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Abstract

In this paper I shall present the construction of Weyl-Heisenberg su-

perframes and density results related to the noncoherent case. A super-

frame is a collection of r-frames F1 = ff1i ; i 2 Ig � H1, : : : , F
r =

ffri ; i 2 Ig � Hr all having the same countable index set I such that

F = ff1i �� � ��f
r
i ; i 2 Ig is a frame for the Hilbert spaceH = H1�� � ��Hr.

For the Weyl-Heisenberg superframes we set H1 = � � � = Hr = L
2(R),

f
l
i = g

l
z;a;b(x) := zle

2�ialxg
l(x � bl) and (z; a; b) 2 I := � � T

r � R
2r.

We study the density of superframes in the case � is a subset of the

r + 2 subgroup T
r � E�;�. Our approach is inspired by a recent work of

O.Christensen, B.Deng and C.Heil. In the special case of coherent WH

superframes, we prove that its redundancy is given by 1=� � � (where the

lattice is � = f(m�; n�);m;n 2 Zg).

1 Superframes

We start by recalling the standard frame theory. Let H be a (separable, com-

plex) Hilbert space and I a countable index set.

DEFINITION 1 A set of vectors F = ffi; i 2 Ig � H is called a frame for H

if there are two positive constants 0 < A � B <1 such that:

Akxk2 �
X
i2I

j < x; fi > j2 � Bkxk2

for every x 2 H. The constants A;B are called frame bounds and if we can
choose A = B, the frame is called tight.

To a frame F we associate the following objects:

the analysis operator, T : H ! l2(I) ; T (x) = f< x; fi > gi2I
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the synthesis operator, T � : l2(I)! H ; T �(c) =
P

i2I cifi

the coe�cient range, E = RanT (it is a closed subspace of l2(I));

the frame operator, S : H ! H ; S = T �T ; S(x) =
P

i2I < x; fi > fi (it

is selfadjoint and A � 1 � S � B � 1);
the standard dual frame, ~F = f ~fi; i 2 Ig ; ~fi = S�1fi; it is a frame with

bounds 1
B
; 1
A
having the same coe�cient range as Fsuch that the following

reconstruction formula holds true:

x =
X
i2I

< x; fi > ~fi =
X
i2I

< x; ~fi > fi

DEFINITION 2 A frame Fd = ffdi ; i 2 Ig in H is called an alternate
dual of F if the reconstruction formula holds true for (F ;Fd).

the associated tight frame, F# = ff#i ; i 2 Ig ; f#i = S�1=2fi; it is a tight

frame with bound 1, having the same coe�cient range as F .
Suppose now we have a collection of Hilbert frames (F1; : : : ;Fr), in Hilbert

spaces H l, F l � H l, and all having the same index set I.

To this collection (F1; : : : ;Fr) we associate the following set:

F = ff1i � � � � � fri ; i 2 Ig =: F1 � � � � � Fr

`sitting' inH = H1�� � ��Hr. We also consider the collection of closed subspaces

(E1; : : : ; Er) in l2(R) of the coe�cient ranges.

DEFINITION 3 The collection (F1; : : : ;Fr) is a superframe if F is a frame
for H.

An equivalent condition is given in the following theorem. I thank Deguang

Han for pointing out to me an error in a previous statement of this result (in

fact a similar object has been considered independently in [HaLa97] as well):

THEOREM 4 The collection (F1; : : : ;Fr) is a superframe i� Ei\(�j 6=iE
j) =

f0g, 8i, and E1 � � � � �Er is closed in l2(I).

DEFINITION 5 Two frames F1 and F2 are called orthogonal if their co-
e�cient ranges are orthogonal subspaces, i.e. E1 ? E2 in l2(I) (we already
assumed F1 and F2 have the same index set I).

Suppose the superframe (F1; : : : ;Fr) is given. The F = F1 � � � � � Fr is a

frame in H . Consider its standard dual ~F in H . Then ~F = ~F1 � � � � � ~Fr for

some frames ~F1; : : : ; ~Fr and ( ~F1; : : : ; ~Fr) is a superframe as well.

