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Abstract

In this paper I shall present the construction of Weyl-Heisenberg su-
perframes and density results related to the noncoherent case. A super-
frame is a collection of r-frames F' = {f},i € I} C Hi, ..., F" =
{fi,i € I} C H, all having the same countable index set I such that
F={fl® --®ff,i € I}isaframe for the Hilbert space H = H:®- - -®H,.
For the Weyl-Heisenberg superframes we set H1 = -+ = H, = L*(R),
fl =gl as(@) = 2 %g (z — by) and (2,a,b) € I:= A C T" x R*.
We study the density of superframes in the case A is a subset of the
r + 2 subgroup T" x E4 g. Our approach is inspired by a recent work of
O.Christensen, B.Deng and C.Heil. In the special case of coherent WH
superframes, we prove that its redundancy is given by 1/« - 3 (where the
lattice is A = {(ma,nB);m,n € Z}).

1 Superframes

We start by recalling the standard frame theory. Let H be a (separable, com-
plex) Hilbert space and I a countable index set.

DEFINITION 1 A set of vectors F = {f;,¢ € I} C H is called a frame for H
if there are two positive constants 0 < A < B < 0o such that:

2 2
Allzll® <Y 1 <a, fi > P < Bl
i€l

for every x € H. The constants A, B are called frame bounds and if we can
choose A = B, the frame is called tight.

To a frame F we associate the following objects:

the analysis operator, T : H — I*(I) , T'(x) = {< z, fi > };c1



the synthesis operator, T* : I*(I) = H , T*(c) = Y,y cifi
the coefficient range, E = Ran T (it is a closed subspace of 1%(I));

the frame operator, S: H — H , S =T*T, S(z) = Y ;cy <, fi > fi (it
is selfadjoint and A-1 < S < B-1);

the standard dual frame, F = {fz,z el}, fi = S 1fi; it is a frame with
bounds %, % having the same coefficient range as Fsuch that the following
reconstruction formula holds true:

r=Y <z fi>fi=Y <wfi>fi

i€l i€l

DEFINITION 2 A frame F¢ = {f2,i € I} in H is called an alternate
dual of F if the reconstruction formula holds true for (F,F?).

the associated tight frame, F# = {fl#,z el}, fl# = SY2f; it is a tight
frame with bound 1, having the same coefficient range as F.

Suppose now we have a collection of Hilbert frames (F!,...,F"), in Hilbert
spaces H', F' C H', and all having the same index set L.
To this collection (F!,...,F") we associate the following set:

f:{fil@"'@f{,iEI}::]—'I@...@JIT

‘sitting’in H = H'®---@H". We also consider the collection of closed subspaces
(E',...,E") in [?(R) of the coefficient ranges.

DEFINITION 3 The collection (F*,... ,F") is a superframe if F is a frame
for H.

An equivalent condition is given in the following theorem. I thank Deguang
Han for pointing out to me an error in a previous statement of this result (in
fact a similar object has been considered independently in [HaLa97] as well):

THEOREM 4 The collection (F*,... ,F") is a superframe iff E‘N(®; ., E7) =
{0}, Vi, and E* @ --- ® E" is closed in [*(I).

DEFINITION 5 Two frames F' and F? are called orthogonal if their co-
efficient ranges are orthogonal subspaces, i.e. E' 1L E? in [*(I) (we already
assumed F and F? have the same index set I).

Suppose the superframe (F*,...,F") is given. The F = F' & --- & F' is a
frame in H. Consider its standard dual 7 in H. Then F = Fleo--@ F" for
some frames F!,... ,F" and (F!,...,F") is a superframe as well.

DEFINITION 6 The superframe (F',... ,F") is called the standard dual su-
perframe of (F!,...,F").



THEOREM 7 F' is an alternate dual of F' (not necessarily the standard
dual) and F' is orthogonal to F7, for | # j.

