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Abstract. Let M3 be a Margulis spacetime whose associated complete hyperbolic surface
62 has a compact convex core. Generalizing the correspondence between closed geodesics
on M3 and closed geodesics on 62, we establish an orbit equivalence between recurrent
spacelike geodesics on M3 and recurrent geodesics on 62. In contrast, no timelike
geodesic recurs in either forward or backward time.

1. Introduction
A Margulis spacetime is a complete flat affine 3-manifold M3 with free non-abelian
fundamental group 0. It necessarily carries a unique parallel Lorentz metric. Parallelism
classes of timelike geodesics form a non-compact complete hyperbolic surface 62. This
complete hyperbolic surface is naturally associated to the flat 3-manifold M3 and we regard
M3 as an affine deformation of 62. This paper relates the dynamics of the geodesic flow
of the flat affine manifold M3 to the dynamics of the geodesic flow on the hyperbolic
surface 62.

We restrict ourselves to the case that 62 has compact convex core (that is, 62 has
finite type and no cusps). Equivalently, the Fuchsian group 00 corresponding to π1(6

2)

is convex cocompact. In particular, 00 is finitely generated and contains no parabolic
elements. Under this assumption, every free homotopy class of an essential closed curve
in 62 contains a unique closed geodesic. Since 62 and M3 are homotopy-equivalent, free
homotopy classes of essential closed curves in M correspond to free homotopy classes of
essential closed curves in 62. Every essential closed curve in M3 is likewise homotopic to
a unique closed geodesic in M3.

In her thesis [4, 8], Charette studied the next case of dynamical behavior: geodesics
spiralling around closed geodesics both in forward and backward time. She proved
bispiralling geodesics in M3 exist, and correspond to bispiralling geodesics in 62.

This paper extends the above correspondence between geodesics on 62 and M3 to
recurrent geodesics.
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A geodesic (either in 62 or in M3) is recurrent if and only if it (together with its
velocity vector) is recurrent in both directions. These correspond to recurrent points for
the corresponding geodesic flows as in Katok and Hasselblatt [17, §3.3]. (Our meaning of
the term ‘recurrent’ agrees with the term ‘non-wandering’ used by Eberlein [12].) Under
our hypotheses on 62, a geodesic on 62 is recurrent if and only if the corresponding orbit
of the geodesic flow is precompact.

THEOREM 1. Let M3 be a Margulis spacetime whose associated complete hyperbolic
surface 6 has compact convex core.
• The recurrent part of the geodesic flow for62 is topologically orbit-equivalent to the

recurrent spacelike part of the geodesic flow of M3.
• The set of recurrent spacelike geodesics in a Margulis spacetime is the closure of the

set of periodic geodesics.
• No timelike geodesic recurs.

A semiconjugacy between these flows was observed by Fried [13].
This paper is the sequel to [15], which characterizes properness of affine deformations

by positivity of a marked Lorentzian length spectrum, the generalized Margulis invariant.
A crucial step in the proof that properness implies positivity is the construction of sections
of the associated flat affine bundle, called neutralized sections. A further modification of
neutralized sections produces an orbit equivalence between recurrent geodesics in 6 and
recurrent geodesics in M .

It follows that the set of recurrent spacelike orbits of the geodesic flow is a Smale
hyperbolic set in TM .

Null geodesics not parallel to a point in the limit set 3 of 00 do not recur. In this paper,
we do not discuss the recurrence of null geodesics parallel to a point of 3.

2. Geodesics on affine manifolds
An affinely flat manifold is a smooth manifold with a distinguished atlas of local coordinate
systems whose charts map to an affine space E such that the coordinate changes are
restrictions of affine automorphisms of E. Denote the group of affine automorphisms of E
by Aff(E). This structure is equivalent to a flat torsion-free affine connection. The affine
coordinate atlas globalizes to a developing map

M̃
dev
−−−→ E,

where M̃→ M denotes a universal covering space of M . The coordinate changes globalize
to an affine holonomy homomorphism

π1(M)
ρ
−→ Aff(E),

where π1(M) denotes the group of deck transformations of M̃→ M . The developing map
is equivariant with respect to ρ.

