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Abstract The goal of this paper is to develop fast algorithms for signal reconstruc-
tion from magnitudes of frame coefficients. This problem is important to several areas
of research in signal processing, especially speech recognition technology, as well as
state tomography in quantum theory. We present linear reconstruction algorithms for
tight frames associated with projective 2-designs in finite-dimensional real or com-
plex Hilbert spaces. Examples of such frames are two-uniform frames and mutually
unbiased bases, which include discrete chirps. The number of operations required for
reconstruction with these frames grows at most as the cubic power of the dimension
of the Hilbert space. Moreover, we present a very efficient algorithm which gives
reconstruction on the order of d operations for a d-dimensional Hilbert space.
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1 Introduction

This paper is concerned with the question of reconstructing a vector in a finite-
dimensional real or complex Hilbert space when only the magnitudes of the coef-
ficients of the vector under a linear map are known.

A previous paper [2] described the importance of this problem to signal process-
ing, in particular to the analysis of speech. Surprisingly, the same problem appears
in a slightly different guise under the name of state tomography in quantum theory
[32, 33]. A pure quantum state is given by a rank-one projection on a finite-
dimensional Hilbert-space, or equivalently, by the vectors in the range of this projec-
tion. A state is experimentally accessible only through the magnitudes of its Hilbert-
Schmidt inner products with other states. These inner products of projections can be
interpreted as the squared magnitudes of the inner products of corresponding nor-
malized vectors in the respective range of the projections. Thus, reconstructing a
pure quantum state is the same as finding a vector, up to a unimodular constant, from
the magnitudes of linear transform coefficients. However, in contrast to a primary
goal of quantum state tomography, which consists of minimizing the number of inner
products to be measured [17, 18], we aim at a reconstruction algorithm that scales
optimally with the dimension of the Hilbert space.

Of particular interest is the case when the coefficients of the unknown vec-
tor are obtained from a Windowed Fourier Transform (also known as Short-Time
Fourier Transform), or an Undecimated Wavelet Transform (in audio and image sig-
nal processing). While [2] presents some necessary and sufficient conditions for re-
construction, the general problem of finding fast/efficient algorithms is wide open.
For vectors in real Hilbert spaces, this is easily shown to be equivalent to a combina-
torial problem. In [3] this problem is further proved to be equivalent to a (nonconvex)
optimization problem. The case when the coefficients are obtained with the Discrete
Fourier Transform (DFT) was widely studied in engineering literature during ’70s
and ’80s. In particular, for the DFT of redundancy 2 (or higher), the reconstruction
problem is shown to be solved by a spectral factorization problem of a para-hermitian
polynomial (see [21]). Unfortunately, this result does not yield a simple algorithm to
solve the problem. Instead, [30] proposes a simple algorithm to reconstruct the data
vector when a redundant, windowed Fourier transform is used, which encodes a d-
dimensional vector linearly in d2 coefficients.

Using a completely different approach in this paper we obtain a simple algorithm
which, interestingly enough, requires also a N = d2 linear coefficients in the complex
case and N = d(d + 1)/2 in the real case. Our approach is based on the concept of a
projective t-design which originated in the context of combinatorial designs [31] (see
also [22, 29]). Given an N/d-tight frame F = {f1, f2, . . . , fN } such that the projec-
tions onto the lines spanned by the frame vectors form a projective 2-design in P H,
we obtain a linear reconstruction algorithm of a vector x ∈ H, up to a unimodular
constant. Based on this result, we construct explicit examples of frames that yield
linear or quasi-linear reconstruction algorithms. The organization of the paper is as
follows. Section 2 contains basic notations and definitions. Section 3 presents the pro-
jective t-design approach to the reconstruction problem. In Sect. 4 the reconstruction
algorithm for mutually unbiased bases is presented, whereas Sect. 5 presents other
types of frames which yield fast reconstruction.
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2 Preliminaries

Definition 2.1 Let H be a d-dimensional real or complex Hilbert space. A finite
family of vectors {f1, f2, . . . , fN } is called an A-tight frame, with frame constant
A > 0, if all x ∈ H can be reconstructed from the sequence of frame coefficients
{〈x,fj 〉}Nj=1 according to

x = 1

A

N∑

j=1

〈x,fj 〉fj .

