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1. Statement of results. There is some disagreement about the meaning
of the phrase ’chaotic flow.” However, there is no doubt that mixing Anosov
flows provide an example of such systems. Anosov systems were introduced
and extensively studied in the classical memoir of Anosov ([A]). Among other
things he proved the following fact known now as Anosov alternative for flows:
either every strong stable and strong unstable manifold is everywhere dense
or the flow ¢’ is a suspension over an Anosov diffeomorphism by a constant
roof function. If the first alternative holds g' is mixing with respect to every
Gibbs measure (see [PP2]).

Therefore the natural question is to estimate the rate of mixing. This is
certainly one of the simplest questions concerning correlation decay in con-
tinuous time systems. Nevertheless the only results obtained until recently
dealt with the case when the system discussed had an additional algebraic
structure. The easier case of Anosov diffeomorphisms can be treated by the
methods of thermodynamic formalism of Sinai, Ruelle and Bowen ([B2]).
Namely one uses Markov partitions to construct an isomorphism between
the diffeomorphism and a subshift of a finite type and then proves that all
such subshifts are exponentially mixing. This method would succeed also for
flows if any suspension over a subshift of a finite type had exponentially de-
caying correlations. However already the simplest example—suspensions with
locally constant roof functions never have such a property ([R1]). One can
use the above observation to produce examples of Axiom A flows with arbi-
trary slow correlation decay. It became clear therefore that some additional
geometric properties should be taken into account. In a recent work Cher-



nov ([Chl], [Ch2]) has employed uniform non-integrability condition to get
subexponential estimate for correlation functions for geodesic flows on sur-
faces of variable negative curvature. His method relies on the the technique
of Markov approximation developed in [Ch1].

The aim of this paper is to combine geometric considerations of Chernov
with the thermodynamic formalism approach. The later method seems to be
more appropriate than Markov approximations since it gives simple enough
description of the resonances ([P], [R2]) and hence one can hope to obtain
the asymptotic expansion of the error term even though this problem seems
to be much more difficult than just obtaining upper bound. In fact in this
paper we show that under the condition introduced by Chernov correlations
do decay exponentially as was conjectured in [Ch2]. More precisely we prove
the following statement. Let F' be a Holder continuous potential and pu
the Gibbs measure for F. Denote pa p(t) = [ A(z)B(¢'x) du(z), pap(t) =
pap(t) — | A(z) du(z) [ B(x) dpu(x).

THEOREM 1. Let (M, g") be a geodesic flow on the unit tangent bundle M
over a negatively curved C7 surface. Then for any Hélder continuous (of the
class C*) potential F there ezist constants Cy, Cy such that for any pair of
C® functions A(x) and B(z) |pan(t)] < Cre || Al5|| Bl

The most interesting examples of potentials are Sinai-Bowen-Ruelle potential
R(z) = £|i=oIndet(dg'|e,) which yields the Lesbegue measure and F = 0
which corresponds to the measure of maximal entropy (see [M], [BMar], [PP1]
for applications of the later measure to geometric problems).

Our method can also be generalized to higher dimensions. In fact we use
only C'—smoothness of the Anosov splitting of geodesic flow in two dimen-
sions ([HP]) and Federer property of the conditionals of Gibbs measures (see
Section 7). Actually we prove the following statement.

THEOREM 2. Let g' be a C°— Anosov flow on a compact manifold M. Assume
that stable and unstable foliations are of class C* . Then for Sinai-Bowen-
Ruelle measure (F=R) there exist constants Cy, Cy such that for any pair of
C® functions A(x) and B(z) |pan(t)] < Cre || Al5|| Bl

COROLLARY 1. Under the conditions of theorems 1 or 2 given & > 0 there
exist constants C1(&), Cy(a&) such that VA, B € C%(M)

a5 (1) < Cr(@)e” @ Alls]|Ba-
PrOOF: Take A, B such that A, B € C°(M), ||[A — Ally < e™®"*|| Al
|B = Bllo < e=*"||Bl|a, |Alls < e[| Allo, |Blls < e[| Bllo. Then pa p(t) =
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p45(t) + 6(t) where §(t) < Const e”®". From the other hand |p; 5(t)| <
Ch||Allg]| B|lae=2tel®. Taking v = locj& we obtain that Cy(&) = 1%1% satis-
fies the requirement of the corollary.m

REMARK. The smoothness assumption on the flow g' are not optimal and
are made to simplify the exposition. It’s easy to see that Theorems 1 and
2 remain true if g¢ € C?*¢. We conjecture, however, that the result should
hold for C'**¢ flows.

We can also further weaken our assumptions and still get some consequences.
The smoothness assumption amounts to that the temporal distance function
o(z,y) (see Section 5) is of class C'. (The temporal distance is used to
measure non-integrability of non-smooth distributions. Roughly speaking it
is obtained from the commutators by replacing infinitesimal increments by
finite ones.) For Anosov flows we know that ¢(z,y) satisfies the intermediate
value theorem. Surprisingly enough this simple observation implies quite
rapid decay of correlations.

THEOREM 3. Let g* be an arbitrary topologically mizing C> Anosov flow,
F be an arbitrary Holder continuous potential and A(x), B(x) be C*(M)
functions. Then pa p(t) is rapidly decreasing in the sense of Schwartz.

Note by contrast that in Ruelle’s counterexamples ¢ assumes only finite
number of values. We conjecture that Theorem 3 is true for any Axiom
A flow such that the range of ¢ has a positive Hausdorff dimension. This
would get us quite close to description of all Axiom A flows with slow decay
of correlations (see [D] for more discussion on this subject).

The plan of the paper is the following. In Sections 2-4 we recall how to
reduce our problem to the estimation of the spectral radii of a certain one-
parameter family of transfer-operators L¢. This procedure is due to Pollicott
(see [P], [R2]) using earlier developments by Sinai, Bowen and Ruelle. Here
we describe briefly this reduction. We take the Laplace transform of the
correlation function and write it as a double integral over space and time.
So when the space variable is fixed the integration is over the flow orbit. We
now take a Markov section (that is some special cross section of the flow, see
Section 3 for precise definitions). Let & be the first return map and 7 be the
first return time. We chop the orbits on the pieces between consecutive hits
of our Markov section. A simple calculation shows that the corresponding
part of the integral can be expressed in terms of the operators (L¢h)(x) =
" @ n(6x) (h is defined on the Markov section). The Markov property




implies that these operators preserve the subspace of functions which are
constant along the local stable leaves of our cross section. The transfer
operator L¢ is just the adjoint of L¢ on this space restricted to the space
of the densities (with respect to conditionals of pr). So it is clear the the
spectra of L¢ play an important role in our consideration. We study the
spectra in Sections 5-8. In Section 5 we introduce uniform non-integrability
condition (UNI) and explain that it is quite similar to certain non-degeneracy
condition in the theory of oscillatory integral operators. (It is often useful to
view transfer operators as integral operator with J-type kernels.) In Section 6
we show what C' smoothness of Anosov splitting is a natural weaker version
of (UNI). The proof of the main spectral bound is contained in Sections 7
and 8. Section 9 is devoted to the proof of Theorem 3. Most of the steps in
the proof are completely analogous to ones in the proofs of Theorems 1 and
2. In such cases we leave the proof to the reader. Four Appendixes contain
some more technical results. The calculations presented are pretty standard
but since the details are spread in many different places we decided for the
convenience of the reader to collect all the proofs at the end of the paper.
We do not claim, however that our proofs in the Appendixes are shortest
possible. The readers familiar with the subject should have no difficulty to
do all the calculations by themselves. The others may wish to look through
the Appendixes to get an idea of the proof and then try to fill the details
consulting the paper in case any problems arise.

