FRAMES AND PHASELESS RECONSTRUCTION AMS SHORT COURSE: JOINT MATHEMATICS MEETINGS SAN ANTONIO, 2015

RADU BALAN

AMS (MOS) Subject Classification Numbers: 15A29, 65H10, 90C26

Abstract

Frame design for phaseless reconstruction is now part of the broader problem of nonlinear recon- struction and is an emerging topic in harmonic analysis. The problem of phaseless reconstruction can be simply stated as follows. Given the magnitudes of the coefficients of an output of a linear redundant system (frame), we want to reconstruct the unknown input. This problem has first occurred in X-ray crystallography starting from the early 20th century. The same nonlinear reconstruction problem shows up in speech processing, particularly in speech recognition.

In this lecture we shall cover existing analysis results as well as algorithms for signal recovery including: necessary and sufficient conditions for injectivity, Lipschitz bounds of the nonlinear map and its left inverses, stochastic performance bounds, convex relaxation algorithms for inversion, least-squares inversion algorithms.

1. Introduction

This lecture notes concerns the problem of finite dimensional vector reconstruction from magnitudes of frame coefficients. While the problem can be stated in the more general context of infinite dimensional Hilbert spaces, in these lectures we focus exclusively on the finite dimensional case. In this case any spanning set is a frame. Specifically let $H=\mathbb{C}^{n}$ denote the n dimensional complex Hilbert space and let $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\}$ be a set of $m \geq n$ vectors that span H. Fix a real linear space V, that is also subset of $H, V \subset H$. Our problem is to study when a vector $x \in V$ can be reconstructed from magnitudes of its frame coefficients $\left\{\left|\left\langle x, f_{k}\right\rangle\right|, 1 \leq k \leq m\right\}$, and how to do so efficiently. This setup covers both the real case and the complex case as studied before in literature: in the real case $\mathcal{F} \subset V=\mathbb{R}^{n}$; in the complex case $V=H=\mathbb{C}^{n}$. Note we assume V is a real linear space which may not be closed under multiplication with complex scalars.

Consider the following additional notations. Let

$$
\begin{equation*}
T: H \rightarrow \mathbb{C}^{m},(T(x))_{k}=\left\langle x, f_{k}\right\rangle, 1 \leq k \leq m \tag{1.1}
\end{equation*}
$$

[^0]denote the frame analysis map. Its adjoint is called the synthesis map and is defined by
\[

$$
\begin{equation*}
T^{*}: \mathbb{C}^{m} \rightarrow H, T^{*}(c)=\sum_{k=1}^{m} c_{k} f_{k} \tag{1.2}
\end{equation*}
$$

\]

We define now the main nonlinear function we discussed in this paper $x \mapsto \alpha(x)=\left(\left|\left\langle x, f_{k}\right\rangle\right|\right)_{1 \leq k \leq m}$. For two vectors $x, y \in H$, consider the equivalence relation $x \sim y$ if and only if there is a constant c of magnitude 1 so that $x=c y$. Thus $x \sim y$ if and only if $x=e^{i \varphi} y$ for some real φ. Let $\hat{H}=H / \sim$ denote the quotient space. Note the nonlinear α is well defined on \hat{H} since $\alpha(c x)=\alpha(x)$ for all scalars c with $|c|=1$. We let α denote the quotient map

$$
\begin{equation*}
\alpha: \hat{H} \rightarrow \mathbb{R}^{m},(\alpha(x))_{k}=\left|\left\langle x, f_{k}\right\rangle\right|, 1 \leq k \leq m \tag{1.3}
\end{equation*}
$$

For purposes that will become clear later let us define also the map

$$
\begin{equation*}
\beta: \hat{H} \rightarrow \mathbb{R}^{m},(\beta(x))_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}, 1 \leq k \leq m \tag{1.4}
\end{equation*}
$$

For the subspace V denote by \hat{V} the set of equivalence classes $\hat{V}=\{\hat{x}, x \in V\}$.
Definition 1.1. The frame \mathcal{F} is called a phase retrievable frame with respect to a set V if the restriction $\left.\alpha\right|_{\hat{V}}$ is injective.

In this paper we study the following problems:
(1) Find necessary and sufficient conditions for $\left.\alpha\right|_{\hat{V}}$ to be a one-to-one (injective) map;
(2) Study Lipschitz properties of maps α, β and their inverses;
(3) Study robustness guarantees (such as Cramer-Rao Lower Bounds) for any inversion algorithm;
(4) Recovery using convex algorithms (e.g. PhaseLift and PhaseCut);
(5) Recovery using iterative least-squares algorithms.

2. Geometry of \hat{H} and $\mathcal{S}^{p, q}$ Spaces

2.1. \hat{H}. Recall $\hat{H}=\hat{\mathbb{C}}^{n}=\mathbb{C}^{n} / \sim=\mathbb{C}^{n} / T^{1}$ where $T^{1}=\{z \in \mathbb{C},|z|=1\}$. Algebraically \mathbb{C}^{n} is a homogeneous space being invariant to multiplications by positive real scalars. In particular any $x \in \widehat{\mathbb{C}}^{n} \backslash\{0\}$ has a unique decomposition $x=r p$, where $r=\|x\|>0$ and $p \in \mathbb{C P}^{n-1}$ is in the projective space $\mathbb{C P}^{n-1}=\mathbb{P}\left(\mathbb{C}^{n}\right)$. Thus topologically

$$
\hat{\mathbb{C}}^{n}=\{0\} \cup\left((0, \infty) \times \mathbb{C P}^{n-1}\right)
$$

The subset

$$
\hat{\mathfrak{C}^{n}}=\hat{\mathbb{C}^{n}} \backslash\{0\}=(0, \infty) \times \mathbb{C P}^{n-1}
$$

is a real analytic manifold.
Now consider the set \hat{V} of equivalence classes associated to vectors in V. Similar to \hat{H} it admits the following decomposition

$$
\hat{V}=\{0\} \cup((0, \infty) \times \mathbb{P}(V))
$$

where $\mathbb{P}(V)=\{\{z x, z \in \mathbb{C}\}, x \in V, x \neq 0\}$ denote the projective space associated to V. The interior subset

$$
\stackrel{\circ}{\hat{V}}=\hat{V} \backslash\{0\}=(0, \infty) \times \mathbb{P}(V)
$$

is a real analytic manifold of (real) dimension $1+\operatorname{dim}_{\mathbb{R}} \mathbb{P}(V)$.
Two important cases are as follows:

- Real case. $V=\mathbb{R}^{n}$ embedded as $x \in \mathbb{R}^{n} \mapsto x+i 0 \in \mathbb{C}^{n}=H$. Then two vectors $x, y \in V$ are \sim equivalent if and only if $x=y$ or $x=-y$. Similarly, the projective space $\mathbb{P}(V)$ is difeomorphically equivalent to the real projective space $\mathbb{R} \mathbb{P}^{n-1}$ which is of dimension $n-1$. Thus

$$
\operatorname{dim}_{\mathbb{R}}(\hat{\hat{V}})=n
$$

- Complex case. $V=\mathbb{C}^{n}$ which has real dimension $2 n$. Then the projective space $\mathbb{P}(V)=\mathbb{C} \mathbb{P}^{n-1}$ has real dimension $2 n-2$ (it is also a Khäler manifold) and thus

$$
\operatorname{dim}_{\mathbb{R}}(\hat{\hat{V}})=2 n-1
$$

2.2. $\mathcal{S}^{p, q}$. Consider now $\operatorname{Sym}(H)=\left\{T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, T=T^{*}\right\}$ the real vector space of selfadjoint operators over $H=\mathbb{C}^{n}$ endowed with the Hilbert-Schmidt scalar product $\langle T, S\rangle_{H S}=$ $\operatorname{trace}(T S)$. We also use the notation $\operatorname{Sym}(\mathcal{V})$ for the real vector space of symmetric operators over a vector space \mathcal{V}. In both cases symmetric means the operator T satisfies $\langle T x, y\rangle=$ $\langle x, T y\rangle$ for every x, y in the underlying vector space (H or \mathcal{V}, respectively). T^{*} means the adjoint operator of T, and therefore the transpose conjugate of T, when T is a matrix. When T is a an operator acting on a real vector space, T^{T} denotes its adjoint. For two vectors $x, y \in \mathbb{C}^{n}$ we denote

$$
\begin{equation*}
\llbracket x, y \rrbracket=\frac{1}{2}\left(x y^{*}+y x^{*}\right) \in \operatorname{Sym}\left(\mathbb{C}^{n}\right) \tag{2.5}
\end{equation*}
$$

their symmetric outer product. On $\operatorname{Sym}(H)$ and $B(H)=\mathbb{C}^{n \times n}$ we consider the class of p-norms defined by the p-norm of the vector of singular values:

$$
\|T\|_{p}=\left\{\begin{array}{clc}
\max _{1 \leq k \leq n} \sigma_{k}(T) & \text { for } & p=\infty \tag{2.6}\\
\left(\sum_{k=1}^{n} \sigma_{k}^{p}\right)^{1 / p} & \text { for } & 1 \leq p<\infty
\end{array}\right.
$$

where $\sigma_{k}=\sqrt{\lambda_{k}\left(T^{*} T\right)}, 1 \leq k \leq n$, are the singular values of T, with $\lambda_{k}(S), 1 \leq k \leq n$, denoting eigenvalues of S.

Fix two integers $p, q \geq 0$ and set
$\mathcal{S}^{p, q}(H)=\{T \in \operatorname{Sym}(H), T$ has at most p positive eigenvalues and at most q negative eigenvalues $\}$
$\mathcal{S}^{p, q}(H)=\{T \in \operatorname{Sym}(H), T$ has exactly p positive eigenvalues and exactly q negative eigenvalues $\}$
For instance $\mathcal{S}^{\circ 0,0}(H)=\mathcal{S}^{0,0}(H)=\{0\}$ and $\mathcal{S}^{1,0}(H)$ is the set of all non-negative rank one operators. When there is no confusion we shall drop the underlying vector space H from notation.