DEFINITION 6 The superframe ( ~F1; : : : ; ~Fr) is called the standard dual su-
perframe of (F1; : : : ;Fr).
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THEOREM 7 ~F l is an alternate dual of F l (not necessarily the standard
dual) and ~F l is orthogonal to Fj , for l 6= j.

Frames are overcomplete sets. The dual notion (with respect to the over-

completness) is the Riesz basis for its span:

DEFINITION 8 A set of vectors F = ffi; i 2 Ig � H is called a Riesz basis
for its span (or a s-Riesz basis) if there are two positive constants 0 < A � B <

1 such that:

A
X
i2I

jcij2 � k
X
i2I

cifik2 � B
X
i2I

jcij2

for every �nite sequence (ci)i 2 l2(I). The constants A;B are called s-Riesz

basis bounds

Notice if we can choose A = B, the s-Riesz basis is an equinorm, orthogonal set.

Suppose F = ffi; i 2 Ig � H is a s-Riesz basis in H . We call F 0 = ff 0i; i 2
Ig � H a biorthogonal s-Riesz basis to F if < fi; f

0
j >= �ij . If in addition

the span of F 0 coincides with the span of F , then F 0 is called the standard
biortogonal s-Riesz basis of F .

The biorthogonality (as well the frame duality) is a symmetric relation. Sup-

pose (F ;F 0) are biorthogonal to one another. Then the following reconstruction

formula of the coe�cients holds true:

<
X
i2I

cifi; f
0
j >=<

X
i2I

cif
0
i; fj >= cj

Similarly to superframes, a superset (F1; : : : ;Fr) is called a super s-Riesz
basis if F = F1 � � � � � Fr is a s-Riesz basis for H = H1 � � � � �Hr.

2 Weyl-Heisenberg Superframes

Consider Gr = T r�R2r the direct product of r 1-dimensional Weyl-Heisenberg

groups G1 = T 1 �R2 with T 1 the 1-dimensional torus identi�ed with the unit

complex circle. Let us denote by L2;r = L2(R) � � � � � L2(R) the direct sum

of r copies of L2(R) endowed with the scalar product < f1 � � � � � fr; g1 �
� � � � fr >=

Pr
i=1 < fi; gi >. Then consider the r-direct sum of r Schr�odinger

representations of 1-dimensional WH groups G1:

U(z; p; q)f(x) = �r
l=1u(zl; pl; ql)fl(x) ; f 2 L2;r

where u(zl; pl; ql)fl(x) = zle
�i�plqle2�iplxfl(x� ql).

A Weyl-Heisenberg set WHg;� is obtained by discretizing the (continuous)

orbit of some generator g with respect to a discrete set of parameters � � Gr:

WHg;� = fU(z; p; q)g ; (z; p; q) 2 � � Grg
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We index � by a countable index set I, � = f(zi; pi; qi); i 2 Ig. For r = 1 we

obtain the (standard) non-coherent Weyl-Heisenberg sets:

WHg;� = fu(z; p; q)g ; (z; p; q) 2 � � G1g
The coherent set is obtained by choosing � = f(1;m�; n�);m;n 2 Zg for some

particular �; � > 0.

A collection of WH sets all indexed by the same index set I (called a

Weyl-Heisenberg superset) (WHg1;�1 ; : : : ;WHgr ;�r ) is equivalent to the WH

set WHg;� in L2;r given by g = g1 � � � � � gr 2 L2;r and

� = f(zi1; : : : ; zir; pi1; : : : ; pir; qi1; : : : ; qir) ; i 2 I ; (zil ; pil ; qil) 2 �lg � Gr

Thus (WHg1;�1 ; : : : ;WHgr ;�r ) is a WH superframe (respectively a WH super

s-Riesz basis) i� WHg;� is a frame for L2;r (respectively a WH s-Riesz basis in

L2;r). From now on we shall concentrate on WH sets of the form WHg;� for

some g 2 L2;r and � � Gr.

