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Abstract

We will construct new classes of Parseval frames for a Hilbert space which allow signal reconstruction from the
absolute value of the frame coefficients. As a consequence, signal reconstruction can be done without using phase
or its estimation. This verifies a longstanding conjecture of the speech processing community.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Reconstruction of a signal using noisy phase or its estimation can be a critical problem in speech
recognition technology. But, for many years, engineers have believed that speech recognition should be
independent of phase. By constructing new classes of Parseval frames for a Hilbert space, we will show
that this allows reconstruction of a signal without using noisy phase or its estimation. This verifies the
longstanding conjecture of the speech processing community.

Frames are redundant systems of vectors in a Hilbert spaces. They satisfy the well-known property
of perfect reconstruction, in that any vector of the Hilbert space can be synthesized back from its inner
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products with the frame vectors. More precisely, the linear transformation from the initial Hilbert space
to the space of coefficients obtained by taking the inner product of a vector with the frame vectors is
injective and hence admits a left inverse. This property has been successfully used in a broad spectrum
of applications, including Internet coding, multiple antenna coding, optics, quantum information theory,
signal/image processing, and much more. The purpose of this paper is to study what kind of reconstruc-
tion is possible if we only have knowledge of the absolute values of the frame coefficients.

In this paper we consider only finite-dimensional frames the reason being their direct link to practical
applications. Since the same question can be raised for infinite-dimensional frames, we state the problem
in the setting of abstract frames.

Consider a Hilbert space H with scalar product 〈 , 〉. A finite or countable set of vectors F = {fi; i ∈ I}
of H is called a frame if there are two positive constants A,B > 0 such that for every vector x ∈ H ,

A‖x‖2 �
∑
i∈I

∣∣〈x,fi〉
∣∣2 � B‖x‖2. (1.1)

The frame is tight when the constants can be chosen equal to one another, A = B . For A = B = 1, F is
called a Parseval frame. The numbers 〈x,fi〉 are called frame coefficients.

To a frame F we associate the analysis and synthesis operators defined by

T :H → l2(I), T (x) = {〈x,fi〉
}

i∈I
, (1.2)

T ∗ : l2(I) → H, T ∗(c) =
∑
i∈I

cifi, (1.3)

which are well defined due to (1.1), and are adjoint to one another. The range of T in l2(I) is called
the range of coefficients. The frame operator defined by S = T ∗T :H → H is invertible by (1.1) and
provides the perfect reconstruction formula:

x =
∑
i∈I

〈x,fi〉S−1fi. (1.4)

For more information on frames we refer the reader to [6].
Consider now the nonlinear mapping

Ma :H → l2(I), Ma(x) = {∣∣〈x,fi〉
∣∣}

i∈I
(1.5)

obtained by taking the absolute value entrywise of the analysis operator. Let us denote by Hr the quotient
space Hr = H/ ∼ obtained by identifying two vectors that differ by a constant phase factor: x ∼ y if
there is a scalar c with |c| = 1 so that y = cx. For real Hilbert spaces c can only be +1 or −1, and
thus Hr = H/{±1}. For complex Hilbert spaces c can be any complex number of modulus one, c = eiϕ ,
and then Hr = H/T1, where T1 is the complex unit circle. In quantum mechanics these projective rays
define quantum states (see [16]). Clearly two vectors of H in the same ray would have the same image
through Ma . Thus the nonlinear mapping Ma extends to Hr as

M :Hr → l2(I), M(x̂) = {∣∣〈x,fi〉
∣∣}

i∈I
, x ∈ x̂. (1.6)

The problem we study in this paper is the injectivity of the map M. When it is injective, M admits a left
inverse, meaning that any vector (signal) in H can be reconstructed up to a constant phase factor from
the modulus of its frame coefficients.



R. Balan et al. / Appl. Comput. Harmon. Anal. 20 (2006) 345–356 347
The motivation for this problem comes from two applications in signal processing, one concerning
noise reduction, and the other regarding speech recognition. There is also a connection with a problem
in optics that we describe later.