The following basic properties can be found in [Ba13], Lemma 3.6 (the last statement is a special instance of the Witt's decomposition theorem):

Lemma 2.1.

(1) For any $p_{1} \leq p_{2}$ and $q_{1} \leq q_{2}, \mathcal{S}^{p_{1}, q_{1}} \subset \mathcal{S}^{p_{2}, q_{2}}$;
(2) For any nonnegative integers p, q the following disjoint decomposition holds true

$$
\begin{equation*}
\mathcal{S}^{p, q}=\cup_{r=0}^{p} \cup_{s=0}^{q} \mathcal{S}^{r, s} \tag{2.9}
\end{equation*}
$$

where by convention $\mathcal{S}^{\circ p, q}=\emptyset$ for $p+q>n$.
(3) For any $p, q \geq 0$,

$$
\begin{equation*}
-\mathcal{S}^{p, q}=\mathcal{S}^{q, p} \tag{2.10}
\end{equation*}
$$

(4) For any linear operator $T: H \rightarrow H$ (symmetric or not, invertible or not) and nonnegative integers p, q,

$$
\begin{equation*}
T^{*} \mathcal{S}^{p, q} T \subset \mathcal{S}^{p, q} \tag{2.11}
\end{equation*}
$$

(5) For any nonnegative integers p, q, r, s,

$$
\begin{equation*}
\mathcal{S}^{p, q}+\mathcal{S}^{r, s}=\mathcal{S}^{p, q}-\mathcal{S}^{s, r}=\mathcal{S}^{p+r, q+s} \tag{2.12}
\end{equation*}
$$

The spaces $\mathcal{S}^{1,0}$ and $\mathcal{S}^{1,1}$ play a special role in the following chapters. We summarize next their properties (see Lemmas 3.7 and 3.9 in [Ba13], and the comment after Lemma 9 in [BCMN13]).
Lemma 2.2 (Space $\mathcal{S}^{1,0}$). The following hold true:
(1) $\mathcal{S}^{1,0}=\left\{x x^{*}, x \in H, x \neq 0\right\}$;
(2) $\mathcal{S}^{1,0}=\left\{x x^{*}, x \in H\right\}=\{0\} \cup\left\{x x^{*}, x \in H, x \neq 0\right\}$;
(3) The set $\mathcal{S}^{1,0}$ is a real analytic manifold in $\operatorname{Sym}(n)$ of real dimension $2 n-1$. As a real manifold, its tangent space at $X=x x^{*}$ is given by

$$
\begin{equation*}
T_{X} \stackrel{\mathcal{S}}{ }_{1,0}=\left\{\llbracket x, y \rrbracket=\frac{1}{2}\left(x y^{*}+y x^{*}\right), y \in \mathbb{C}^{n}\right\} \tag{2.13}
\end{equation*}
$$

The \mathbb{R}-linear embedding $\mathbb{C}^{n} \mapsto T_{X} \mathcal{S}^{1,0}$ given by $y \mapsto \llbracket x, y \rrbracket$ has null space $\{$ iax,$a \in$ $\mathbb{R}\}$.
Lemma 2.3 (Space $\mathcal{S}^{1,1}$). The following hold true:
(1) $\mathcal{S}^{1,1}=\mathcal{S}^{1,0}-\mathcal{S}^{1,0}=\mathcal{S}^{1,0}+\mathcal{S}^{0,1}=\{\llbracket x, y \rrbracket, x, y \in H\}$;
(2) For any vectors $x, y, u, v \in H$,

$$
\begin{align*}
x x^{*}-y y^{*} & =\llbracket x+y, x-y \rrbracket=\llbracket x-y, x+y \rrbracket \tag{2.14}\\
\llbracket u, v \rrbracket & =\frac{1}{4}(u+v)(u+v)^{*}-\frac{1}{4}(u-v)(u-v)^{*} \tag{2.15}
\end{align*}
$$

Additionally, for any $T \in \mathcal{S}^{1,1}$ let $T=a_{1} e_{1} e_{1}^{*}-a_{2} e_{2} e_{2}^{*}$ be its spectral factorization with $a_{1}, a_{2} \geq 0$ and $\left\langle e_{i}, e_{j}\right\rangle=\delta_{i, j}$. Then

$$
T=\llbracket \sqrt{a_{1}} e_{1}+\sqrt{a_{2}} e_{2}, \sqrt{a_{1}} e_{1}-\sqrt{a_{2}} e_{2} \rrbracket .
$$

(3) The set $\mathcal{S}^{1,1}$ is a real analytic manifold in $\operatorname{Sym}(n)$ of real dimension $4 n-4$. Its tangent space at $X=\llbracket x, y \rrbracket$ is given by

$$
\begin{equation*}
T_{X} \mathcal{S}^{1,1}=\left\{\llbracket x, u \rrbracket+\llbracket y, v \rrbracket=\frac{1}{2}\left(x u^{*}+u x^{*}+y v^{*}+v y^{*}\right), u, v \in \mathbb{C}^{n}\right\} \tag{2.16}
\end{equation*}
$$

The \mathbb{R}-linear embedding $\mathbb{C}^{n} \times \mathbb{C}^{n} \mapsto T_{X} \mathcal{S}^{1,1}$ given by $(u, v) \mapsto \llbracket x, u \rrbracket+\llbracket y, v \rrbracket$ has null space $\{a(i x, 0)+b(0, i y)+c(y,-x)+d(i y, i x), a, b, c, d \in \mathbb{R}\}$.
(4) Let $T=\llbracket u, v \rrbracket \in \mathcal{S}^{1,1}$. Then its eigenvalues and p-norms are:

$$
\begin{align*}
a_{+} & =\frac{1}{2}\left(\operatorname{real}(\langle u, v\rangle)+\sqrt{\|u\|^{2}\|v\|^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}}\right) \geq 0 \tag{2.17}\\
a_{-} & =\frac{1}{2}\left(\operatorname{real}(\langle u, v\rangle)-\sqrt{\|u\|^{2}\|v\|^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}}\right) \leq 0 \tag{2.18}\\
\|T\|_{1} & =\sqrt{\|u\|^{2}\|v\|^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}} \tag{2.19}\\
\|T\|_{2} & \left.=\sqrt{\frac{1}{2}\left(\|u\|^{2}\|v\|^{2}+(\operatorname{real}(\langle u, v\rangle))^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}\right.}\right) \tag{2.20}\\
\|T\|_{\infty} & =\frac{1}{2}\left(|\operatorname{real}(\langle u, v\rangle)|+\sqrt{\|u\|^{2}\|v\|^{2}-(\operatorname{imag}(\langle u, v\rangle))^{2}}\right) \tag{2.21}
\end{align*}
$$

(5) Let $T=x x^{*}-y y^{*} \in \mathcal{S}^{1,1}$. Then its eigenvalues and p-norms are:

$$
\begin{align*}
a_{+} & =\frac{1}{2}\left(\|x\|^{2}-\|y\|^{2}+\sqrt{\left(\|x\|^{2}+\|y\|^{2}\right)^{2}-4|\langle x, y\rangle|^{2}}\right) \tag{2.22}\\
a_{-} & =\frac{1}{2}\left(\|x\|^{2}-\|y\|^{2}-\sqrt{\left(\|x\|^{2}+\|y\|^{2}\right)^{2}-4|\langle x, y\rangle|^{2}}\right) \tag{2.23}\\
\|T\|_{1} & =\sqrt{\left(\|x\|^{2}+\|y\|^{2}\right)^{2}-4|\langle x, y\rangle|^{2}} \tag{2.24}\\
\|T\|_{2} & =\sqrt{\|x\|^{4}+\|y\|^{4}-2|\langle x, y\rangle|^{2}} \tag{2.25}\\
\|T\|_{\infty} & =\frac{1}{2}\left(\left|\|x\|^{2}-\|y\|^{2}\right|+\sqrt{\left(\|x\|^{2}+\|y\|^{2}\right)^{2}-4|\langle x, y\rangle|^{2}}\right) \tag{2.26}
\end{align*}
$$

Note the above results hold true for the case of symmetric operators over real subspaces, say V. In particular the factorization at Lemma 2.3(a) implies:

$$
\begin{equation*}
\mathcal{S}^{1,1}(V)=\mathcal{S}^{1,0}(V)-\mathcal{S}^{1,0}(V)=\mathcal{S}^{1,0}(V)+\mathcal{S}^{0,1}(V)=\{\llbracket u, v \rrbracket, u, v \in V\} \tag{2.27}
\end{equation*}
$$

Minimally, the result holds for subsets $V \subset H$ that are closed under addition and substraction.
2.3. Metrics. The space $\hat{H}=\hat{\mathbb{C}}^{n}$ admits two classes of distances (metrics). The first class is the "natural metric" induced by the quotient space structure. The second metric is a matrix-norm induced distance.

Fix $1 \leq p \leq \infty$.
The natural metric denoted by $D_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
D_{p}(\hat{x}, \hat{y})=\min _{\varphi \in[0,2 \pi)}\left\|x-e^{i \varphi} y\right\|_{p} \tag{2.28}
\end{equation*}
$$

where $x \in \hat{x}$ and $y \in \hat{y}$. In the case $p=2$ the distance becomes

$$
D_{2}(\hat{x}, \hat{y})=\sqrt{\|x\|^{2}+\|y\|^{2}-2|\langle x, y\rangle|}
$$

By abuse of notation we use also $D_{p}(x, y)=D_{p}(\hat{x}, \hat{y})$ since the distance does not depend ont he choice of representatiove.

The matrix-norm induced distance denoted by $d_{p}: \hat{H} \times \hat{H} \rightarrow \mathbb{R}$ is defined by

$$
\begin{equation*}
d_{p}(\hat{x}, \hat{y})=\left\|x x^{*}-y y^{*}\right\|_{p} \tag{2.29}
\end{equation*}
$$

where again $x \in \hat{x}$ and $y \in \hat{y}$. In the case $p=2$ we obtain

$$
d_{2}(x, y)=\sqrt{\|x\|^{4}+\|y\|^{4}-2|\langle x, y\rangle|^{2}}
$$

By abuse of notation we use also $d_{p}(x, y)=d_{p}(\hat{x}, \hat{y})$ since the distance does not depend ont he choice of representatiove.