For �; � 2 (R�
+)

r we denote by E�;� = f(t�; s�) ; t; s 2 Rg � R2r a

2-dimensional linear subspace of R2r. Let us denote by Kr
�;� = T r � E�;�

the r + 2-dimensional subgroup of Gr containing E�;� . Recall that a unitary

representation U : G! U(H) of a locally compact group G on a Hilbert space

H is called square integrable if i) there is a cyclic vector (i.e. the linear span

of its orbit is dense in H) and ii) there is a f 2 H such that
R
G
d�(�)j <

f;U(�)f > j2 <1, for the left invariant measure d� on G. Note that although

U : Gr ! U(L2;r) is not square integrable, U : Kr
�;� ! U(L2;r) is square

integrable. This suggests to restrict our attention on � � Kr
�;�, which is what

we do.

Notation. For a � 2 � we write � 2 E�;� if � 2 Kr
�;�. We call E�;� a leaf.

We say a set � or a WH set WHg;� is supported on a leaf E�;� if � � Kr
�;�.

Our analysis will be done only on leaves of the phase space.

3 Densities and Main Results

Suppose �; � 2 (R�
+)

r and � � Kr
�;� are given. For h > 0 and (p; q) 2 R2r we

denote

Qh(p; q) 2 f(z; a; b) 2 Gr j jai � pij < h

2
; jbi � qij < h

2
; i = 1; : : : ; rg

the cube of size length h. For a discrete set M we denote by #M the number

of points it contains. Let:

�+(h) = sup
(p;q)2E�;�

#(Qh(p; q) \ �) ; ��(h) = inf
(p;q)2E�;�

#(Qh(p; q) \ �)

Following [ChDeHe97], the upper and lower densities of � are de�ned by:

D+(�) = lim sup
h!1

�+(h)

�(Qh(0; 0) \ E�;�)
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D�(�) = lim inf
h!1

��(h)

�(Qh(0; 0) \ E�;�)

where �(Set) = Aria(Set) =
�Haar(T

r
�Set)

(2�)r
, for Set � E�;� , is the 2 dimensional

Lebesgue measure of Set, or the normalized Haar measure of T r � Set.

If D+(�) = D�(�) then � is said to have uniform density D(�) = D+(�) =

D�(�).

If � is the regular lattice f(m�; n�);m;n 2 Zg then D(�) = 1
j�j�j�j

, with

j�j =
pPr

l=1 �
2
l ; j�j =

pPr
l=1 �

2
l .

� is said to be �-uniformly separated if for any (z; p; q) 2 �, #(Q2�(p; q) \
�) � 1.

� is said to be relatively uniformly separated if � = [s0k=1�k for some s0 > 0

and each �k is �k-uniformly separated for some �k.

The following results extend similar results obtained in [ChDeHe97].

LEMMA 9 � is relatively uniformly separated i� D+(�) <1, i� �+(h) <1,
for some h > 0.

The proof is presented in the next section.

For the next result, recall that WHg;� is called a WH Bessel set if there is

a B > 0 such that
P

�2� j < f ; U(�)g > j2 � Bkfk2 for every f 2 L2;r.

THEOREM 10 IfWHg;� is a WH Bessel set then D+(�) <1, and therefore
� is relatively uniformly separated.

The proof is defered until the next section.

THEOREM 11 (Comparison Theorem) Suppose WHg;� is a frame for
L2;r and WH';� is a Riesz basis for its span in L2;r with �;� � Kr

�;�. Then

D+(�) � D+(�) and D�(�) � D�(�).

The proof in given in the next section.

COROLLARY 12 Suppose WHg;� is a Riesz basis for L2;r supported in the

leaf E�;�. Then � has uniform density D+(�) = D�(�) = D(�) = ��
j�j�j�j

=:

D0(�; �), where j�j =
pPr

i=1 �
2
i , j�j =

pPr
i=1 �

2
i .