The traditional method of signal enhancement consists of three steps: first, the input signal is linearly
transformed from its input domain (e.g., time, or space) into a transformed domain (e.g., time–frequency,
time–scale, space–scale, etc.); second, a (nonlinear) estimation operator is applied in this representation
domain; third, a (left) inverse of the linear transformation at step one is applied to the signal obtained at
step two in order to synthesize the estimated signal in the input domain. Several linear transformations
have been proposed in the literature and are used in practice, e.g., windowed Fourier transform, wavelet
filterbanks, local cosine basis, etc. (see [9,18]). Likewise, many signal estimators have been proposed and
studied in the literature, some of them statistically motivated, e.g., Wiener (MMSE) filter, maximum a
posteriori (MAP), maximum likelihood (ML), etc., others having a rather ad hoc motivation, e.g., spectral
subtraction, psychoacoustically motivated audio and video estimators, etc. For more details see [1,8,17]
and many other books on this topic. By way of an example let us consider the Ephraim–Malah noise
reduction method [7] of speech signals. Let {x(t), t = 1,2, . . . , T } be the samples of a speech signal.
These samples are first transformed into the time–frequency domain through the fast Fourier transform,

X(k,ω) =
M−1∑
t=0

g(t)x(t + kN)e−2πiω t
M , k = 0,1, . . . ,

T − M

N
, (1.7)

ω ∈ {0,1, . . . ,M − 1}, where g is the analysis window, and M,N are respectively the window size, and
the time step. Next a complicated nonlinear transformation is applied to |X(k,ω)| to produce the MMSE
estimate of the short-time spectral amplitude

Y (k,ω) =
√

π

2

√
v(k,ω)

γ (k,ω)
exp

(
−v(k,ω)

2

)[(
1 + v(k,ω)

)
I0

(
v(k,ω)

2

)

+ v(k,ω)I1

(
v(k,ω)

2

)]∣∣X(k,ω)
∣∣, (1.8)

where I0, I1 are modified Bessel functions of zero and first order, and v(k,ω), γ (k,ω) are estimates of
certain signal-to-noise ratios. The speech signal windowed Fourier coefficients are estimated simply by

X̂(k,ω) = Y (k,ω)
X(k,ω)

|X(k,ω)| (1.9)

and then are transformed back into time domain through an overlap-add procedure

x̂(t) =
∑

k

M−1∑
ω=0

X̂(k,ω)e2πiω t−kN
M h(t − kN), (1.10)

where h is the synthesis window. This example illustrates a feature that is common to most signal en-
hancement algorithms: the nonlinear estimation in the representation domain modifies only the amplitude
of the transformed signal, and keeps its noisy phase. In some applications, such as speech recognition,
reconstruction with noisy phase is a critical problem. The optimal solution to this problem would occur
if we do not need the phase at all to perform reconstruction into the input domain. This paper addresses
exactly this issue.
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Consider now the problem of automatic speech recognition (ASR) systems. Given a voice signal
{x(t), t = 1,2, . . . , T }, the ASR outputs a sequence of recognized phonemes from an alphabet. Most
ASR systems use different kinds of cepstral coefficient statistics (see [5,15]) as described next. The voice
signal is transformed into the time–frequency domain by the same discrete windowed Fourier transform
(1.7). The (real) cepstral coefficients Cx(k,ω) are defined as the logarithm of the modulus of X(k,ω):

Cx(k,ω) = log
(∣∣X(k,ω)

∣∣). (1.11)

There are two rationales for using this object. First note the recorded signal x(t) is a convolution of the
voice signal s(t) with the source-to-microphone (channel) impulse response h. In the time–frequency
domain, convolution becomes (almost) multiplication, and the cepstral coefficients decouple,

Cx(k,ω) = log
(∣∣H(ω)

∣∣) + Cs(k,ω), (1.12)

where H(ω) is the channel transfer function, and Cs is the voice signal cepstral coefficient. Since the
channel transfer function is time-invariant, by subtracting the time average we obtain

Fx(k,ω) = Cx(k,ω) − E
[
Cx(·,ω)

] = Cs(k,ω) − E
[
Cs(·,ω)

]
, (1.13)

where E is the time average operator. Thus Fx encodes information about the speech signal alone, inde-
pendent of the reverberant environment.

The second reason for using Cx , and thus Fx , is the widespread belief in the speech processing com-
munity that phase does not matter in speech recognition. Hence, by taking the modulus in (1.11) one does
not lose information about the message (nor the messenger, as in some speaker identification algorithms).

