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Abstract. The classical Birkhoff conjecture says that the only integrable convex
domains are circles and ellipses. In the paper we show that a version of this
conjecture is true for small perturbations of ellipses of small eccentricity.

1. Introduction

Let Ω ⊂ R2 be a strictly convex domain. We say that Ω is Cr if its boundary
is a Cr-smooth curve. Consider the billiard problem in Ω: a massless billiard ball
moves with unit speed and without friction following a rectilinear path inside the
domain Ω. When the ball hits the boundary it is reflected elastically according to
the standard reflection law, i.e. the angle of reflection equals the angle of incidence:
such trajectories are sometimes called broken geodesics.

We call a (possibly not connected) curve Γ̂ ⊂ Ω a caustic if any billiard orbit

having one segment tangent to Γ̂ is so that all its segments are tangent to Γ̂. We
call a billiard Ω locally integrable if the union of all caustics has nonempty interior;
likewise, a billiard Ω is said to be integrable if the union of all smooth convex caustics
has nonempty interior. It follows by rather elementary geometry considerations,
(but see e.g. [16, Theorem 4.4] for a detailed proof) that a billiard in an ellipse is
integrable: its caustics are indeed cofocal ellipses and hyperbolas.

Birkhoff Conjecture (see Birkhoff [3], Poritsky [13]). If the billiard in Ω is inte-
grable, then ∂Ω is an ellipse.

The most notable result related to the Birkhoff Conjecture is due to Bialy [2] (see
also Wojtkowski [19]) who proved that, if convex caustics foliate the whole domain
Ω, then Ω has to be a disk. On the other hand, it is simple to construct smooth (but
not analytic) locally integrable billiards different from ellipses. In fact, it suffices
to arbitrarily perturb an ellipse away from a neighborhood of the two endpoints
of the minor axis. More interestingly, Treschev [18] gives indication that there are
analytic locally integrable billiards such that the dynamics around one elliptic point
is conjugate to a rigid rotation.

There is a quite remarkable relation between properties of billiards and the spec-
trum of the Laplace operator in Ω. Given a domain Ω, the length spectrum of Ω is
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defined as the collection of perimeters of its periodic orbits, counted with multiplic-
ity:

LΩ := N{lengths of closed geodesics in Ω} ∪ N`(∂Ω),

where `(∂Ω) denotes the length of the boundary.
Denote with Spec ∆ the spectrum of the Laplace operator in Ω with (e.g) Dirichlet

boundary condition, i.e. the set of λ so that

∆u = λu, u = 0 on ∂Ω.

From the physical point of view, Dirichlet eigenvalues λ are the eigenfrequencies of
the membrane Ω with fixed boundary.

Andersson–Melrose (see [1, Theorem (0.5)]) proved that, for strictly convex C∞

domains, the length spectrum LΩ contains the singular support of the wave trace
t 7→∑

λj∈Spec ∆ exp(i
√
−λjt).

This is, of course, related to inverse spectral theory and to the famous question
by M. Kac [10]: “Can one hear the shape of a drum?”. More formally: does the
Laplace spectrum determine a domain? There is a number of counterexamples to
this question (see e.g. [7]), but the domains considered in such examples are neither
smooth nor convex. In [15], P. Sarnak conjectures that the set of isospectral planar
domains is finite.

In the affirmative direction Hezari–Zelditch proved in [9] that given an ellipse
E , any one-parameter C∞-deformation Ωε which preserves the Laplace spectrum
(with respect to either Dirichlet or Neumann boundary conditions) and the Z2×Z2

symmetry group of the ellipse has to be flat (i.e., all derivatives have to vanish for
ε = 0). Further historical remarks on the inverse spectral problem can also be found
in [9].

2. Our main result

Given a strictly convex domain Ω, we define the associated billiard map fΩ as
follows. Let us fix a point P0 ∈ ∂Ω and denote with s the arc-length parametrization
of ∂Ω starting at P0 in the counter-clockwise direction; let Ps denote the point on
∂Ω parametrized by s; by scaling Ω we can always assume that its perimeter is 1.
We define the billiard map

fΩ : T× [0, π]→ T× [0, π],(1)

(s, ϕ) 7→ (s′, ϕ′),

where T = R/Z, Ps′ is the reflection point of a ray leaving Ps with angle ϕ with
respect to the counter-clockwise tangent ray to the boundary ∂Ω and ϕ′ is the angle
of incidence of the ray at Ps′ with the clockwise tangent. If there is no confusion we
will drop the subscript Ω and simply refer to the billiard map as f .
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In the sequel, we agree that all caustics that we will consider will be smooth and
convex; we will refer to such curves simply as caustics.