Frames are overcomplete sets. The dual notion (with respect to the over-
completness) is the Riesz basis for its span:

DEFINITION 8 A set of vectors F = {fi,i € I} C H is called a Riesz basis
for its span (or a s-Riesz basis) if there are two positive constants 0 < A < B <
oo such that:

AY el <D efil® <BY laif?

i€l i€l i€l

for every finite sequence (c;); € [>(I). The constants A, B are called s-Riesz
basis bounds

Notice if we can choose A = B, the s-Riesz basis is an equinorm, orthogonal set.

Suppose F = {fi,i € I} C H is a s-Riesz basis in H. We call 7' = {f',,i €
I} C H a biorthogonal s-Riesz basis to F if < fi, f'; >= &;;. If in addition
the span of F’ coincides with the span of F, then F' is called the standard
biortogonal s-Riesz basis of F.

The biorthogonality (as well the frame duality) is a symmetric relation. Sup-
pose (F,F') are biorthogonal to one another. Then the following reconstruction
formula of the coefficients holds true:

<Y aifi f'y>=<D af'n fi >=¢

i€l i€l

Similarly to superframes, a superset (F:,...,F") is called a super s-Riesz
basis if F=F' @--- @ F" is a s-Riesz basis for H=H, ®--- ® H,.

2 Weyl-Heisenberg Superframes

Consider G™ = T" x R?" the direct product of 7 1-dimensional Weyl-Heisenberg
groups G' = T x R? with T the 1-dimensional torus identified with the unit
complex circle. Let us denote by L>" = L*(R) & --- & L?(R) the direct sum
of r copies of L?(R) endowed with the scalar product < f; & --- & f.,g1 ®
<@ fr >= 31, < fi,g;i >. Then consider the r-direct sum of r Schrédinger
representations of 1-dimensional WH groups G*:

U(Z,p, q)f(éE) = ealeu(zlvplv‘ﬂ).fl(x) 7f € L27T

where u(21, pi, @) fi(z) = 2”11 fi(z — qp).
A Weyl-Heisenberg set W4 a is obtained by discretizing the (continuous)
orbit of some generator g with respect to a discrete set of parameters A C G":

WHgn ={U(2,p,9)8 ; (2,p,9) € ACG"}



We index A by a countable index set I, A = {(z¢,p,¢*),i € I}. For r = 1 we
obtain the (standard) non-coherent Weyl-Heisenberg sets:

WHgn = {u(z,p,9)9 ; (2,p,q) €A CG'}

The coherent set is obtained by choosing A = {(1, ma,nfB); m,n € Z} for some
particular a;, 3 > 0.

A collection of WH sets all indexed by the same index set I (called a
Weyl-Heisenberg superset) (WHgt p,,... ,WHgr a,) is equivalent to the WH
set WHya in L*" givenby g =¢* & --- d ¢g" € L*" and

A:{(ziv ,Zi,pi,... 7p:;7in"- &i) ,1€1, (zliap;v(hi) EA!} cG”

Thus WHg1,p,,--. , WHgr:a,) is @ WH superframe (respectively a WH super
s-Riesz basis) iff WH, A is a frame for L?" (respectively a WH s-Riesz basis in
L?7). From now on we shall concentrate on WH sets of the form W, s for
some g € L>" and A C G".

For o, 8 € (R7)" we denote by E, g = {(ta,sB) , t,s € R} C R a
2-dimensional linear subspace of R?". Let us denote by K" s =T1"xEyg
the r + 2-dimensional subgroup of G" containing E, g. Recall that a unitary
representation i/ : G — U(H) of a locally compact group G on a Hilbert space
H is called square integrable if i) there is a cyclic vector (i.e. the linear span
of its orbit is dense in H) and ii) there is a f € H such that [, du()\)| <
fLUN)f >|? < oo, for the left invariant measure du on GG. Note that although
U : G — U(L*") is not square integrable, ¢ : K, ; — U(L>") is square
integrable. This suggests to restrict our attention on A C K, 5, which is what
we do.

Notation. For a A € A we write A € Eq g if A € K[ 5. We call Ep g a leaf
We say a set A or a WH set WH,, a is supported on a leaf E,pif A C K}

Our analysis will be done only on leaves of the phase space.

