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ABSTRACT 

Accurate noise power spectrum estimation in a noisy speech 

signal is a key challenge problem in speech enhancement. 

One state-of-the-art approach is the minima controlled 

recursive averaging (MCRA). This paper presents an 

enhanced MCRA algorithm (EMCRA), which demonstrates 

less speech signal leakage and faster response time to follow 

abrupt changes in the noise power spectrum. Experiments 

using real speech and noise recordings have validated the 

superiority of the proposed enhancements. EMCRA shows 

improvements both in intuitive subjective listening and 

objective quality measures in terms of higher output SNR 

and lower output distortion scores. 

Index Terms— noise power spectrum estimation, noise 

control, speech enhancement, noise cancellation filter

1. INTRODUCTION 

Noise power spectrum estimation is a key component in a 

practical speech enhancement system. An early approach is 

to average the noisy signal over non-speech section using a 

voice activity detector (VAD). However, its reliability 

severely deteriorates for weak speech components and low 

input SNR. Furthermore, there may not be sufficient non-

speech sections detectable to track a varying noise spectrum 

in continuous speech. Alternatively, a minimum statistics [1] 

based noise estimator does not rely on VAD. The noise 

estimate is obtained from minima values of smoothed noisy 

signal power spectrum multiplied by a bias compensation 

factor, because even for continuous speech there are some 

time-frequency spectral discontinuities where the minima 

will converge to the noise spectral value. However using 

minima makes this approach sensitive to outliers and of high 

variance. 

The MCRA [2] method uses spectral minima indirectly. 

It estimates noise by averaging past spectral power values 

with a smoothing parameter that is adjusted by the signal 

presence probability in sub-bands. That in turn is 

determined by the ratio between the local energy of the 

noisy speech and its spectral minima within a specified time 

window. The ratio is compared to a certain threshold, with 

smaller value indicating the absence of speech. Temporal 

smoothing is also performed to reduce fluctuations between 

speech and non-speech segments, which exploit the strong 

correlation of speech presence in neighboring frames. The 

MCRA method is computationally efficient, robust with 

respect to the input SNR and type of underlying additive 

noise. 

However, there are also some problems. (1) The original 

MCRA algorithm uses an efficient local minima tracking 

technique, which reduces the complexity of searching the 

minima within a time window but it also doubles the delay 

to follow an abrupt noise spectral rise. (2) The speech 

leakage refers to the amount of speech spectral components 

being misclassified into the noise power spectrum, which is 

one of the causes of distortion in filtered speech. Generally 

speaking, the shorter the minima searching time window, the 

larger the speech leakage, because more likely the minima 

will hit on the weak speech components instead of noise.  

This paper proposes two novel techniques to remedy 

these problems, which jointly reduce the delay and the 

speech leakage. These two steps are the basis for the 

EMCRA algorithm that has achieved better results than the 

original MCRA.  

We first review the original MCRA method in section 2. 

Then the techniques for reducing time delay and speech 

leakage are presented in section 3 and section 4 respectively. 

These are followed by the experimental results and 

conclusions.  

2. MINIMA CONTROLLED RECURSIVE 

AVERAGING

In a spectral filtering based speech enhancement approach, 

the input noisy speech samples are organized as overlapped 

frames and each frame is transformed into spectral domain 

with each frequency as a subband. Let
0H and 

1H  indicate 

the speech presence and absence hypotheses in the i-th 

frame of the k-th subband, then 
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where ),( ikX , ),( ikS , and ),( ikN  represent the STFT of 

noisy, clean, and noise signals, respectively. The purpose of 

noise estimator is to obtain accurate value of noise spectral 

power magnitude as }),({),(
2

ikNEikn =λ . The MCRA method 

uses temporal recursive averaging as below: 
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where )10( << nn αα  is a smoothing coefficient. Unlike the 

clear-cut decision such as from a VAD, a conditional speech 

presence probability )),(|(),( 0 ikXHPikp =  is used, so that (2) 

can be written as 
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where 

),()),( 1(~ ikpik nnn ααα −+= (4) 

is a time-varying smoothing parameter that is adjusted by the 

signal presence probability estimated as follows 
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where and δ  is a threshold for speech presence, 

2
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and 

ijLijkSikS <<−= 2)};,(min{),(min (7) 

which is calculated as follows: 
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3. TIME DELAY TO FOLLOW ABRUPT NOISE RISE 

Because (8) updates the minima using 2 variables in sequel 

with each of length L  time window, the original MCRA 

algorithm takes L2  time delay to response to abrupt noise 

rise, such as when turning on the air conditioner in a car. 

This can be improved by using the following new minima-

tracking scheme. 
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The new scheme contains n pairs of (8) but with overlapped 

positions, the noise rise delay is reduced from L2  to L
n
)1( 1+ . 

The effects of this technique are shown in Figure 1 

( 4=n ). The initial noise is low as indicated by a narrow dark 

strip in the beginning of the noise power spectrum in Figure 

1(b), and then it rises abruptly to a high level. The 

corresponding estimated noise spectra for three different 

algorithms are shown underneath in Figure 1(c-e). The right 

side color strip is the color-coding of spectral sample values 

from bottom to top indicating zero to maximum spectral 

value in the figure. The time window size L  is set to 96

frames for the Rainer-Martine algorithm [1], and 64 frames 

for the MCRA and the EMCRA algorithms. The original 

MCRA takes 1282 =L  frames delay and the EMCRA only 

takes 80)25.1( =+ L  frames delay. The delay enhancement 

can be easily observed. 