If there is b > 0 such that ‖fj‖ = b for all j ∈ {1,2, . . . ,N}, then we call this family
a uniform A-tight frame. Such frames are also called equal-norm tight frames.

Choosing an orthonormal basis {ek}dk=1 in H and equating

d =
d∑

k=1

‖ek‖2 = 1

A

N∑

j=1

d∑

k=1

|〈ek, fj 〉|2 = 1

A

N∑

j=1

‖fj‖2

shows that the constant norm b for uniform A-tight frames in Definition 2.1 is given
by

b =
√

Ad

N
.

The uniform N/d-tight frames used in the latter part of this paper have the prop-
erty that the magnitudes of the inner products between frame vectors form a small
set. If this set has size one, we call the frame 2-uniform [6, 24]. Such tight frames are
also known as equiangular frames [28, 34–36].

Definition 2.2 A family of vectors F = {fj }Nj=1 is said to form a 2-uniform A-tight
frame if it is uniform and if there is c > 0 such that for all pairs of frame vectors fj

and fk , j �= k, we have |〈fj , fk〉| = c.

Equating

d =
d∑

k,l=1

|〈ek, el〉|2 = 1

A2

N∑

j,j ′=1

d∑

k,l=1

〈ek, fj 〉〈fj , el〉〈el, fj ′ 〉〈fj ′ , ek〉

= 1

A2

N∑

j,j ′=1

|〈fj , fj ′ 〉|2

and using the explicit value for the square-norms ‖fj‖2 = Ad
N

, j ∈ {1,2, . . . ,N},
shows that the constant c in Definition 2.2 is given by

c = A

N

√
d(N − d)

N − 1
.
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The following proposition bounds the number of vectors in a tight 2-uniform
frame. The real case appears in a work by Lemmens and Seidel [28, Theorem 3.5]
who attribute the result to Gerzon. The proof generalizes painlessly to complex
Hilbert spaces.

Proposition 2.3 (Gerzon) The possible number of vectors in a tight 2-uniform frame
on a d-dimensional Hilbert space H is bounded. In the case of a real H, N ≤ d(d +
1)/2, in the complex case, N ≤ d2.

Proof The proof presented here is a variation of an argument used by [4] to show an
analogous bound for mutually unbiased bases.

Given a two-uniform N/d-tight frame {f1, f2, . . . , fN } for a complex H, then
there exists a Hilbert-Schmidt orthogonal system of frame modulations {Mj }Nj=1 de-
fined by

Mk =
N∑

j=1

ωkjPj ,

with ω a primitive N -th root of unity and Pj the orthogonal projection onto the line
spanned by the vector fj . If H is real, then one takes the real and imaginary parts
of Mk to define real frame modulations. Since the frame modulations are orthogo-
nal, linear combinations of rank-one projections, their span has dimension N and is
contained in the span of all rank-one projections. The vector space obtained from all
rank-one projections is the space of Hermitian operators in the real case and the space
of all operators in the complex case (because any operator is the sum of a Hermitian
and an anti-Hermitian). The space of Hermitian operators on a real Hilbert space has
dimension d(d + 1)/2 and the space of all operators on a complex Hilbert space has
dimension d2. We conclude that the dimension of the span of the operators {Pj }Nj=1
can be at most d(d + 1)/2 or d2 in the real or complex case, respectively. �

It is a deep open problem in frame theory to show that the upper bound stated
in Proposition 2.3 is attained for any finite-dimensional complex Hilbert space. For
examples of such frames, see [1, 6, 19, 24, 37]. We cite a minimal example for a
two-dimensional real or complex Hilbert space.