2.Symbolic dynamics. As it was explained in the introduction we will use
Markov section to model our flow by some symbolic dynamical system. In
this section we recall basic facts about such systems and also introduce our
notations. For proofs and more information on the subject see [B2], [PP].
For a n x n matrix A whose entries are zeroes and ones we denote by ¥4 =
{{wi}i=° © Auywi, = 1} the configuration space of a subshift of a finite
type. Sometimes we omit A and write X instead of X 4. The shift o acts on X
by (ow); = wit1. The one-sided shift (X%, o) is defined in the same way but
the index set where is the set of non-negative integers. For 6 < 1 we consider
the distance df(w!,w?) = 0% where k = max{j : w} = w? for |i| < j} (the
subscript b stands for 'base’). We write Cp(X) for the space of df—Lipschitz
functions and C; (¥) for the subspace of functions depending only on the
future coordinates wy,w; . ..wy, . ... We can identify Cy (3) with Cy(X1). We

n—1 .
use the notation L(h) for the Lipschitz constant of h and h,(w) = > h(c'w).
i=0



Functions f; and f, are called cohomologous (f; ~ f2) if there is a function
fs such that fi(w) = fa(w) + fs(w) — f3(ow). For any f € Cp(X) there exists
a function f € C\%(Z) such that f ~ f. If @, are points in ¥ and @y = Qg
we define their local product [w, @] by

- ~1 @jv .]S 0
[W>W]j_{@j i>0

We assume that o is topologically mixing (that is all entries of some power
of A are positive). The pressure functional is defined by

Pr(f)=sup [ () d7 -+ hofo)

where the supremum is taken over the set of o—invariant probability mea-
sures and h;(o) is the measure theoretic entropy of o with respect to v. A
measure v is called the equilibrium state or the Gibbs measure with the po-
tential f if [f(w)dv + h,(0) = Pr(f). For Cp(X) potentials Gibbs measures
exist and are unique. It is clear that cohomologous functions have the same
Gibbs measure. Take f € C;(X) and let v be its Gibbs measure. To de-
scribe v it is enough to specify its projection to X*. To this end consider the
transfer operator L : Cyp(XT) — Cp(XT)

(Leh)(w) = > ¢/ h(w). (1)
Some useful properties of this operator are listed below. First of all the n-th
power of L is a transfer operator for ¢”

(Lih)(w) = > e @ h(w).
The structure of the spectrum of the transfer operator is described by Ruelle-
Perron-Frobenius Theorem.
PROPOSITION 1. (RUELLE). There exist a positive function h € Cp(Xt)
and a measure U on X* such that
a) Lih = elmDh;
b) L3 = ey L% being the adjoint to Ly;
c) there exist constants Cs, ey such that for all h € Cy(XT) for all n

||€—nPr(f)£}lh — D(h)h||g < C3(1 —&1)"|| o

>



d) The measure v = hi is o invariant, moreover it is the projection of f—
Gibbs measure on X7

(A good estimate for €; was given in a recent paper by Liverani [L].)
REMARK. It is clear from this statement that the constants C'5,e; can be
chosen to depend continuously on f which we always assume in the sequel.
L is called normalized if £;1 = ef")1. We can always normalize £ by
replacing f by f(w)+1Inh(w) —Inh(ow). In this case £L*v = ey, Normal-
ized operators satisfy the following useful identity. Let w = wiws ... w, be
an admissible word (that is Ay,w,,, = 1). The map w(w) = ww is defined on
a subset of the space X}. On this subset the following equation holds:

= exp [fu(@) — nPr(f)]. (2)

Let 7 € Cy(X) be a positive function. Consider the space
Y=Y xR/{(w,s) ~ (ow,s+71(w))}

with the distance d’((w?', s1), (W?, s2)) = df(w!,w?) + |s; — s2/|?. Elements of
37 will be denoted by ¢. The suspension flow with the roof function 7 is
defined by G*(w, s) = (w, s +t). The pressure and Gibbs measures for G are
defined in the same way as it was done for 0. These measures can be described
as follows. Let F'(q) € Cp(X7) and p be the corresponding Gibbs measure.

T(w)
Denote f(w) = [ F(w,s)ds. Then du(q) = ﬁdu(w)ds where v is the Gibbs
0

measure with the potential f(w)— Prg(F)7(w) and Pr,(f — Prg(F)r) = 0.
For the study of G* the so called complex Ruelle-Perron-Frobenius theorem
is handy (see Section 4).

ProposiTION 2. (PorrLicorT, HAYDN, RUELLE) a) The spectral radius
T(Livir) < ™) and r(Liyisr) = ™) for some real s # 0 if and only if
G is not weak-mizing;

b) the specter of Lyyir in the annulus {0eP) < |2] < "D} consists of
1solated eigenvalues of finite multiplicity;

c¢) the leading eigenvalue X\(s) of Lryisr is analytic near 0 and N(0) =
iAN0)v(T) (v being the Gibbs measure for f).

3. Anosov flows. In this section we provide a background about Anosov
flows and symbolic dynamics associated with them.



Recall that a flow ¢g' on a compact Riemann manifold M is called Anosov
if there exists a continuous dg'—invariant splitting of the tangent bundle
TM = FE, ® Ey® E, such that

1) Eyp(z) is generated by the tangent vector to the flow;

2) There exist constants Cy, C5 > 0 such that

Vo € Ey(x) Vt > 0: |ldg'v|| < Cpe™ "
Yo € By (x)Vt>0: ||dg | < Cpe™ "

For Anosov flows there always exists an adapted metric for which Cy4 can be
taken to be 1 (possibly on the expense of replacing C5 by a smaller constant).
We will assume that our metric is the adapted one. The fields E, and FE,
are always integrable. The corresponding integral manifolds are called the
strong unstable manifold of x W*“(z) and the strong stable manifold of x
Ws(x) respectively. Unstable manifold W*(z) and stable manifold W*(x)
of z are g'—orbits of W**(z) and W5%(x) respectively. The local versions of
these objects are sometimes useful. The local strong stable manifold W (x)
is the set of points {y € W*(z) : Vt > 0 dist(g'z, g'y) < e}. W(z), Wi .(x)
and W} .(z) can be defined in a similar fashion. If ¢ is small enough one
can find a neighborhood O(diag) of the diagonal in M x M such that for
(z,y) € O the intersection W} (x) N W2 (x) consists of a single point which

loc
is denoted [z,y]. A set II is called parallelogram if it can be represented as

II={[z,y] : 2 € U(ll),y € S(II)} where U(II) € W% (x) and S(II) € W**(x)
are admissible sets i. e. U(II) = Cl(IntU(II)), S(II) = Cl(IntS(II)) (the clo-
sure and the interior are taken in the induced topology of the corresponding
local manifolds). IT has the natural partition by local leaves of the unstable
(respectively strong stable) foliation. The element of this partition contain-
ing « will be denoted W (z) (respectively Wii(z)). We introduce a coordinate
system (u,s) on II so that points of U(II) have coordinates (u,0), points of
S(IT) have coordinates (0, s) and (u, s) = [(u,0), (0, s)].

Let P be a collection of parallelograms: P = {Il;}. Put Il = UIL;, U =
UU(IL) and Wy = VWY that is Wii(z) = Wi (v) if @ € II;. P is called a
1</Iarkov section if thezﬁrst return map ¢ : II — II has the following properties:
o(Wg(x)) € Wi(oz) and 6~ (W (x)) C W(67 2). The existence of Markov
sections for Anosov flows was proven by Bowen and Ratner ([B1], [Rt]).

Markov sections allow us to construct a symbolic representation of our flow
as follows. If P is a Markov section consider the matrix A with the following

vli

vl
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entries
1, lf &(IntH,) N IntHj 7"é @

Aij = {O, otherwise
and let 7 : II — R, be the first return time: dx = ¢
+o0 .
¥4 — I given by ((w) = N 67 'IL, which is well-defined due to the

1=—00

T(z

)z. The map C :

Markovness of P is a surjective semiconjugacy between o and &. If ¢ is a
topologically mixing Anosov flow one can choose such a Markov section that
o is topologically mixing. Write 7(w) = 7(¢(w)) and let G* : X7 — X7 be the
suspension flow with the roof function 7. We can extend ( to a semiconjugacy
between G' and ¢' by ((w,s) = ¢'(¢(w)). Then (([w,]) = [¢((@),¢(@)]. If
F e C%(M) consider F(q) = F'(¢(q)). F(q) belongs to the space Cy(X7) (the
constant § < 1 depends on the Holder exponent «). We will need the fact
that a measure p on M is the Gibbs measure for F'(z) iff its pullback on X7
is the Gibbs measure for F'(q).