3 Densities and Main Results

Suppose o, 8 € (R})" and A C K[, 5 are given. For h > 0 and (p,q) € R*" we
denote

h h .
Qh(paq) E{(z,a,b) EGT | |ai_pi| < §7|bi_Qi| < 57/‘:17"' ,’f‘}

the cube of size length h. For a discrete set M we denote by #M the number
of points it contains. Let:

vi(h)= sup  #(Qulp,q)NA) , v (R)= inf #(Qnlp,q) NA)

(9,9)EEq.p (P,0)EEa,

Following [ChDeHe97], the upper and lower densities of A are defined by:

+ = l1m su VJr(h)
D) = lim sup o 6,0 1 Ba )




R, v=(h)
Dr) =t 0,001 Bop)

where p(Set) = Aria(Set) = W, for Set C E, g, is the 2 dimensional
Lebesgue measure of Set, or the normalized Haar measure of T x Set.

If D¥(A) = D~ (A) then A is said to have uniform density D(A) = DT(A) =
D= (A).

If A is the regular lattice {(ma,nB);m,n € Z} then D(A) = Ia\l'\ﬁl’ with
o = V1 of, 18l = VI BE-

A is said to be d-uniformly separated if for any (z,p,q) € A, #(Q2s5(p,q) N
A) <1.

A is said to be relatively uniformly separated if A = U;° | Ay, for some sp > 0
and each Ay is dg-uniformly separated for some Jj.

The following results extend similar results obtained in [ChDeHe97].

LEMMA 9 A is relatively uniformly separated iff DV (A) < oo, iff v+ (h) < oo,
for some h > 0.

The proof is presented in the next section.
For the next result, recall that WH, A is called a WH Bessel set if there is

a B >0 such that Y, ., | <f,U(MN)g > |* < BJ|f||? for every f € L>T.

THEOREM 10 IfW#H, s is a WH Bessel set then D™ (A) < oo, and therefore
A is relatively uniformly separated.

The proof is defered until the next section.

THEOREM 11 (Comparison Theorem) Suppose WHg a is a frame for
L*>" and WH, A is a Riesz basis for its span in L*" with A, A C K 5- Then
D*(A) > DY(A) and D~ (A) > D~ (A).

The proof in given in the next section.

COROLLARY 12 Suppose WH, a is a Riesz basis for L*" supported in the
leaf Eo 5. Then A has uniform density DT (A) = D—(A) = D(A) = 22 =:

= Jal18] T
Do(a, B), where |a| = v/ 22:1 ai, |6l = vV Z;‘:I B

Proof of Corollary

The proof is based on the Comparison Theorem. Clearly any WH Riesz
basis for L?" supported in the leaf E, g would have the same uniform density
Dy(Eqs,3). Therefore we have only to construct an example of such WH Riesz
basis and to compute its density. This is done in the following:

EXAMPLE 13 Consider o = @' @ -+ @ " with

-1 !
! (e7] 1 1
Y = —ﬂl[ahb,] where a; = . I;akﬁk B = o kz_:lakﬁk

-



and

A= {(e_’aﬁa@’ﬁ,mfﬂ,nﬂ) , (m,n) € Z*}
The claim is that the WH set WH, A ts an orthonormal basis for L3,
Notice a; = 07 az = aé’fl’aﬁ = all@l;:;QZBz yeee 3 Op = a.B;?NBT’

by = B1,bs = a1B1+osfe

v yar = 2B Thus:
7] (o7

« mim 2L (z—n, o8 Tim 2 (z—n,
Omn(z) = ﬁez im s Bl)l[ahbﬂ(x -nf) & B /a_‘IBeZ im 5 ( 3r)1[ambr]($ — nfr)

b
1 ZT Uil (mem!
< Pm,n, Pm! n' >= 6n7nl— Q e TI'la_B(m m )de
@ IB =1 a

1 a'ﬁ m—m'
opim=m’
= 5n,n’ o ﬁ e eE Pdr = 6m7m’5n,n’
: 0

This shows the system is orthonormal. It remains only to prove that WH, A is
complete in L>".

