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Recall: Every counterexample ® to Vaught's Conjecture is
scattered.
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Recall: Every counterexample ® to Vaught's Conjecture is
scattered.

If a countable fragment A C L, ., is sufficiently nice, then Morley
proved:

Fact (Poor-man’'s compactness)

Suppose T C A is:

o finitely satisfiable; and,

@ For every valid disjunction \| T € A, T |= 60 for some 6 € T.
THEN T s satisfiable.
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Suppose @ is a counterexample to VC. Call a sentence large if it is
satisfied in uncountably many countable models.

Definition

A minimal counterexample is a counterexample ® such that for
every V € L, ., exactly one of ® AV, & A -V is large.
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Theorem (Harnik-Makkai)

For every counterexample ®, there is a minimal counterexample
o' = o,
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Theorem (Harnik-Makkai)

For every counterexample ®, there is a minimal counterexample
' = o.

Proof: Suppose not.
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Theorem (Harnik-Makkai)

For every counterexample ®, there is a minimal counterexample
o' = o,

Proof: Suppose not.

Choose a sufficiently nice, countable fragment A such that ® € A
and for every ¢’ |= @, if ' € A, then there is some W € A such
that both & AW and ¢’ A =V are large.
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Theorem (Harnik-Makkai)

For every counterexample ®, there is a minimal counterexample
' E o.

Proof: Suppose not.

Choose a sufficiently nice, countable fragment A such that ® € A
and for every ¢’ = @, if ' € A, then there is some W € A such
that both ® AW and &’ A —V are large.

Let {\/T;} enumerate the countable! set of valid disjunctions in A.
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Theorem (Harnik-Makkai)

For every counterexample ®, there is a minimal counterexample
o' = o.

Proof: Suppose not.

Choose a sufficiently nice, countable fragment A such that ® € A
and for every ¢’ |= @, if &’ € A, then there is some W € A such
that both ®' A W and &' A =V are large.

Let {\/';} enumerate the countable! set of valid disjunctions in A.

Using ‘Poor-man’s compactness’ construct a perfect tree

{T, : n € 2¥} of satisfiable, pairwise contradictory subsets of A.
[Each finite approximation A T, will be large. Dovetail
‘contradictory’ and ‘deciding \/ ;" along each branch.]
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Suppose @ is a minimal counterexample to VC. Then:

@ ¢ is scattered; and

o For every WV, exactly one of ® AW, & A =V is large.
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Suppose ® is a minimal counterexample to VC. Then:
@ ® is scattered; and

@ For every VW, exactly one of ® AW, ® A =V is large.

For each fragment A, let To ={V € A: ® AV is large}.
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Suppose @ is a minimal counterexample to VC. Then:
@ & is scattered; and

@ For every W, exactly one of ® AW, ® A =WV is large.

For each fragment A, let To = {V € A: ® AV is large}.

Each Tp is A-complete.
Thus: There is a unique A-prime model Ma = Ta.

°
°
e Furthermore: Ay C A implies Ta, € Ta,, so
°

There is a Aj-elementary map f1 2 : Ma, — Ma,.
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Theorem (Harnik-Makkai)

Every counterexample ® to VC has an uncountable model N with
the property that every sentence true in N is large.
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Theorem (Harnik-Makkai)

Every counterexample ® to VC has an uncountable model N with
the property that every sentence true in N is large.

We may assume @ is a minimal cx. Construct a continuous
increasing sequence {A,} of countable fragments.
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Theorem (Harnik-Makkai)

Every counterexample ® to VC has an uncountable model N with
the property that every sentence true in N is large.

We may assume @ is a minimal cx. Construct a continuous
increasing sequence {A,} of countable fragments.

For each a < wy, let M, be a prime model of T, and construct
a commuting system of maps fy g : My, — Mg (o < ).
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Theorem (Harnik-Makkai)

Every counterexample ® to VVC has an uncountable model N with
the property that every sentence true in N is large.

We may assume ¢ is a minimal cx. Construct a continuous
increasing sequence {A,} of countable fragments.

For each a < wy, let M, be a prime model of Ta_, and construct
a commuting system of maps f, g : My, — Mg (o < ).

Let N be a direct limit of the system {M,,f, 5}.
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Theorem (Harnik-Makkai)

Every counterexample ® to VC has an uncountable model N with
the property that every sentence true in N is large.

We may assume @ is a minimal cx. Construct a continuous
increasing sequence {A,} of countable fragments.

For each a < wy, let M, be a prime model of Ta_, and construct
a commuting system of maps f, 3 : My, = Mg (o < f3).

Let N be a direct limit of the system {M,, f, 5}.

To show N is uncountable, at each «, choose A1 to contain the
(small) Scott sentence ®, of M,. As M,, M,1 disagree on &,
M1 properly extends M,,.
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Many variations are possible!
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Many variations are possible!