4. The reduction to the main estimate. In this section we describe the
plan of the proof of theorem 1. All steps are pretty standard except step IV
which contains new estimates of certain oscillatory integrals depending on a
parameter running over the unit ball in some Banach space.

I) CORRELATION DENSITY. In this subsection we recall one useful expres-

sion for the Laplace transform pa (&) = [ pap(t)e *'dt of the correlation
0

function

pap(t) = / A(q)B(G'q) dur(q).

Starting from this point we write £ = a + tb. The expression ’for small a
means 'there exist ap > 0 such that for |a| < ag.” The phrase 'for large b
should be understood similarly.

PROPOSITION 3. Let 7 € Cf (X), F € Cy2(X). Then there exist constants s,
Cs, C7, K, and linear operators Q,(€),R,(£) : Co(X7) — CJ (X) such that
uniformly for small a and large b

a) || Qn(§)Allo < Cs(1 — 2)" [ Allg|0], [Rn(€)Allo < Co(1 — £2)"[[Allo]0];

) L(Qu(€)A) < CrI™| Alglbf?, L(R,(€)A) < CoK|| Al bl

c) paB(&) = Pap(&)+

>

7,k=0

-1

L prmy ey (1 - Ef—(PT(F)-‘r&)T) Qj(f)A] Re(§)Bdv  (3)



A,B
IIBII

where [ ~ f F(w s)ds, Li_prry-l =1, L PrF)y Y =V and 18
uniformly bounded (for small a's) (L, is defined by formula (1))

This statement was essentially proven in [P] with further refinements given
in [R2] except both authors did not need estimates a) and b). For the con-
venience of the reader we reproduce their proof and check the above bounds
in Appendix 1. From Propositions 1-3 one sees in particular that p has a
simple pole at 0. The residue is equal to pp(A)ur(B). (This is clear from
the fact that pa p(t) ~ pr(A)pur(B) but it can also be verified directly using
the formulae for Q and R (see [P], [R2]).)

Now if (M,g") is an Anosov flow and P = {IL;} is a Markov section we
can view C*(M) and C*(II) as subspaces of Cy(X7) and Cy(X) respectively.
Then C*(U) is identified with a subspace of Cyf (X) since if h(u, s) does not
depend on s, h((w) does not depend on {w,}, j < 0 by the definition of .
The transfer operator then acts as follows

(Lsh)(uw) = > e/ h(v) (4)

gUv=U

where ¢ : U — U means the composition of the first return map ¢ and the
canonical projection p : II — U. If the Anosov splitting is C* and f € C*(U)
then L; preserves C“(U). Moreover we have the following statement.
PROPOSITION 4. Let F(q) in proposition 1 be of the form Fy o (, Fyy €
C(M) then Q,(&) and R, (&) map C*(M) to C*(U) and there exist con-
stants Cg, Cy, 3K such that for small a's

a) | Qn(§)Allo < Cs(1 — 3)" | Allalb], [|Rn(§)Allo < Cs(1 — &5)" || Alla|b];

b) G(Qn(§)A) < CoK"™|Allalb]?, G(Ra(§)A) < CoK"||Allalb?, G(h) being
the Holder constant for h.

Proposition 4 follows easily from the explicit expressions for Q, and R,
presented in Appendix 1. Thus we are lead to study the spectra of Ly, =
L_(pr(r)+¢)r on the space of Holder functions. Now it may be worthwhile to
recall Ruelle-Perron-Frobenius theorem in this setting. Without the loss of
generality we may assume that |[(¢’) 7! <e4 < 1.

PROPOSITION 5. a) Let f € C*(U) and Ly be defined by formula (3) then
there exist a positive function h € C*(U) and a measure v on U such that
Z) ﬁfil = €Pr(f)iL;

i) Lip = ePrDp;



i) There exist Cyg,e5 such that Yh € C*(U) Vn
le™ "D L0 — D(h)hlla < Crollhllach;

w) The measure v = hi is & invariant;

b) If g is topologically mizing then for real s # 0 r(Lj1isr) < eF™0);

¢) The specter of Liyisr in the annulus {e3e™™ 1) < |z| < "D} consists of
1solated eigenvalues of finite multiplicity.

IT) SMOOTHING. (This is a technical step. The point is that we want to
prove Theorem 1 for F' being only Holder continuous. The way we do it is the
following. We give a proof for F' € C'(M) and show at the same time that
all the constants in Theorem 1 depend continuously on F' in Holder norm.
The reader who is only interested in the case F' € C''(M) can safely skip this
subsection and assume in that follows that f® = f.) We have to study the
spectra of Ls_[p(r)+¢-- This operator fails to preserve C1(U) if f & CY(U).
However the contribution of f to L, is 'small’ comparing to the term b7 (u)
which has C'—norm of the order of |b|. Consider a smooth approximation of
f denoted by f® which is obtained from f by means of averaging over the
ball of radius ﬁ This function has the following properties

D f— f®o < G(f)(ﬁ)o‘, G(f) being the Holder constant of f;
21Ol < Cruy /1ol

3) f® — fin C¥(U), as b — oo for any o’ < a.
Denote by A, the largest eigenvalue of £ FO—(Pr(F)+a)r and let Ay be the
corresponding eigenvector normalized by the condition sup h., = 1. We now

estimate %hab. We have
op,
Bultan(4) _ O ~PrE)rayrle) POV O (10 (Pr(pyrayrim) p,
Aab Z {e ov du * ou (6 ) W

oUv=Uu

Since A4, depends continuously on a and ﬁ and Agp = 1 we conclude that Ay

is close to 1 for small a and large b. By compactness of the family {hy} in
ce i%f |h(U)| is uniformly bounded from below and we prove the following

inequality.
LEMMA 1. For small a and large b || .2 Inh|| < Cia4/]b].
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I1T) TONESCU-TULCEA-MARINESCU INEQUALITIES. As we already saw it is
more convenient to work with the normalized operator. Denote by

4 1

Laph(u) = m [ﬁab(hhab)} (u) (5)

where

Loy = L o) _(Pr(F)+a—ib)r-

This is also transfer operator with the potential f(® + ibr where
flab) (u) = f(b)(u) —(Pr(F)4a)m(u) + Inhg(u) — Inhg(ou) — In Agp.
We will compare ﬁab with the operator Mab defined by

(Mah)(w) = 3 " hv).
M is a Markov operator, that is M1 =1.
We recall some a priori estimates which ensure that for fixed a,b and h the
set {L%h} is precompact in C°—topology.
LEMMA 2. There exist constants Ci3, Ci4, Ci5, €6 so that uniformly for small
a’s
o) |£n,hl(u) < (MR (w); A
DI (L) ()] < Cha R (M) + Bl (Mol bl ()] in particular
c) [|1£5hll < Chs [bl[Allo + €5 1A']lo]-
d) Let h € C*(U), o < a then

[ Laphllo < Cragllllo
and
G(Lyh) < CisAly ([BllIR]lo + €5 G(h))

PROOF: a) is trivial since we just estimate every term by its absolute value.
Let us prove b)
0 (ab) Oh Ov 0
[ Fibra)(v) ) 2027 (plab) o <
‘ 2 e {01}0u+ au(f” _HT")H_

o"v=u

%(‘Cabh)

n “m
84( ab

(u) =

0 0 0 a “m
5ot 0 (I gl + 3 200 ) (Al ),
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Hence b) follows from the following simple result
LEMMA 3. Given f € CY(U) there is a constant Cyg independent on n such
that for any inverse branch v(u) of u = c™v we have

0 Oh
(o)l < Croll 5 (0) o

PROOF: ,
8 B z”: 0 N Z”: oh Oo7u
8 B = 8 _j:1 Jdo~iu  Ou

and since a%—j“ decays exponentially the claim is proven. m

c) is immediate consequence of b). d) can be established by very similar
calculations. m

IV) THE MAIN ESTIMATE. Lemma 2 tells us that if we introduce the norm
12|y = max(]|A]|o, Hilll;ilo) then |’£Zb“(b) is uniformly bounded for all n and
large b’s. This estimate suggest that we have a chance to get uniform in |b|
bounds using this norm.