Consider £ € L*" such that < £, ¢y, , >= 0 for everym,n € Z, 1.e. 3, <
ftel.. >=0. More specific this means:

T T bl
(6% im =L
0= E < P >= E ”oz—-/_?/a 2mmas” fi(x + nBy)dz , Ym,n
=1 =1 1

Set n = 0. We shall prove that fl|[al,bl] =0, for all l. Similarly one can obtain
fl|[al+n,81,bz+n,6’l] =0 for every n and since b; — a; = B; we would obtain f' =0
which means £ =0, or the WH set is complete and thus an orthonormal basis.

For n = 0 we change the variable y = O?‘—fgx and let H' (y) = ,/%—'lﬁfl(%y)
and ¢, = al—ﬁ 22;11 arBr. Then:

r

Cl41 ] 1 ] r
0= Z/ e2™me pl (1) dz :/ ezmmw(z l[chcl“](m)hl(m))dm , Ym
1=1"¢ 0 1=1

Thus E;:l l[cl,cl+1]hl =0. Notenow 0 =c¢; < cg < - <c¢p < cCpy1 =1
which makes the intervals [c;, c;41] nonoverlaping. Therefore hl|[c,,c,+1] =0, or
fl|[a17bl] =0. ¢

For this example, the density is D(A) = 57— where
L« _ o8]
Cell_ama—|a_ﬂ| 18| = o g
Hence
D(A) = 2 = Dofa, )
= = Dol\&,
|af - 16]

and this concludes the proof of the Corollary 12. O



DEFINITION 14 Suppose WHgy a is a frame for L>" and A is supported in
the leaf E g and has uniform density D(A). Then by redundancy we mean the
following number:
r(A) = _b@)
DO(avﬂ)
The Comparison Theorem proves that if WWHg1.4,,...,WHgra,) is a super-
frame then r(A) > 1, whereas if WHg1.a,,... ,WHgra,) is a super s-Riesz
basis then r(A) < 1. Note that 7(A) = 1 does not imply W%, A is a Riesz basis
or a frame for L?7 (just add or leave out a finite number of vectors in any Riesz
basis). Note also that any of the strict inequalities would not imply the set to
be a frame or s-Riesz basis in L?".
For a coherent WH frame (i.e. for one for which A = {(ma,ng);m,n € Z}
for some o, 3 € R}),

r(A) =1/a- B =:ro(e,B)

Note that always r(A) > D(A).

Suppose WH, a and WHp a are frames in L?" supported on the same leaf
E, s and having uniform densities D(A), D(A). Then by redundancy of A
relative to A we mean the ratio:

_ r(A)  D(A)/Dy(a, B)

r(A,A) r(A) - D(A)/Do(p,v)

If A and A are regular,

FALA) = BTV ro(a, 8)

a-fB ro(u,v)

The definition of redundancy is justified also by the following result:
THEOREM 15 Supposea € (R%)" and denote by Ra : R*" — R?", Ra(p,q) =

(a®p,a~'®q) wherea™ = (ﬁ, ,al) and a®p = (a1p1,. .. ,arpyr). Suppose
WHg.a is a frame for L*" supported on the leaf E, g and having uniform density
D(A). Then Ra(A) C K§_(, 5)» D(Ra(A)) # D(A) but r(Ra(A)) = r(A).

REMARK 16 Note that WH, 5 is unitary equivalent to WHg: g (a) for g' =
V(a)g where V(a) is the unitary dilation with scales a: V(a) = ®]_;v(a),

v(a) f!(z) = Vaif(az).

4 Proofs of the Results

4.1 Proof of Lemma 9

The proof in essentialy the same as the proof of Lemma 2.3 from [ChDeHe97].
We (re)derive here the result just for completness.



= Suppose A = U;° ; Ay, and each Ay is dx-uniformly separated. Let § =
ming=1, . 5 (0%x). Then any cube Q%(p, g) contains at most so points of A.