Proof of Corollary

The proof is based on the Comparison Theorem. Clearly any WH Riesz

basis for L2;r supported in the leaf E�;� would have the same uniform density

D0(E�;�). Therefore we have only to construct an example of such WH Riesz

basis and to compute its density. This is done in the following:

EXAMPLE 13 Consider ' = '1 � � � � � 'r with

'l =

r
�l

� � �1[al;bl] where al =
1

�l

l�1X
k=1

�k�k �l =
1

�l

lX
k=1

�k�k
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and

� = f(e�imn
���

�
� ;m
�

� � � ; n�) ; (m;n) 2 Z
2g

The claim is that the WH set WH';� is an orthonormal basis for L2;r.

Notice a1 = 0; a2 =
�1�1
�2

; a3 =
�1�1+�2�2

�3
; : : : ; �r =

�����r�r
�r

,

b1 = �1; b2 =
�1�1+�2�2

�2
; : : : ; ar =

���
�r

. Thus:

'm;n(x) =

r
�1

� � � e
2�im

�1
���

(x�n�1)1[a1;b1](x� n�1)� � � � �
r

�r

� � � e
2�im �r

���
(x�n�r)1[ar;br](x� n�r)

< 'm;n; 'm0;n0 >= �n;n0
1

� � �
rX
l=1

�l

Z bl

al

e2�i
�l
���

(m�m0)xdx

= �n;n0
1

� � �
Z ���

0

e2�i
m�m0

���
xdx = �m;m0�n;n0

This shows the system is orthonormal. It remains only to prove that WH';� is
complete in L2;r.

Consider f 2 L2;r such that < f ; 'm;n >= 0 for every m;n 2 Z, i.e. Pr
l=1 <

f l; 'lmn >= 0. More speci�c this means:

0 =

rX
l=1

< f l; 'lmn >=

rX
l=1

r
�l

� � �
Z bl

al

e2�im
�l
���

xf l(x+ n�l)dx ; 8m;n

Set n = 0. We shall prove that f lj[al;bl] � 0, for all l. Similarly one can obtain

f lj[al+n�l;bl+n�l] � 0 for every n and since bl � al = �l we would obtain f l � 0

which means f � 0, or the WH set is complete and thus an orthonormal basis.

For n = 0 we change the variable y = �l
���

x and let H l(y) =
q

���
�l
f l(���

�l
y)

and cl =
1
���

Pl�1
k=1 �k�k. Then:

0 =

rX
l=1

Z cl+1

cl

e2�imxhl(x)dx =

Z 1

0

e2�imx(

rX
l=1

1[cl;cl+1](x)h
l(x))dx ; 8m

Thus
Pr

l=1 1[cl;cl+1]h
l � 0. Note now 0 = c1 < c2 < � � � < cr < cr+1 = 1

which makes the intervals [cl; cl+1] nonoverlaping. Therefore hlj[cl;cl+1] � 0, or

f lj[al;bl] � 0. 3

For this example, the density is D(�) = 1
Cell aria

where

Cell aria = j �

� � � j � j�j =
j�j � j�j
� � � :

Hence

D(�) =
� � �
j�j � j�j = D0(�; �)

and this concludes the proof of the Corollary 12. 2
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DEFINITION 14 Suppose WHg;� is a frame for L2;r and � is supported in
the leaf E�;� and has uniform density D(�). Then by redundancy we mean the
following number:

r(�) =
D(�)

D0(�; �)

The Comparison Theorem proves that if (WHg1;�1 ; : : : ;WHgr ;�r) is a super-

frame then r(�) � 1, whereas if (WHg1;�1 ; : : : ;WHgr ;�r ) is a super s-Riesz

basis then r(�) � 1. Note that r(�) = 1 does not implyWHg;� is a Riesz basis

or a frame for L2;r (just add or leave out a �nite number of vectors in any Riesz

basis). Note also that any of the strict inequalities would not imply the set to

be a frame or s-Riesz basis in L2;r.