Denote the vector space of translations E→ E by V. The action of V by translations
on E defines a trivialization of the tangent bundle TM ∼= M × V. In these local coordinate
charts, a geodesic is a path

p 7−→ p + tv,
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where p ∈ E and v ∈ V is a vector. In terms of the trivialization, the geodesic flow is

E× V
ψ̃t
−−→ E× V,

(p, v) 7−→ (p + tv, v),

for t ∈ R. Clearly, this R-action commutes with Aff(E).
Geodesic completeness implies that dev is a diffeomorphism. Thus the universal

covering M̃ is affinely isomorphic to the affine space E and M ∼= E/0, where 0 :=
ρ(π1(M)) is a discrete group of affine transformations acting properly and freely on E.

3. Flat Lorentz 3-manifolds

Let Aff(E)
L
−→GL(V) denote the homomorphism given by the linear part, that is,

L(γ )= A, where

p
γ
−→ A(p)+ b.

The differential of γ at any point p identifies with its linear part L(γ ) via the identification
TM ∼= M × V.

Any L(0)-invariant non-degenerate inner product 〈 , 〉 on V defines a 0-invariant flat
pseudo-Riemannian structure on E which descends to M = E/0. In particular, affine
manifolds with L(0)⊂O(n − 1, 1) are precisely the flat Lorentzian manifolds, and the
underlying affine structures their Levi-Civita connections.

For this reason, we henceforth fix the invariant Lorentzian inner product on V, and hence
the (parallel) flat Lorentzian structure on E. The group Isom(E) of Lorentzian isometries
is the semidirect product of the group V of translations of E with the orthogonal group

O(n − 1, 1) of linear isometries. The linear part Isom(E)
L
−→O(n − 1, 1) defines the

projection homomorphism for the semidirect product. For l ∈ R, define

Sl := {v ∈ V | 〈v, v〉 = l}.

When l > 0, Sl is a Riemannian submanifold of constant curvature −l−2, and when l < 0,
it is a Lorentzian submanifold of constant curvature l−2. In particular, S−1 is a disjoint
union of two isometrically embedded copies of hyperbolic n − 1-space Hn−1 and S1 is the
de Sitter space, a model space of Lorentzian curvature +1.

The subset Tl(M) consists of tangent vectors v such that 〈v, v〉 = l is invariant under the
geodesic flow. Indeed, using parallel translation, these bundles trivialize over the universal
covering E:

Tl(E)
∼=
−−→ E× Sl .

Abels–Margulis–Soifer [2, 3] proved that if a discrete group of Lorentz isometries acts
properly on a Minkowski space E, and L(0) is Zariski dense in O(n − 1, 1), then n = 3.
Consequently, every complete flat Lorentz manifold is a flat Euclidean affine fibration over
a complete flat Lorentz 3-manifold. Thus we henceforth restrict to n = 3.

Let M3 be a complete affinely flat 3-manifold. By Fried and Goldman [14], either 0 is
solvable or L ◦ h embeds 0 as a discrete subgroup in (a conjugate of) the orthogonal group

SO(2, 1)⊂GL(3, R).

The cases when 0 is solvable are easily classified (see [14]) and we assume we are in the
latter case. In that case, M3 is a complete flat Lorentz 3-manifold.
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In the early 1980s, Margulis, answering a question of Milnor [22], constructed the
first examples [19, 20], which are now called Margulis spacetimes. Explicit geometric
constructions of these manifolds have been given by Drumm [9, 10] and his coauthors [4–
7, 11]. For an excellent survey of this subject, see Abels [1].

Since the hyperbolic plane H2 is the symmetric space of SO(2, 1), 0 acts properly
and discretely on H2. Since M3 is aspherical, its fundamental group π1(M3)∼= 0 is
torsion-free, so 0 acts freely as well. Therefore the quotient H2/L(0) is a complete
hyperbolic surface 62. Furthermore, by Mess [21], 6 is non-compact. (See Goldman and
Margulis [16] and Labourie [18] for alternative proofs.) Furthermore, every non-compact
complete hyperbolic surface occurs for a Margulis spacetime (Drumm [9]).

