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Recall: Every counterexample Φ to Vaught’s Conjecture is
scattered.
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Recall: Every counterexample Φ to Vaught’s Conjecture is
scattered.

If a countable fragment ∆ ⊆ Lω1,ω is sufficiently nice, then Morley
proved:

Fact (Poor-man’s compactness)

Suppose T ⊆ ∆ is:

finitely satisfiable; and,

For every valid disjunction
∨

Γ ∈ ∆, T |= θ for some θ ∈ Γ.

THEN T is satisfiable.
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Suppose Φ is a counterexample to VC. Call a sentence large if it is
satisfied in uncountably many countable models.

Definition

A minimal counterexample is a counterexample Φ such that for
every Ψ ∈ Lω1,ω, exactly one of Φ ∧Ψ, Φ ∧ ¬Ψ is large.

Chris Laskowski University of Maryland

The rise and fall of uncountable models



Theorem (Harnik-Makkai)

For every counterexample Φ, there is a minimal counterexample
Φ′ |= Φ.
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Theorem (Harnik-Makkai)

For every counterexample Φ, there is a minimal counterexample
Φ′ |= Φ.

Proof: Suppose not.
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Theorem (Harnik-Makkai)

For every counterexample Φ, there is a minimal counterexample
Φ′ |= Φ.

Proof: Suppose not.

Choose a sufficiently nice, countable fragment ∆ such that Φ ∈ ∆
and for every Φ′ |= Φ, if Φ′ ∈ ∆, then there is some Ψ ∈ ∆ such
that both Φ′ ∧Ψ and Φ′ ∧ ¬Ψ are large.
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Theorem (Harnik-Makkai)

For every counterexample Φ, there is a minimal counterexample
Φ′ |= Φ.

Proof: Suppose not.

Choose a sufficiently nice, countable fragment ∆ such that Φ ∈ ∆
and for every Φ′ |= Φ, if Φ′ ∈ ∆, then there is some Ψ ∈ ∆ such
that both Φ′ ∧Ψ and Φ′ ∧ ¬Ψ are large.

Let {
∨

Γi} enumerate the countable! set of valid disjunctions in ∆.
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Theorem (Harnik-Makkai)

For every counterexample Φ, there is a minimal counterexample
Φ′ |= Φ.

Proof: Suppose not.

Choose a sufficiently nice, countable fragment ∆ such that Φ ∈ ∆
and for every Φ′ |= Φ, if Φ′ ∈ ∆, then there is some Ψ ∈ ∆ such
that both Φ′ ∧Ψ and Φ′ ∧ ¬Ψ are large.

Let {
∨

Γi} enumerate the countable! set of valid disjunctions in ∆.

Using ‘Poor-man’s compactness’ construct a perfect tree
{Tη : η ∈ 2ω} of satisfiable, pairwise contradictory subsets of ∆.
[Each finite approximation

∧
Tν will be large. Dovetail

‘contradictory’ and ‘deciding
∨

Γi ’ along each branch.]
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Suppose Φ is a minimal counterexample to VC. Then:

Φ is scattered; and

For every Ψ, exactly one of Φ ∧Ψ, Φ ∧ ¬Ψ is large.
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Suppose Φ is a minimal counterexample to VC. Then:

Φ is scattered; and

For every Ψ, exactly one of Φ ∧Ψ, Φ ∧ ¬Ψ is large.

For each fragment ∆, let T∆ = {Ψ ∈ ∆ : Φ ∧Ψ is large}.
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Suppose Φ is a minimal counterexample to VC. Then:

Φ is scattered; and

For every Ψ, exactly one of Φ ∧Ψ, Φ ∧ ¬Ψ is large.

For each fragment ∆, let T∆ = {Ψ ∈ ∆ : Φ ∧Ψ is large}.

Each T∆ is ∆-complete.

Thus: There is a unique ∆-prime model M∆ |= T∆.

Furthermore: ∆1 ⊆ ∆2 implies T∆1 ⊆ T∆2 , so

There is a ∆1-elementary map f1,2 : M∆1 → M∆2 .
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Theorem (Harnik-Makkai)

Every counterexample Φ to VC has an uncountable model N with
the property that every sentence true in N is large.
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Theorem (Harnik-Makkai)

Every counterexample Φ to VC has an uncountable model N with
the property that every sentence true in N is large.

We may assume Φ is a minimal cx. Construct a continuous
increasing sequence {∆α} of countable fragments.
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Theorem (Harnik-Makkai)

Every counterexample Φ to VC has an uncountable model N with
the property that every sentence true in N is large.

We may assume Φ is a minimal cx. Construct a continuous
increasing sequence {∆α} of countable fragments.

For each α < ω1, let Mα be a prime model of T∆α , and construct
a commuting system of maps fα,β : Mα → Mβ (α < β).
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Theorem (Harnik-Makkai)

Every counterexample Φ to VC has an uncountable model N with
the property that every sentence true in N is large.

We may assume Φ is a minimal cx. Construct a continuous
increasing sequence {∆α} of countable fragments.

For each α < ω1, let Mα be a prime model of T∆α , and construct
a commuting system of maps fα,β : Mα → Mβ (α < β).

Let N be a direct limit of the system {Mα, fα,β}.
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Theorem (Harnik-Makkai)

Every counterexample Φ to VC has an uncountable model N with
the property that every sentence true in N is large.

We may assume Φ is a minimal cx. Construct a continuous
increasing sequence {∆α} of countable fragments.

For each α < ω1, let Mα be a prime model of T∆α , and construct
a commuting system of maps fα,β : Mα → Mβ (α < β).

Let N be a direct limit of the system {Mα, fα,β}.