Thus vt (h) < 50(%)2 = 22042 and p(Qnr(0,0) N E,p) = const - h®. Thus
DH(A) < =450 < oo

const-62
< Suppose now DT (A) < oo, for some h. Let N, = vt (h) for a fxed h.
Thus each cube @ (p, ¢) contains at most Ny, points of A. Let ey, ez,... ,e0a be

the verticies of the unit cube [0,1]?? C R?? and define Z; = (2Z)%? + ¢; and
By = Unez,Qn(nh), k =1,... 222 Then R2? is the disjoint union of the 22¢
sets By. Moreover for every m,n € Zi, m # n, dist(Qn(mh,Q(nh) > h and
each cube @p(nh) contains at most Ny, elements of A. Thus AN By, can be split
into Nj-uniformly separated squences and therefore A can be split into 22¢Nj,
uniformly separated sequences.

4.2 Proof of Theorem 10

The proof is based on Theorem 3.1 from [ChDeHe97]. Consider f € L*(R),
Ifll =1, and f =06 ---® f@®---®0, with f on the [** position. Then
B = BJf|” > Saenl < £,U(N)g > |* which means each m;(A) = A; =
{(zi,pi, ), 1 € I} gives a Bessel set WHiz,, g° = m;8.

Now we apply Theorem 3.1 from [ChDeHe97] and obtain that each A; is
relatively uniformly separated. Since A = A; @ --- & A, we obtain that A is
relatively uniformly separated and hence DT (A) < co.

4.3 Proof of Theorem 11

The proof is based on a Homogeneous Approximation Property (HAP) for su-
persets that will be stated below. But first a lemma whose proof can be found
in [ChDeHe97] as Lemma 3.3:

LEMMA 17 Set ¢ = e*%’"‘z, and let h > 0 be fixred. Then there is a K =
K(h) > 0 such that for each f € L*(R) and each (z,p,q) € T* x R?> = G*,

| < pulzpa)f > P < K(h) / / | < pyulw, 2, 9)f > P duc: (w,2,9)
n(p,q) CG?t

Proof of Lemma 17
See Lemma 3.3 in [ChDeHe97]. O

LEMMA 18 (Local HAP) Let g € L*" and A C K, 5 be such that W, a
is a frame for its span & C L*>". Then for each £ € L>",

Ve > 03R > 0V(z,p,q) € K, 5, dist(nU(z,p,)f, W(R,p,q)) <e (1)

where W (R, p,q) = span{gx, A € Qr(p,qg)NA}, {Gr, A € A} is the standard dual
of WHgya and m: L*>" — £ is the orthogonal projection onto E.



Proof of Lemma 18

By Theorem 10 the assumption W#H,, a is a frame implies A is relatively uni-
formly separated. Thus we can separate A into subsets that are uniformly sep-
arated, all supported on the same leaf: A = U;? | Ay, where Ay is §;-uniformly
separated. Define § = min{d1/2,...,6,,/2}.

Let H be the set of those elements f € L*" for which (1) holds. One can
easily check that H is closed under finite linear combinations. It is also closed
under L?"-norm: if (f;)g>1 is a sequence in H converging to f in L?"-sense
then for any £ > 0 choose first a k. > 1 such that ||f —f;_||,.,, < 5 and then
R > 0 such that dist(rU(z,p,q)fk., W(R,p,q)) < 5 for every (2,p,q) € K[, 5
Then a triangle inequality argument shows that f has the HAP as well. Thus
H is a closed subset of £.

It then sufficies to show that if p(z) = e~%" then the gaussian generator ¢ =
p®- - -®y and all its time-frequency translates belong to H, i.e. (U(z,r,s)p € H,
for every (z,r,s) € G", for then H = L?" and the result follows.