Returning to the ASR system, the corrected cepstral coefficients Fx are fed into several hidden Markov
models (HMMs), one HMM for each phoneme. The outputs of these HMMs give the utterance likelihood
of a particular phoneme. The ASR system then chooses the phoneme with the largest likelihood.

In the two classes of signal processing algorithms described above the transformed domain signal
either has a secondary role, or has none whatsoever. This observation led us to consider the information
loss introduced by taking the modulus of a redundant representation. Clearly a constant phase is always
lost, however is this the only loss of information with respect to the original signal? This is the problem
we analyze in this paper.

There is also a closely connected problem in optics with applications to X-ray, crystallography, elec-
tron microscopy, and coherence theory see [4,10,11,14]. This problem is to reconstruct a discrete signal
from the modulus of its Fourier transform under constraints in both the original and the Fourier do-
main. For finite signals the approach uses the Fourier transform with redundancy 2. All signals with the
same modulus of the Fourier transform satisfy a polynomial factorization equation. In dimension one this
factorization has an exponential number of possible solutions. In higher dimensions the factorization is
shown to have generically a unique solution (see [13]).

The organization of the paper is as follows. Section 2 presents the analysis of real frames; Section 3
analyzes the case of complex frames.

2. Analysis of M for real frames

Consider the case H = R
N , and the index set I has cardinality M , I = {1,2, . . . ,M}. Then l2(I) 
 RM .

The set Gr(N,M;R) of N -dimensional linear subspaces of RM has the structure of an N(M − N)-
dimensional manifold called the Grassman manifold [19, p. 129]. The frame bundle F(N,M;R) is the
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GL(N,R)-bundle over Gr(N,M) defined as follows: the fiber of F(N,M;R) over a point of GL(N,R)

corresponding to an N -dimensional linear subspace W ⊂ R
M is the set of all possible bases for W .

For a frame F = {f1, . . . , fM} of R
N we denote by T the analysis operator,

T : RN → R
M, T (x) =

M∑
k=1

〈x,fk〉ek, (2.1)

where {e1, . . . , eM} is the canonical basis of R
M . We let W denote the range of the analysis map T (RN).

It is an N -dimensional linear subspace of R
M and thus corresponds to a point of the Grassman manifold

Gr(N,M). Two frames {fi}i∈I and {gi}i∈I are equivalent if there is an invertible operator T on H with
T (fi) = gi , for all i ∈ I . It is known that two frames are equivalent if and only if their associated analysis
operators have the same range (see [2,12]). We deduce that M-element frames on RN are parametrized
by the fiber bundle F(N,M;R).

Recall the nonlinear map we are interested in is

M
F : RN/{±1} → R

M, M
F (x̂) =

M∑
k=1

∣∣〈x,fk〉
∣∣ek, x ∈ x̂. (2.2)

When there is no danger of confusion, we shall drop F from the notation.
First we reduce our analysis to equivalent classes of frames:

Proposition 2.1. For any two frames F and G that have the same range of coefficients, M
F is injective

if and only if M
G is injective.

Proof. Any two frames F = {fk} and G = {gk} that have the same range of coefficients are equivalent,
i.e., there is an invertible R : RN → RN so that gk = Rfk , 1 � k � M . Their associated nonlinear maps
M

F , and respectively MG , satisfy MG(x) = MF (R∗x). This shows that MF is injective if and only if MG

is injective. Consequently the property of injectivity of M depends only on the subspace of coefficients
W in Gr(N,M). �

This result says that for two frames corresponding to two points in the same fiber of F(N,M;R),
the injectivity of their associated nonlinear maps would jointly hold true or fail. Because of this re-
sult we shall always assume the induced topology by the base manifold Gr(N,M) of the fiber bundle
F(N,M;R) into the set of M-element frames of RN .

If {fi}i∈I is a frame with frame operator S then {S−1/2fi}i∈I is a Parseval frame which is equivalent
to {fi}i∈I and called the canonical Parseval frame associated to {fi}i∈I . Also, {S−1fi}i∈I is a frame
equivalent to {fi}i∈I and is called the canonical dual frame associated to {fi}i∈I . Proposition 2.1 shows
that when the nonlinear map MF is injective then the same property holds for the canonical dual frame
and the canonical Parseval frame.