Let Γ̂ be a caustic for Ω; for any s ∈ T there exist two rays leaving Ps which are

tangent to Γ̂, one aligned with the counter-clockwise tangent of Γ̂ and the other one
with the clockwise tangent; let us denote with ϕ±

Γ̂
(s) their corresponding angles of

reflection. Observe that, by reversibility of the dynamics, the trajectory associated
with ϕ− is the time-reversal of the trajectory associated with ϕ+, i.e. ϕ− = π−ϕ+.
We can thus restrict our analysis to (e.g.) ϕ+; in doing so we will drop, for simplicity,
the superscript + from our notations.

The graph Γ = {(s, ϕΓ̂(s))}s∈T is, by definition of a caustic, a (non-contractible)
f -invariant curve1. Therefore, the restriction f |Γ is a homeomorphism of the circle,
and, as such, it admits a rotation number, which we denote with ω. In fact (since
we have chosen ϕ+ over ϕ−), we always have 0 < ω ≤ 1/2.

Definition. We say Γ̂ is an integrable rational caustic if the corresponding (non-
contractible) invariant curve Γ consists of periodic points; in particular the corre-
sponding rotation number is rational. If Ω admits integrable rational caustics of
rotation number 1/q for all q > 2, we say that Ω is rationally integrable.

Remark. A more standard definition of integrability is existence of a “nice” first
integral. Existence of a “nice” first integral for a billiard does not imply that any
caustic of rational rotation number is integrable. For instance, the invariant curve
corresponding to points belonging to the conciding separatrix arcs of a hyperbolic
periodic orbit of f is not integrable. On the other hand, if a caustic with rational
rotation number belongs to the interior of a foliation by caustics, then it is, indeed,
an integrable rational caustic (see e.g. [16, Corollary 4.5] for the general statement
and [8, Proposition 2.8] for the special case of an ellipse).

Let us denote with Ee ⊂ R2 an ellipse of eccentricity e and perimeter 1.

Main Theorem. There exists e0 > 0 such that for any 0 ≤ e ≤ e0 and K > 0,
there exists ε > 0 so that any rationally integrable C39-smooth domain Ω so that ∂Ω
is C39-K-close and C1-ε-close to Ee is an ellipse.

Remark. Our requirements for smoothness are probably not optimal and follow
from the approach used in our proof (see the proof of Lemma 23 and in particular
footnote 7). One could possibly improve them using [5].

Acknowledgments: We thank L. Bunimovich, D. Jakobson, I. Polterovich, A.
Sorrentino, D. Treschev, J. Xia, S. Zelditch and the anonymous referee for their
most useful comments which allowed to vastly improve the exposition of our result.

1 Indeed, by Birkhoff’s Theorem, any f -invariant non-contractible curve has to be a Lipshitz
graph.
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3. Our strategy and the outline of the paper

Let us start by exploring the simplified setting of integrable deformations of a
disk; we then use this insight to explain the main strategy of our proof in the
general case. Let Ω0 be the unit disk and let us denote polar coordinates with (r, φ).
Let Ωε be a one-parameter family of deformations given in polar coordinates by
∂Ωε = {(r, φ) = (1 + εn(φ) +O(ε2), φ)}. Consider the Fourier expansion

n(φ) = n0 +
∑
k>0

n′k sin(kφ) + n′′k cos(kφ).

Theorem (Ramirez-Ros [14]). If Ωε has an integrable rational caustic Γ1/q of ro-
tation number 1/q for all sufficiently small ε, then n′k = n′′k = 0 if k is divisible by
q.

Let us now assume that the domains Ωε are rationally integrable for all sufficiently
small ε: then the above theorem implies that

n(φ) = n0 + n′1 cosφ+ n′′1 sinφ+ n′2 cos 2φ+ n′′2 sin 2φ

= n0 + n∗1 cos(φ− φ1) + n∗2 cos 2(φ− φ2)

for some φ1 and φ2. Notice that

• n0 corresponds to an homothety.
• n∗1 corresponds to a translation in the direction of angle φ1 with the x-axis.
• n∗2 corresponds to a deformation into an ellipse of small eccentricity with the

major axis having angle φ2 with the x-axis.