For a coherent WH frame (i.e. for one for which � = f(m�; n�);m;n 2 Zg
for some �; � 2 Rr

+),

r(�) = 1=� � � =: r0(�; �)

Note that always r(�) � D(�).

Suppose WHg;� and WHh;� are frames in L2;r supported on the same leaf

E�;� and having uniform densities D(�), D(�). Then by redundancy of �
relative to � we mean the ratio:

r(�;�) =
r(�)

r(�)
=

D(�)=D0(�; �)

D(�)=D0(�; �)

If � and � are regular,

r(�;�) =
� � �
� � � =

r0(�; �)

r0(�; �)

The de�nition of redundancy is justi�ed also by the following result:

THEOREM 15 Suppose a 2 (R�
+)

r and denote by Ra : R
2r ! R2r, Ra(p; q) =

(a
p; a�1
q) where a�1 = ( 1
a1
; � � � ; 1

ar
) and a
p = (a1p1; : : : ; arpr). Suppose

WHg;� is a frame for L2;r supported on the leaf E�;� and having uniform density
D(�). Then Ra(�) � Kr

Ra(�;�)
, D(Ra(�)) 6= D(�) but r(Ra(�)) = r(�).

REMARK 16 Note that WHg;� is unitary equivalent to WHg0;Ra(�) for g
0 =

V (a)g where V (a) is the unitary dilation with scales a: V (a) = �r
l=1v(al),

v(al)f
l(x) =

p
alf

l(alx).

4 Proofs of the Results

4.1 Proof of Lemma 9

The proof in essentialy the same as the proof of Lemma 2.3 from [ChDeHe97].

We (re)derive here the result just for completness.
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) Suppose � = [s0k=1�k, and each �k is �k-uniformly separated. Let � =

mink=1;::: ;s0(�k). Then any cube Q �
2
(p; q) contains at most s0 points of �.

Thus �+(h) � s0(
h
�=2

)2 = 4s0
�2
h2 and �(Qh(0; 0) \ E�;�) = const � h2. Thus

D+(�) � 4s0
const��2

<1.

( Suppose now D+(�) < 1, for some h. Let Nh = �+(h) for a fxed h.

Thus each cube Qh(p; q) contains at most Nh points of �. Let e1; e2; : : : ; e2d be

the verticies of the unit cube [0; 1]2d � R2d and de�ne Zk = (2Z)2d + ek and

Bk = [n2ZkQh(nh), k = 1; : : : ; 22d. Then R2d is the disjoint union of the 22d

sets Bk. Moreover for every m;n 2 Zk, m 6= n, dist(Qh(mh;Qh(nh) � h and

each cube Qh(nh) contains at most Nh elements of �. Thus �\Bk can be split

into Nh-uniformly separated squences and therefore � can be split into 22dNh

uniformly separated sequences.

4.2 Proof of Theorem 10

The proof is based on Theorem 3.1 from [ChDeHe97]. Consider f 2 L2(R),

kfk = 1, and f = 0 � � � � � f � � � � � 0, with f on the lth position. Then

B = Bkfk2 � P
�2� j < f ; U(�)g > j2 which means each �i(�) = �i =

f(zi; pi; qi); i 2 Ig gives a Bessel set WHgi;�i , g
i = �ig.

Now we apply Theorem 3.1 from [ChDeHe97] and obtain that each �i is

relatively uniformly separated. Since � = �1 � � � � � �r we obtain that � is

relatively uniformly separated and hence D+(�) <1.