Fix (2,7,8) € G" = T" x R?" and consider any (2, p,q) € G". The expansion
of (U (2, p,q)U(z,r,s)p) with respect to the frame W#H o has the form:

7T(U'(Zlvpv Q) Z r, 8 Z < U 7p7 (Z,’I’,S)QO, U(A)g > g)\
AEA

If A, B are the frame bounds of WH, a then {g} has bounds + and %. Hence:

dist(r(U(2',p,q)U (z,1,5)¢), W (R, p,q))* < I7(U(',p,q)U (2,7, 5)p) —

> <UE,p,U(zm5)0,UNg > &l
AeANQR(p,q)

= Y <UEPUrs)e,UNg > gl
AEA\QR (p,q)

1
<3 Y I<UERQUERs)eUNg > P
AeA\Qr(p,q)

=2Y Y I<UE UG UNg > P

k=1 XeAL\Qr(p,q)

Note that for A = (2", a, b),

”
2 < Z| <gu(la—p —ri,b0— g — s1)g" > 7
=1

| < U( 2,b, 9 )U(Z,’I‘,S)(P, U(A)g >Lzr

Using Lemma 17,

<ella-p-mb—a-s)9g>P k6 [ [ < poull,z,y)g > Pdedy
Qs(ar—p1—r1,bi—q1—s1)



Now we sum over A € AyNQr(p,¢q) and take into account that Ay, is §-separated
we obtain:

> // | < pyu(l,z,y)g' > [Pdedy

AEAL\Qr (p,0) Qs(ar—pr—ri,bi—qi—s1)

< // | < @,u(l,z,y)g" > [Pd dy
R2\Qr—_s(—r1,s1)

Since the map (z,y) —< @, u(1,z,y)g" > is in L?(R?) (i.e. ¢ is an admissible
vector) we can choose R large enough so that for given (r,s), the integral of

the right hans side above becomes smaller than forevery [ =1,...,r.

k(é)r r2
Then summating over [ and k& we obtain:

dist(r(U(z',p,q)U (2,7, 5)p), W(R, p,q)) <€

for every (2',p,q) € G" which implies U(z,r,s)¢ € H and thus H = L?". End
of proof. O

LEMMA 19 (HAP and Uniqueness) Let g € L*" and A C K, 5 be such
that WH, A is a frame for L*>". Then for each f € L*",

Ve > 03R > 0Y(z2,p,q) € K, 5, dist(U(z,p,q)f, W(R,p,q)) <e (2)

where W (R, p,q) = span{gr, A € Qr(p,q) N A} and {g, \ € A} is the standard
dual of WHg. 4.

Proof of Lemma 19
It comes directly from Lemma 18. O

LEMMA 20 (Strong HAP) Suppose WH, o is a frame for L*" where g €
L*", A C K], 5. Then

Vf e L*"Ve > 03R > 0Y(z,p,q) € K[, 5 Vh > 0V(w,z,y) € Qu(p,q) N K[, 5
dist(U(w,z,y)f, W(h + R,p,q)) <e (3)

Proof of Lemma 20

Note that for (w,z,y) € Qn(p,q) N K], 5, W(R,z,y) C W(h+R,p,q). Then,
by applying Lemma 19 to f and (w, z,y) € K, 5 we get dist(U (w, z,y)f, W (R, z,y)) <
e. But dist(U(w,z,y)f,W(h + R,p,q)) < dist(U(w,z,y)f,W(R,z,y)) < €
which end the proof of lemma 20. O.

Proof of Theorem 11

Let {(5, € A} be the (standard) biorthogonal s-Riesz basis of W#H, A, and
{&x, A € A} be the standard dual of W, a. Let W(h,p,q) = span{gx,\ €
Qn(p,q)NAY, V(h,p,q) = span{ps,0 € Qn(p,q) NA}. Since A, A are relatively
uniformly separated, each space V (h,p,q), W(h,p, q) is finite dimensional. Let

10



C = supsen ||Ps]] < oo Fix € > 0. Using the strong HAP Lemma 20 for fo,
JR > 0 such that

v(pv Q) € Ea,,@vv}lf > O,V(Z, xvy) € K;”B N Qh(pv q) ) dlSt(U(Z,%y)% W(h + Rvpa Q)) <

Let Py = Py(p,pq) and Pw = Py (ryR,p,q) denote the two orthogonal projectors
onto V'(h,p, q), respectively W (h + R,p,q). Define T : V(h,p,q) — V(h,p,q),
T = Py Py. We shall evaluate the trace of T':

trace{T} = Z <Tps, 05 > = Z < Pwes, Pygs >
S€ANQ(P:q) S€ANQL(P:q)