To show N is uncountable, at each α, choose ∆α+1 to contain the
(small) Scott sentence Φα of Mα. As Mα,Mα+1 disagree on Φα,
Mα+1 properly extends Mα.
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Many variations are possible!
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Many variations are possible!

Harrington: Let Φ be any counterexample to VC. For every
β < ω2, there is a model Nβ |= Φ of cardinality ℵ1, whose
Lω2,ω-Scott rank is at least β.
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Many variations are possible!

Harrington: Let Φ be any counterexample to VC. For every
β < ω2, there is a model Nβ |= Φ of cardinality ℵ1, whose
Lω2,ω-Scott rank is at least β.

Corollary: There are at least ℵ2 non-isomorphic models of size ℵ1.
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Many variations are possible!

Harrington: Let Φ be any counterexample to VC. For every
β < ω2, there is a model Nβ |= Φ of cardinality ℵ1, whose
Lω2,ω-Scott rank is at least β.

Corollary: There are at least ℵ2 non-isomorphic models of size ℵ1.

Aside: Makkai proved that there are also models of size ℵ1 which
are Lω1,ω-equivalent to a countable model.
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Many variations are possible!

Harrington: Let Φ be any counterexample to VC. For every
β < ω2, there is a model Nβ |= Φ of cardinality ℵ1, whose
Lω2,ω-Scott rank is at least β.

Corollary: There are at least ℵ2 non-isomorphic models of size ℵ1.

Aside: Makkai proved that there are also models of size ℵ1 which
are Lω1,ω-equivalent to a countable model.

What about complete, first-order T ?
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Many variations are possible!

Harrington: Let Φ be any counterexample to VC. For every
β < ω2, there is a model Nβ |= Φ of cardinality ℵ1, whose
Lω2,ω-Scott rank is at least β.

Corollary: There are at least ℵ2 non-isomorphic models of size ℵ1.

Aside: Makkai proved that there are also models of size ℵ1 which
are Lω1,ω-equivalent to a countable model.

What about complete, first-order T ?

Baldwin: If T is a complete, first-order counterexample, then
I (T ,ℵ1) = 2ℵ1 .
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Many variations are possible!

Harrington: Let Φ be any counterexample to VC. For every
β < ω2, there is a model Nβ |= Φ of cardinality ℵ1, whose
Lω2,ω-Scott rank is at least β.

Corollary: There are at least ℵ2 non-isomorphic models of size ℵ1.

Aside: Makkai proved that there are also models of size ℵ1 which
are Lω1,ω-equivalent to a countable model.

What about complete, first-order T ?

Baldwin: If T is a complete, first-order counterexample, then
I (T ,ℵ1) = 2ℵ1 . [Pf: T is not ω-stable! Look at spectra.]
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Upshot: Models of size ℵ1 of any counterexample are abundant.
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Digress:
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Digress: Let L = {fn(x , y),Un(x , y)}n∈ω and let K0 be the class of
all finite L-structures A satisfying:

{Un : n ∈ ω} partition A2;

If Un(a, b), then fm(a, b) = a for all m ≥ n; and

With respect to ‘smallest substructure’ A has no independent
subset of size 3.
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Digress: Let L = {fn(x , y),Un(x , y)}n∈ω and let K0 be the class of
all finite L-structures A satisfying:

{Un : n ∈ ω} partition A2;

If Un(a, b), then fm(a, b) = a for all m ≥ n; and

With respect to ‘smallest substructure’ A has no independent
subset of size 3.

Facts:

K0 has countably many isomorphism types and satisfies
disjoint amalgamation.

There is a Fräısse limit M. Its Scott sentence θ has a proper
elementary extension.

Every model of θ is locally finite with respect to ‘smallest
substructure’.

Every model of θ has no independent subset of size 3.
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Thus: θ has models N of size ℵ1, yet every such N is maximal.

The point: Let X be any uncountable set, and
cl : P(X )→P(X ) a locally finite closure relation on X . Then:

X has an independent subset of size 2.

If X has a proper, uncountable cl-closed Y ⊆ X , then X has
an independent subset of size 3.
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Variant: Let Lh = L ∪ {U,V , π} and Kh
0 are all 2-sorted, finite B

satisfying:

The reduct of U(B) to L is an element of K0;

V (B) has no structure;

π : U(B)→ V (B) a map (will be onto in the Fräısse limit).

Chris Laskowski University of Maryland

The rise and fall of uncountable models



Variant: Let Lh = L ∪ {U,V , π} and Kh
0 are all 2-sorted, finite B

satisfying:

The reduct of U(B) to L is an element of K0;

V (B) has no structure;

π : U(B)→ V (B) a map (will be onto in the Fräısse limit).

Then Kh has a Fräısse limit Mh with Scott sentence θh.
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Variant: Let Lh = L ∪ {U,V , π} and Kh
0 are all 2-sorted, finite B

satisfying:

The reduct of U(B) to L is an element of K0;

V (B) has no structure;

π : U(B)→ V (B) a map (will be onto in the Fräısse limit).

Then Kh has a Fräısse limit Mh with Scott sentence θh.
Moreover:

V (Mh) is absolutely indiscernible (every permutation of
V (Mh) extends to an automorphism of Mh);

π : U(Mh)→ V (Mh) is onto;

Every model of θh of size ℵ1 is maximal (note:
|U(N)| ≥ |V (N)|).
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So what ??
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So what ??

Theorem (Baldwin-Friedman-Koerwien-L)

If there is a cx to VC Φ, then there is a cx to VC Φ∗ with the
property that every model of cardinality ℵ1 is maximal.

Previously, Hjorth proved that if a cx to VC exists, then there is
one with no model of size ℵ2.
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