4.3 Proof of Theorem 11

The proof is based on a Homogeneous Approximation Property (HAP) for su-

persets that will be stated below. But �rst a lemma whose proof can be found

in [ChDeHe97] as Lemma 3.3:

LEMMA 17 Set ' = e�
�
2
x2 , and let h > 0 be �xed. Then there is a K =

K(h) > 0 such that for each f 2 L2(R) and each (z; p; q) 2 T 1 �R2 = G1,

j < '; u(z; p; q)f > j2 � K(h)

Z Z
Qh(p;q)�G1

j < '; u(w; x; y)f > j2 d�G1(w; x; y)

Proof of Lemma 17

See Lemma 3.3 in [ChDeHe97]. 2

LEMMA 18 (Local HAP) Let g 2 L2;r and � � Kr
�;� be such that WHg;�

is a frame for its span E � L2;r. Then for each f 2 L2;r,

8" > 0 9R > 08(z; p; q) 2 Kr
�;� ; dist(�U(z; p; q)f ;W (R; p; q)) < " (1)

where W (R; p; q) = spanf~g�; � 2 QR(p; q)\�g, f~g�; � 2 �g is the standard dual
of WHg;� and � : L2;r ! E is the orthogonal projection onto E.
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Proof of Lemma 18

By Theorem 10 the assumptionWHg;� is a frame implies � is relatively uni-

formly separated. Thus we can separate � into subsets that are uniformly sep-

arated, all supported on the same leaf: � = [r0k=1�k, where �k is �k-uniformly

separated. De�ne � = minf�1=2; : : : ; �r0=2g.
Let H be the set of those elements f 2 L2;r for which (1) holds. One can

easily check that H is closed under �nite linear combinations. It is also closed

under L2;r-norm: if (fk)k�1 is a sequence in H converging to f in L2;r-sense

then for any " > 0 choose �rst a k" > 1 such that kf � fk"kL2;r < "
2
and then

R > 0 such that dist(�U(z; p; q)fk" ;W (R; p; q)) < "
2
for every (z; p; q) 2 Kr

�;�.

Then a triangle inequality argument shows that f has the HAP as well. Thus

H is a closed subset of E .
It then su�cies to show that if '(x) = e�

�
2
x2 then the gaussian generator' =

'�� � ��' and all its time-frequency translates belong toH , i.e. (U(z; r; s)' 2 H ,

for every (z; r; s) 2 Gr, for then H = L2;r and the result follows.

Fix (z; r; s) 2 Gr = T r�R2r and consider any (z0; p; q) 2 Gr. The expansion

of �(U(z0; p; q)U(z; r; s)') with respect to the frame WHg;� has the form:

�(U(z0; p; q)U(z; r; s)') =
X
�2�

< U(z0; p; q)U(z; r; s)';U(�)g > ~g�

If A;B are the frame bounds ofWHg;� then f~g�g has bounds 1
B
and 1

A
. Hence:

dist(�(U(z0; p; q)U(z; r; s)');W (R; p; q))2 � k�(U(z0; p; q)U(z; r; s)')�X
�2�\QR(p;q)

< U(z0; p; q)U(z; r; s)';U(�)g > ~g�k22

= k
X

�2�nQR(p;q)

< U(z0; p; q)U(z; r; s)';U(�)g > ~g�k22

� 1

A

X
�2�nQR(p;q)

j < U(z0; p; q)U(z; r; s)';U(�)g > j2

=
1

A

r0X
k=1

X
�2�knQR(p;q)

j < U(z0; p; q)U(z; r; s)';U(�)g > j2

Note that for � = (z00; a; b),

j < U(z0; p; q)U(z; r; s)';U(�)g >L2;r j2 �
rX
l=1

j < '; u(1; al � pl � rl; bl � ql � sl)g
l > j2

Using Lemma 17,

j < '(1; al � pl � rl; bl � ql � sl)g
l > j2 � K(�)

Z Z
Q�(al�pl�rl;bl�ql�sl)

j < '; u(1; x; y)gl > j2dx dy

9



Now we sum over � 2 �k\QR(p; q) and take into account that �k is �-separated

we obtain:

X
�2�knQR(p;q)

Z Z
Q�(al�pl�rl;bl�ql�sl)

j < '; u(1; x; y)gl > j2dx dy

�
Z Z

R2nQR��(�rl;sl)

j < '; u(1; x; y)gl > j2dx dy

Since the map (x; y) 7!< '; u(1; x; y)gl > is in L2(R2) (i.e. ' is an admissible

vector) we can choose R large enough so that for given (r; s), the integral of

the right hans side above becomes smaller than "2A
k(�)r0r2

for every l = 1; : : : ; r.