Example 2.4 Let {e1, e2} denote the canonical basis for either R
2 or C

2.
We first consider the Hilbert space R

2. Let R be the rotation matrix such that
R3 = I and R �= I . Choose f1 = e1, f2 = Re1 and f3 = R2e1. Then {f1, f2, f3}
is a 2-uniform 3/2-tight frame with |〈fi, fj 〉| = 1/2 for i �= j . This frame is also
informally called the Mercedes-Benz frame.

For the case of C
2, we introduce the unitary Pauli matrices X = ( 0 1

1 0

)
and Z =( 1 0

0 −1

)
.

Let f1 = αe1 + βe2 where α =
√

1
2 (1 − 1√

3
) and β = e( 5π

4 )i
√

1
2 (1 + 1√

3
), and let

f2 = Xf1, f3 = Zf1, f4 = XZf1. Then {f1, . . . , f4} is a 2-uniform 2-tight frame
with |〈fi, fj 〉| = 1√

3
for all i �= j .
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Another type of frame we will use is obtained from a number of bases for a Hilbert
space which are chosen in such a way that, between basis vectors belonging to dif-
ferent bases, their inner products have a fixed magnitude.

Definition 2.5 Let H be a real or complex Hilbert space. A family of vectors {e(j)
k }

in H indexed by k ∈ K = {1,2, . . . , d} and j ∈ J = {1,2, . . . ,m} is said to form m

mutually unbiased bases if for all j, j ′ ∈ J and k, k′ ∈ K the magnitude of the inner

product between e
(j)
k and e

(j ′)
k′ is given by

|〈e(j)
k , e

(j ′)
k′ 〉| = δk,k′δj,j ′ + 1√

d
(1 − δj,j ′),

where Kronecker’s δ symbol is one when its indices are equal and zero otherwise.

Proposition 2.6 (Delsarte, Goethals and Seidel [16, 37]) There are at most m = d +1
mutually unbiased bases {e(j)

k : 1 ≤ j ≤ m,1 ≤ k ≤ d} in a d-dimensional complex
Hilbert space H.

Proof This can be seen by considering that the Hilbert space of operators on H
equipped with the Hilbert-Schmidt inner product has dimension d2. So the dimen-
sion of the span of the operators {E(j)

k }, each E
(j)
k being the self-adjoint rank-one

projection onto the span of e
(j)
k , can be at most d2. Now we consider the Gram matrix

Hj,k;j ′,k′ = tr[E(j)
k E

(j ′)
k′ ], which is of the form H = Im ⊗Id +(Jm ⊗Jd −Im ⊗Jd)/d ,

where Im and Id are the m × m and d × d identity matrix, respectively, and Jm and
Jd denote the m×m and d × d matrices containing only 1’s. The kernel of the Gram
matrix is identified as the space of vectors a ⊗ b such that Jdb = db and Jma = 0, so
it is m − 1-dimensional. Consequently, the rank of H and thus the dimension of the
span of {E(j)

k } is md − m + 1 ≤ d2, which implies m ≤ d + 1. �

Example 2.7 Let d be a prime number, ω a primitive d-th root of unity, and de-
note the canonical basis of C

d by {ek}dk=1. Then we identify e
(1)
k ≡ ek and for

j ∈ {2,3, . . . , d + 1} let

e
(j)
k = 1√

d

d∑

l=1

ω−(j−1)l2+klel .

This defines a family of d + 1 mutually unbiased bases that has been called the dis-
crete chirps [11, 23]. To verify that these bases are mutually unbiased, one simply
computes the square-modulus of inner products [15].