As analyzed in [BZ14], Proposition 2.4, D_{p} is not equivalent to d_{p}, however D_{p} is an equivalent distance to D_{q} and similarily, d_{p} is equivalent to d_{q}, for any $1 \leq p, q \leq q$ (see also [BZ15] for the last claim below):

Lemma 2.4.
(1) For each $1 \leq p \leq \infty, D_{p}$ and d_{p} are distances (metrics) on \hat{H};
(2) $\left(D_{p}\right)_{1 \leq p \leq \infty}$ are equivalent metrics, that is each D_{p} induces the same topology on \hat{H} and, for every $1 \leq p, q \leq \infty$, the identity map $i:\left(\hat{H}, D_{p}\right) \rightarrow\left(\hat{H}, D_{q}\right), i(x)=x$, is Lipschitz continuous with (upper) Lipschitz constant

$$
\operatorname{Lip}_{p, q, n}^{D}=\max \left(1, n^{\frac{1}{q}-\frac{1}{p}}\right)
$$

(3) $\left(d_{p}\right)_{1 \leq p \leq \infty}$ are equivalent metrics, that is each d_{p} induces the same topology on \hat{H} and, for every $1 \leq p, q \leq \infty$, the identity map $i:\left(\hat{H}, d_{p}\right) \rightarrow\left(\hat{H}, d_{q}\right), i(x)=x$, is Lipschitz continuous with (upper) Lipschitz constant

$$
\operatorname{Lip}_{p, q, n}^{d}=\max \left(1,2^{\frac{1}{q}-\frac{1}{p}}\right) .
$$

(4) The identity map $i:\left(\hat{H}, D_{p}\right) \rightarrow\left(\hat{H}, d_{p}\right), i(x)=x$ is continuous but it is not Lipschitz continuous. The identity map $i:\left(\hat{H}, d_{p}\right) \rightarrow\left(\hat{H}, D_{p}\right), i(x)=x$ is continuous but it is not Lipschitz continuous. Hence the induced topologies on $\left(\hat{H}, D_{p}\right)$ and $\left(\hat{H}, d_{p}\right)$ are the same, but the corresponding metrics are not Lipschitz equivalent.
(5) The metric space $\left(\hat{H}, d_{p}\right)$ is isometrically isomorphic to $\mathcal{S}^{1,0}$ endowed with the p-norm. The isomorphism is given by the map

$$
\kappa_{\beta}: \hat{H} \rightarrow \mathcal{S}^{1,0}, x \mapsto \llbracket x, x \rrbracket=x x^{*} .
$$

(6) The metric space $\left(\hat{H}, D_{2}\right)$ is Lipschitz isomorphic (not isometric) with $\mathcal{S}^{1,0}$ endowed with the 2 -norm. The bi-Lipschitz map

$$
\kappa_{\alpha}: \hat{H} \rightarrow \mathcal{S}^{1,0}, x \mapsto \operatorname{kappa}_{\alpha}(x)=\left\{\begin{array}{cll}
\frac{1}{\|x\|} x x^{*} & \text { if } & x \neq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

has lower Lipschitz constant 1 and upper Lipschitz constant $\sqrt{2}$.
Note the Lipschitz bound $L i p_{p, q, n}^{D}$ is equal to the operator norm of the identity between $\left(\mathbb{C}^{n},\|\cdot\|_{p}\right)$ and $\left(\mathbb{C}^{n},\|\cdot\|_{q}\right)$: Lip $p_{p, q, n}^{D}=\|I\|_{l^{p}\left(\mathbb{C}^{n}\right) \rightarrow l^{q}\left(\mathbb{C}^{n}\right)}$. Note also the equality Lipp,q,n$d=$ $L i p_{p, q, 2}^{D}$. A consequence of the last two claims in the above result is that while the identity map between $\left(\hat{H}, D_{p}\right)$ and $\left(\hat{H}, d_{q}\right)$ is not bi-Lipschitz, the map $x \mapsto \frac{1}{\sqrt{\|x\|}} x$ is bi-Lipschitz.

3. The Injectivity Problem

In this section we summarize existing results on the injectivity of the maps α and β. Our plan is to present the real and the complex case in a unified way.

Recall we denoted by V a real vector space which is subset of $H=\mathbb{C}^{n}$. The special two cases are $V=\mathbb{R}^{n}$ (the real case) and $V=\mathbb{C}^{n}$ (the complex case).

First we describe the realification of H and V. Consider the \mathbb{R}-linear map j : $\mathbb{C}^{n} \rightarrow \mathbb{R}^{2 n}$ defined by

$$
\mathrm{J}(x)=\left[\begin{array}{c}
\operatorname{real}(x) \\
\operatorname{imag}(x)
\end{array}\right]
$$

Let $\mathcal{V}=\mathrm{J}(V)$ be the embedding of V into $\mathbb{R}^{2 n}$, and let Π denote the orthogonal projection (with respect to the real scalar product on $\mathbb{R}^{2 n}$) onto \mathcal{V}. Let J denote the folowing orthogonal antisymmetric $2 n \times 2 n$ matrix

$$
J=\left[\begin{array}{cc}
0 & -I_{n} \tag{3.30}\\
I_{n} & 0
\end{array}\right]
$$

where I_{n} denotes the identity matrix of order $n \times n$. Note the transpose $J^{T}=-J$, the square $J^{2}=-I_{2 n}$ and the inverse $J^{-1}=-J$.

Each vector f_{k} of the frame set $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\}$ gets mapped into a vector in $\mathbb{R}^{2 n}$ denoted by φ_{k}, and a symmetric operator in $\mathcal{S}^{2,0}\left(\mathbb{R}^{2 n}\right)$ denoted by Φ_{k} :

$$
\varphi_{k}=\mathrm{\jmath}\left(f_{k}\right)=\left[\begin{array}{c}
\operatorname{real}\left(f_{k}\right) \tag{3.31}\\
\operatorname{imag}\left(f_{k}\right)
\end{array}\right], \Phi_{k}=\varphi_{k} \varphi_{k}^{T}+J \varphi_{k} \varphi_{k}^{T} J^{T}
$$

Note that when $f_{k} \neq 0$ the symmetric form Φ_{k} has rank 2 and belongs to $\mathcal{S}^{2,0}$. Its spectrum has two distinct eigenvalues: $\left\|\varphi_{k}\right\|^{2}=\left\|f_{k}\right\|^{2}$ with multiplicity 2 , and 0 with multiplicity $2 n-2$. Furthermore, $\frac{1}{\left\|\varphi_{k}\right\|^{2}} \Phi_{k}$ is a rank 2 projection.

Let $\xi=\mathrm{J}(x)$ and $\eta=\mathrm{J}(y)$ denote the realifications of vectors $x, y \in \mathbb{C}^{n}$. Then a bit of algebra shows that

$$
\begin{equation*}
\left\langle x, f_{k}\right\rangle=\left\langle\xi, \varphi_{k}\right\rangle+i\left\langle\xi, J \varphi_{k}\right\rangle \tag{3.32}
\end{equation*}
$$

$$
\left\langle F_{k}, x x^{*}\right\rangle_{H S}=\operatorname{trace}\left(F_{k} x x^{*}\right)=\left|\left\langle x, f_{k}\right\rangle\right|^{2}=\left\langle\Phi_{k} \xi, \xi\right\rangle=\operatorname{trace}\left(\Phi \xi \xi^{T}\right)=\left\langle\Phi_{k}, \xi \xi^{T}\right\rangle_{H S}
$$

$\left\langle F_{k}, \llbracket x, y \rrbracket\right\rangle_{H S}=\operatorname{trace}\left(F_{k} \llbracket x, y \rrbracket\right)=\operatorname{real}\left(\left\langle x, f_{k}\right\rangle\left\langle f_{k}, y\right\rangle\right)=\left\langle\Phi_{k} \xi, \eta\right\rangle=\left(\operatorname{trace}\left(\Phi_{k} \llbracket \xi, \eta \rrbracket\right)=\left\langle\Phi_{k}, \llbracket \xi, \eta \rrbracket\right\rangle_{H S}\right.$ where $F_{k}=\llbracket f_{k}, f_{k} \rrbracket=f_{k} f_{k}^{*} \in \mathcal{S}^{1,0}(H)$.

The following objects play an important role in subsequent theory:

$$
\begin{align*}
R: \mathbb{C}^{n} \rightarrow \operatorname{Sym}\left(\mathbb{C}^{n}\right) \quad, \quad R(x)=\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2} f_{k} f_{k}^{*}, x \in \mathbb{C}^{n} \tag{3.33}\\
\mathcal{R}: \mathbb{R}^{2 n} \rightarrow \operatorname{Sym}\left(\mathbb{R}^{2 n}\right) \quad, \quad \mathcal{R}(\xi)=\sum_{k=1}^{m} \Phi_{k} \xi \xi^{T} \Phi_{k}, \xi \in \mathbb{R}^{2 n} \tag{3.34}\\
\mathcal{S}: \mathbb{R}^{2 n} \rightarrow \operatorname{Sym}\left(\mathbb{R}^{2 n}\right) \quad, \quad \mathcal{S}(\xi)=\sum_{k: \Phi_{k} \xi \neq 0} \frac{1}{\left\langle\Phi_{k} \xi, \xi\right\rangle} \Phi_{k} \xi \xi^{T} \Phi_{k}, \xi \in \mathbb{R}^{2 n} \tag{3.35}\\
\mathcal{Z}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n \times m} \quad, \quad \mathcal{Z}(\xi)=\left[\Phi_{1} \xi|\cdots| \Phi_{m} \xi\right], \xi \in \mathbb{R}^{2 n} \tag{3.36}
\end{align*}
$$