Harrington: Let ® be any counterexample to VC. For every
B < wo, there is a model N3 = ® of cardinality Ny, whose
L., w-Scott rank is at least f3.
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Many variations are possible!

Harrington: Let ® be any counterexample to VC. For every
< wy, there is a model Ng = ® of cardinality 8;, whose
L., «-Scott rank is at least 3.

Corollary: There are at least Ny non-isomorphic models of size Nj.
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Many variations are possible!

Harrington: Let ® be any counterexample to VC. For every
< wy, there is a model Ng = ® of cardinality ®;, whose
L., «-Scott rank is at least 3.

Corollary: There are at least Ny non-isomorphic models of size Nj.

Aside: Makkai proved that there are also models of size ¥; which
are L, «-equivalent to a countable model.
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Many variations are possible!

Harrington: Let @ be any counterexample to VC. For every
f < wy, there is a model Ng = ® of cardinality ®;, whose
L., «-Scott rank is at least 3.

Corollary: There are at least Ny non-isomorphic models of size Nj.

Aside: Makkai proved that there are also models of size ¥; which
are L, «-equivalent to a countable model.

What about complete, first-order T7
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Many variations are possible!

Harrington: Let ® be any counterexample to VC. For every
f < wy, there is a model Ng = ® of cardinality ®;, whose
L., «-Scott rank is at least 3.

Corollary: There are at least Ny non-isomorphic models of size Nj.

Aside: Makkai proved that there are also models of size ¥; which
are L, «-equivalent to a countable model.

What about complete, first-order T7

Baldwin: If T is a complete, first-order counterexample, then
I(T,Ny) = 2%,
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Many variations are possible!

Harrington: Let ® be any counterexample to VC. For every
f < wy, there is a model Ng = ® of cardinality ®;, whose
L., «-Scott rank is at least 3.

Corollary: There are at least Ny non-isomorphic models of size Nj.

Aside: Makkai proved that there are also models of size ¥; which
are L, «-equivalent to a countable model.

What about complete, first-order T7

Baldwin: If T is a complete, first-order counterexample, then
I(T,N;) = 2% [Pf: T is not w-stable! Look at spectra.]
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Upshot: Models of size N3 of any counterexample are abundant.
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Digress:

The rise and fall of ountable models



Digress: Let L = {fy(x, y), Un(x,y)}new and let Ky be the class of
all finite L-structures 2 satisfying:

o {U,: n € w} partition A%
e If Un(a, b), then fp(a, b) = a for all m > n; and

@ With respect to ‘smallest substructure’ 2l has no independent
subset of size 3.
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Digress: Let L = {fy(x, y), Un(x,y)}new and let Ky be the class of
all finite L-structures 2 satisfying:
o {U,: n € w} partition A%
o If Uy(a, b), then fy(a, b) = a for all m > n; and
@ With respect to ‘smallest substructure’ 2 has no independent
subset of size 3.

Facts:

@ Kp has countably many isomorphism types and satisfies
disjoint amalgamation.

@ There is a Fraisse limit M. Its Scott sentence 6 has a proper
elementary extension.

@ Every model of 0 is locally finite with respect to ‘smallest
substructure’.

@ Every model of 8 has no independent subset of size 3.
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Thus: 0 has models N of size N1, yet every such N is maximal.

The point: Let X be any uncountable set, and
c: P(X) — P(X) alocally finite closure relation on X. Then:

@ X has an independent subset of size 2.

e If X has a proper, uncountable c/-closed Y C X, then X has
an independent subset of size 3.
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Variant: Let L" = LU {U, V, 7} and K{ are all 2-sorted, finite 2
satisfying:

@ The reduct of U(Z) to L is an element of Kp;

e V(%) has no structure;

o 7: U(A) — V() a map (will be onto in the Fraisse limit).
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Variant: Let L" = LU{U, V, 7} and K{ are all 2-sorted, finite 2
satisfying:

@ The reduct of U(Z) to L is an element of Kp;

e V(%) has no structure;

o 7: U(A) — V() a map (will be onto in the Fraisse limit).
Then K}, has a Fraisse limit M}, with Scott sentence 6j,.
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Variant: Let L" = LU {U, V, 7} and K{ are all 2-sorted, finite 2
satisfying:

@ The reduct of U(Z) to L is an element of Kp;

e V(%) has no structure;

o 7: U(A) — V() a map (will be onto in the Fraisse limit).
Then K}, has a Fraisse limit M, with Scott sentence 6},
Moreover:

e V(Mp) is absolutely indiscernible (every permutation of
V(Mp) extends to an automorphism of M,);

o 7 : U(My) — V(Mp) is onto;

e Every model of 0 of size R; is maximal (note:
[U(N)| = [V(N)]).
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So what 77
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So what 77

Theorem (Baldwin-Friedman-Koerwien-L)

If there is a cx to VC ®, then there is a cx to VC ®* with the
property that every model of cardinality N1 is maximal.

Previously, Hjorth proved that if a cx to VC exists, then there is
one with no model of size N».
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