The points of 62 correspond to parallelism classes of (unoriented) timelike geodesics
on M3 as follows. It suffices to identify H2 with the parallelism classes of (unoriented)

timelike geodesics in E, equivariantly respecting Isom(E)
L
−→ SO(2, 1). The velocity of

a unit-speed timelike geodesic in E is a ψ̃-orbit in

T−1E∼= (E× S−1).

The two components of S−1 correspond to future-pointing timelike geodesics and past-
pointing timelike geodesics respectively. Points in S−1 correspond to points in H2 (the
projectivization of S−1) together with an orientation of H2. The geodesic flow ψ̃ gives
T−1E, the structure of a principal R-bundle over the quotient. The quotient identifies with
an affine bundle over S−1 ∼= H2

× {±1}, whose associated vector bundle is the tangent
bundle, as follows: the fiber over the line spanned by a fixed timelike vector v is the
affine space quotient of the space of lines parallel to v; the associated vector space is
V/(v)∼= (v)⊥. The tangent space to S−1 at v is v⊥ proving the claim.

Passing to the quotient by 0,

T−1 M ∼= (E× H2)/0.

Since 0
L
−→ SO(2, 1) is a discrete embedding [14], SO(2, 1) acting properly on H2

implies that 0 acts properly on H2. The Cartesian projection E× H2
→ H2 induces a

projection

T−1 M −→ H2/L(0)=6,

invariant under the restriction of the geodesic flow ψ to T−1 M , which defines an E-bundle
over 6. Its fiber over the orbit 0v of a fixed future-pointing unit-timelike vector v is the
union of geodesics in M = E/0 parallel to 0v. In particular, properness of the L(0)-action
on H2 implies non-recurrence of timelike geodesics, the last statement in Theorem 1.

More generally, any L(0)-invariant subset �⊂ V defines a subset T�(M)⊂ TM
invariant under the geodesic flow. If � is an open set upon which L(0) acts properly, then
the geodesic flow defines a proper R-action on T�(M). In particular, every geodesic whose
velocity lies in � is properly immersed and is neither positively nor negatively recurrent.

An important example is the following. The lines in S0 form the ideal boundary (the
circle-at-infinity), ∂H2, of H2. The limit set of L(0) consists of endpoints of recurrent
geodesic rays in 6. Furthermore, 3L(0) is the unique minimal L(0)-invariant closed
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subset of ∂H2. In particular, the set of fixed points of elements of L(0) is dense in 3L(0).
Moreover, L(0) acts properly on the complement

� := S0\3L(0).

Applying the above discussion, no geodesic tangent to T�(M) recurs, that is, a lightlike
recurrent geodesic ray must be parallel to 3L(0).

4. From geodesics in 62 to geodesics in M3

While timelike directions correspond to points of 62, spacelike directions correspond to
geodesics in H2. The recurrent geodesics in 6 intimately relate to the recurrent spacelike
geodesics on M3.

Denote the set of oriented spacelike geodesics in E by S . It identifies with the

orbit space of the geodesic flow ψ̃ on T+1E∼= E× S+1. The natural map S
ϒ
−−→ S+1

associating to a spacelike vector its direction is equivariant with respect to Isom(E)
L
−→

SO(2, 1).
The identity component of SO(2, 1) simply acts transitively on the unit tangent bundle

UH2, and therefore we identify SO(2, 1)0 with UH2 by choosing a basepoint u0 in
UH2. Unit-spacelike vectors in S+1 correspond to oriented geodesics in H2. Explicitly,
if v ∈ S+1, then there is a one-parameter subgroup a(t) ∈ SO(2, 1), having v as a fixed
vector, and such that

det(v, v−, v+) > 0,

where v+ is an expanding eigenvector of a(t) (for t > 0) and v− is the contracting
eigenvector. Choose a basepoint v0 ∈ S+1 corresponding to the orbit of u0 under the
geodesic flow on U6. Geodesics in H2 relate to spacelike directions by an equivariant
mapping

UH2
−→ S+1,

g(u0) 7−→ g(v0).