Note $\mathcal{R}=\mathcal{Z Z}^{T}$.
Following [BBCE07] we note that $\left|\left\langle x, f_{k}\right\rangle\right|^{2}$) is the Hilbert-Schmidt scalar product between two rank 1 symmetric forms:

$$
\left|\left\langle x, f_{k}\right\rangle\right|^{2}=\operatorname{trace}\left(F_{k} X\right)=\left\langle F_{k}, X\right\rangle_{H S}
$$

where $X=x x^{*}$. This the nonlinear map β induces a linear map on the real vector space $\operatorname{Sym}\left(\mathbb{C}^{n}\right)$ of symmetric forms over \mathbb{C}^{n} :

$$
\begin{equation*}
\mathbb{A}: \operatorname{Sym}\left(\mathbb{C}^{n}\right) \rightarrow \mathbb{R}^{m}, \mathbb{A}(T)=\left(\left\langle T, F_{k}\right\rangle_{H S}\right)_{1 \leq k \leq m}=\left(\left\langle T f_{k}, f_{k}\right\rangle\right)_{1 \leq k \leq m} \tag{3.37}
\end{equation*}
$$

Similarly it induces a linear map on $\operatorname{Sym}\left(\mathbb{R}^{2 n}\right)$ the space of symmetric forms over $\mathbb{R}^{2 n}=\mathrm{J}\left(\mathbb{C}^{n}\right)$ that is denoted by \mathcal{A} :

$$
\begin{equation*}
\mathcal{A}: \operatorname{Sym}\left(\mathbb{R}^{2 n}\right) \rightarrow \mathbb{R}^{m}, \mathcal{A}(T)=\left(\left\langle T, \Phi_{k}\right\rangle_{H S}\right)_{1 \leq k \leq m}=\left(\left\langle T \varphi_{k}, \varphi_{k}\right\rangle+\left\langle T J \varphi_{k}, J \varphi_{k}\right\rangle\right)_{1 \leq k \leq m} \tag{3.38}
\end{equation*}
$$

Now we are ready to state a necessary and sufficient condition for injectivity that works in both the real and the complex case:

Theorem 3.1 ([HMW11, BCMN13, Ba13]). Let $H=\mathbb{C}^{n}$ and let V be a real vector space that is also a subset of $H, V \subset H$. Denote $\mathcal{V}=\mathrm{J}(V)$ the realification of V. Assume \mathcal{F} is a frame for V. The following are equivalent:
(1) The frame \mathcal{F} is phase retrievable with respect to V;
(2) $\operatorname{ker} \mathbb{A} \cap\left(\mathcal{S}^{1,0}(V)-\mathcal{S}^{1,0}(V)\right)=\{0\}$;
(3) $\operatorname{ker} \mathbb{A} \cap \mathcal{S}^{1,1}(V)=\{0\}$;
(4) $\operatorname{ker} \mathbb{A} \cap\left(\mathcal{S}^{2,0}(V) \cup \mathcal{S}^{1,1}(V) \cup \mathcal{S}^{0,2}\right)=\{0\}$;
(5) There do not exist vectors $u, v \in V$ with $\llbracket u, v \rrbracket \neq 0$ so that

$$
\operatorname{real}\left(\left\langle u, f_{k}\right\rangle\left\langle f_{k}, v\right\rangle\right)=0, \forall 1 \leq k \leq m
$$

(6) $\operatorname{ker} \mathcal{A} \cap\left(\mathcal{S}^{1,0}(\mathcal{V})-\mathcal{S}^{1,0}(\mathcal{V})\right)=\{0\}$;
(7) $\operatorname{ker} \mathcal{A} \cap \mathcal{S}^{1,1}(\mathcal{V})=\{0\}$;
(8) There do not exist vectors $\xi, \eta \in \mathcal{V}$, with $\llbracket \xi, \eta \rrbracket \neq 0$ so that

$$
\left\langle\Phi_{k} \xi, \eta\right\rangle=0, \quad \forall 1 \leq k \leq m
$$

Proof.

$(1) \Leftrightarrow(2)$ It is immediate once we noticed that any element in the null space of \mathbb{A} of the form $x x^{*}-y y^{*}$ means $\mathbb{A}\left(x x^{*}\right)=\mathbb{A}\left(y y^{*}\right)$ for some $x, y \in V$ with $\hat{x} \neq \hat{y}$.
$(2) \Leftrightarrow(3)$ and $(3) \Leftrightarrow(5)$ are consequences of (2.27).
In (4) note that $\operatorname{ker} \mathbb{A} \cap \mathcal{S}^{2,0}(V)=\{0\}=\operatorname{ker} \mathbb{A} \cap \mathcal{S}^{0,2}(V)$ since \mathcal{F} is frame for V. Thus (3) $\Leftrightarrow(4)$.
(6),(7) and (8) are simply restatements of (2),(3) and (4) using the realification framework.

In case (4) above, note $\mathcal{S}^{2,0}(V) \cup \mathcal{S}^{1,1}(V) \cup \mathcal{S}^{0,2}$ is the set of all rank-2 symmetric operators in $\operatorname{Sym}(V)$ (This case, in particular, has been proposed in [BCMN13]).

The above general injectivity result is next made more explicit in the cases $V=\mathbb{C}^{n}$ and $V=\mathbb{R}^{n}$.

Theorem 3.2 ([BCE06, Ba12]). (The real case) Assume $\mathcal{F} \subset \mathbb{R}^{n}$. The following are equivalent:
(1) \mathcal{F} is phase retrievable for $V=\mathbb{R}^{n}$;
(2) $R(x)$ is invertible for every $x \in \mathbb{R}^{n}, x \neq 0$;
(3) There do not exist vectors $u, v \in \mathbb{R}^{n}$ with $u \neq 0$ and $v \neq 0$ so that

$$
\left\langle u, f_{k}\right\rangle\left\langle f_{k}, v\right\rangle=0, \forall 1 \leq k \leq m
$$

(4) For any disjoint partition of the frame set $\mathcal{F}=\mathcal{F}_{1} \cup \mathcal{F}_{2}$, either \mathcal{F}_{1} spans \mathbb{R}^{n} or \mathcal{F}_{2} spans \mathbb{R}^{n}.

Recall a set $\mathcal{F} \subset \mathbb{C}^{n}$ is called full spark if any subset of n vectors is linearly independent. Then an immediate corrolary of the above result is the following
Corollary 3.3 ([BCE06]). Assume $\mathcal{F} \subset \mathbb{R}^{n}$. Then
(1) If \mathcal{F} is phase retrievable for \mathbb{R}^{n} then $m \geq 2 n-1$;
(2) If $m=2 n-1$, then \mathcal{F} is phase retrievable if and only if \mathcal{F} is full spark;

Proof

Indeed, the first claim follows from Theorem 3.2(4): If $m \leq 2 n-2$ then there is a partition of \mathcal{F} into two subsets each of cardinal less than or equal to $n-1$. Thus neither set can span \mathbb{R}^{n}. Contradition.

The second claim is immediate from same statement as above.

A more careful analysis of Theorem 3.2(4) gives a receipe of constructing two non-similar vectors $x, y \in \mathbb{R}^{n}$ so that $\alpha(x)=\alpha(y)$. Indeed, if $\mathcal{F}=\mathcal{F}_{1} \cup \mathcal{F}_{2}$ so that $\operatorname{dim} \operatorname{span}\left(\mathcal{F}_{1}\right)<n$ and $\operatorname{dim} \operatorname{span}\left(\mathcal{F}_{2}\right)<n$ then there are non-zero vectors $u, v \in \mathbb{R}^{n}$ with $\left\langle u, f_{k}\right\rangle=0$ for all $k \in I$ and $\left\langle v, f_{k}\right\rangle=0$ for all $k \in I^{c}$. Here I is the index set of frame vectors in \mathcal{F}_{1} and I^{c} denotes its complement in $\{1, \cdots, m\}$. Set $x=u+v$ and $y=u-v$. Then $\left|\left\langle x, f_{k}\right\rangle\right|=\left|\left\langle v, f_{k}\right\rangle\right|=\left|\left\langle v, f_{k}\right\rangle\right|$ for all $k \in I$, and $\left|\left\langle x, f_{k}\right\rangle\right|=\left|\left\langle u, f_{k}\right\rangle\right|=\left|\left\langle y, f_{k}\right\rangle\right|$ for all $k \in I^{c}$. Thus $\alpha(x)=\alpha(y)$, but $x \neq y$ and $x \neq-y$.

Theorem 3.4 ([BCMN13, Ba13]). (The complex case) The following are equivalent:
(1) \mathcal{F} is phase retrievable for $H=\mathbb{C}^{n}$;
(2) $\operatorname{rank}(\mathcal{Z}(\xi))=2 n-1$ for all $\xi \in \mathbb{R}^{2 n}, \xi \neq 0$;
(3) $\operatorname{dim} \operatorname{ker} \mathcal{R}(\xi)=1$ for all $\xi \in \mathbb{R}^{2 n}, \xi \neq 0$;
(4) There do not exist $\xi, \eta \in \mathbb{R}^{2 n}, \xi \neq 0$ and $\eta \neq 0$ so that $\langle J \xi, \eta\rangle=0$ and

$$
\begin{equation*}
\left\langle\Phi_{k} \xi, \eta\right\rangle=0, \forall 1 \leq k \leq m \tag{3.39}
\end{equation*}
$$

In terms of cardinality, here is what we know:
Theorem 3.5 ([Mi67, HMW11, BH13, Ba13b, MV13, CEHV13, KE14, Viz15]).
(1) [HMW11] If \mathcal{F} is a phase retrievable frame for \mathbb{C}^{n} then

$$
m \geq 4 n-2-2 b+ \begin{cases}2 & \text { if } n \text { odd and } b=3 \bmod 4 \tag{3.40}\\ 1 & \text { if } n \text { odd and } b=2 \bmod 4 \\ 0 & \text { otherwise }\end{cases}
$$

where $b=b(n)$ denotes the number of 1's in the binary expansion of $n-1$.
(2) [BH13] For any positive integer n there is a frame with $m=4 n-4$ vectors so that \mathcal{F} is phase retrievable for \mathbb{C}^{n};
(3) [CEHV13] If $m \geq 4 n-4$ then a (Zariski) generic frame is phase retrievable on \mathbb{C}^{n};
(4) [Ba13b] The set of phase retrievable frames is open in $\mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n}$. In particular phase retrievable property is stable under small perturbation.
(5) [CEHV13] If $n=2^{k}+1$ and $m \leq 4 m-5$ then \mathcal{F} cannot be phase retrievable for \mathbb{C}^{n}.
(6) [Viz15] For $n=4$ there is a frame with $m=11<4 n-4=12$ vectors that is phase retrievable.