This implies that, infinitesimally, rationally integrable deformations of a circle are
tangent to the 5-parameter family of ellipses. However, there is no uniformity in q
and, as q increases, the size of perturbation ε such that the above observation holds
will decrease.

We now proceed to introduce the main concepts in our proof. Let Ω be a strictly
convex domain and consider a tubular neighborhood UΩ of ∂Ω so that there are
well-defined tubular coordinates (s, n), where s is the s-coordinate of the orthogonal
projection of the point onto the boundary ∂Ω and n is the oriented distance along
the orthogonal direction to ∂Ω with n > 0 being outside of Ω and n < 0 being
inside.

Given a domain Ω′ with ∂Ω′ ⊂ UΩ, one can thus identify it with the graph of a
function n(s) in tubular coordinates. To do that one can project points from ∂Ω′ to
∂Ω and lift points from ∂Ω to ∂Ω′. In the sequel we will only consider perturbations
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Ω′ which can be described by a function n(s) of this form and we introduce the
following (slightly abusing, but suggestive) notation

∂Ω′ = ∂Ω + n(s).

We then need to define a convenient coordinate system, which was first introduced
by Lazutkin [11]. Let Ω be a strictly convex domain; recall that s denotes the arc-
length parametrization of ∂Ω and denote with ρ(s) its radius of curvature at s.
Observe that if Ω is Cr, then ρ is Cr−2. Define the Lazutkin parametrization of the
boundary:

x(s) = CΩ

∫ s

0

ρ(σ)−2/3 dσ, where CΩ =

[∫
∂Ω

ρ(σ)−2/3dσ

]−1

.(2)

We call Lazutkin map the following change of variables map:

ΨL : (s, ϕ) 7→ (x = x(s), y(s, ϕ) = 4CΩ ρ(s)1/3 sin(ϕ/2)).(3)

Also introduce the Lazutkin density

µ(x) =
1

2CΩρ(x)1/3
,(4)

where we denote by ρ(x) = ρ(s(x)) the radius of curvature in the Lazutkin parametri-
zation, where s(x) can be obtained by inverting (3). Observe that µ(x) = π for a
circle and varies analytically with the eccentricity for an ellipse.

By replacing the arc-length parametrization s with the Lazutkin parametrization
x in the definition of the tubular coordinates, we obtain the definition of the Lazutkin
tubular coordinates. We denote the corresponding perturbation function with n(x).
Observe that if ∂Ω = E is an ellipse, ρ is analytic and thus the Lazutkin parametriza-
tion is itself an analytic parametrization of E .

Let n(x) be a Cr deformation of Ω and consider, for ε ∈ (0, 1), the 1-parameter
family of domains

∂Ωε := ∂Ω + εn(x).

The first step of our proof is to obtain a perturbative version of Ramirez-Ros’ The-
orem for elliptical domains. In order to do so we first derive a necessary condition
for preservation of an integrable rational caustic (in Section 4). We will then define
(see Section 5) functions {cq(x), sq(x)}q>2 so that if Ωε has an integrable rational

caustic Γ̂ε1/q of rotation number 1/q for some q > 2 and all small ε, then∫
n(x)µ(x) cq(x) dx =

∫
n(x)µ(x) sq(x) dx = 0.(5)

In fact, in Lemma 9 we derive an perturbative version of the above conditions: more
precisely, if a perturbation ∂Ω′ = ∂Ω + εn(s) has an integrable rational caustic Γ1/q

for some small ε > 0, then we can replace (5) with an inequality of the absolute
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value of the integrals being O(q8ε2)-small: observe that, as we hinted above, our
estimate is necessarily non-uniform in q.

If ∂Ω is a circle, then {cq, sq} are given by Fourier Modes (as in Ramirez-Ros’ The-
orem above); if, on the other hand, ∂Ω is an ellipse, the functions {cq(x), sq(x), q >
2} can be explicitly defined using elliptic integrals via action-angle coordinates
(see (19)). We then (see Section 6 for definitions) complement these functions with
5 functions

{c0(x), cq(x), sq(x), q = 1, 2}
having the same meaning as the ones described above: four define homothety, trans-
lations and rotations, while the fifth one defines hyperbolic rotations. We then show
(see Section 7) that for sufficiently small eccentricity, the functions {cq, sq} also form
a basis of L2.