Given φ ⊂ {1, . . . ,M}, let φ(i) denote the characteristic function of φ defined by the rule that φ(i) = 1
if i ∈ φ and φ(i) = 0 if i /∈ φ. Define a map σφ : RM → RM by the formula

σφ(a1, . . . , aM) = (
(−1)φ(1)a1, . . . , (−1)φ(M)aM

)
.

Clearly σ 2
φ = id and σφ� = −σφ , where φ� is the complement of φ. Let Lφ denote the |φ|-dimensional

linear subspace of R
M where Lφ = {(a1, . . . , aM) | ai = 0, i ∈ φ}, and let Pφ : RM → Lφ denote the



350 R. Balan et al. / Appl. Comput. Harmon. Anal. 20 (2006) 345–356
orthogonal projection onto this subspace. Thus (Pφ(u))i = 0 if i ∈ φ, and (Pφ(u))i = ui if i ∈ φ�. For

every vector u ∈ RM , σφ(u) = u iff u ∈ Lφ . Likewise σφ(u) = −u iff u ∈ Lφ�
. Note

Pφ(u) = 1

2

(
u + σφ(u)

)
, Pφ�(u) = 1

2

(
u − σφ(u)

)
.

Theorem 2.2 (Real frames). If M � 2N − 1 then for a generic frame F , M is injective.

By generic we mean an open dense subset of the set of all M-element frames in R
N .

Proof. Suppose that x and x ′ have the same image under M = M
F . Let a1, . . . , aM be the frame co-

efficients of x and a′
1, . . . , a

′
M the frame coefficients for x ′. Then a′

i = ±ai for each i. In particular
there is a subset φ ⊂ {1, . . . ,M} of indices such that a′

i = (−1)φ(i)ai . Then two vectors x, x ′ have
the same image under M if and only there is a subset φ ⊂ {1, . . . ,M} such that (a1, . . . , aM) and
((−1)φ(1)a1, . . . , (−1)φ(M)aM) are both in W the range of coefficients associated to F .

To finish the proof we will show that when M � 2N − 1 such a condition is impossible for a generic
subspace W ⊂ R

N . This means that the set of such W ’s is a dense (Zariski) open set in the Grassmanian
Gr(N,M). In particular the probability that a randomly chosen W will satisfy this condition is 0.

To finish the proof of the theorem we need the following lemma.

Lemma 2.3. If M � 2N − 1 then the following holds for a generic N -dimensional subspace W ⊂ R
M .

Given u ∈ W , then σφ(u) ∈ W iff σφ(u) = ±u.

Proof of the lemma. Suppose u ∈ W and σφ(u) 
= ±u but σφ(u) ∈ W . Since σφ is an involution, u +
σφ(u) is fixed by σφ and is nonzero. Thus W ∩ Lφ 
= 0. Likewise

0 
= u − σφ(u) = u + σφ�(u).

Hence W ∩ Lφ� 
= 0.
Now Lφ and Lφc

are fixed linear subspaces of dimension M − |φ| and |φ|. If M � 2N − 1 then one
of these subspaces has codimension greater than or equal to N . However a generic linear subspace W of
dimension N has 0 intersection with a fixed linear subspace of codimension greater than or equal to N .
Therefore, if W is generic and x,σφ(x) ∈ W then σφ(x) = ±x which ends the proof of lemma. �

The proof of the theorem now follows from the fact that if W is in the intersection of generic condi-
tions imposed by the proposition for each subset φ ⊂ {1, . . . ,M} then W satisfies the conclusion of the
theorem. �

Note what the above proof actually shows:

Corollary 2.4. The map M is injective if and only if whenever there is a nonzero element u ∈ W ⊂ R
M

with u ∈ Lφ , then W ∩ Lφ� = {0}.
Next we observe that this result is best possible.

Proposition 2.5. If M � 2N − 2, then the result fails for all M-element frames.
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Proof. Since M � 2N − 2, we have that 2M − 2N + 2 � M . Let (ei)
M
i=1 be the canonical orthonormal

basis of R
M . We can write (ei)

M
i=1 = (ei)

k
i=1 ∪ (ei)

M
i=k+1, where both k and M − k are � M − N + 1.