= Y <Igs,35 >+ < (Pw—Dps, s >= #(ANQu(p,q))
d€ANQr(p.q)

+ > < (Pw—Dys, @5 > > #(ANQup,)
d€ANQn(p,9)
€

- Y T =Pw)esll - l1gsll = #(ANQup,0) - D> cC

deANQr(p,q) SEANQHL(p,q)

=1 —-¢)-#(ANQnp,9))

On the other hand, since any eigenvalue of T', Ar is subunital, [Ar| < 1 we
obtain:

trace{T} = Y. Ar <rank(T) < dim(W(h+ R,p,q)) = #(A N Quir(p,q))

spectrum of T

Hence

#ANQunir(p,q) > (1+¢) - #(ANQu(p,9)

A simple computation shows that

Aria(Qn(p,q) N KG 5) = %hﬁ

for every (p,q) € Eq p (see the proof of Theorem 15). Therefore

#(ANQuir(0,9) h+Ry,  #ANQuirpq) Aria(@uir(pa) MK ,)

Aria(Qn+r N K], 5) )= Aria(Qnyr N K] 5)  Aria(Qu(p,q) N K] 5)
#(ANQr+r(p,9)
2 (1 B 6) Aria(Q;HR n K;,,B)

Now, taking the supremum over (p,q) € Eo s and the limit A — oo we obtain
DT (A) > (1—e)D*(A); but € > 0 was arbitrary, consequently D™ (A) > DT (A).
Similary, taking the infimum over (p,q) € E, g and next the limit h — oo we
obtain D™ (A) > (1 —€)D~(A) for every € > 0 and therefore D~ (A) > D~ (A)
which ends the proof of theorem. O
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4.4 Proof of Theorem 15

We want to find the relation between D(Ra(A)) and D(A). Fix ¢ > 0. Let
h > 0 be sufficiently large such that Dt (A) - u(Qn(0,0) N Ey ) < vi (k) + €.
(Ra(Qr(p, )N

Let p,q € Eq g be such that #(Qy(p, ¢)NA) > v} (k) —e. Then #
Ra(A)) = #(Qu(p, @) N A) > v (h) — .
Next we need to find the aria Aria(Ra(Qx(0,0)) N Eg,(a,3))- Note that

RulQu(0,0) = {(z,d,e) € G" | di] < 22 Jei < 5

On the other hand the two leaves are parametrized as: E, g = {(ta, s8) | t,s €
R} and respectively Eg,(q,8) = {(tp,sv) | t,s € R} for (u,v) = Ra(a, B3). We
obtain:

Set; = Qn(0,0) N Ey g = {(2,ta, sB) ; |t|< f ,| |<2IB

h

h
= Ila ) E,,= s L, ) EYNE 52
Sety = Ra(Qr(0,0))NE, , ={(z,tu,sv); |t| < 2, |s| < 5,

}

Therefore the measures are:

. 18]
Aria(Sety) = hZL

' e 1o 181l
[mun - |v]

Aria Set = h27
(Setz) = A - 18T

On the other hand:

Dy (a) - Aria(Setz) > #(Ra(Qn(p,9)) N Ra(A))
= #(@Qu(p,9)NA) > v{(h) —e > D¥(A)- Aria(Set1) - 2¢

which implies:

+lal- 18]

s prlal- 18l 2¢ llefl - 1Bl
Al - ]

D+
() = Mul -l B2 a1

; Vh = DR(A) D

Similarly D} > D}, ) % (considering Ra(a™?!) for instance). Also a similar
argument holds for Dy and Dp ) as well. Hence we obtain the following
equalities:

Dy a) =

a8l - _palld
S R I A I P

(4)
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If A has uniform density, i.e. DX‘ = D}, then we obtain:

_ o] - B
D(Ra(A)) - D(A) |/J'| . |1/| (5)
and in terms of redundancies:
_ D@B.(A) _PWEER Dy
) = DRt~ iy W

where we have used y - v = a - 3. This ends the proof. O
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