Remark 2.8 A similar construction applies when d is a power of a prime [37]. If
d is not prime, then the maximal number of mutually unbiased bases is generally
unknown [19]. In the real case, even in the case of prime dimensions, the construction
of maximal sets of mutually unbiased bases is even more difficult [7], but at least for
d a power of 4 this is possible [8, 14].
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3 Reconstruction of a Vector from Absolute Values of its Frame Coefficients

The motivation for this paper is to find a reconstruction formula for vectors in a
finite-dimensional Hilbert space H equipped with a frame {fj }Nj=1 such that only the

absolute values of the frame coefficients {〈x,fj 〉}Nj=1 are needed to determine each
vector x up to a unimodular constant. This is equivalent to the construction of the self-
adjoint rank-one operator Qx , given by Qxy = (y, x)x, y ∈ H from the magnitudes
of the frame coefficients. For this reason, our computations are mostly formulated in
terms of the projective space of H.

Definition 3.1 Let H be a finite-dimensional real or complex Hilbert space and de-
note by P H the projective space of H formed by all orthogonal rank-one projections
{P : P = P ∗P } on H. Equivalently, we can identify each projection by its range in
H and think of this projective space as the set of all one-dimensional subspaces of H.

The projective space P H is naturally embedded in the space X containing all self-
adjoint rank-one operators. We define the space of homogeneous kth degree polyno-
mials Hom(k) to consist of functions on X that can be expressed in the form

h : X 
→ tr[X⊗kH ],
with H an operator on H⊗k .

We denote by μ the probability measure on P H which is invariant under the con-
jugation of the projections with orthogonal matrices or unitaries in the real or complex
case, respectively.

A finite set X in P H is called a projective t-design [26], t ∈ {1,2, . . .}, if for every
homogeneous polynomial h ∈ Hom(k) of degree 0 ≤ k ≤ t , we have

∫

P H
hdμ = 1

|X|
∑

P∈X

h(P ),

where |X| denotes the size of the set X.

When restricted to P H, some homogeneous polynomials of different degree may
coincide. For our purposes, however, it is important that each harmonic polynomial
h ∈ Hom(1), which can be expressed with a traceless H , is orthogonal to the space of
constants, Hom(0). Therefore, such harmonic polynomials in Hom(1) are uniquely
determined by their restriction to P H. The following proposition demonstrates this
fact.

Proposition 3.2 Given a real or complex Hilbert space H, a 2-design X in P H, and
a traceless, self-adjoint operator H on H, then

H = λ

|X|
∑

P∈X

tr[HP]P,

where λ = d(d/2 + 1) in the real case and λ = d(d + 1) in the complex case.
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Proof This identity is equivalent to a set of identities obtained by taking the Hilbert-
Schmidt inner product of both sides with all traceless operators. By the polarization
identity, we then only need to prove that

1

λ
tr[H 2] = 1

|X|
∑

P∈X

|tr[HP]|2

holds for every traceless H . We observe that P 
→ |tr[HP]|2 = tr[H ⊗ HP ⊗ P ] is in
Hom(2) and that for a projective 2-design X,

1

|X|
∑

P∈X

tr[H ⊗ HP ⊗ P ] =
∫

P H
tr[H ⊗ HP ⊗ P ]dμ(P ).

The result is quadratic in H and invariant under conjugation of H with an orthogonal
or unitary matrix in the real or complex case, and therefore it has to be of the form
αtr[H ⊗ H ] + βtr[H 2]. Since H is traceless, α is irrelevant. In order to verify that
β = λ, we choose H = Qx − I/d with a normalized vector x ∈ H.

Then we conclude tr[H 2] = (1 − 1
d
)2 + (d − 1) 1

d2 = 1 − 1
d

and

|tr[HP]|2 = |tr[QxP ]|2 − 2

d
tr[QxP ] + 1

d2

= |〈Px,x〉|2 − 2

d
〈Px,x〉 + 1

d2
,

which integrates to
∫

P H
|tr[HP]|2dμ(P ) = d − 1

d2(d̃ + 1)
,

where d̃ = d/2 in the real case and d̃ = d in the complex case. This computation uses
Hoggar’s result [22, Theorem 2.11], which states that the measure μ on the projective
space induces under the map � : P 
→ 〈Px,x〉 the image measure m with dm(z) =
A(1 − z)d̃−1−d̃/dzd̃/d−1dz on [0,1], where A is chosen to normalize the measure.
Now we confirm that the result of the integration equals tr[H 2]/λ = (1 − 1

d
)/λ. �

Two known types of examples for projective 2-designs are a maximal equiangular
set of lines generated by 2-uniform tight frames and the set of lines generated by a
maximal set of mutually unbiased bases in H.