Let W be any N -dimensional subspace of R
M . Since dim W⊥ = M −N , there exists a nonzero vector

u ∈ span{ei}ki=1 so that u ⊥ W⊥, hence u ∈ W . Similarly, there is a nonzero vector v in span {ei}Mi=k+1 with
v ⊥ W⊥, that is v ∈ W . By the above corollary, M cannot be injective. In fact M(u+v) = M(u−v). �

The next result gives an easy way for frames to satisfy the condition above.

Corollary 2.6. If F is an M-element frame for R
N with M � 2N − 1 having the property that every

N -element subset of the frame is linearly independent, then M is injective.

Proof. Given the conditions, it follows that W has no elements which are zero in N coordinates and so
the corollary holds. �
Corollary 2.7. (1) If M = 2N − 1, then the condition given in Corollary 2.6 is also necessary.

(2) If M � 2N , this condition is no longer necessary.

Proof. (1) For the first part we will prove the contrapositive. Let M = 2N − 1 and assume there
is an N -element subset (fi)i∈φ of F which is not linearly independent. Then there is a nonzero
x ∈ (span(fi)i∈φ)⊥ ⊂ R

N . Hence, 0 
= u = T (x) ∈ Lφ ∩W . On the other hand, since dim(span(fi)i∈φ�) �
N − 1, there is a nonzero y ∈ (span(fi)i∈φ�)⊥ ⊂ R

N so that 0 
= v = T (y) ∈ Lφ� ∩ W . Now, by Corol-
lary 2.4, M is not injective.

(2) If M � 2N we construct an M-element frame for R
N that has an N -element linearly dependent

subset. Let F ′ = {f1, . . . , f2N−1} be a frame for RN so that any N -element subset is linearly independent.
By Corollary 2.4, the map MF ′

is injective. Now extend this frame to F = {f1, . . . , fM} by f2N = · · · =
fM = f2N−1. The map MF extends MF ′

and therefore remains injective, whereas clearly any N -element
subset that contains two vectors from {f2N−1, f2N, . . . , fM} is no longer linearly independent. �
Remark. The frames above can easily be constructed “by hand.” Start with an orthonormal basis for RN ,
say (fi)

N
i=1. Assume we have constructed sets of vectors (fi)

M
i=1 such that every subset of N vectors is

linearly independent. Look at the span of all of the (N − 1)-element subsets of (fi)
M
i=1. Pick fM+1 not in

the span of any of these subsets. Then (fi)
M+1
i=1 has the property that every N -element subset is linearly

independent.

Now we will give a slightly different proof of this result which gives necessary and sufficient condi-
tions for a frame to have the required properties.

Theorem 2.8. Let (fi)
M
i=1 be a frame for RN . The following are equivalent:

(1) The map M is injective.
(2) For every subset φ ⊂ {1,2, . . . ,M}, either {fi}i∈φ spans RN or {fi}i∈φc spans RN .

Proof. (1) ⇒ (2) We prove the contrapositive. So assume that there is a subset φ ⊂ {1,2, . . . ,M} so
that neither {fi; i ∈ φ} nor {fi; i ∈ {φ�} spans RN . Hence there are nonzero vectors x, y ∈ RN so that
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x ⊥ span(fi)i∈φ and y ⊥ span(fi)i∈φ� . Then 0 
= T (x) ∈ LS ∩ W and 0 
= T (y) ∈ Lφ� ∩ W . Now by
Corollary 2.4 we have that M cannot be injective.

(2) ⇒ (1) Suppose M(x̂) = M(ŷ) for some x̂, ŷ ∈ RN/{±1}. This means that for every 1 � j � M ,
|〈x,fj 〉| = |〈y,fj 〉|, where x ∈ x̂ and y ∈ ŷ. Let

φ = {
j : 〈x,fj 〉 = −〈y,fj 〉

}
. (2.3)

Note

φ� = {
j : 〈x,fj 〉 = 〈y,fj 〉

}
. (2.4)

Now, x + y ⊥ span(fi)i∈φ and x − y ⊥ span(fi)i∈φ� . Assume that {fi; i ∈ φ} spans RN . Then x + y = 0

and thus x̂ = ŷ. If {fi; i ∈ φ�} spans R
N then x −y = 0 and again x̂ = ŷ. Either way x̂ = ŷ which proves

M is injective. �
For M < 2N −1 there are plenty of frames for which M is not injective. However, for a generic frame,

we can show the set of rays that can be reconstructed from the image under M is open dense in R
N/{±1}.