Remark. We emphasize that our condition on eccentricity is not an abstract small-
ness assumption. In fact, we give concrete conditions on the eccentricity for our
result to hold. More specifically: one has to check that for some N > 1 a given
(2N + 1)× (2N + 1) correlation matrix MN (defined in (21)) is invertible (see Re-
mark 19) and that some explicit condition (given in (25), where C∗(e) is defined in
Lemma 17) holds true.

We then conclude the proof (in Section 8) using the following approximation
result (Lemma 23): if Ω is rationally integrable and ∂Ω is an O(ε)-perturbation of
an ellipse ∂Ω0 = Ee of small eccentricity e, then there exists an ellipse Ē such that
∂Ωε is an O(εβ)-perturbation of Ē for some β > 1.

4. A sufficient condition for rational integrability, the
Deformation Function, and action-angle variables

Let E ⊂ R2 be an ellipse of perimeter 1; conventionally we let P0 be one of
the end-points of the major axis. Let Γ̂ω be the caustic of rotation number ω with
0 < ω < 1/2. Let f = fE be the associated billiard map and Γω be the corresponding
invariant curve of f of rotation number ω. Then there exists a parametrization
S(·;ω) of the boundary E in arc-length coordinate s so that f acts as a rigid rotation,
i.e. for any θ ∈ T

f(S(θ;ω),Φ(θ;ω)) = (S(θ + ω;ω),Φ(θ + ω;ω))(6)

where we introduced the shorthand notation Φ(θ;ω) = ϕΓ̂ω
(S(θ;ω)). The functions

S and Φ describe action-angle coordinates. In other words, (S,Φ) is the change of
variables from action-angle coordinates to arc-length and reflection angle. Geomet-
rically, given S(θ;ω), consider the ray leaving PS(θ;ω) with angle Φ(θ;ω); this ray

will be the tangent to Γ̂ω and land at the point parametrized by S(θ + ω;ω) with
angle Φ(θ + ω;ω) with respect to the tangent at S(θ + ω;ω).
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We can normalize S so that S(0;ω) = 0 is fixed for all ω ∈ (0, 1/2). Following
Tabanov (see [17]) we can take S and Φ to be analytic in both θ and ω. In partic-
ular, for each ω ∈ (0, 1/2) the map Φ(·;ω) is an (analytic) circle diffeomorphism.
Observe additionally that both functions depend analytically on the parameter e
and, moreover, for e = 0 we have S(θ;ω) = θ and Φ(θ;ω) = πω.

Let now Ω be a deformation of E identified by a C39 function n. Given p/q ∈
(0, 1/2) ∩ Q with p and q relatively prime, let us define the Deformation Function
as follows:

D
(

n, S,Φ,
p

q

)
(θ) = 2

q∑
k=1

n

(
S

(
θ + k

p

q
;
p

q

))
sin Φ

(
θ + k

p

q
;
p

q

)
.(7)

In Theorem 1 below we show that the Deformation Function is the leading term
of the change of perimeter of the star-shaped polygon inscribed in E corresponding
to an orbit of rotation number p/q starting at PS(θ). In order to turn the above
consideration into a precise statement, we need to introduce some further notation.

First, since in the present article we are interested only in caustics of rotation
number 1/q, we restrict the analysis to this case. Let us thus introduce the con-
venient shorthand notations Sq = S(·, 1/q) and Φq = Φ(·, 1/q). Recall that for

any ellipse E , every caustic Γ̂1/q of rational rotation number 1/q with q > 2 is an
integrable rational caustic. Recall also that, for any 0 ≤ s < 1, we denote by Ps
a point whose arc-length to P0 in the counter-clockwise direction is s. For ease of
notation, for any k = 0, · · · , q− 1, let P 0

k (θ) = PSq(θ+k/q), so that have that for each

θ ∈ T the q-periodic orbit corresponding to θ tangent to the caustic Γ̂1/q is given by
the points P 0

0 (θ), · · · , P 0
q−1(θ). By the variational characterization of periodic orbits

(see e.g. [3]), the above points are the vertices of the inscribed q-gon of maximal
perimeter with a vertex at PSq(θ). Let L0

q(θ) be the perimeter of this q-gon, i.e.

L0
q(θ) =

q−1∑
k=0

‖P 0
k+1(θ)− P 0

k (θ)‖,

where ‖·‖ is the Euclidean distance. Γ̂1/q being an integrable rational caustic implies
that L0

q(θ) is constant in θ. This follows from the fact that every periodic orbit is a
critical point for the perimeter: hence, a smooth one parameter family of periodic
orbits has a constant perimeter.