Example 3.3 Let H be a d-dimensional real or complex Hilbert space with a frame
F = {fj }Nj=1. For each frame vector fj , let Pj denote the orthogonal projection onto
the one-dimensional subspace containing fj . If the frame F is N/d-tight and 2-
uniform, and contains the maximal number of vectors, N = d(d + 1)/2 in the case of
a real Hilbert space H or N = d2 in the complex case, then the projections {Pj }Nj=1
form a projective 2-design [26].

If the frame F for a complex Hilbert space H is obtained from the union of d + 1
mutually unbiased bases, then it is a complex projective 2-design [26].
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With each x ∈ H, we associate the quadratic form qx on H, given by qx(y) =
|〈x, y〉|2, and the operator Qx corresponding to it, qx(y) = 〈Qxy,y〉 for all y ∈ H.
The following theorem gives a reconstruction formula for Qx that only depends on
the magnitudes of the frame coefficients when the frame F is associated with a pro-
jective 2-design. In the complex case, the reconstruction formula can be deduced
from a derivation by Scott [33, (10)], who examines the general case of complex
weighted 2-designs, and attributes these results to Levenshtein. Here, we consider
only uniformly weighted 2-designs, but include real and complex Hilbert spaces.

Theorem 3.4 (Levenshtein [27]) Let H be a d-dimensional real or complex Hilbert
space and F = {f1, f2, . . . , fN } a uniform N/d-tight frame such that the orthogonal
projections onto the one-dimensional subspaces containing the frame vectors form a
projective 2-design in P H. Given a vector x ∈ H with associated self-adjoint rank-
one operator Qx , then

Qx = λ

N

N∑

j=1

|〈x,fj 〉|2Qfj
− ν‖x‖2I,

where λ = d(d/2 + 1), ν = 1/2 in the real case and λ = d(d + 1), ν = 1 in the
complex case.

Proof By definition, the vectors {fj }Nj=1 all have unit norm, and each Qfj
is an

orthogonal projection contained in P H. Since the frame gives rise to a projective
2-design, the preceding proposition applies and we have

Qx = ‖x‖2I/d + λ

Nd

N∑

j=1

(d|〈x,fj 〉|2 − ‖x‖2)Qfj
.

Replacing the sum over the 2-design by an integral over P H, and using Hoggar’s
result [22, Theorem 2.11] again, 1

N

∑
j Qfj

= ∫
P H Pdμ(P ) = I/d simplifies this to

the claimed identity. �

Remark 3.5 With the help of the integral formula in the proof, we could re-state the
reconstruction identity as

Qx = λ

N

N∑

j=1

tr[QxQfj
]
(

Qfj
− νd

λ
I

)
.

By linearity, this holds also if Qx is replaced by a general operator on H if it is a
complex Hilbert space and by any self-adjoint operator if H is real. Since tr[QxQfj

]
is a Hilbert-Schmidt inner product, this reconstruction identity can be interpreted as
the statement that the operators {Qfj

}Nj=1 form a frame for the (sub)space in B(H)

spanned by rank-one projections and the set of operators { λ
N

(Qfj
− νdI/λ)}Nj=1 is a

dual frame.
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From a practical point of view, the above theorem gives an algorithm that allows
us to reconstruct x, up to an overall unimodular constant, by considering one non-
vanishing column of the matrix Qx . Thus, the computation requires only O(Nd)

operations. For the examples of maximal 2-uniform frames and mutually unbiased
bases that yield projective 2-designs, N is of order d2. This results in O(d3) opera-
tions required for reconstruction.

