ∼ q′.

As we mentioned in the introduction, the a-fold Pfister forms generate
Ia(K) as an abelian group. In other words, every q ∈ Ia(K) is Witt equiv-
alent to

∑r
i=1±pi, where each pi is an a-fold Pfister form over K. We now

define the a-Pfister number of q to be the smallest possible number r of Pfis-
ter forms appearing in any such sum. The (a, n)-Pfister number Pfk(a, n)
is the supremum of the a-Pfister number of q, taken over all field extensions
K/k and all n-dimensional forms q ∈ Ia(K).

Proposition 4.1. Let k be a field of characteristic 6= 2 and let n be a positive
even integer. Then (a) Pfk(1, n) ≤ n and (b) Pfk(2, n) ≤ n− 2.

Proof. (a) Immediate from the identity

〈a1, a2〉 ∼ 〈1, a1〉 − 〈1,−a2〉 =�−a1�−�a2�
in the Witt ring.

(b) Let q = 〈a1, . . . , an〉 be an n-dimensional quadratic form over K. Re-
call that q ∈ I2(K) iff n is even and d±(q) = 1, modulo (K∗)2 [Lam73, Corol-
lary II.2.2]. Here d±(q) is the signed discriminant given by (−1)n(n−1)/2d(q)
where d(q) =

∏n
i=1 an is the discriminant of q; cf. [Lam73, p. 38].

To explain how to write q in terms of n − 2 Pfister forms, we will tem-
porarily assume that

√
−1 ∈ K. In this case, without loss of generality,

a1 . . . an = 1. Since 〈a, a〉 is hyperbolic for every a ∈ K∗, we see that
q = 〈a1, . . . , an〉 is Witt equivalent to

� a2, a1 � ⊕� a3, a1a2 � ⊕· · ·⊕ � an−1, a1 . . . an−2 � .

By inserting appropriate powers of −1, we can modify this formula so that
it remains valid even if we do not assume that

√
−1 ∈ K, as follows:

q = 〈a1, . . . , an〉 ∼
n∑

i=2

(−1)i�(−1)i+1ai, (−1)i(i−1)/2+1a1 . . . ai−1� ♠

We do not have an explicit upper bound on Pfk(3, n); however, we do
know that Pfk(3, n) is finite for any k and any n. To explain this, let us recall
that I3(K) is the set of all classes q ∈W(K) such that q has even dimension,
trivial signed discriminant and trivial Hasse-Witt invariant [KMRT98]. The
following result was suggested to us by Merkurjev and Totaro.

Proposition 4.2. Let k be a field of characteristic different from 2. Then
Pfk(3, n) is finite.

Sketch of proof. Let E be a versal torsor for Spinn over a field extension
L/k; cf. [GMS03, Section I.V]. Let qL be the quadratic form over L cor-
responding to E under the map H1(L,Spinn) → H1(L,On). The 3-Pfister
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number of qL is then an upper bound for the 3-Pfister number of any n-
dimensional form in I3 over any field extension K/k. ♠

Remark 4.3. For a > 3 the finiteness of Pfk(a, n) is an open problem.

5. Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1 stated in the introduction,
which says, in particular, that

Pfk(3, n) ≥ 2(n+4)/4 − n− 2
7

for any field k of characteristic different from 2 and any positive even integer
n. Clearly, replacing k by a larger field k′ strengthens the assertion of
Theorem 1.1. Thus, we may assume without loss of generality that

√
−1 ∈ k.

This assumption will be in force for the remainder of this section.
For each extension K of k, denote by Tn(K) the image of H1(K,Spinn)

in H1(K,SOn). We will view Tn as a functor Fieldsk → Sets. Note that
Tn(K) is the set of isomorphism classes of n-dimensional quadratic forms
q ∈ I3(K).

Lemma 5.1. We have the following inequalities:
(a) ed Spinn − 1 ≤ ed Tn ≤ ed Spinn,
(b) ed(Spinn; 2)− 1 ≤ ed(Tn; 2) ≤ ed(Spinn; 2).

Proof. In the language of [BF03, Definition 1.12], we have a fibration of
functors

H1(∗,µ2) H1(∗,Spinn) −→ Tn(∗).
The first inequality in part (a) follows from [BF03, Proposition 1.13] and
the second from Proposition [BF03, Lemma 1.9]. The same argument proves
part (b). ♠

Let K/k be a field extension. Let hK = 〈1,−1〉 be the 2-dimensional
hyperbolic form over K. (Note in §3 we wrote h in place of hk; see (3.1).)
For each n-dimensional quadratic form q ∈ I3(K), let edn(q) denote the
essential dimension of the class of q in Tn(K).

Lemma 5.2. Let q be an n-dimensional quadratic form in I3(K). Then

edn+2s(h⊕s
K ⊕ q) ≥ edn(q)− s(s+ 2n− 1)

2
for any integer s ≥ 0.