4. Robustness of Reconstruction

In this section we analyze stability bounds for reconstruction. Specifically we analyze two types of margins:

- Deterministic, worst-case type bounds: These bounds are given by lower Lipschitz constant of the forward nonliner analysis map;
- Stochastic, average type bounds: Cramer-Rao Lower Bounds
4.1. Bi-Lipschitzianity of the Nonlinear Analysis Maps. In section 2 we introduced two metrics on \hat{H}. As the following theorem shows, the nonlinear maps α and β are biLipschitz with respect to the corresponding metric:

Theorem 4.1. [Ba12, EM12, BCMN13, Ba13, BW13, BZ14, BZ15] Let \mathcal{F} be a phase retrievable frame for V, a real linear space, subset of $H=\mathbb{C}^{n}$. Then:
(1) The nonlinear map $\alpha:\left(\hat{V}, D_{2}\right) \rightarrow\left(\mathbb{R}^{m},\| \| \|_{2}\right)$ is bi-Lipschitz. Thus there are positive constants $0<A_{0} \leq B_{0}<\infty$ so that

$$
\begin{equation*}
\sqrt{A_{0}} D_{2}(x, y) \leq\|\alpha(x)-\alpha(y)\|_{2} \leq \sqrt{B_{0}} D_{2}(x, y), \forall x, y \in V \tag{4.41}
\end{equation*}
$$

(2) The nonlinear map $\beta:\left(\hat{V}, d_{1}\right) \rightarrow\left(\mathbb{R}^{m},\| \|_{2}\right)$ is bi-Lipschitz. Thus there are positive constants $0<a_{0} \leq b_{0}<\infty$ so that

$$
\begin{equation*}
\sqrt{a_{0}} d_{1}(x, y) \leq\|\beta(x)-\beta(y)\|_{2} \leq \sqrt{b_{0}} d_{1}(x, y), \forall x, y \in V \tag{4.42}
\end{equation*}
$$

The converse is also true: If either (4.41) or (4.42) holds true for all $x, y \in V$ then \mathcal{F} is phase retrievable for V.

The choice of distance D_{2} and d_{1} in the statement of this theorem is only for convenience reasons. Any other distance D_{p} instead of D_{2}, and d_{q} instead of d_{1} would work. The Lipschitz constants would be different, of course.

On the other hand, if α satisfies (4.41) or β satisfies (4.42) then \mathcal{F} is phase retrievable for V. Thus, in effect, we obtained a necessary and sufficient condition for phase retrievability. We state this condition now:

Theorem 4.2. Let $\mathcal{F} \subset H=\mathbb{C}^{n}$ and let V be a real vector space, subset of H. Denote by $\mathcal{V}=\mathrm{J}(V) \subset \mathbb{R}^{2 n}$ the realification of V, and let Π denote the projection onto \mathcal{V}. Then the following are equivalent:
(1) \mathcal{F} is phase retrievable for V;
(2) There is a constant $a_{0}>0$ so that

$$
\begin{equation*}
\Pi \mathcal{R}(\xi) \Pi \geq a_{0} \Pi P_{J \xi}^{\perp} \Pi, \quad \forall \xi \in \mathcal{V},\|\xi\|=1 \tag{4.43}
\end{equation*}
$$

where $P_{J \xi}^{\perp}=I_{2 n}-P_{J \xi}=I_{2 n}-J \xi \xi^{T} J^{T}$ is the orthogonal projection onto the orthogonal complement to J ξ;
(3) There is $a_{0}>0$ so that for all $\xi, \eta \in \mathbb{R}^{2 n}$,

$$
\begin{equation*}
\sum_{k=1}^{m}\left|\left\langle\Pi \Phi_{k} \Pi \xi, \eta\right\rangle\right|^{2} \geq a_{0}\left(\|\Pi \xi\|^{2}\|\Pi \eta\|^{2}-|\langle J \Pi \xi, \Pi \eta\rangle|^{2}\right) \tag{4.44}
\end{equation*}
$$

Note the same constant a_{0} can be chosen in (4.42) and (4.43) and (4.44).
The lower bounds computation is fairly subtle. In fact there is a distinction between local bounds and global bounds. Specifically for every $z \in V$ we define the following:

The type I local lower Lipschitz bounds are defined as:

$$
\begin{align*}
& A(z)=\lim _{r \rightarrow 0} \inf _{x, y \in V, D_{2}(x, z)<r, D_{2}(y, z)<r} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}} \tag{4.45}\\
& a(z)=\lim _{r \rightarrow 0} \inf _{x, y \in V, d_{1}(x, z)<r, d_{1}(y, z)<r} \frac{\|\beta(x)-\beta(y)\|_{2}^{2}}{d_{1}(x, y)^{2}} \tag{4.46}
\end{align*}
$$

The type II local lower Lipschitz bounds are defined by:

$$
\begin{align*}
\tilde{A}(z) & =\lim _{r \rightarrow 0} \inf _{y \in V, D_{2}(y, z)<r} \frac{\|\alpha(z)-\alpha(y)\|_{2}^{2}}{D_{2}(z, y)^{2}} \tag{4.47}\\
\tilde{a}(z) & =\lim _{r \rightarrow 0} \inf _{y \in V, d_{1}(y, z)<r} \frac{\|\beta(z)-\beta(y)\|_{2}^{2}}{d_{1}(z, y)^{2}} \tag{4.48}
\end{align*}
$$

Similarly the type I local upper Lipschitz bounds are defined as:

$$
\begin{align*}
B(z) & =\lim _{r \rightarrow 0} \sup _{x, y \in V, D_{2}(x, z)<r, D_{2}(y, z)<r} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}} \tag{4.49}\\
b(z) & =\lim _{r \rightarrow 0} \sup _{x, y \in V, d_{1}(x, z)<r, d_{1}(y, z)<r} \frac{\|\beta(x)-\beta(y)\|_{2}^{2}}{d_{1}(x, y)^{2}} \tag{4.50}
\end{align*}
$$

and the type II local upper Lipschitz bounds are defined by:

$$
\begin{align*}
\tilde{B}(z) & =\lim _{r \rightarrow 0} \sup _{y \in V, D_{2}(y, z)<r} \frac{\|\alpha(z)-\alpha(y)\|_{2}^{2}}{D_{2}(z, y)^{2}} \tag{4.51}\\
\tilde{b}(z) & =\lim _{r \rightarrow 0} \sup _{y \in V, d_{1}(y, z)<r} \frac{\|\beta(z)-\beta(y)\|_{2}^{2}}{d_{1}(z, y)^{2}} \tag{4.52}
\end{align*}
$$

The global lower bounds are defined by:

$$
\begin{align*}
A_{0} & =\inf _{x, y \in V, D_{2}(x, y)>0} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}} \tag{4.53}\\
a_{0} & =\inf _{x, y \in V, d_{1}(x, y)>0} \frac{\|\beta(x)-\beta(y)\|_{2}^{2}}{d_{1}(x, y)^{2}} \tag{4.54}
\end{align*}
$$

whereas the global upper bounds are defined by:

$$
\begin{align*}
B_{0} & =\sup _{x, y \in V, D_{2}(x, y)>0} \frac{\|\alpha(x)-\alpha(y)\|_{2}^{2}}{D_{2}(x, y)^{2}} \tag{4.55}\\
b_{0} & =\sup _{x, y \in V, d_{1}(x, y)>0} \frac{\|\beta(x)-\beta(y)\|_{2}^{2}}{d_{1}(x, y)^{2}} \tag{4.56}
\end{align*}
$$

and represent the square of the corresponding Lipschitz constants.
Due to homogeneity $A_{0}=A(0), B_{0}=B(0), a_{0}=a(0), b_{0}=b(0)$. On the other hand, for $z \neq 0, A(z)=A\left(\frac{z}{\|z\|}\right), B(z)=B\left(\frac{z}{\|z\|}\right), a(z)=a\left(\frac{z}{\|z\|}\right), b(z)=b\left(\frac{z}{\|z\|}\right)$.

The exact expressions for these constants is summarized by the following results. For any $I \subset\{1,2, \cdots, m\}$ let $\mathcal{F}[I]=\left\{f_{k}, k \in I\right\}$ denote the frame subset indexed by I. Let also $\sigma_{1}^{2}[I]$ and $\sigma_{n}^{2}[I]$ denote the upper and the lower frame bound of set $\mathcal{F}[I]$, respectively. Thus:

$$
\begin{aligned}
& \sigma_{1}^{2}[I]=\lambda_{\max }\left(\sum_{k \in I} f_{k} f_{k}^{*}\right) \\
& \sigma_{n}^{2}[I]=\lambda_{\min }\left(\sum_{k \in I} f_{k} f_{k}^{*}\right)
\end{aligned}
$$