4 The Reconstruction Formula for Mutually Unbiased Bases

For the maximal family of mutually unbiased bases given by discrete chirps in a
complex Hilbert space of prime dimension, the reconstruction formula is especially
simple. We could immediately deduce the form from the fact that maximal families
of mutually unbiased bases are projective two-designs [26]. However, to keep our
exposition self-contained, we derive this special case of Theorem 3.4 with the help
of frame modulations.

Definition 4.1 Let H be a complex Hilbert space of dimension d . Let J =
{1,2, . . . , d + 1} and K = {1,2, . . . , d}. If the family of vectors {e(j)

k : j ∈ J, k ∈ K}
forms d + 1 mutually unbiased bases in H and ω is a primitive d-th root of unity,
then we denote

B
(j)
k = 1√

d

d∑

l=1

ωklP
(j)
l ,

where for each k ∈ K, j ∈ J, P
(j)
k is the rank-one orthogonal projection onto the span

of e
(j)
k .

Before we derive our algorithm for reconstruction using mutually unbiased bases,
we need to show that this class naturally defines an orthonormal basis for B(H).

Lemma 4.2 Let {e(j)
k : j ∈ J, k ∈ K} form d + 1 mutually unbiased bases in a d-

dimensional complex Hilbert space H, and let ω be a primitive d-th root of unity.
Then the operators {B(j)

k : j ∈ J, k ∈ K \ {d}} ∪ { 1√
d
I } form an orthonormal basis in

B(H) with respect to the Hilbert-Schmidt inner product.

Proof First we note that all these operators are normalized with respect to the Hilbert-
Schmidt norm and that the trace of all B

(j)
k , k ∈ {1,2, . . . , d − 1} is zero. So the

operators {B(j)
k } are Hilbert-Schmidt orthogonal to the identity. Now consider

A
(j,j ′)
k,k′ = tr[B(j)

k (B
(j ′)
k′ )∗] = 1

d

d∑

l=1

d∑

l′=1

ωklω−k′l′ tr[P (j)
l P

(j ′)
l′ ].
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If j �= j ′, then

A
(j,j ′)
k,k′ = 1

d2

d∑

l,l′=1

ωkl−k′l′ = 0

and if j = j ′, then

A
(j,j)

k,k′ = 1

d

d∑

l,l′=1

ωkl−k′l′δl,l′ = 1

d

d∑

l=1

ωl(k−k′)

which either adds to zero if k �= k′ or else to one. Now we have an orthonormal system
of (d + 1)(d − 1) + 1 = d2 operators, and since dim(B(H)) = d2, this is a basis. �

Now we are ready to present a fast reconstruction algorithm for mutually unbiased
bases.

Theorem 4.3 Given a family of vectors {e(j)
k , j ∈ J, k ∈ K} that form d + 1 mutually

unbiased bases in C
d , a primitive d-th root of unity ω and the associated operators

{B(j)
k }, then for all x ∈ C

d ,

Qx = ‖x‖2

d
I + 1√

d

d+1∑

j=1

d−1∑

k=1

d∑

l=1

ω−kl |〈x, e
(j)
l 〉|2B(j)

k .

Proof Since { 1√
d
I } ∪ {B(j)

k } forms an orthonormal basis in B(Cd), we have

Qx = 1

d
trQx +

d+1∑

j=1

d−1∑

k=1

tr[Qx(B
(j)
k )∗]B(j)

k

and the claimed identity follows from the definition of B
(j)
k . �

Corollary 4.4 Assume without loss of generality that the first set of basis vectors
{e(1)

k }dk=1 is the canonical orthonormal basis of C
d , and denote the coefficients of the

vector x in this basis by {xk}dk=1. If not all coefficients are zero, say x1 �= 0, then for
i ∈ {1,2, . . . , d},

xix1 =
d+1∑

j=1

d∑

l=1

|〈x, e
(j)
l 〉|2〈e(1)

1 , e
(j)
l 〉〈e(j)

l , e
(1)
i 〉 − ‖x‖2δi,1.