LEMMA 4. There exist e7,ng such that if ||h]|@) < 1 then
/|£”°Nh|2du <(1—en)V

v being the invariant measure for L_py ()
The proof of Lemma 4 is given in Sections 5-8.
COROLLARY 2. There exist constants Ci7, Cig, B so that if ||h||x) < 1 then

C
Ci71n|b| 18
107" bl ) < T
PrOOF:
LNR| (u) = [L57N (L) (w) < MEN(L5D)])(w)  (Lemma 2)

= (MY (exp [(F€ = F0)y 5 00N N]
< MY (exp [2(£0 — £O) 0 NN} ()M N (IL5A[2) (1) (Couchy — Shwartz)

Now we apply Ruelle-Perron-Frobenius Theorem

EAfIVth) (u) (defenition of Mab)

/\

TNLERP) () < v(ILGRP) + Croll L3hll o el
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(1 — eg)V + Croed Ny (6)

where the second term in the last inequality is estimated by Lemma 2. On
the other hand

(MC]L\B—N (eXp [(f(ab) _ f(ao))N—N o O.N—ND> (u) = (ﬁf(ao)_,_g(f(ab)_f(ao))1)(u) <

Caoexp[(N — N)Pr(f +2(f“D — fiap)))].
Since Pr depends analytically on a, ‘—ll)‘ and Pr(f@)) = 0 the last expression

is bounded by Cy exp [(N — N)Co(|a] + ‘—11)‘)} . Collecting all terms together
we obtain

1

~ ~ 2
|LN | (u) < {020 exp l(z\r — N)Cy(la] + ﬁ)} ((1—ee)" + CloaéV_N)}
So if we choose N = Cao In |b] and C17 > Csy the RHS of the last inequality
has the required decay for small a and large b. m
V) A PRIORI BOUNDS FOR p. Estimates of the previous step enable us to
get the following inequalities.
COROLLARY 3. Let o/ < a (where « is the Holder exponent for f), then for
small a and large b there exist constants Caz, Coy, B2 so that
) 15" o <
b) (1 — Lap) ™ hllo < CoaIn[bf|[ ]| o
In case f € CYH(U), o' =1 Corollary 3 follows immediately from Lemma 2
and Corollary 2. The general case is treated by smoothing. See Appendix 2.
COROLLARY 4. Let A, B € C* (M) then pap(&) has an analytic continua-

tion to {|RE| < ao, |SE] > bo} and

104,5(€)] < Cos|IEJ* In [SE||All o || Bl -

Corollary 4 is derived from Corollary 3 by direct but lengthy calculations.
For details consult Appendix 2.

VI) INTEGRATION BY PARTS. We now come to the case when A and B are
smooth. Denote by 0, the differentiation along the orbits of g*. Write p4 (1)
as



Laplace transform of the last term decays near the imaginary axis not slower
than CZ‘%"Z'S' and has a pole of the forth order at 0. Therefore the application
of the inversion formula for Laplace transform and the change of the contour
of the integration prove Theorems 1 and 2.

5. An example. In this section we demonstrate the idea of the proof of the
main estimate (Corollary 2) on the simplest example. Namely we consider
the case then (M, g¢") is a geodesic flow on the unit tangent bundle over a
negatively curved surface and pp is the Lesbegue measure. In this case 7
and f are smooth (of class C'*7 [HP]) so f® = f, fl@) = f@ Also v is
absolutely continuous so that dv = g(u) du.

The important role in our consideration is played by the axiom of the uniform
non-integrability (UNI) introduced by Chernov in [Ch2] where it was used
to prove subexponential decay of correlations in the above setting. Here we
recall this property. Let z,y € M. Denote by p,, the natural projection of
W (z) to W (y) along the leaves of W**. We can introduce on W} (z) and
Wt .(y) coordinate systems (u,t) in such a way that g*(ug, to) = (uo, to + t),
the curves {t = ¢y} are leaves of the strong unstable foliation and u o p,, =
Payou. Let v be the image of W% (z). In our coordinate system v is a graph of
a function t = T'(u). Let u(y) be u—coordinate of y and u(x) be u—coordinate
of z. Define

p(e,y) = T(uly)) — T(u(z)),
Denote by x1,y1 € W*(y) the points with the coordinates z1 = (u(x), T'(u(z))),
y1 = (u(y), T(u(y))). The condition (UNI) reads as follows

<027. (UNI)

The importance of the function ¢ is clear from the following simple observa-
tion. Let v; be a curve in W*"(x) given by the equation ¢ = T7(u) and 2 be
its image in W*(y). Assume that vo = {(u,t) : t = Th(u)}, then

p(x,y) = Ta(u(y)) — Ta(u(z)) = Ti(u(y)) + Ti(u(z)). (7)

Another useful property of ¢ is the following. Let Wy and W5 be two pieces
of local unstable manifolds and p : W} — W5 be the projection along strong
stable leaves. For uy,us € Wy set ®(uq, uz) = p(uq, pus) then

D (uq, ug) + P(ug, ug) = P(uy, ug). (8)
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We now show how to employ this condition for the study of the spectral
properties of our transfer operators. In the proof of corollary 1 we used
Lemma 4 only for N = Cy In |b| with some constant Cye. So it is enough to
prove the following bound.

LEMMA 5. There exist constants Cog, 33 such that for small a's and large b's
and any h with ||h||p) < 1 the following inequality holds

Jhes e o

Before proving this statement let us point out the analogue with some esti-
mates in oscillatory integral theory. We can formally write

(Lah)(u /g — o0)e™™ W h(v) dv

where ¢(® is some real valued function. So let us recall a similar result from
the theory of oscillatory operators with smooth kernels. Let

(Kuh) /k: w, 0)eP @O (1) do.
Then under appropriate hypotheses, for example, if
82
> 9
udv } ¢ (9)

one can prove power decay of the spectral radius (see [St]). To this end one
considers the L2-norm

/|Kh| du—//k:uv h(v) dudv

where the kernel l%(u, v) is given by

Away from the diagonal one can estimate this expression integrating by parts
since by (9)
0
— [T (u,w) — T(v,w)]| > clu — v| (10)
ow

15



We apply the same strategy here:
LahP(w) = 3 exp (fv1) + [ (0s) + iblr(vr) = 7(02)]) hlv1)(vs).

oU1=0V2=u

However, for the first power of L4, we can not gain much since even though
if we could show that off-diagonal terms can be neglected the diagonal con-
tribute by the amount independent on |b|. Therefore we have to consider
higher powers of La so that the pairs (vy,v9) become uniformly distributed
on U x U. Let us now give the formal proof.

Proor: U =UU; It is enough to bound the integral over Uy

/

Ui

S [exp (£ (01) + £ (02) + iblrw (00) = T (w2)]) hlen)hlea)g(w)d(w)

v17U2U1

~ 2
LYh|" dv(u) =

where the sum is taken over all the branches (v (u), vo(u)) of 0™. Decompose
this sum into two parts. Define d(vy, v2) = inf dist(6x (v2(w)), v (v2(u)). Let
I,(0) be the sum over all pairs (vy,vs) with d(vy,v2) < 6 and I3(6) be the
remaining part. Then

LhE) < Y [N e ) du,
d(Ul,v2)<5U1

LEMMA 6. There exist constants Cag and (3, such that

) N (v (u))+f§?)(”2(“))g(U) du < Coo6™.
d(v1,v2)<6

This lemma is proven in Appendix 3. Here we give heuristic arguments. We
know that ¢ : I — II is exponentially mixing with respect to v. So the sum
above up to exponentially small correction equals to the probability (with
respect to v) that if points v; and vy are chosen independently the distance
between the projections of 7Y v; and 6V v, to S(II) are within distance & from
each other.