Then summating over l and k we obtain:

dist(�(U(z0; p; q)U(z; r; s)');W (R; p; q)) � "

for every (z0; p; q) 2 Gr which implies U(z; r; s)' 2 H and thus H = L2;r. End

of proof. 2

LEMMA 19 (HAP and Uniqueness) Let g 2 L2;r and � � Kr
�;� be such

that WHg;� is a frame for L2;r. Then for each f 2 L2;r,

8" > 0 9R > 08(z; p; q) 2 Kr
�;� ; dist(U(z; p; q)f ;W (R; p; q)) < " (2)

where W (R; p; q) = spanf~g�; � 2 QR(p; q) \ �g and f~g�; � 2 �g is the standard
dual of WHg;�.

Proof of Lemma 19

It comes directly from Lemma 18. 2

LEMMA 20 (Strong HAP) Suppose WHg;� is a frame for L2;r where g 2
L2;r, � � Kr

�;�. Then

8f 2 L2;r 8" > 0 9R > 08(z; p; q) 2 Kr
�;� 8h > 08(w; x; y) 2 Qh(p; q) \Kr

�;�

dist(U(w; x; y)f ;W (h+R; p; q)) < " (3)

Proof of Lemma 20

Note that for (w; x; y) 2 Qh(p; q)\Kr
�;� ,W (R; x; y) �W (h+R; p; q). Then,

by applying Lemma 19 to f and (w; x; y) 2 Kr
�;� we get dist(U(w; x; y)f ;W (R; x; y)) <

". But dist(U(w; x; y)f ;W (h + R; p; q)) � dist(U(w; x; y)f ;W (R; x; y)) < "

which end the proof of lemma 20. 2.

Proof of Theorem 11

Let f ~'�; � 2 �g be the (standard) biorthogonal s-Riesz basis ofWH';�, and

f~g�; � 2 �g be the standard dual of WHg;�. Let W (h; p; q) = span f~g�; � 2
Qh(p; q)\�g, V (h; p; q) = span f'�; � 2 Qh(p; q)\�g. Since �;� are relatively

uniformly separated, each space V (h; p; q), W (h; p; q) is �nite dimensional. Let

10



C = sup�2� k ~'�k < 1 Fix " > 0. Using the strong HAP Lemma 20 for f',

9R > 0 such that

8(p; q) 2 E�;� ;8h > 0;8(z; x; y) 2 Kr
�;� \Qh(p; q) ; dist(U(z; x; y)';W (h+R; p; q)) <

"

C

Let PV = PV (h;p;q) and PW = PW (h+R;p;q) denote the two orthogonal projectors

onto V (h; p; q), respectively W (h + R; p; q). De�ne T : V (h; p; q) ! V (h; p; q),

T = PV PW . We shall evaluate the trace of T :

tracefTg =
X

�2�\Qh(p;q)

< T'�; ~'� > =
X

�2�\Qh(p;q)

< PW'� ; PV ~'� >

=
X

�2�\Qh(p;q)

< I'� ; ~'� > + < (PW � I)'� ; ~'� >= #(� \Qh(p; q))

+
X

�2�\Qh(p;q)

< (PW � I)'� ; ~'� > � #(� \Qh(p; q))

�
X

�2�\Qh(p;q)

k(I � PW )'�k � k ~'�k � #(� \Qh(p; q))�
X

�2�\Qh(p;q)

"

C
C

= (1� ") �#(� \Qh(p; q))

On the other hand, since any eigenvalue of T , �T is subunital, j�T j � 1 we

obtain:

tracefTg =
X

spectrum of T

�T � rank(T ) � dim(W (h+R; p; q)) = #(� \Qh+R(p; q))