Theorem 2.9. Assume M > N . Then for a generic frame F ∈ F[N,M;R], the set of vectors x ∈ R
N so

that (MF )−1(MF
a (x)) consists of one point in RN/{±1} has dense interior in RN .

Proof. Let F be a M-element frame in RN . Then F is similar to a frame G which consists of the union of
the canonical basis of R

N , {d1, . . . , dN }, with some other set of M −N vectors. Let G = {gk; 1 � k � M}.
Thus gkj

= dj , 1 � j � N , for some N elements {k1, k2, . . . , kN } of {1,2, . . . ,M}. Consider now the set
B of frames F so that its similar frame G constructed above has a vector gk with all entries nonzero,

B =
{
F ∈ F[N,M;R] | F ∼ G = {gk}, {d1, . . . , dN } ⊂ G,

N∏
j=1

〈gk0, dj 〉 
= 0 for some k0

}
.

Clearly B is open dense in F[N,M;R]. Thus generically F ∈ B. Let G be its similar frame satisfying
the condition above. We want to prove the set X = XF of vectors x ∈ RN so that (MG)−1(MG

a (x)) has
more than one point is thin, i.e., it is included in a set whose complement is open and dense in R

N . We
claim X ⊂ ⋃

φ(V +
φ ∪ V −

φ ), where (V ±
φ )φ⊂{1,2,...,N} are linear subspaces of RN of codimension 1 indexed

by subsets φ of {1,2, . . . ,N}. This claim will conclude the proof of theorem.
To verify the claim, let x, y ∈ R

N be so that M
G
a (x) = M

G
a (y) and yet x 
= y, nor x 
= −y. Since G

contains the canonical basis of R
N , |xk| = |yk| for all 1 � k � N . Then there is a subset φ ⊂ {1,2, . . . ,N}

so that yk = (−1)φ(k)xk . Note φ 
= ∅, nor φ 
= {1,2, . . . ,N}. Denote by Dφ the diagonal N × N matrix
(Dφ)kk = (−1)φ(k). Thus y = Dφx, and yet Dφ 
= ±I . Let gk0 ∈ G be so that none of its entries vanishes.
Then |〈x,gk0〉| = |〈y,gk0〉| implies〈

x, (I ± Dφ)gk0

〉 = 0.

This proves the set XG is included in the union of 2(2N − 2) linear subspaces of codimension 1,⋃
φ 
=∅,φ� 
=∅

{
(I − Dφ)gk0

}⊥ ∪ {
(I + DS)gk0

}⊥
.

Since F is similar to G, XF is included in the image of the above set through a linear invertible map,
which proves the claim. �
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3. Analysis of M for complex frames

In this section the Hilbert space is CN . For an M-element frame F = {f1, . . . , fM} of C
N the analysis

operator is defined by (2.1), where the scalar product is 〈x, y〉 = ∑N
k=1 xkyk . The range of coefficients,

i.e., the range of the analysis operator, is a complex N -dimensional subspace of C
M that we denote

again by W . Thus a frame determines a point of the complex Grassmanian Gr(N,M)C parametrizing
N -dimensional complex subspaces of CN . As in the real case, the set of M-frames of C

N is parametrized
by points of the fiber bundle F(N,M;C), the GL(N,C)-bundle over Gr(N,M)C.

The nonlinear map we are studying is given by

M
F : CN/T

1 → C
M, M

F (x̂) =
M∑

k=1

∣∣〈x,fk〉
∣∣ek, x ∈ x̂, (3.1)

where two vectors x, y ∈ x̂ if there is a scalar c ∈ C with |c| = 1 so that y = cx.
Proposition 2.1 holds true for complex frames as well. Thus without loss of generality we shall work

with the topology induced by the base manifold of F(N,M;C) into the set of M-element frames of C
N .