To estimate I5(0) we need the following elementary estimate from the real
analysis ([St]).

16



LEMMA 7. (VAN DER CORPUT LEMMA). Let

I= /eibw(“)r(u) du
J
where the integration is performed over a segment J. Assume that ¢ €

CHIT), [l < ery [W'(u)] = o, where § < e < 1, |Irflo < € and
|7 (u)]|1 < €D then

1] < eConst(c1) lD“ ! 1

ble: T oPa

If v = 2 the lemma follows from integration by parts. The general case
requires additional smoothing. See Appendix 4.
We now apply Lemma 7 to estimate

[ exp (£ rw) + £ (w2) + blr(or) = 7 (02)]) (o) A(o2)g(w) du
if d(vy,v2) > 6. Set P(u) = Tn(vi(u)) — 7n(v2)(w),

r(u) = exp (£ (v1(w)) + £ (v2)) h(o1)h(v3)g(w).

Then € = sup N 1) +f )(”2(“)), ¢1 is uniformly bounded in N and

dv
D = Cao(1+ ) [[Allwll5-llo < Cao(1 + [bler’)
by Lemma 3. We have to bound |%w| from below. By (7)

[T (vi(u1)) — 7 (vi(uz))] — [T (va(ur)) — 7 (v2(uz)]

= (6™ v2(uz), 5 vi (w1)) (11)
and condition (UNI) implies that co > C316 (cf. (10)). Hence

[ e (48 (01(w) + £ (02) + iblry (v1) = 7o (w2)]) (o) R(2)g(w) du <

(@) (a) 1+ |bleN 1
C N (i(u)+fy7 (v2(u)) )
3250P¢ bloz " Jps
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Take some uy € U;. By Lemma 3

sup e ) (01 )+ 1 (v2(w) ) < Clyse ) (01 (u0))+ £ (v2(u0)).

u

Now specify N = CysIn |b], 0 =
and

where §5 < min(~, ). Then ;(6) < &3

b}

Ui

C
L(%) < |b‘|3; Z 6f ) (01 (uo))+ £ ¢ )(U2(uo))‘

(v1,v2)

the last sum equals

( > ) = (M) =

oNv=ug

and Lemma 5 is proven. m

6. Description of the inductive procedure. In this section we begin
with the proof of the main estimate without regularity assumptions of the
last section. Comparing with Section 5 there are two additional difficul-
ties to overcome. The first one is that where we had uniform estimate of
|%(7‘N(vl (u)) — 7 (v2(w)))| for most pairs (vy,v9) (Lemma 6). Now we know
it only for some (vy,vs). More precisely let d = dim W (%),

LEMMA 8. There exist €9, Ny and vectorfields e (u), es(u) ... eq(u) such that
lex(w)|| > 5 and for any N > Ny there are two branches vi(u) and ve(u) of
o~ such that

9 < |0, (T (v1(u)) — T (va(u)))| < 3eg

and fork=2...d

&9

100vd’

(Here 100 can be replaced by any constant grater than 2 and +v/d is the
diameter of the unit cube in R.) Of course it is lower bound which is of
primary interest here. The upper bound is added just for technical reasons.
PROOF: ¢ is C' function which is not identically zero on U(II; x II;). Take

some (29, o) such that o(xg, o) # 0. Denote UN) = 6NU. As N — oo U™
fills IT densely. So we may assume that g, 1o € U™ for some ng. To fix our

|0, (v (01 () = 7w (v2(w)))] <

18



notation suppose that zo,yo € II;. Let py : Uy — Wi (7o) and py : Uy —
Wi (o) be the canonical isomorphisms. Let ®(u1,us) = @(piuy, paus). De-
note % = p; 'yo. Since (&, @) = 0 and (p; 'zo, u) # 0, Z¢(u, @) is not iden-
tically zero. Hence there exist an open set Uy such that || 5-®(u, u)|| > 2ey for
some £9. Choose a coordinate system in 2y, 25 ... 24 in Uy so that 8%1(1)(-, u) =
L, 52-®(,a) = 0, for k= 2...d and |5 = &. Let é(u) = 952 Take ny
so large that 0™ U, = U and set e, = do™é;. Recall that Wi (z¢) € U (o)
and W (yo) € U™). Let ©;(u) and 9(u) be corresponding branches of o~".
By (5) and (6) 52 [Tug (01(w)) = Ty (B2(w)] = 1, 52 [T (1.(w)) = Ty (B2 (w)] = 0,
for k = 2...d. Denote Vi = 01(Uy), Vo = 02(Uy). To complete the proof we
need the following statement.

LEMMA 9. There exist ny such that for n > nsy there is a branch v(u) of ="
such that

PRrROOF: By the definition of ¢

Ta(v(1)) = Tu(v(u2)) = @(6"0(ur), pud™us). (12)

5-¢(x,y) depends continuously on y and vanish for y = = (since ¢(z,y) =0

for x € I/Vlffé) (y)U I/VI(OSC) (y)). For large n U™ fills II densely so we can pick up
v(u) such that 6"v(u) is very close to U and the statement follows by (12). m
Let Ng = mng + ny + ny. There exist two branches vi(u) and ve(u) such
that o¥="0"™My, C Vi, o0 My, C Vo and [0, (Th—ng—n (v1)] < 55,

|8ék (TN—no—nl (U2)‘ < 20:—)2/3 . Then

ey, [T (v1) — T (v2)] =
Ocp [TN—ny (V1) — Ty (v2)]  (since eV € Wi(vg))
= Oay [TN—ny (V1) — TNy (v2)] =

8ék [Tno (UN_nO_nlvl) — Tng (O.N—no—mvz)} +8@k [TN—no—m ('Ul) — TN—ng—n1 (02)] .

The first term is always less than 10‘89\/3 while the second one is 2g9 or 0

depending onif k=1ork >1.m

The second problem is that if v is not absolutely continuous there is no
integration by parts formula. Nonetheless we can still prove a weaker version
of van der Corput lemma and use it to obtain the following inequality.
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LEMMA 10. There exist n, 19 so that if [|h||w) < 1 then

/ |L7 0| dv < 1 — eqy. (13)

This lemma however does not suffice to obtain Corollary 1 because if we try
to repeat its proof using Lemma 10 instead of lemma 4 the term |b|(1—e5)N
n (6) still force us take IV of the order of In |b| and this would lead only to
the bound

||£Const1n|b|H <l-—c¢

which is much less than we want. Therefore we have to iterate (13). For this
we need a local version of Lemma 10. Denote by K4 the cone

Ki={hel\(U): ||a%1nh|| < A},

LEMMA 10".  There exist n,e19 and E such that if |h(u)] < H(u) and
|7/ (w)|| < E|b|H (u) for some H € Kgy then

/\ﬁ;}bhﬁ dv < (1— 510)/H2 dv.

(Lemma 10 is just a particular case when H = 1. So Lemma 10’ tells us that
Lemma 10 remains valid if we replace the constant function by a function
which looks like a constant on the scale - CE )

The only problem now is to find a suitable majorant for £57h. Fortunately
it is provided in the proof of Lemma 10’.

LEMMA 10”. There ezist €,n, E so that for given b there is a finite number
Ni(b), Na(b) ... Nyw)(b) of linear operators such that

a) Nj(b) preserves Kpy;

b) For H € KE‘\bl

/WjHP dv < (1 — e10) /H2 dv;
c) If |h(u)| < H(u), [P (u)|| < Eb|H(u) for some H € Kgy then there
exist j = j(h,H) such that |Lih(u)] < (N;(H))(u) and |(L3h) ()] <
E|b|(N;H ) (w).
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Lemma 10” clearly implies Lemma 4. Indeed denote h®) = L¥2h. Let H©® =
1 and set H*™D = N0 gooyH®. Then by induction h*+D < H*HD,
H(h(kﬂ))/(u)ﬂ < E|b|H(k+l)(u) and

p((HE)’) < (1= x| HPP) < (1 - e10)*

Therefore )
V(|h(k+1)|2) < I/((H(k+1)) ) < (1 - 510)k+1-

In Section 7 we define N;. Lemma 10” is proven in Section 8.
7. Construction of AJs. Take a cutoff function A(z) : R¢ — R such that
a) A(x) > 0;

b) A(xz) =0 for |z| > 1;

¢) A(z) =1for |z] < 1.