The unit tangent bundle U6 of 6 identifies with the quotient

L(0)\UH2 ∼= L(0)\SO(2, 1)0,

where the geodesic flow ψ corresponds to the right-action of a(−t) (see, for example, [15,
§1.2]).

Observe that a geodesic in 62 is recurrent if and only if the endpoints of any of its lifts
to 6̃ ≈ H2 lie in the limit set 3L(0) of L(0). If the convex core of 62 is compact, then the
union Urec6 of recurrent φ-orbits is compact.

LEMMA 2. There exists an orbit-preserving map

Urec6
N̂
−→ T+1(M)

mapping φ-orbits injectively to recurrent ψ-orbits.

Proof. The associated flat affine bundle E0 over U6 associated to the affine deformation 0
is defined as follows. The affine representation of 0 defines a diagonal action of 0

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 16 Mar 2012 IP address: 134.157.162.146

648 W. M. Goldman and F. Labourie

on Ũ6 × E. Its total space is the quotient of the product Ũ6 × E by the diagonal action
of π1(U6):

π1(U6)−→ π1(6)−→ Isom(E).

Similarly, the flat vector bundle V0 over U6 is the quotient of Ũ6 × V by the diagonal
action

π1(U6)−→ π1(6)−→ Isom(E)
L
−→ SO(2, 1).

According to [15], the neutral section of V0 is a SO(2, 1)-invariant section which is
parallel with respect to the geodesic flow on U6, and arises from the graph of the SO(2, 1)-
equivariant map

U6̃ ∼= UH2
−→ V

with image S+1, the space of unit-spacelike vectors in V.
Here is the main construction of [15]. To every section σ of E0 continuously

differentiable along φ, associate the function

Fσ := 〈∇φσ, ν〉

on U6. (Here the covariant derivative of a section of E0 along a vector field φ in the
base is a section of the associated vector bundle V0 .) Different choices of section σ yield
cohomologous functions Fσ . (Recall that two functions f1, f2 are cohomologous, written
f1 ∼ f2, if

f1 − f2 = φg

for a function g which is differentiable with respect to the vector field φ [17, §2.2]).
Restrict the affine bundle E0 to Urec6. Goldman et al [15, Lemma 8.4] guarantees the

existence of a neutralized section, that is, a section N of (E0)|Urec6 satisfying

∇φN = f ν,

for some function f .
Although the following lemma is well known, we could not find a proof in the literature.

For completeness, we supply a proof in the appendix. 2

LEMMA 3. Let X be a compact space equipped with a flow φ. Let f ∈ C(X), such that,
for all φ-invariant measures µ on X, ∫

f dµ > 0.

Then f is cohomologous to a positive function.

Since 0 acts properly, [15, Proposition 8.1] implies that
∫

Fσ dµ 6= 0 for all φ-invariant
probability measures µ on Urec6. Since the set of invariant measures is connected,∫

Fσ dµ is either positive for all φ-invariant probability measures µ on Urec6 or negative
for all φ-invariant probability measures µ on Urec6. Conjugating by −I if necessary, we
may assume that

∫
Fσdµ > 0. Lemma 3 implies Fσ + φg > 0 for some function g. Write

N̂ = N + gν.

N̂ remains neutralized, and ∇φ N̂ vanishes nowhere.
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Let Ũrec6 be the preimage of Urec6 in UH2. Then N̂ determines a 0-equivariant map

Ũrec6
Ñ
−−→ E.

Each φ̃-orbit injectively maps to a spacelike geodesic. The map

Urec6
N̂
−→ (E× S+1)/0,

x 7−→ [(N̂ (x), ν(x))]

is the desired orbit equivalence Urec6 −→ T+1(M).

LEMMA 4. Any spacelike recurrent geodesic parallel to a geodesic γ in the image of N̂
coincides with γ .