Let us denote with P ′0(θ) the lift of P 0
0 (θ) to ∂Ω. Since Ω is strictly convex, for

each θ ∈ T, there is a convex q-gon starting at P ′0(θ) of maximal perimeter. Denote
its vertices by P ′k(θ), k = 0, · · · , q − 1 and its perimeter by

L′q(θ) =

q−1∑
k=0

‖P ′k+1(θ)− P ′k(θ)‖.
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Observe that if Ω admits an integrable rational caustic of rotation number 1/q,
then the points P ′0(θ), · · · , P ′q−1(θ) are the reflection points of the q-periodic orbit of
rotation number 1/q starting at P ′0(θ). Moreover, L′q(θ) is also constant.

Theorem 1. Let Ee be an ellipse of eccentricity 0 ≤ e < 1 and perimeter 1, and
let (S,Φ) be the corresponding action-angle coordinates. Then there is c = c(e) > 0
such that for any integer q, q > 2 and a C1 deformation ∂Ω := E + n so that Ω has
an integrable rational caustic of rotation number 1/q and q8‖n‖C1 < c:

max
θ

∣∣L′q(θ)− L0
q(θ)−D(n, S,Φ; 1/q)(θ)

∣∣ ≤ C q8‖n‖2
C1 ,

where C = C(e, ‖n‖C5) depends on the eccentricity e and monotonically on the
C5-norm of n, but is independent of q.

Remark. Notice that in [12, Proposition 11] a different (weaker, but cleaner) version
of this statement is given, where it suffices to know only S(θ, ω). We also point out
that c(e)→ 0 as e→ 1.

Proof of Theorem 1. Let αk(θ) be the angle between P ′k(θ)−P 0
k (θ) and the positive

tangent to E at P 0
k (θ) (see Figure 1). We assume αk(θ) to be positive towards

the exterior of E , i.e. if P ′k(θ) is outside of E , then αk(θ) ∈ (0, π). Introduce the
displacements

vk(θ) = ‖P ′k(θ)− P 0
k (θ)‖

and let ϕk(θ) = Φq(θ + k/q). By definition of action-angle coordinates, the edge
P 0
k+1(θ) − P 0

k (θ) has reflection angle ϕk(θ) at P 0
k (θ) and ϕk+1(θ) at P 0

k+1(θ) re-
spectively. Finally, let us introduce the notation l0k(θ) = ‖P 0

k+1(θ) − P 0
k (θ)‖ and

l′k(θ) = ‖P ′k+1(θ) − P ′k(θ)‖. Observe that by Corollary 6, for each k = 0, · · · , q − 1
we have

1

Ξq
≤ l′k(θ) ≤

Ξ

q
for some Ξ = Ξ(e, ‖n‖C5) > 1,(8)

and Ξ depends monotonically on ‖n‖C5 . For k = 0, · · · , q − 1, project P ′k(θ) onto E
by the orthogonal projection and denote the projected point by P̄ ′k(θ). Observe that,
by construction, P̄ ′0(θ) = P 0

0 (θ). Denote, moreover, with ϕ̄+
k (resp. ϕ̄−k ) the angle

between P̄ ′k+1(θ) − P̄ ′k(θ) (resp. P̄ ′k(θ) − P̄ ′k−1(θ)) and the positive (resp. negative)
tangent to E at P̄ ′k(θ) (see Figure 2).

Lemma 2. Let Ξ be the constant appearing in (8); for any k = 0, · · · , q − 1:

|ϕ̄+
k − ϕ̄−k | ≤ 5Ξ q ‖n‖C1 .
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Proof. Since ‖P ′k − P̄ ′k‖ ≤ ‖n‖C0 for any k = 0, · · · , q − 1, the angle between the
k-th perturbed edge and the k-th projected edge satisfies

^{P ′k(θ)− P ′k+1(θ), P̄ ′k(θ)− P̄ ′k+1(θ)} ≤ 2‖n‖C0

l′k(θ)− 2‖n‖C0

≤ 4Ξ q ‖n‖C0

where in the last inequality we have used (8): in fact, we know l′k(θ) > Ξ/q and by
our assumptions on n we have ‖n‖C0 ≤ ‖n‖C1 < c/q8, thus, if c < 1/Ξ, since q > 2:

l′k(θ)− 2‖n‖C0 > l′k(θ)/2 > 1/(2Ξq).