If Ris a cube centered at x, with side 2a let Ag(z) = A(*™). Recall Uy,
21, 29 . . . zq constructed in the proof of Lemma 8. Divide Uy into cubes
li€11 (ll + 1)811

—— <z <—F7"—} (14)
1 0]
where e1; will be specified below. Denote Y;' = 1(Up), Y7 = 05(Up) where
0j(u) were defined in the proof of Lemma 8. Let J be some subcollection
of {Y}U{Y?}. Write Y(J) = UY?. Let vi(u) and vy(u) be two branches of
7

o~ ™ constructed in Lemma 8. Define the function

1, if v € v (U)Uwva(U)
mey(v) =4 1, ) if a’:@_”o_”lv ZY(J)
1 —elAgz(o"v), if o™ My € Y2 CY(J)

Define N¥2/p = M7, (m.,, ;h). Precise conditions on J’s, £12, 71, E will be
given below. First we choose E (Lemma 11). After that we choose n and
then £15 (in the proof of Lemma 13). Given E, 7, £15 the set of J's is specified
by Lemma 12. Below we give some properties of N, a(I;] £12),

PROPOSITION 6. If n is large enough /\/'a(l;]’m) preserves Kpgjy.

PrRoOF: Direct calculation shows that the multiplication by m;.,, maps
Kpyp| to Keggep and by Lemma 2 My, : Koyomp) — Kenospppl+os, Take 7 so
large that 82036E‘b| + (O3 < E|b‘ [ |
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LEMMA 11. If E,n are large enough then for any (h, H) such that H € K gy,
|h(u)| < H(u) and ||W (uw)|| < E|b|H (u) the following inequality holds

I(£3h) ()] < (NG H) (u),
Proor: By Lemma 2

(0138 FE -+ 1)|b|

(Jalz
SR WS ),

I(L5R) ()] < (Crsef E + 1) (MiH) (u) <

Choose E,# so large that M <E.m

Before proceeding further recall another property of v.

DEFINITION. A measure p on a metric space (X, p) is called Federer measure
if given N there exist a constant C such that for all z,r p(B(xz, Nr)) <
Cyu(B(z,1)).

PROPOSITION 7. v s a Federer measure.

Under the conditions of theorem 2 (v is SBR-measure) this is immediate
corollary of absolute continuity. The proof under the conditions of theorem
1 (d =1) is provided in Appendix 3.

DEFINITION. A set Y is called (r, N)-dense in X if the intersection of any
ball B(z, Nr) with Y contains a ball of radius r.

COROLLARY 6. Given E, N there exist a constant € = ¢(E, N) such that if
W is (N,r)-dense in U and H € K then

/szuZe/szu.
U

We say that J is dense if for any [ there is a cube Y}f € J such that a“oYff
is adjacent to Z;.
LEMMA 12. Given E, 12,7 there exist €19 such that if J is dense, H € Ky,
then

/ (NS V2 gy < (1 = 240) / H? dv.

PROOF:

(W H)?(w) = (M (e, H))? (1) < (M3, ) () (M, H) (w).
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For fixed i there exist £13 such that if m ., (v1(u)) = 1—e12 0r my oy, (v2(u)) =
1 — &g then (MPEymy.,,) < (1 —e13). Let W be set of such w’s. If J is dense
then W is (—2—, 5“17"*) dense for some e14. Hence

VNS H)? < v(MBH?) — ey [(MEH?) dv < (1= gseia)v (M, H)
w

by Corollary 6 and Proposition 6. Now

M b = My (P 1D Y < Cug((a] + —) M7

W

where (33 depends only on n. Hence

VM) < (1= suer) (14 Canlll + ) ) v (HPP) <

(1 —e13e15) <1 + Css(]a| + |11)‘)> ((H(k))z) .

If a is small enough and b is large enough the above factor is less than 1. m
8. End of the proof of lemma 10”. It remains to show that if |h| < H,
|P'|| < E|b|H for H € Kgyp then for 15 small enough there exist dense J so
that N

Ll (u) < (NG H) ().

Let
M (u) = |V (0 () + ela™ +7)(0200) (4 (1) )|
v a . ’
e (1 — &)eWx™ )1 @) H (v (w)) + eWn™)@2) H (1)
@) (y) | +iba) @10y (, () 4 U™ +T) @02(0)) (3, (1) )
Ye = '

U ) (v (u)) + (1 — €)eUa)w200) [ (1)

Denote V= 0™ Zp; X7 = {v: v =v;(u) for some u and o"~"""v € Yi}.
LEMMA 13. The following statement holds provided that 15,11 (see (14))
are small enough. Let cubes Zy, Zy and Zpy be obtained from each other
by the smallest possible shift in z dzrectwn, ie. W =1010+1=1 and
IE=10 =1 for k=2...d. Then there existi € {I,I, M}, j € {1,2} such
that for all u € Vi; 7 (u ) <1
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Clearly Lemma 13 implies Lemma 10" since one can take
J=J(h,H) ={Y]: Yue Xpryl (u) <1}

To prove Lemma 13 we need several elementary bounds.

LEMMA 14. Let h, H satisfy |h| < H, ||I'|| < E|b|H, H € Kgyp. If €12 is
small enough then for all l_:j

a) for all vy, vy € Xli

1 H(Ul) .
2= Hy) =2
b) either
Vo € X2 |h(v)] < ZH@) (4)
or Yu € Xy |h(v)| = iH(v) (B).

PROOF: a) is immediate since the logarithmic derivative of H is at most
Eb| and the diameter of X7 is less than %.

b) Assume that there is vy € Xli such that |h(vo)| > 2H (v). Then Vv € Xli

611\/8 >
0]

[A(v)| = |h(vo)| — Elb| sup(H) diam(X}) > zH(vo) — 2E[b|H (vo)

X7 -
1
3
-
so (B) is satisfied if 13
LEMMA 15. Let

2E511\/3)H(v0) 2 ( — 2E511\/E)H(v)

N | —
B~ W

1
< 16Evd ™

Y(u) = Arg(explibry (v1(u)) — ibry (ve(u))]).
Then there exist constants €1, €17 such that Yu! € Vi, ul e Vi
e < [P(u') — ()| < ey

and €17 can be made as small as we wish by decreasing €11
(The point of the upper bound is of course to make sure that this difference
is not a multiple of 27.)
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PRrROOF: Consider coordinates Z; . .. Zq on Vj; such that zj(u) = zk( n "11)1( )
(i.e. Zzj is the pushforward of z;.) Consider @ such that z (af) = z (u®),

Z(all) = z,(ul) for k = 2...d. Since [(u!) — P(@)| = |5 [m(vi(u)) -
T (Ve (u))](+)||u? — 4% | Lemma 8 implies that

€9e11 < Izﬁ(ul) - d(ﬂm)\ < U961

Likewise e
T T~ I m -~
u ) —Yu < ———u" —u | < eggeq1 .1
[P(u”) —(a”)] < 100\/E| | < egenn

PROPOSITION 8. VN, ¢ there exist § = §(N,€) > 0 such that if in AABC
/A >e€and |AB| > ‘A—NC| then

IBC| < |AB| + (1 - §)|AC].

PROOF OF LEMMA 13: If for some i € {I, I, I}, j € {1,2} the alternative

(A) of Lemma 14 holds there is nothing to prove (since we can take €15 < 7).