As in the real case we reduce the question about M-element frames in CN to a question about the
Grassmanian of N -planes in C

M .
First we prove the following:

Theorem 3.1. If M � 4N −2 then the generic N -plane W in C
M has the property that if v = (v1, . . . , vM)

and w = (w1, . . . ,wM) are vectors in W such that |vi | = |wi | for all i, then v = λw for some complex
number λ of modulus 1.

Proof. We will say that an N -plane W has property (∗) if there are nonparallel vectors v,w in W such
that |vi | = |wi | for all i. Recall two vectors x, y are parallel if there is a scalar c ∈ C so that y = cx.

Given an N -plane W , we may assume, after reordering the coordinates on C
M , that W is the span of

the rows of an N × M matrix of the form⎡
⎢⎢⎣

1 0 . . . 0 uN+1,1 . . . uM,1

0 1 . . . 0 uN+1,2 . . . uM,2
...

...
...

...
...

...
...

0 0 . . . 1 uN+1,N . . . uM,N

⎤
⎥⎥⎦ ,

where the N(M − N) entries {ui,j } are viewed as indeterminates. Thus Gr(N,M)C is isomorphic to
CN(M−N) in a neighborhood of W .

Now suppose that W satisfies (∗) and v and w are two nonparallel vectors whose entries have the
same modulus. Our choice of basis for W ensures that one of the first N entries in v (and hence w) are
nonzero. Since we only care about these vectors up to rescaling we may assume, after reordering, that
v1 = w1 = 1. Also the vectors are assumed nonparallel so we may assume that vi 
= wi 
= 0 for some
i � N . After yet again reordering we can assume that v2 
= w2 
= 0.

Set λ1 = 1. By assumption there are numbers λ2, . . . , λM ∈ T1 with λ2 
= 1 such that wi = λivi for
i = 1, . . . ,M . Expanding in terms of the basis for W we have for i > N , vi = ∑N

vjui,j and wi =
j=1
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∑N
j=1 λjvjui,j . Thus if W satisfies (∗) there must be λ2, . . . , λN ∈ T1 (with λ2 
= 1) and v2, . . . , vN ∈ C

such that for all N + 1 � i � M we have∣∣∣∣∣
N∑

j=1

vjui,j

∣∣∣∣∣ =
∣∣∣∣∣

N∑
j=1

λjvjui,j

∣∣∣∣∣. (3.2)

Consider the variety Y of all tuples

(W,v2, . . . , vN,λ2, . . . , λN)

as above. Since v2 
= 0 and λ2 
= 1 this variety is locally isomorphic to the real (2N(M − N) + 3N − 3)-
dimensional variety

C
N(M−N) × (

C � {0}) × (C)N−2 × (
T

1
� {1}) × (

T
1
)N−2

.

The locus in Gr(N,M)C of planes satisfying property (∗) is denoted by X. This variety is the image
under projection to the first factor of Y cut out by the M − N equations (3.2) for N + 1 � i � M . The
analysis of these equations is summarized by the following result.

Lemma 3.2. The M − N equations in (3.2) are independent. Hence X is a variety of real dimension at
most 2N(M − N) + 3N − 3 − (M − N).

Proof of Lemma 3.2. For any choice of 0 
= v2, v3, . . . , vN and 1 
= λ2, λ3, . . . , λN the equation∣∣∣∣∣
M∑

j=1

vjui,j

∣∣∣∣∣
2

=
∣∣∣∣∣

M∑
j=1

λjvjui,j

∣∣∣∣∣
2

is nondegenerate. Since the variables ui,1, . . . , ui,N appear in exactly one equation, these equations (for
fixed v2, v3, . . . , vN,λ2, . . . , λN ) define a subspace of CN(M−N) of real codimension at least M −N . Since
this is true for all choices, it follows that the equations are independent. �

From this lemma it follows that the locus of N -planes satisfying (∗) has (local) real dimension
2N(M − N) + 3N − 3 − (M − N). Therefore if 3N − 3 − (M − N) < 0, i.e., if M � 4N − 2, this
locus cannot be all of Gr(N,M)C. This ends the proof of Theorem 3.1. �

The main result in the complex case then follows from Theorem 3.1.