Proof Inserting the definition of B
(j)
k , we have

xix1 = 1

d
‖x‖2δi,1 + 1√

d

d+1∑

j=1

d−1∑

k=1

d∑

l=1

ω−kl |〈x, e
(j)
l 〉|2tr[B(j)

k E∗
i,1]
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where Ei,1 is the usual matrix unit. We then compute

xix1 = 1

d
‖x‖2δi,1 + 1

d

d+1∑

j=1

d−1∑

k=1

d∑

l,l′=1

ωkl′−kl |〈x, e
(j)
l 〉|2〈e(1)

1 , e
(j)

l′ 〉〈e(j)

l′ , e
(1)
i 〉.

Adding and subtracting the term corresponding to k = d ,

1

d

d+1∑

j=1

d∑

l,l′=1

|〈x, e
(j)
l 〉|2〈e(1)

1 , e
(j)

l′ 〉〈e(j)

l′ , e
(1)
i 〉 = d + 1

d
‖x‖2δi,1

gives

xix1 =
d+1∑

j=1

d∑

l=1

|〈x, e
(j)
l 〉|2〈e(1)

1 , e
(j)
l 〉〈e(j)

l , e
(1)
i 〉 − ‖x‖2δi,1.

�

Using this algorithm for prime-number dimensions and discrete chirps, we get a
simple closed form for the reconstruction.

Corollary 4.5 If d is prime and we use the discrete chirps in Example 2.7 as a
maximal set of mutually unbiased bases, then the reconstruction formula becomes

xnx1 = 1

d

d+1∑

j=1

d∑

l=1

ω−(j−1)(n2−1)+l(n−1)|〈x, e
(j)
l 〉|2 − ‖x‖2δn,1.

5 Frames for Fast Reconstruction

Although the use of 2-designs allows a reconstruction algorithm with O(d3) oper-
ations, and the efficient numerical implementation of the discrete Fourier transform
offers another possibility for an improvement for the special case of chirps, the algo-
rithm still does not scale in the best possible way with the dimension of H. The ideal
case is to have reconstruction on the order of d steps for a d-dimensional Hilbert
space.

We will now construct uniform tight frames for which there is a fast reconstruction
algorithm requiring on the order of d operations.

The construction of the frame we use combines the preceding material with the
idea of fusion frames [10, 12, 13], see also [5].

Example 5.1 (Covering with minimal 2-uniform frames) We pick a basis {ei}di=1 in
H and identify the basis vectors with vertices in a complete graph. With each edge
{i, k} ⊂ {1,2, . . . , d}, 1 ≤ i < k ≤ d , we associate the subspace Hi,k spanned by the
pair {ei, ek}.
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Then it is straightforward to check that the orthogonal projections {Pi,k :
ran(Pi,k) = Hi,k,1 ≤ i < k ≤ d} resolve the identity on H,

1

d − 1

∑

1≤i<k≤d

Pi,k = I.

Consider a 2-uniform N/2-tight frame {f (i,k)
j }Nj=1 as in Example 2.4 for each Hi,k .

If H is a real Hilbert space, then N = 3; if it is complex, then N = 4.
Denote the rank-one orthogonal projection with range containing f

(i,k)
j by Q

(i,k)
j .

Since each projection Pi,k can be written as the sum Pi,k = 2
N

∑N
j=1 Q

(i,k)
j , the set

{f (i,k)
j : 1 ≤ i < k ≤ d,1 ≤ j ≤ N} is a (d − 1)N/2-tight uniform frame for H.

It seems that the number of frame coefficients needed for reconstruction is still
quadratic in d . However, we can modify the algorithm in such a way that only a por-
tion of them is used and significantly reduce the number of needed frame coefficients.