Proof. Set m def= edn+2s(h⊕s
K ⊕ q). By definition, h⊕s

K ⊕ q descends to an
intermediate subfield k ⊂ F ⊂ K such that tr degk(F ) = m. In other
words, there is an (n + 2s)-dimensional quadratic form q̃ ∈ I3(F ) such
that q̃K is K-isomorphic to h⊕s

K ⊕ q. Let X be the Grassmannian of s-
dimensional subspaces of Fn+2s which are totally isotropic with respect to
q̃. The dimension of X over F is s(s+ 2n− 1)/2.



ESSENTIAL DIMENSION, SPINOR GROUPS AND QUADRATIC FORMS 9

The variety X has a rational point over K; hence there exists an inter-
mediate extension F ⊆ E ⊆ K such that tr degF E ≤ s(s+ 2n− 1)/2, with
the property that q̃E has a totally isotropic subspace of dimension s. Then
q̃E splits as hs

E ⊕ q′, where q′ ∈ I3(E). By Witt’s Cancellation Theorem, q′K
is K-isomorphic to q; hence

edn(q) ≤ tr degk E = tr degk F + tr degF E = m+ s(s+ 2n− 1)/2 ,

as claimed. ♠

We now proceed with the proof of Theorem 1.1. For n ≤ 10 the statement
of the theorem is vacuous, because 2(n+4)/4−n−2 ≤ 0. Thus we will assume
from now on that n ≥ 12.

Lemma 5.1 implies, in particular, that ed(Tn; 2) is finite. Hence, there
exist a field K/k and an n-dimensional form q ∈ I3(K) such that edn(q) =
ed(Tn; 2). We will show that this form has the properties asserted by The-
orem 1.1. In fact, it suffices to prove that if q is Witt equivalent to

r∑
i=1

�ai, bi, ci�.

over K then r ≥ 2(n+4)/4 − n− 2
7

. Indeed, by our choice of q, edn(qL) =

ed(Tn; 2) for any finite odd degree extension L/K. Thus if we can prove the
above inequality for q, it will also be valid for qL.

Let us write a 3-fold Pfister form �a, b, c� as 〈1〉 ⊕�a, b, c�0, where

�a, b, c�0
def= 〈ai, bi, ci, aibi, aici, bici, aibici〉.

Set

φ
def=

{∑r
1=1�ai, bi, ci�0, if r is even, and

〈1〉 ⊕
∑r

1=1�ai, bi, ci�0, if r is odd.

Then q is Witt equivalent to φ over K; in particular, φ ∈ I3(K). The
dimension of φ is 7r or 7r + 1, depending on the parity of r.

We claim that n < 7r. Indeed, assume the contrary. Then dim(q) ≤
dim(φ), so that q is isomorphic to a form of type hs

K ⊕ φ over K. Thus

3n
7
≥ 3r ≥ edn(q) = ed(Tn; 2)

by Lemma 5.1

≥ ed(Spinn; 2)− 1 .

The resulting inequality fails for every even n ≥ 12 because for such n

ed(Spinn; 2) ≥ n/2;

see (3.2).
So, we may assume that 7r > n, i.e., φ is isomorphic to h⊕s

K ⊕q over K, for
some s ≥ 1. By comparing dimensions we get the equality 7r = n+2s when
r is even, and 7r+ 1 = n+ 2s when r is odd. The essential dimension of the
form φ, as an element of T7r(K) or T7r+1(K) is at most 3r, while Lemma 5.2
tells us that this essential dimension is at least edn(q) − s(s + 2n − 1)/2.
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From this, Lemma 5.1 and Theorem 3.3(a) we obtain the following chain of
inequalities

3r ≥ edn(q)− s(s+ 2n− 1)
2

= ed(Tn; 2)− s(s+ 2n− 1)
2

≥ ed(Spinn; 2)− 1− s(s+ 2n− 1)
2

(5.3)

≥ 2(n−2)/2 − n(n− 1)
2

− 1− s(s+ 2n− 1)
2

.

Now suppose r is even. Substituting s = (7r− n)/2 into inequality (5.3),
we obtain

49r2 + (14n+ 10)r − 2(n+4)/2 − n2 + 2n− 8
8

≥ 0.

We interpret the left hand side as a quadratic polynomial in r. The constant
term of this polynomial is negative for all n ≥ 8; hence this polynomial has
one positive real root and one negative real root. Denote the positive root
by r+. The above inequality is then equivalent to r ≥ r+. By the quadratic
formula

r+ =

√
49 · 2(n+4)/2 + 168n− 367− (7n+ 5)

49
≥ 2(n+4)/4 − n− 2

7
.

This completes the proof of Theorem 1.1 when r is even. If r is odd then
substituting s = (7r+ 1−n)/2 into (5.3), we obtain an analogous quadratic
inequality whose positive root is

r+ =

√
49 · 2(n+4)/2 + 168n− 199− (7n+ 12)

49
≥ 2(n+4)/4 − n− 2

7
,

and Theorem 1.1 follows. ♠
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