Hence

#(� \Qh+R(p; q)) � (1 + ") �#(� \Qh(p; q))

A simple computation shows that

Aria(Qh(p; q) \Kr
�;�) =

j�j � j�j
k�k

1
� k�k

1

h2

for every (p; q) 2 E�;� (see the proof of Theorem 15). Therefore

#(� \Qh+R(p; q))

Aria(Qh+R \Kr
�;�)

(
h+R

h
)2 =

#(� \Qh+R(p; q))

Aria(Qh+R \Kr
�;�)

�Aria(Qh+R(p; q) \Kr
�;�)

Aria(Qh(p; q) \Kr
�;�)

� (1� ")
#(� \Qh+R(p; q))

Aria(Qh+R \Kr
�;�)

Now, taking the supremum over (p; q) 2 E�;� and the limit h ! 1 we obtain

D+(�) � (1�")D+(�); but " > 0 was arbitrary, consequentlyD+(�) � D+(�).

Similary, taking the in�mum over (p; q) 2 E�;� and next the limit h ! 1 we

obtain D�(�) � (1� ")D�(�) for every " > 0 and therefore D�(�) � D�(�)

which ends the proof of theorem. 2
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4.4 Proof of Theorem 15

We want to �nd the relation between D(Ra(�)) and D(�). Fix " > 0. Let

h > 0 be su�ciently large such that D+(�) � �(Qh(0; 0) \ E�;�) � �+� (h) + ".

Let p; q 2 E�;� be such that #(Qh(p; q)\�) � �+� (h)�". Then #(Ra(Qh(p; q))\
Ra(�)) = #(Qh(p; q) \ �) > �+� (h)� ".

Next we need to �nd the aria Aria(Ra(Qh(0; 0)) \ERa(�;�)). Note that

Ra(Qh(0; 0)) = f(z; d; e) 2 Gr j jdij < aih

2
; jeij < h

2ai

On the other hand the two leaves are parametrized as: E�;� = f(t�; s�) j t; s 2
Rg and respectively ERa(�;�) = f(t�; s�) j t; s 2 Rg for (�; �) = Ra(�; �). We

obtain:

Set1 = Qh(0; 0) \ E�;� = f(z; t�; s�) ; jtj < h

2�i
; jsj < h

2�i
g

Set2 = Ra(Qh(0; 0)) \ E�;� = f(z; t�; s�) ; jtj < h

2�i
; jsj < h

2�i
g

Therefore the measures are:

Aria(Set1) = h2
j�j � j�j

k� � k
1
k�k

1

Aria(Set2) = h2
jmunj � j�j
k�k1 � k�k1

On the other hand:

D+
Ra(�)

� Aria(Set2) � #(Ra(Qh(p; q)) \ Ra(�))

= #(Qh(p; q) \ �) > �+� (h)� " � D+(�) � Aria(Set1)� 2"

which implies:

D+
Ra(�)

� D+
�

j�j � j�j
j�j � j�j �

2"

h2
k�k

1
� k�k

1

j�j � j�j ; 8h ) D+
Ra(�)

� D+
�

j�j � j�j
j�j � j�j

SimilarlyD+
� � D+

Ra(�)

j�j�j�j

j�j�j�j
(considering Ra(a

�1) for instance). Also a similar

argument holds for D�
� and D�

Ra(�)
as well. Hence we obtain the following

equalities:

D+
Ra(�)

= D+
�

j�j � j�j
j�j � j�j ; D�

Ra(�)
= D�

�

�j � j�j
j�j � j�j (4)
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If � has uniform density, i.e. D+
� = D�

� , then we obtain:

D(Ra(�)) = D(�)
j�j � j�j
j�j � j�j (5)

and in terms of redundancies:

r(Ra(�)) =
D(Ra(�))

D0(Ra(�; �))
=
D(�)

j�j�j�j

j�j�j�j
���
j�j�j�j

=
D(�)
���
j�j�j�j

= r(�)

where we have used � � � = � � �. This ends the proof. 2
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