Proof. Let t
g
7−→ φt (v) be an orbit in Urec6. A geodesic ξ parallel to N̂(g) determines a

parallel section u of V along g. Since g recurs, the resulting parallel section is a bounded
invariant parallel section along the closure of g. By the Anosov property, such a section is
along ν, and, therefore, up to reparametrization, γ = N̂(g). 2

PROPOSITION 5. N̂ is injective and its image is the set of recurrent spacelike geodesics.

Proof. An orbit of the geodesic flow φ recurs if and only if the corresponding 0-orbit in the
space S of spacelike geodesics in E recurs. Similarly a φ-orbit in T+1(M) recurs if and

only if the corresponding L(0)-orbit in S+1 recurs. The map S
ϒ
−−→ S+1 recording the

direction of a spacelike geodesic is L-equivariant. If the 0-orbit of g ∈S corresponds to a
recurrent spacelike geodesic in M , then the L(0)-orbit of ϒ(g) corresponds to a recurrent
φ-orbit in U6.

N̂ is injective along orbits of the geodesic flow. Thus it suffices to prove that the
restriction of ϒ to the subset of 0-recurrent geodesics in S is injective. Since the fibers of
ϒ are parallelism classes of spacelike geodesics, Lemma 4 implies injectivity of N̂.

Finally, let g be a ψ-recurrent point in T+1(M), corresponding to a spacelike recurrent
geodesic γ in M . It corresponds to a recurrent 0-orbit 0g in S . Thenϒ(0g) is a recurrent
L(0)-orbit in S+1, and corresponds to a recurrent φ-orbit in U6. The image of this φ-orbit
under N̂ is a spacelike recurrent geodesic in T+1(M) parallel to γ . Now apply Lemma 4
again to conclude that g lies in the image of N̂. 2

The proof of Theorem 1 is complete.
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A. Appendix. Cohomology and positive functions
Let X be a smooth manifold equipped with a smooth flow φ. A function g ∈ C(X) is
continuously differentiable along φ if, for each x ∈ X , the function

t 7→ g(φt (x))
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is a continuously differentiable map R−→ X . Denote the subspace of C(X) consisting
of functions continuously differentiable along φ by Cφ(X). For g ∈ Cφ(X), denote its
directional derivative by

φ(g) :=
d

dt

∣∣∣∣
t=0

g ◦ φt .

The proof of Lemma 3 will be based on two lemmas.

LEMMA A.1. Let f ∈ Cφ(X). For any T > 0, define

fT (x) :=
1
T

∫ T

0
f (φs(x)) ds.

Then f ∼ fT .

Proof. We must show that there exists a function g ∈ Cφ(X) such that

fT − f = φg.

By the fundamental theorem of calculus,

f ◦ φt = f +
∫ t

0
(φ f ◦ φs) ds.

Writing

g =
1
T

∫ T

0

∫ t

0
( f ◦ φs) ds dt,

then

fT − f =
1
T

∫ T

0
( f ◦ φt − f ) dt

=
1
T

∫ T

0

∫ t

0
φ( f ◦ φs) ds dt

= φg.

as desired. 2

LEMMA A.2. Assume that for all φ-invariant measures µ,∫
f dµ > 0.

Then fT > 0 for some T > 0.

Proof. Otherwise, sequences {Tm}m∈N̂ of positive real numbers and sequences {xm}m∈N̂ of
points in M exist such that

fTn (xn)≤ 0.

Using the flow φt , push forward the (normalized) Lebesgue measure

1
Tm
µ[0,Tm ]

on the interval [0, Tm] to X , to obtain a sequence of probability measures µn on X such
that ∫

f dµn ≤ 0.
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As in [15, §7], a subsequence weakly converges to a φ-invariant measure µ for which∫
f dµ≤ 0,

contradicting our hypotheses. 2

Proof of Lemma 3. By Lemma A.1, f ∼ fT for any T > 0, and Lemma A.2 implies that
fT > 0 for some T . 2
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