As usual, I^{c} denotes the complement of index set I, that is $I^{c}=\{1, \cdots, m\} \backslash I$.
Theorem 4.3 ([BW13]). (The real case) Assume $\mathcal{F} \subset \mathbb{R}^{n}$ is a phase retrievable frame for \mathbb{R}^{n}. Let A and B denote its optimal lower and upper frame bound, respectively. Then:
(1) For every $0 \neq x \in \mathbb{R}^{n}, A(x)=\sigma_{n}^{2}\left(\operatorname{supp}(\alpha(x))\right.$, where $\operatorname{supp}(\alpha(x))=\left\{k,\left\langle x, f_{k}\right\rangle \neq 0\right\}$;
(2) For every $x \in \mathbb{R}^{n}, \tilde{A}(x)=A$;
(3) $A_{0}=A(0)=\min _{I}\left(\sigma_{n}^{2}[I]+\sigma_{n}^{2}\left[I^{c}\right]\right)$;
(4) For every $x \in \mathbb{R}^{n}, B(x)=\hat{B}(x)=B$;
(5) $B_{0}=B(0)=\tilde{B}(0)=B$, the optimal upper frame bound;
(6) For every $0 \neq x \in \mathbb{R}^{n}, a(x)=\tilde{a}(x)=\lambda_{\text {min }}(R(x)) /\|x\|^{2}$;
(7) $a_{0}=a(0)=\tilde{a}(0)=\min _{\|x\|=1} \lambda_{\text {min }}(R(x))$;
(8) For every $0 \neq x \in \mathbb{R}^{n}, b(x)=\tilde{b}(x)=\lambda_{\text {max }}(R(x)) /\|x\|^{2}$;
(9) $b_{0}=b(0)=\tilde{b}(0)=\max _{\|x\|=1} \lambda_{\max }(R(x))$;
(10) a_{0} is the largest constant so that

$$
R(x) \geq a_{0}\|x\|^{2} I_{n}, \forall x \in \mathbb{R}^{n}
$$

or, equivalently,

$$
\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{2}\left|\left\langle y, f_{k}\right\rangle\right|^{2} \geq a_{0}\|x\|^{2}\|y\|^{2}, \quad \forall x, y \in \mathbb{R}^{n}
$$

(11) b_{0} is the $4^{\text {th }}$ power of the frame analysis operator norm $T:\left(\mathbb{R}^{n},\|\cdot\|_{2}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{4}\right)$,

$$
b_{0}=\|T\|_{B\left(l^{2}, l^{4}\right)}^{4}=\max _{\|x\|_{2}=1} \sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{4}
$$

The complex case is more subtle. The following result presents some of the local and global Lipschitz bounds.

Theorem 4.4 ([BZ15]). (The complex case) Assume \mathcal{F} is phase retrievable for $H=\mathbb{C}^{n}$ and A, B are its optimal frame bounds. Then:
(1) For every $0 \neq z \in \mathbb{C}^{n}, A(z)=\lambda_{2 n-1}(\mathcal{S}(\mathrm{~J}(z)))$ (the next to the smallest eigenvalue);
(2) $A_{0}=A(0)>0$;
(3) For every $z \in \mathbb{C}^{n}, \tilde{A}(z)=\lambda_{2 n-1}\left(\mathcal{S}(\mathrm{~J}(z))+\sum_{k:\left\{z, f_{k}\right\rangle=0} \Phi_{k}\right)$ (the next to the smallest eigenvalue);
(4) $\tilde{A}(0)=A$, the optimal lower frame bound;
(5) For every $z \in \mathbb{C}^{n}, B(z)=\tilde{B}(z)=\lambda_{1}\left(\mathcal{S}(\mathrm{~J}(z))+\sum_{k:\left\langle z, f_{k}\right\rangle=0} \Phi_{k}\right)$ (the largest eigenvalue);
(6) $B_{0}=B(0)=\tilde{B}(0)=B$, the optimal upper frame bound;
(7) For every $0 \neq z \in \mathbb{C}^{n}, a(z)=\tilde{a}(z)=\lambda_{2 n-1}(\mathcal{R}(\mathrm{~J}(z))) /\|z\|^{2}$ (the next to the smallest eigenvalue);
(8) For every $0 \neq z \in \mathbb{C}^{n}, b(z)=\tilde{b}(z)=\lambda_{1}(\mathcal{R}(\mathrm{~J}(z))) /\|z\|^{2}$ (the largest eigenvalue);
(9) a_{0} is the largest constant to that

$$
\mathcal{R}(\xi) \geq a_{0}\left(I-J \xi \xi^{T} J^{T}\right), \forall \xi \in \mathbb{R}^{2 n},\|\xi\|=1
$$

or, equivalently

$$
\sum_{k=1}^{m}\left|\left\langle\Phi_{k} \xi, \eta\right\rangle\right|^{2} \geq a_{0}\left(\|\xi\|^{2}\|\eta\|^{2}-|\langle J \xi, \eta\rangle|^{2}\right), \forall \xi, \eta \in \mathbb{R}^{2 n}
$$

(10) $b(0)=\tilde{b}(0)=b_{0}$ is the $4^{\text {th }}$ power of the frame analysis operator norm $T:\left(\mathbb{C}^{n},\|\cdot\|_{2}\right) \rightarrow$ $\left(\mathbb{R}^{m},\|\cdot\|_{4}\right)$,

$$
b_{0}=\|T\|_{B\left(l^{2}, l^{4}\right)}^{4}=\max _{\|x\|_{2}=1} \sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{4}
$$

(11) $\tilde{a}(0)$ is given by

$$
\tilde{a}(0)=\min _{\|z\|=1} \sum_{k=1}^{m}\left|\left\langle z, f_{k}\right\rangle\right|^{4}
$$

The results presented so far show that both α and β admit left inverses that are Lipschitz continuous. One remaining problem is to know if these left inverses can be extended to Lipschitz maps over the entire \mathbb{R}^{m}. The following two results provide a positive answer (see [BZ14, BZ15] for the construction):

Theorem 4.5 ([BZ15]). Assume $\mathcal{F} \subset H=\mathbb{C}^{n}$ is a phase retrievable frame for \mathbb{C}^{n}. Let $\sqrt{A_{0}}$ be the lower Lipschitz constant of the map $\alpha:\left(\hat{H}, D_{2}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$. Then there is a Lipschitz map $\omega:\left(\mathbb{R}^{m},\|\cdot\|_{2}\right) \rightarrow\left(\hat{H}, D_{2}\right)$ so that: (i) $\omega(\alpha(x))=x$ for all $x \in \hat{H}$, and (ii) its Lipschitz constant is $\operatorname{Lip}(\omega) \leq \frac{4+3 \sqrt{2}}{\sqrt{A_{0}}}$.
Theorem 4.6 ([BZ14]). Assume $\mathcal{F} \subset H=\mathbb{C}^{n}$ is a phase retrievable frame for \mathbb{C}^{n}. Let $\sqrt{a_{0}}$ be the lower Lipschitz constant of the map $\beta:\left(\hat{H}, d_{1}\right) \rightarrow\left(\mathbb{R}^{m},\|\cdot\|_{2}\right)$. Then there is a Lipschitz map $\psi:\left(\mathbb{R}^{m},\|\cdot\|_{2}\right) \rightarrow\left(\hat{H}, d_{1}\right)$ so that: (i) $\psi(\beta(x))=x$ for all $x \in \hat{H}$, and (ii) its Lipschitz constant is $\operatorname{Lip}(\psi) \leq \frac{4+3 \sqrt{2}}{\sqrt{a_{0}}}$.
4.2. Cramer-Rao Lower Bounds. Consider the following measurement process:

$$
\begin{equation*}
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k}, 1 \leq k \leq m \tag{4.57}
\end{equation*}
$$

where $\mathcal{F}=\left\{f_{1}, \cdots, f_{m}\right\} \subset H=\mathbb{C}^{n}$ is a phase retrievable frame for V, a real linear space, subset of H, and $x \in V$. We further assume that $\nu=\left(\nu_{1}, \cdots, \nu_{m}\right)$ is a sample of a normal random variable of zero mean and variance $\sigma^{2} I_{m}$. We would like to find a lower bound on the variance of any unbiased estimator for x. To make the problem identifiable we make an additional assumption. Let $z_{0} \in V$ be a fixed vector. Define

$$
\begin{equation*}
V_{z_{0}}=\left\{x \in V,\left\langle x, z_{0}\right\rangle>0\right\} \tag{4.58}
\end{equation*}
$$

where the scalar product is the one from H. Set $E_{z_{0}}=\operatorname{span}_{\mathbb{R}}\left(V_{z_{0}}\right)$ the real vector space spanned by $V_{z_{0}}$.

To make (4.57) identifiable we assume $x \in V_{z_{0}}$.
Thus any unbiased estimator is a map $\psi: \mathbb{R}^{m} \rightarrow E_{z_{0}}$ so that $\mathbb{E}[\psi(\beta(x)+\nu)]=x$ for all $x \in V_{z_{0}}$. Here the expectation is taken with respect to the noise random variable.

For the process (4.57) one can compute the Fisher information matrix $I(x)$. Following [BCMN13] and [Ba13] we obtain:

$$
\begin{equation*}
I(x)=\frac{4}{\sigma^{2}} \mathcal{R}(\xi)=\frac{4}{\sigma^{2}} \sum_{k=1}^{m} \Phi_{k} \xi \xi^{T} \Phi_{k} \tag{4.59}
\end{equation*}
$$

where $\xi=\mathrm{J}(x) \in \mathbb{R}^{2 n}$. In general $I(x)$ has rank at most $2 n-1$ because $J \xi$ is always in its kernel. A careful analysis of the estimation process shows that the CRLB (Cramer-Rao Lower Bound) for the estimation problem (4.57) is given by $\left(\Pi_{z_{0}} I(x) \Pi_{z_{0}}\right)^{\dagger}$ where $\Pi_{z_{0}}$ is the orthogonal projection onto $\mathcal{V}_{z_{0}}=\mathrm{J}\left(E_{z_{0}}\right)$ in $\mathbb{R}^{2 n}$ and upper script \dagger denotes the Moore-Penrose pseudo-inverse. Thus, the covariance of any unbiased estimator $\psi: \mathbb{R}^{m} \rightarrow E_{z_{0}}$ is bounded as follows:

$$
\begin{equation*}
\operatorname{Cov}[\psi] \geq \frac{\sigma^{2}}{4}\left(\Pi_{z_{0}} \mathcal{R}(\xi) \Pi_{z_{0}}\right)^{\dagger} \tag{4.60}
\end{equation*}
$$

In the real case, $\mathcal{F} \subset V=\mathbb{R}^{n} \subset \mathbb{C}^{n}$, and the Fisher information matrix takes the form

$$
I(x)=\frac{4}{\sigma^{2}}\left[\begin{array}{cc}
R(x) & 0 \\
0 & 0
\end{array}\right]
$$