Theorem 3.3 (Complex frames). If M � 4N − 2 then MF is injective for a generic frame F =
{f1, . . . , fN }.

Lemma 3.2 yields the following result.

Theorem 3.4. If M � 2N then for a generic frame F ∈ F[N,M;C] the set of vectors x ∈ C
N such that

(MF )−1(MF
a (x)) has one point in CN/T1 has dense interior in CN .

Proof. By Lemma 3.2, for a generic frame the M − N equations (3.2) in 2(N − 1) indeterminates
(v2, . . . , vN,λ2, . . . , λN) are independent. Note there are 3(N − 1) real valued unknowns and M − N
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equations. Hence the set of {(v2, . . . , vN)} in CN−1 for which there are (λ2, . . . , λN) such that (3.2) has
solution in (C � {0}) × (C)N−2 × (T1

� {1}) × (T1)N−2 has real dimension at most 3(N − 1) − (M −
N) = 4N − 3 − M . For M � 2N it follows 3(N − 1) − (M − N) < 2(N − 1) which shows the set of
v = (v1, . . . , vN) such that (MF )−1(MF

a (v)) has more than one point is thin in CN , i.e., its complement
has dense interior. �

We do not know the precise optimal bound for the complex case but we believe it is 4N − 2. However,
this case is different from the real case in that complex frames with only 2N − 1 elements cannot have
M

F injective. To see this we observe that the proof of Theorem 2.8 (1) ⇒ (2) does not use the fact that
the frames are real. So in the complex case we have:

Proposition 3.5. If {fj }j∈I is a complex frame and MF is injective, then for every φ ⊂ {1,2, . . . ,M} if
Lφ ∩ W 
= {0} then Lφc ∩ W = {0}. Hence, for every such φ, either {fj }j∈φ or {fj }j∈φc spans H .

Now we can show that complex frames must contain at least 2N elements for M
F to be injective.

Proposition 3.6 (Complex frames). If M
F is injective then M � 2N .

Proof. We assume that M = 2N − 1 and show that in this case M
F is not injective. Let {zj }Nj=1 be

a basis for W and let P be the orthogonal projection onto the first N − 1 unit vectors in CM . Then
{Pzj }Nj=1 sits in an (N − 1)-dimensional space and so there are complex scalars {aj }N−1

j=1 , not all zeros,
so that

∑
ajP zj = 0. That is, there is a vector 0 
= y ∈ W with support y ⊂ {N,N + 1, . . . ,2N − 1}.

Similarly, there is a vector 0 
= x ∈ W with support x ⊂ {1,2, . . . ,N}. If x(N) = 0 or y(N) = 0 we
contradict Proposition 3.4. Also, if x(i) = 0 for all i < N , then (y − cx)(N) = 0 for c = y(N) x(N)

|x(N)|2 .
Now, x, y − cx are in W and have disjoint support so our map is not injective. Otherwise, let

z = x(N)

|x(N)|2 , w = i
y(N)

|y(N)|2 .

Now, z,w ∈ W and z(N) = 1 and w(N) = i. Hence, |z +w| = |z −w|. It follows that there is a complex
number |c| = 1 so that z + w = c(z − w). Since zi 
= 0 for some i < N we have that c = 1 and w = 0
which is a contradiction. �

4. Implementation of these results

For these results to be widely applied they need to run on existing software with only trivial modifica-
tions. So there are two critical issues that need to be addressed for implementation of signal reconstruction
without phase. (1) Find Gabor frames which work in this setting—so we can use the fast Fourier
transform for digitalizing the signal. (2) Find efficient reconstruction algorithms—preferably algorithms
which are close to the inverse fast Fourier transform. These two problems are the focus of current research
on this topic [3]. It appears at this time that small frames near the threshold of our results ((2N − 1) el-
ements in the real case and (4N − 2) elements in the complex case) may require exponential time for
reconstruction. However, it is shown in [3] that generic frames with N2-elements give polynomial time
reconstruction (on the order of at most N6 calculations). In [3] there are some special classes of frames



356 R. Balan et al. / Appl. Comput. Harmon. Anal. 20 (2006) 345–356
with N2 elements which have extremely efficient algorithms for reconstruction in N calculations (2N in
the complex case).
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