So we assume that inequality (B) is satisfied for all v € X l1 Denote
(u) = Arg(e"™ D h(vy (u))) — Arg(e™ 2 h(uy (u))).

By assumption (B)

I k() = eI 5 < 4B e

and so Vu! € Vi, uf € Vi
I m 9 : J n
[Y(u’) = (uh)] = e16 = [l 5~ In A(v)]| diam(VF) < e16 — Caoe.

Thus if n is large enough

and so either Yu! € Vi



or Vull € Vi
€
o) > .
Assume to fix our notation that the first inequality is true. Take some ug €
Vir. There are two cases. If H(vi(ug)) > H(va2(up)) then by Lemma 14
Vu € Vi H(vi(u)) > 4H (vo(u)). Also Yog, v, € U

exp fi” (v1)

< .
€xXp ff(z g (Uz)

1

O <Cu

where Cy; = exp {QﬁH flab) HO] . therefore Proposition 8 implies that v(?) <1
where €15 = €(4Cyy, 97). Likewise if H (v1(ug)) < H(v2(ug)) then v{)) < 1. m
9. Proof of theorem 3. In this section we give the proof of theorem 3.
Some steps of the proof are word-by-word repetitions of the proof of Theorems
1 and 2. In this case we give only the statement leaving the proof to the reader
(who may also consult [D] for details). We find it convenient to change our
notation slightly in this section. Namely we shall write o only for the map
Yt — X1 and shall use ¢ for the map ¥ — ¥ to keep up with notation in
the proof of Theorem 1 and 2. This change is only effective in Section 9.
Unlike Theorems 1 and 2 we have to work with Cy(XT) since £, does not
preserve spaces C®(U). We define L, as before but without smoothing (i.e.

f® = f). We analogue of Lemma 2 is the following estimate.
PROPOSITION 9.

L(Lyh) < Caa(lIhllo + 616" L(R)).

We prove now an analogue of lemma 8.

LEMMA 16. There exist €13 > 0,Cy3 such that for any € < e15 for any
n > CyzIn(2) there are two branches w'(w) and w*(w) of o™ and two points
W' and W" € T such that

< H’Tn(wl(w/)) —Tn(wl(w//))} N [Tn(wQ(w')) _Tn(w2(wﬂ))H < 2.

NN

PROOF: (~!(I;) is the cylinder C; = {w : wy = i}. Since ¢ is not identically
0 on U(II; x I1;) by the Intermediate Value Theorem there exist II; such that

7
@(I1; x II;) contains an interval [0, 1g]. If € < 15 there are two points w and
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@ such that p(w,0) = €. Let ' = p,w, W = p,& (following the proof of
Theorem 1 we write p, for the natural projection p, : ¥ — 7). Recall the
expression of ¢ through 7 ([PP]). If w® and w® are two points such that
w](-l) = w](-Q) for 7 < 0 define

Aw =Y [r(e7Fw®@) — (e FuM)).
k=1
Then W (0™, 0)) = {(w®,8) : WP =w® forj <Oandt = —Aw®,w®)}.
Thus

Hmwl(w/)) — (W' (@")] = [ (W) = 7 (w(@"))] = 0(@,3)| < Cuely

and the lemma follows. m
Denote ||| = max(|| 2o, Z52).
LEMMA 17. There exist Cys, Cug, 37 such that if |h||p) < 1 then

sCistnlilyy 1 Cao
(157 ) < 1 -

PROOF: Denote N = Cy51n|b|. Consider two cases. The easier one is if

there exist w® such that |h(w®)| < L1 because then we can just bound
va(|£5°"" ")) by va(|h]). Indeed then |A(w)| < # for w in the ball b(w®, 7i:)

centered at w® and of radius m But l/a(b(w(o), 2‘b|)) > Ifl”s and we are

done. So assume that inf |h| > . Choose ¢ = (‘b‘) in Lemma 16 and let

v = |6(f1(vab)+ibm)(w1(w’))h(wl(w/)) + e(fz(v“b“ribm)(wz(w’))h(w2(w'))|’

V= |e(f}\‘,“’>+zbm)(w1(w“))h(w1(w//>) X e(fj(\‘,lb)+ibTN)(w2(w”))h(w2(w//))"

We claim that for some 3y 7' < 1—‘&%9 orvy" <1— IbIL%' In view of Proposition
8 and the fact that exp[f{™ (w)] > |b|%10 it is enough to prove that
by (wh (W by (wh (W 1

|Arg ("™ D (! (W) = Arg ("™ DR W) )] > Tk (A)
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or

‘Arg (eibTN(wl(wN))h(wl(w"))) — Arg (eibm(“l(wn))h(wl(w”)))‘ > L (B).

R

Assume to the contrary that both (A) and (B) are false. We also have
1
|Arg(h(w' (&) = Arg(h(w"(@)))| < 2L(h)0"  (since || > 5)

< 2[n|6".

Similarly
|Arg(h(w' (")) — Arg(h(w! (")) < 2/b|6~

So if N is large enough (i.e. Cy5 is large) this implies that

iy (@1 (1)) _ by (@@ | > 3
g (672 0) — g ) 2
But by Lemma 16 this difference is between ﬁ and ‘—11)‘ Hence either (A) or

(B) is true. m
COROLLARY 7. There exist 0487 049,511 such that Zf HhH(b) <1 then

 Cu
b1 )

|ﬁ%gln\b\h| S 1

PRrROOF:
LNhI(w) = [E05 N (LN (W) < (EXNILERA]) (w) <
va(LYR) + Csolb|0VN

as in the proof of Corollary 2. Take N = Cy5In |b| and choose Cyg > Ciy5. m
COROLLARY 8. There exist Csy1, $12 so that

ACs11n|b _
1L oy < 1 — [b] 2.

(This follows immediately from corollary 7 and lemma 15.)
COROLLARY 9. There exist Csq, Css, (13, f14 such that if A, B € C*(M) and
la] < Csa]b|™1 then

[pa,5(a +ib)| < Csslb| ™ [ Allal| Bl
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(Repeat the calculations of corollary 5.)
If A, B € CNT*(M) then

. . 1 o
pasla+ i) = rrml(G pas)l =
1
i Pva s(a+ D) < Gl VALl Bl

Thus for A, B € C*°(M) p decays faster than any power of b in the region

N
{la] < Cs|b|?*}. Now the Cauchy formula implies that (%) p(ib) also
decays faster than any power and theorem 3 is proven. m
Appendix 1. Correlation density. In this section we recall the expression
for Laplace transform of the correlation function. Our exposition follows
closely [P], [R2].
Consider the suspension flow G* with the roof function 7. We assume that 7 €
C; (¥) which is true in the case when 7 comes from the construction described
in the previous section. Let p be the Gibbs measure for the potential F' &

_ 7(w) _
Cy2(X7). We can decompose the mean value F(w) = [ F(w,s)ds as F(w) =
0

f(w) + Hw) — H(ow) with f(w) € C;J(X). u can be written as du(q) =
&dv(w)ds where C' is the normalization constant and v(w) is the Gibbs

measure for f(w)
Let A, B € Cp(X7) and pap(t) = | A(q)B(G'q) du(g) be the correlation
»r

function. Consider its Laplace transform

§) = / e [ A@)B(G'q) dulq)dt
oo T( "w

_/Aw s Z / B (07w, 8)e— T +5=9) gy — /Aw s /B( 5)e~€6-9) dsdzdy
0 0

= p1(§) + pr(§),

where py(£) is an entire function bounded as long as Ref is bounded. Denote

N T(w)
by A(w,§) = g A(w, s)e* ds the Laplace transform of A then

6 = o [ A0, 3 B, —6) dv(w)

Const
S
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Note that R )
[A(w, E)llo < CsallAllg, [[B(w,E)llo < Csal[ Bllo, (15)

L(A(w,€)) < Css||Allglbl, L(B(w,€)) < Css| Bllolbl. (16)
We now utilize the following decomposition.
PROPOSITION 10. Every h € Cy(X) can be decomposed as h = Y. h; where

5=0
1) ||hflo = Csellhlloe20;

2) L(h) < Cs5; K7 L(h);

3) hi(c7w) € Cf (B)

PROOF: For any symbol i choose a backward sequence w(® = {W§i)}j§0 such
that wéi) = i. For w € X define w(y) by

ool =4 Yoy 1ZTN
M) = wgu_);vzv) j<—N

Choose some Ny and define by induction hy = h(w()), ha)(w) = hp—1)(w)+
(h — h(k—l))(W(Ngk))- Then

1h = hayllo < (L(h) + L(hg-1))) O™°F,

L(hgy) < 2L(hg—y)) + L(h) < (249 = 1) L(h).