Restricting to the real component of the estimator, the CRLB becomes:

$$
\operatorname{Cov}[\psi] \geq \frac{\sigma^{2}}{4} R(x)^{-1}
$$

In the complex case $\mathcal{F} \subset V=H=\mathbb{C}^{n}, \Pi_{z_{0}}=I_{2 n}-J \psi_{0} \psi_{0}^{T} J^{T}$ with $\psi_{0}=\mathrm{j}\left(z_{0}\right)$ and the CRLB becomes:

$$
\operatorname{Cov}[\psi] \geq \frac{\sigma^{2}}{4}\left(\Pi_{z_{0}} \mathcal{R}(\xi) \Pi_{z_{0}}\right)^{\dagger}
$$

5. Reconstruction Algorithms

We present two types of reconstruction algorithms:

- Rank 1 matrix recovery: PhaseLift;
- Iterative algorithm: Least-Square Optimization

Throughout this section we assume \mathcal{F} is a phase retrievable frame for $H=\mathbb{C}^{n}$.
5.1. Rank 1 Matrix Recovery. Consider the noiseless case $y=\beta(x)$. The main idea is embodied in the following feasibility problem:

$$
\text { find }_{\text {subject to: } \mathbb{A}(X)=y, X=X^{*} \geq 0, \operatorname{rank}(X)=1 X} X
$$

Except for $\operatorname{rank}(X)=1$ the optimization problem is convex. However the rank constraint destroys the convexity property. Once a solution X is found, the vector x can be easily obtained from the factorization: $X=x x^{*}$.

The feasibility problem admits at most a unique solution and so does the following optimization problem:

$$
\begin{equation*}
\min _{\mathbb{A}(X)=y, X=X^{*} \geq 0} \operatorname{rank}(X) \tag{5.61}
\end{equation*}
$$

which is still non-convex. The insight provided by the matrix completion theory and exploited in [CSV12, CESV12] is to replace $\operatorname{rank}(X)$ by $\operatorname{trace}(X)$ which is convex. Thus one obtains:

$$
\begin{equation*}
\text { (PhaseLift) } \min _{\mathbb{A}(X)=y, X=X^{*} \geq 0} \operatorname{trace}(X) \tag{5.62}
\end{equation*}
$$

which is a convex optimization problem (a semi-definite program: SDP). In [CL12] the authors proved that for random frames, with high probability the problem (5.62) has the same solution as the problem (5.61):
Theorem 5.1. Assume each vector f_{k} is drawn independently from $\mathcal{N}\left(0, I_{n} / 2\right)+i \mathcal{N}\left(0, I_{n} / 2\right)$, or each vector is drawn independently from the uniform distribution on the complex sphere of radius \sqrt{n}. Then there are universal constants $c_{0}, c_{1}, \gamma>0$ so that for $m \geq c_{0} n$, for every $x \in \mathbb{C}^{n}$ the problem (5.62) has the same solution as (5.61) with probability at least $1-c_{1} e^{-\gamma n}$.

The PhaseLift algorithm is also robust to noise. Consider the measurement

$$
y=\beta(x)+\nu
$$

for some $\nu \in \mathbb{R}^{m}$ noise vector. Consider the following modified optimization problem:

$$
\begin{equation*}
\min _{X=X^{*} \geq 0}\|\mathbb{A}(X)-y\|_{1} \tag{5.63}
\end{equation*}
$$

In [CL12] the following result has been shown:
Theorem 5.2. Consider the same stochastic process for the random frame \mathcal{F}. There is a universal constant $C_{0}>0$ so that for all $x \in C^{n}$ the solution to (5.63) obeys

$$
\left\|X-x x^{*}\right\|_{2} \leq C_{0} \frac{\|\nu\|_{1}}{m}
$$

For the Gaussian model this holds with the same probability as in the noiseless case, whereas the probability of failure is exponentially small in n in the uniform model. The principal eigenvector x^{0} of X (normalized by the squareroot of the principal eigenvalue) obeys

$$
D_{2}\left(x^{0}, x\right) \leq C_{0} \min \left(\|x\|_{2}, \frac{\|\nu\|_{1}}{m\|x\|_{2}}\right)
$$

5.2. An Iterative Algorithm. Consider the measurement process

$$
y_{k}=\left|\left\langle x, f_{k}\right\rangle\right|^{2}+\nu_{k}, \quad 1 \leq k \leq m
$$

The Least-Squares criterion:

$$
\left.\min _{x \in \mathbb{C}^{n}} \sum_{k=1}^{m}| |\left\langle x, f_{k}\right\rangle\right|^{2}-y_{k} \mid
$$

can be understood as the Maximum Likelihood Estimator (MLE) when the noise vector $\nu \in \mathbb{R}^{m}$ is normal distributed with zero mean and covariance $\sigma^{2} I_{m}$. However the optimization problem is not convex and has many local minima.

The iterative algorithm described next tries to find the global minimum using a regularization term. Consider the following optimization criterion:

$$
\begin{equation*}
J(u, v ; \lambda, \mu)=\sum_{k=1}^{m}\left|\frac{1}{2}\left(\left\langle u, f_{k}\right\rangle\left\langle f_{k}, v\right\rangle+\left\langle v, f_{k}\right\rangle\left\langle f_{k}, u\right\rangle\right)-y_{k}\right|^{2}+\lambda\|u\|_{2}^{2}+\mu\|u-v\|_{2}^{2}+\lambda\|v\|_{2}^{2} \tag{5.64}
\end{equation*}
$$

The Iterative Regularized Least-Squares (IRLS) algorithm presented in [Ba13] works as follows.

Fix a stopping criterion, such as a tolerance ε, a desired level of signal-to-noise-ratio snr, or/and a maximum number of steps T. Fix an initialization parameter $\rho \in(0,1)$, a learning rate $\gamma \in(0,1)$ and a saturation parameter $\mu_{\text {min }}>0$.

Step 1. Initialization. Compute the principal eigenvector of $R_{y}=\sum_{k=1}^{m} y_{k} f_{k} f_{k}^{*}$ using e.g. the power method. Let $\left(e_{1}, a_{1}\right)$ be the eigen-pair with $e_{1} \in \mathbb{C}^{n}$ and $a_{1} \in \mathbb{R}$. If $a_{1} \leq 0$ then set $x=0$ and exit. Otherwise initialize:

$$
\begin{align*}
x^{0} & =\sqrt{\frac{(1-\rho) a_{1}}{\sum_{k=1}^{m}\left|\left\langle e_{1}, f_{k}\right\rangle\right|^{4}}} e_{1} \tag{5.65}\\
\lambda_{0} & =\rho a_{1} \tag{5.66}\\
\mu_{0} & =\rho a_{1} \tag{5.67}\\
t & =0 \tag{5.68}
\end{align*}
$$

Step 2. Iteration. Perform:
2.1 Solve the least-square problem:

$$
x^{t+1}=\operatorname{argmin}_{u} J\left(u, x^{t} ; \lambda_{t}, \mu_{t}\right)
$$

using the conjugate gradient method.
2.2 Update:

$$
\lambda_{t+1}=\gamma \lambda_{t}, \mu_{t}=\max \left(\gamma \mu_{t}, \mu_{\min }\right), t=t+1
$$

Step 3. Stopping. Repeat Step 2 until:

- The error criterion is achieved: $J\left(x^{t}, x^{t} ; 0,0\right)<\varepsilon$; or
- The desired signal-to-noise-ratio is reached: $\frac{\left\|x^{t}\right\|^{2}}{J\left(x^{t}, x^{t} ; 0,0\right)}>s n r$; or
- The maximum number of iterations is reached: $t>T$.

The final estimate can be x^{T}, or the best estimate obtained in the iteration path: $x^{e s t}=x^{t_{0}}$ where $t_{0}=\operatorname{argmin}_{t} J\left(x^{t}, x^{t} ; 0,0\right)$.

The initialization is performed as in (5.65) for the following reason. Consider the modified criterion:

$$
H(x ; \lambda)=J(x, x ; \lambda, 0)=\|\beta(x)-y\|_{2}^{2}+\lambda\|x\|_{2}^{2}=\sum_{k=1}^{m}\left|\left\langle x, f_{k}\right\rangle\right|^{4}+\left\langle\left(\lambda I_{n}-R_{y}\right) x, x\right\rangle+\|y\|_{2}^{2}
$$

In general this function is not convex in x, except for large values of λ. Specifically for $\lambda>a_{1}$, the largest eigenvalue of $R_{y}, x \mapsto H(x ; \lambda)$ is convex and has a unique global minimum at $x=0$. For $a_{1}-\varepsilon<\lambda<a_{1}$ the criterion is no longer convex, but the global minimum stays in a neighborhood of the origin. Neglecting the $4^{\text {th }}$ order terms, the critical points are given by the eigenvectors of R_{y}. Choosing $\lambda=\rho a_{1}$ and $x=s e_{1}$, the optimal value of s for $s \mapsto H\left(s e_{1} ; \rho a_{1}\right)$ is given in (5.65).

The path of iterates $\left(x^{t}\right)_{t \geq 0}$ can be thought of as trying to approximate the measured vector y with a linear transformation of a rank $2, \mathbb{A}\left(\llbracket x^{t-1}, x^{t} \rrbracket\right)$. The parameter μ penalizes the negative eigenvalue of $\llbracket x^{t-1}, x^{t} \rrbracket$; the larger the value of μ_{t} the smaller the iteration step $\left\|x^{t+1}-x^{t}\right\|$ and the smaller the deviation from a rank 1 of outp $x^{t+1} x^{t}$; the smaller the parameter μ_{t} the larger in magnitude the negative eigenvalue of $\llbracket x^{t+1}, x^{t} \rrbracket$. This fact explains why in the noisy case the iterates first decrease the matching error $J\left(x^{t}, x^{t} ; 0,0\right)$ up to some t_{0} and then they start to increase the matching error: the rank 2 self-adjoint operator $T=\llbracket x^{t+1}, x^{t} \rrbracket$ decreases the matching error $\|\mathbb{A}(T)-y\|_{2}$ instead of the rank-1 self-adjoint operator $\llbracket x^{t}, x^{t} \rrbracket$.