Theorem 5.2 Let H be a d-dimensional real or complex Hilbert space. Let
{e1, e2, . . . , ed} be an orthonormal basis for H. Let F = {f (i,k)

j : 1 ≤ i < k ≤ d,1 ≤
j ≤ N} be the (d − 1)N/2-tight frame for H constructed in the preceding example,
with N = 3 if the Hilbert space is real and N = 4 if it is complex. Given a non-
zero vector x ∈ H and a spanning tree T for the complete graph on d vertices such
that the set L ⊂ {1,2, . . . , d} of the leaves of the graph contains each vertex i for
which 〈x, ei〉 = 0. Then Qx can be reconstructed from the magnitudes of the frame
coefficients of the subset G = {f (i,k)

j : {i, k} ∈ T ,1 ≤ j ≤ N}.

Proof To simplify notation, we abbreviate vi = 〈v, ei〉 for any v ∈ H and i ∈
{1,2, . . . , d}. As before, we denote the orthogonal projection onto the span of {ei, ek}
by Pi,k . Given the spanning tree T , we reconstruct QPi,kx with the two-uniform N/2-
tight frame of Hi,k for each edge {i, k} ∈ T . This means, we have y(i,k) = ui,kPi,kx

with an unknown unimodular constant ui,k for each edge. In order to determine x up
to a unimodular constant u, we have to eliminate d − 1 of these unknowns. To this
end, we proceed in an iterative manner. Starting with the root of the tree, we pick an
edge, say {1,2} and choose an arbitrary unimodular u1,2. This fixes y1 = u1,2x1. Now
we proceed along the edges of the spanning tree. At each step, we compute a new co-
efficient yi from an adjacent pair of edges {i, k} and {i, l}. This is accomplished by
comparing the two reconstructed vectors y(i,k) and y(i,l), where the phase of y(i,k) has
already been fixed. We note that y

(i,k)
i �= 0 because it is not a leaf. Since we require

yi = y
(i,k)
i and yi = y

(i,l)
i , this determines y(i,l) and thus yl = y

(i,l)
l . According to this

procedure, all yi , i ∈ {1,2, . . . , d} are determined. �

Remark 5.3 The above algorithm needs only the magnitudes of (d − 1)N frame co-
efficients. Since the reconstruction for each 2-dimensional subspace uses a constant
number of operations, and there are d − 1 edges in a spanning tree, it requires of the
order of d operations.
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The spanning tree can be constructed iteratively in the course of reconstruction.
At each step, we test whether a given pair {i, k} leads to coefficients yi or yk that
are zero. Each vanishing coefficient is declared a leaf in the spanning tree. If we
have initially chosen an edge with two zero coefficients we declare the two vertices
it contains leaves and start anew with a non-adjacent edge. Since the vector x was
by assumption non-zero, there is at least one edge which is associated with a non-
zero coefficient. Beginning with this edge, we proceed inductively by picking the
next edge such that it is incident with the vertex with a non-vanishing coefficient
in the preceding edge. It is straightforward to verify that this construction exhausts
all vertices and that the set of leaves contains all vertices associated with vanishing
coefficients.

6 Conclusion and Outlook

We have seen that for certain tight frames, there are remarkably simple reconstruction
algorithms that only use the magnitudes of the frame coefficients. The main tool
giving such simple reconstruction formulas is the use of projective 2-designs. Since
examples for such designs have a small set of possible magnitudes for inner products
between frame vectors, the general reconstruction formula can be simplified even
further.

Furthermore, we have demonstrated that there are frames for which the number of
operations required for reconstruction only grows linearly with the dimension of the
Hilbert space.

One may consider the task of reconstruction without phase also when coefficients
are lost, e.g. in the course of a data transmission [6, 9, 20, 25]. Since 2-uniform tight
frames are in certain situations optimal for a small number of lost coefficients, [6], one
can expect that reconstruction without phase will perform well even in the presence
of lost coefficients. This topic will be pursued in another work.
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