4. SPEECH LEAKAGE 

Figure 1 also shows that even with a larger window size, the 

speech leakage is clearly visible for the Rainer-Martin 

method, while it is not observable for the MCRA and the 

EMCRA algorithms. The speech leakage is mostly visible 

only when the noise estimator is applied on clean speech 

signal with no noise. Because the noise spectrum should be 

always zero, any detected noise magnitude is erroneously 

produced from the speech component.  
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Figure 1– The comparison of (a) noisy waveform, (b) its power 
spectrum, and (c-e) various estimated noise power spectra. 

Note the speech leakage in (c), and smaller delay in (e).

This error certainly affects the speech quality when clean 

speech is filtered using that noise estimator. It also reflects 

the likelihood of misdetection of weak speech components 

as noise that will cause distortion in the filtered noisy speech 

signal. The technique that we propose to alleviate this 

problem is to introduce a control parameter at each time-

frequency as follows. 
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The original equation (3) is then replaced by the following 

conditional updating formula 
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The control parameter is compared with the smoothed noisy 

signal spectrum and acting like a loose time-frequency 

strong voice component mask. The power spectral values are 

updated only at spots that do not have strong speech 

components. Examples of speech leakage for the clean 

speech signal are shown in Figure 2. The EMCRA algorithm 

has achieved least speech leakage, even equipped with the 

time-delay reduction technique that actually results in a 

slight increase in speech leakage shown in Figure 2(f). 

Figure 2- Speech leakage comparison for different noise power 
spectrum estimation techniques: (a) clean speech waveform, 

(b) its power spectrum, and (c-f) various estimated noise power 
spectra. Note the reduced speech leakage from (f) to (e). 

5. TEST RESULTS 

The EMCRA noise estimator has been tested in comparison 

with the original MCRA and several other popular noise 

estimators. In all the tests, an adaptive parametric Wiener 

filter [3] has been used to perform the noise removal. The 

objective quality measures used are standard from literature 

[4]. The SNR indicates the global signal to noise ratio, the 

larger the better. The Itakura-Saito distortion (It-Sa) and 

Weighted Spectral Slope (WSS) are distortion criterions, the 

smaller the better.  

For one particular noisy speech file, results are 

summarized in the following table in terms of objective 

speech quality measures of filtered signal, as well as CPU 

computation time spent. 

Table 1: Speech Enhancement Comparison of Different Noise 
Power Spectrum Estimation Techniques 

 SNR It-Sa WSS Time (msec) 

noisy speech -5.17 0.4910 41.8865  

true noise 4.78 0.0767 23.2398  

Rainer Martin  -1.66 0.4089 41.9764 3976 

MCRA  -1.55 0.4382 41.1159 3315 

PSD  -2.09 0.4112 44.2091 3425 

EMCRA  -0.86 0.4113 40.9234 3385 
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The “true noise” is the power spectrum of the actual 

noise used for mixing with the clean speech to form the 

noisy speech, which serves as the ground truth. It also 

demonstrates the achievable potential for this noise 

reduction filter, should noise estimation totally accurate. 

The results show that the proposed enhanced MCRA noise 

estimator achieved the best speech quality among all the 

estimators tested. It consumes more CPU time than the 

original MCRA algorithm, but much less than the Rainer 

Martin algorithm and less than the PSD noise estimator [5]. 

The same dataset of 112 different speech and noise 

mixtures used in [3] is tested for the average performance. 

The results are shown in Figures 3 in terms of the average 

filtered SNR scores, average Itakura-Saito distortions, and 

average Weighted Spectral Slope values. Our EMCRA 

algorithm achieved top rank in SNR improvement while 

maintaining the second rank in other two evaluation criteria. 

The first ranks in the Itakura-Saito distortion and the 

Weighted Spectral Slope measures are the PSD and the 

MCRA respectively. When considering the two distortions 

simultaneously, the EMCRA algorithm is clearly the winner. 

Subjective listening to the wave files also confirms the 

conclusion. 

6. CONCLUSIONS 

Novel techniques to enhance the MCRA noise estimation 

algorithm have been developed for speech enhancement in 

adverse environments. Our approach is to reduce the time 

delay for adapting to abrupt noise change while at the same 

time decreasing the speech leakage to avoid speech 

distortions. Experimental tests have demonstrated positive 

results. The need to reduce time delay to follow abrupt noise 

changes has also been addressed by others like [6] and [7]. 

However they did not consider the speech leakage problem, 

so that such alternative solutions may be enhanced in a rapid 

varying noisy environment at the cost of some decreased 

performance and distortions in a relatively stable noise 

environment. 
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Figure 3 - Average filtered SNR (top), Itakura-Saito distortion 
(middle), and Weighted Spectral Slopes (bottom) scores at 
different input SNR for various noise estimators: RM [1], 

MCRA[2], PSD[5], and EMCRA.
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