At any point on the path, if the value of criterion J is smaller than the value reached at the true value x, then we can offer convergence guarantees. Specifically in [Ba13] the following result has been proved:

Theorem 5.3 ([Ba13]Theorem 5.6). Fix $0 \neq z_{0} \in \mathbb{C}^{n}$. Assume the frame \mathcal{F} is so that $\operatorname{ker} \mathbb{A} \cap \mathcal{S}^{2,1}=\{0\}$. Then there is a constant $A_{3}>0$ that depends of \mathcal{F} so that for every $x \in \Omega_{z_{0}}$ and $\nu \in \mathbb{C}^{n}$ that produce $y=\beta(x)+\nu$ if there are $u, v \in \mathbb{C}^{n}$ so that $J(u, v ; \lambda, \mu)<$ $J(x, x ; \lambda, \mu)$ then

$$
\begin{equation*}
\left\|\llbracket u, v \rrbracket-x x^{*}\right\|_{1} \leq \frac{4 \lambda}{A_{3}}+\frac{2\|\nu\|_{2}}{\sqrt{A_{3}}} \tag{5.69}
\end{equation*}
$$

Moreover, let $\llbracket u, v \rrbracket=a_{+} e_{+} e_{+}^{*}+a_{-} e_{-} e_{-} e_{-}^{*}$ be its spectral factorization with $a_{+} \geq 0 \geq a_{-}$ and $\left\|e_{+}\right\|=\left\|e_{-}\right\|=1$. Set $\tilde{x}=\sqrt{a_{+}} e_{+}$. Then

$$
\begin{equation*}
D_{2}(x, \tilde{x})^{2} \leq \frac{4 \lambda}{A_{3}}+\frac{2\|\nu\|_{2}}{\sqrt{A_{3}}}+\frac{\|\nu\|_{2}^{2}}{4 \mu}+\frac{\lambda\|x\|_{2}^{2}}{2 \mu} \tag{5.70}
\end{equation*}
$$

The kernel requirement on \mathbb{A} is satisfied for generic frames when $m \geq 6 n$. In particular it implies the frame is phase retrievable for \mathbb{C}^{n}.

References

[ABFM12] B. Alexeev, A. S. Bandeira, M. Fickus, D. G. Mixon, Phase Retrieval with Polarization, SIAM J. Imaging Sci., 7 (1) (2014), 35-66.
[Ap05] D. M. Appleby, Symmetric informationally complete-positive operator valued measures and the extended Clifford group, J. Math. Phys. 46 (2005), no. 5, 052107, 29.
[Ba09] R. Balan, A Nonlinear Reconstruction Algorithm from Absolute Value of Frame Coefficients for Low Redundancy Frames, Proceedings of SampTA Conference, Marseille, France May 2009.
[Ba10] R. Balan, On Signal Reconstruction from Its Spectrogram, Proceedings of the CISS Conference, Princeton NJ, May 2010.
[Ba12] R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations, available online arXiv:1207.1134v1 [math.FA] 4 July 2012.
[Ba13] R. Balan, Reconstruction of Signals from Magnitudes of Redundant Representations: The Complex Case, available online arXiv:1304.1839v1 [math.FA] 6 April 2013, to appear in Foundations of Computational Mathematics (2015).
[Ba13b] R. Balan, Stability of Phase Retrievable Frames, proceedings of SPIE 2013.
[BCE06] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl. Comput. Harmon. Anal. 20 (2006), 345-356.
[BCE07] R. Balan, P. Casazza, D. Edidin, Equivalence of Reconstruction from the Absolute Value of the Frame Coefficients to a Sparse Representation Problem, IEEE Signal.Proc.Letters, 14 (5) (2007), 341343.
[BBCE07] R. Balan, B. Bodmann, P. Casazza, D. Edidin, Painless reconstruction from Magnitudes of Frame Coefficients, J.Fourier Anal.Applic., 15 (4) (2009), 488-501.
[BW13] R. Balan and Y. Wang, Invertibility and Robustness of Phaseless Reconstruction, available online arXiv:1308.4718v1, Appl. Comp. Harm. Anal., 38 (2015), 469-488.
[BZ14] R. Balan and D. Zou, Phase Retrieval using Lipschitz Continuous Maps, available online arXiv:1403.2304v1.
[BZ15a] R. Balan and D. Zou, On Lipschitz Inversion of Nonlinear Redundant Representations, to appear in Contemporary Mathematics 2015.
[BZ15] R. Balan and D. Zou, On Lipschitz Analysis and Lipschitz Synthesis for the Phase Retrieval Problem, preprint 2015.
[BCMN13] A.S. Bandeira, J. Cahill, D.G. Mixon, A.A. Nelson, Saving phase: Injectivity and stability for phase retrieval, available online arXiv:1302.4618v2. Appl. Comp. Harm. Anal. 37 (1) (2014), 106-125.
[BL00] Y. Benyamini, J. Lindenstrauss, Geometric Nonlinear Functional Analysis, vol. 1, AMS Colloquium Publications, vol. 48, 2000.
[Bh97] R. Bhatia, Matrix Analysis, Graduate Texts in MAthematics 169, Springer-Verlag 1997.
[BH13] B. G. Bodmann and N. Hammen, Stable Phase Retrieval with Low-Redundancy Frames, available online arXiv:1302.5487v1. Adv. Comput. Math., accepted 10 April 2014.
[CCPW13] J. Cahill, P.G. Casazza, J. Peterson, L. Woodland, Phase retrieval by projections, available online arXiv: 1305.6226 v 3
[CSV12] E. Candés, T. Strohmer, V. Voroninski, PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming, Communications in Pure and Applied Mathematics vol. 66, 1241-1274 (2013).
[CESV12] E. Candés, Y. Eldar, T. Strohmer, V. Voroninski, Phase Retrieval via Matrix Completion Problem, SIAM J. Imaging Sci., 6(1) (2013), 199-225.
[CL12] E. Candès, X. Li, Solving Quadratic Equations Via PhaseLift When There Are As Many Equations As Unknowns, available online arXiv:1208.6247
[Ca00] P. Casazza, The art of frame theory, Taiwanese J. Math., (2) 4 (2000), 129-202.
[Ca12] J. Cahill, personal communication, October 2012.
[CS73] P. J. Cameron and J. J. Seidel, Quadratic forms over GF(2), Indag. Math. 35 (1973), 1-8.
[CEHV13] A. Conca,D. Edidin, M. Hering, V. Vinzant, An algebraic characterization of injectivity in phase retrieval, available online arXiv:1312:0158, to appear in ACHA 2014.
[DK69] C. Davis and W.M. Kahan, Some new bounds on perturbation of subspaces, Bull. Amer. Math. Soc. vol. 75 (1969), no. 4, 863-868.
[EM12] Y. C. Eldar, S. Mendelson, Phase retrieval: Stability and recovery guarantees, Available online: arXiv:1211.0872.
[FMNW13] M. Fickus, D.G. Mixon, A.A. Nelson, Y. Wang, Phase retrieval from very few measurements, available online arXiv:1307.7176v1. Linear Algebra and its Applications 449 (2014), 475-499
[Fi04] J. Finkelstein, Pure-state informationally complete and "really" complete measurements, Phys. Rev. A 70 (2004), no. 5, doi:10.1103/PhysRevA. 70.052107
[KE14] F.J. Király, M. Ehler, The Algebraic Approach to Phase Retrieval and Explicit Inversion at the Identifiability Threshold, available online arXiv:1402.4053
[HLO80] M. H. Hayes, J. S. Lim, and A. V. Oppenheim, Signal Reconstruction from Phase and Magnitude, IEEE Trans. ASSP 28, no. 6 (1980), 672-680.
[HMW11] T. Heinosaari, L. Mazzarella, M. M. Wolf, Quantum Tomography under Prior Information, available online arXiv:1109.5478v1 [quant-ph], 26 Sept 2011. Commun. Math. Phys. 318 (2) (2013), 355-374.
[HG13] M.J. Hirn and E. Le Gruyer, A general theorem of existence of quasi absolutely minimal Lipschitz extensions, arXiv:1211.5700v2 [math.FA], 8 Aug 2013.
[Ja10] P. Jaming, Uniqueness results for the phase retrieval problem of fractional Fourier transforms of variable order, preprint, arXiv:1009.3418.
[MV13] D. Mondragon and V. Voroninski, Determination of all pure quantum states from a minimal number of observables, online arXiv:1306.1214v1 [math-ph] 5 June 2013.
[Mi67] R. J. Milgram, Immersing Projective Spaces, Annals of Mathematics, vol. 85, no. 3 (1967), 473-482.
[NQL82] H. Nawab, T. F. Quatieri, and J. S. Lim, Signal Reconstruction from the Short-Time Fourier Transform Magnitude, in Proceedings of ICASSP 1984.
[Ph13] F. Philipp, SPIE 2013 Conference Presentation, August 16, 2013, San Diego, CA.
[Viz15] C. Vinzant, A small frame and a certificate of its injectivity, available online arXiv:1502.0465v1 [math.FA] 16 Feb. 2015.
[WAM12] I. Waldspurger, A. dAspremont, S. Mallat, Phase recovery, MaxCut and complex semidefinite programming, Available online: arXiv:1206.0102
[WW75] J.H. Wells and L.R. Williams, Embeddings and Extensions in Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete Band 84, Springer-Verlag 1975.
[ZB06] L. Zwald and G. Blanchard, On the convergence of eigenspaces in kernel Principal Component Analysis, Proc. NIPS 05, vol. 18, 1649-1656, MIT Press, 2006.

Department of Mathematics, Center for Scientific Computation and Mathematical Modeling, Norbert Wiener Center, University of Maryland, College Park MD 20742

E-mail address: rvbalan@math.umd.edu

[^0]: FINANCIAL SUPPORT FROM NSF GRANTS DMS-1109498 AND DMS-1413249 IS GRATEFULLY ACKNOWLEDGED.