Thus is Yo% < I ||h — hgy|lo decays exponentially. Let hg = hy, hjn, =
h(jy — h(j—1) and h; = 0 if j is not a multiple of Ny. m

So write A(w,€) = 3 Aj(w), Blw,—€) = ¥ Bj(w), and let A;(w) =
A(o7w), Bj(w) = B(f—ojw) then A; € C; (%), B_joe Cf (%) and

145110 < Csll A(w, ©)lloghos 11Bjllo < Cssl|B(w, =€) llogho, (17)

L(4;) < Csr L(A(w, ) K3, L(B)) < Cs7L(B(w, §))K3. (18)

0 pr(€) = 5y 3 sel€), where

pin(§ / Ay ZeW“Bk( ) dv(w).
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The rearrangement of this series performed below is valid at least for small
Re&. By o—invariance of the measure v

pal€) = [ Aw) 3 e B(o™540) du(w)
» =0

Denote
Aj(w,8) = Aj(w,9)e™ 7@, Bj(w,€) = Bj(w, §)e v
so that . B ’ 3 ) .
141 < 145 lloe™7, [1B; < [|Bjlloe™, (19)
L(Ay) < (Cssll Ajllo[b] + L(A;)) 7, (20)
L(B;) < (Cisl|Bjo[b] + L(B)) 7. (21)
We have -
i@ = 3 [ Ajw)e @ B(omw) dv(w).
n=j+k s,

Since A and B depend only on the future the integration in the last expression
may be taken over X" as well. Performing the change of variables @ = o"w
we obtain

A _ - >, A —zimn (w dl/(u))
wO= 3 [ 5 B e D] i)

n=j+k ot ow=w

Assuming that the corresponding transfer operator is normalized we get the
following expression for the Jacobian (2):

dv(w)
() ~ CPUn(@) = PriF)m(w))
Therefore
o=y | B,f(w)[nzz A () s5m )| (e
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In terms of transfer-operators this can be rewritten as follows:

pin(§) = / {‘C]—HCPT(FH{]T( - *Cf—[Pr(F)-i-E]T)_lAj} By dv.

>+

Let Q;: A — A;, R; - B — B;. Then bounds a) and b) of Proposition 3
follow immediately from (15)-(21).

Appendix 2. A priori bounds.

PROOF OF COROLLARY 3: Consider the following norm in C* (U)

G(h)

Hh”(ba’) = max(|| Ao, W

).

We prefer to work with this norm because we already saw that - is a natural

ol
scale for the study of L. Take h € C¥ (U ) with [|A]|® < 1 and decompose
it h = h+ (h—h) where |h — | < (‘b‘) @ h e CHU) and || £h|lo < Csolb].
By Corollary 2

‘£C17ln|b|h‘ < 018(|b|)

Since L, does not increase the norm of C° functions

CGO
£01711’1|b|h <
| | - |b|515

where (315 = min(/, 31). Recall the relation between Loy and Ly (5). Since
the operator of multiplication by Ay, is uniformly bounded in || - [ ,a/) (in fact
hap 1s almost constant on the scale |b|) we get the following estimate valid for
small a and large b

1 >515—062(|a+%)

C171n\b\h‘ < 061 (m

Using analyticity of A\, in a and we obtain for small a and large b the
following bound

C’171n|b| 1
hz’ Cﬁl ‘b|6167
(16 > 0. Now
CyzIn b b b B
£Gr) L (expl(£2) g — e ) 0 07 IR) | <
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~Ci7In|b Ci71ln|b
|£ 17n||h|_|_’£ 1711\\‘

C17 In[b| ((GXP[(f((,*I)l)ﬂn\b\ _ f0171n|b|) o 0.6’171n|b|] — 1) h)‘ <
C + Costn ] [ —= | < Coaie
61|b|516 63 1. [D] \/m = 64|b|517-

Now take Co3 > C47. Then

1
6|57

023 In |b|h‘

_C17)1n|b|(£6;171n|b|h)’ <

Cl7 In |b|h‘ < CG4

From the other hand by Lemma 2.d)
G(EGC;?S ln‘b‘h) G(£g§23—017) 1n|b|(£g;)17 1n|b|h)) S

)\((1523—017) In |b|C¢1 (‘b| ||£Cl7 In |b|h||0 _'_ (023 017 In ‘b|G(£Cl7 In |b|h))
So for small a and large b the following bounds holds

C165

Ca31n b
HE 23 In H(b,O/) < W

This estimate clearly implies Corollary 3. m

Corollary 4 follows from term-by-term summation in (3) using the following
bound.
LEMMA 18. Let h € C¥(U) o < «, and G(h) < D|b|||hllo, D > 1. Then

11 = La) " hllo < Cos DU (In [b] + In D)||llo

where € — 0 as a — 0, b — oo.
PROOF: By Lemma 2.d)

1L5R0 < CraAglihllo,
G(LMh) < Crs([bll|hllo + €5 NG (h)).
Therefore if N = Cg;In D where Cy; is large enough
L350l m) < 2257 ™[R ]lo-

Write

Ce7In D

(1- Z cﬂbh+zc (LS D)
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and estimate the first term by Lemma 2.d) and the second one by Corollary
3. m

Appendix 3. Gibbs measures. In this section we collect some distortion
properties of Gibbs measures for codimension 1 Anosov flows.

PROOF OF LEMMA 6: It is enough to fix v and v; and to bound

Z (a) (112)

va: d(v1 ,Ug)§5

There is a constant Cgg such that if d(vi,vs) < & then oV ~"v; = o¥N "0, for
n < Cgs ln . But
a (a)
D L AUCY D SRS

va: oV =00 =gV =70 (v3) oN=10v2 =g N—n0 ¢,

exp £ ()] (£3771) (N "001) = exp[£L2) (v1)m
Now we prove Proposition 7.
PROPOSITION. Under conditions of theorem 1 given N there is a constant
Cn such that if Iy C Iy C U are two intervals and |I;| > |I—]§‘ then v(1y) <
CNI/(Il).
PROOF: Let ng = max{n : [0"I,] < 1}. Then by Lemma 3 Yv;,v5 € Iy 7= <

(c™0)'(v1)
(c"0vz)
o™ 1| > C4y for some constant Crg. Since the measure of any open set is

positive there is a constant C7; such that v(c™1I;) > C7;. But by (2) and
Lemma 3
b < v(e™I)v(1)
Cry — V(U"OIQ)I/(Il)
The last two inequalities prove the proposition. m

Appendix 4. The proof of van der Corput lemma. This section
contains the proof of the following statement.

LEMMA 7. Let
1= [ r(u) du

Assume that ¢ € C™1(J), |¥]li4y < 1, [/ ()] > ca, where
I7)lo < € and ||r(u)||1 < €D then

< (g9 where the constant Cgg does not depend on I,. Therefore

< Cra.

S =
IN
N
IN
\.l—‘

|| < eConst(cq) lD 1 1 ]

[blea [b]c3

34



PRroor:
ibip(u)

Ik

Take v € C1(J) so that |¢p — ¢|§% || P|ly < b1 then I = I + Al where

1@ i
z’b/ o) %

and |AI| < Const|b| Integrating by parts we obtain

= 1 g T(w) o) O -
]—% [ew( )mb—/ebw 5 { (u)w(u)} du].

The statement follows since

I [r@)] o < Const (24127

C2

I
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