E

Pk P̄ ′
k

Pk+1P̄ ′
k+1

P ′
k

P ′
k+1

∂Ω

P ′
k+1

vk

vk+1

αk

l0k

l′k

pk

Figure 1. Two orbits: unperturbed (in black) and perturbed (in blue)

Since Ω has an integrable rational caustic of rotation number 1/q, the collection
P ′k(θ), k = 0, · · · , q−1 corresponds to a q-periodic orbit, thus, the angle of incidence
at P ′k(θ) of P ′k(θ) − P ′k+1(θ) equals the angle of reflection of P ′k−1(θ) − P ′k(θ). See
Figure 2: the angle between the tangent to ∂Ω at P ′k(θ) and the tangent to E at
the projected point P̄ ′k(θ) is bounded above by n′(Sq(θ + k/q)), hence by ‖n‖C1 .
Therefore, adding the two deviations coming from discrepancy of the tangents to
∂Ω (resp. E) and discrepancy of end points P ′i (θ) (resp. P̄ ′i (θ)) with i = k± 1, k we
get that

|ϕ̄+
k − ϕ̄−k | ≤ 4Ξ q ‖n‖C0 + 2‖n‖C1 ,

from which we conclude our proof. �

Lemma 3. For each k = 0, · · · , q − 1 let θ̄k be so that P̄ ′k(θ) = PSq(θ̄k). Then there
exists C = C(e, ‖n‖C5) so that, in the above notations, for any k = 0, · · · , q − 1:

|θ̄k − θk| ≤ Cq3‖n‖C1 vk(θ) ≤ Cq3‖n‖C1 .(9)

Proof. The basic idea of the proof is to consider the worst case scenario of deviation
of reflection angles ϕ̄±k (θ) from ϕk(θ). Since, unless E is a circle, the reflection angles
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E

P 0
k

P̄ ′k

P ′k

∂Ω

vk
αk

ϕ̄−k
ϕ̄+
k

P ′k

Figure 2. Reflection angles: in blue (above) the trajectory of the
periodic orbit given by P ′0, · · · , P ′q−1; in black (below) the pseudo-orbit

given by P̄ ′0, · · · , P̄ ′q−1.

ϕk vary depending on the reflection point2, it is more convenient to keep track of
a first integral, which is constant along any orbit in the ellipse E . Therefore, it
cannot change too rapidly for the perturbed domain Ω. Here is quantification of
this phenomenon. Recall that for the ellipse one can explicitly define a conserved
quantity (a first integral), as follows. For simplicity, assume E is centered at the
origin and that the major axis is horizontal; let

E = {x2/a2 + y2/b2 = 1}, 0 < b2 < a2.

where a and b are chosen so that the ellipse has perimeter 1. Let us introduce
so-called elliptical coordinates (µ, ψ) on R2 as follows:

x = h · coshµ · cosψ, y = h · sinhµ · sinψ
where h2 = a2−b2, 0 ≤ µ <∞, 0 ≤ ψ < 2π. The family of cofocal ellipses µ =const
and hyperbolas ψ =const form an orthogonal net of curves3. The ellipse E has the
equation µ = µ0, where cosh2 µ0 = a2/h2 > 1. Thus, the length parametrization s
of the ellipse can be given as a function of ψ, (see e.g. [17] for an explicit formula):
Then, the billiard map has a first integral given by

I(ψ, ϕ) = cos2 ϕ+
cos2 ψ

cosh2 µ0

sin2 ϕ;

observe that I(ψ, ϕ) = I(ψ, π−ϕ). Recall that Sq(·) denotes the angle parametriza-
tion of E with rotation number 1/q. Since the elliptic angle ψ is an analytic func-
tion of the arc-length parametrization s and S, in turn, is an analytic function of

2 i.e. reflection angles are smaller close to the basis of the minor axis and larger close to the
basis of the major axis

3 Observe that as a→ b, we have h→ 0 and µ→∞ so that h coshµ→ a and h sinhµ→ a.
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θ, we can define the first integral I(θ, ϕ) in the (θ, ϕ) coordinates. Notice that
cosh2 µ0 > 1 ≥ cos2 ψ; hence

∂ϕI(ψ, ϕ) =

(
cos2 ψ

cosh2 µ0

− 1

)
sin 2ϕ;

observe that for any ψ, the function I(ψ, ·) is strictly decreasing on (0, π/2); moreover
|∂ϕI| < 1 and

|∂ϕI| ∈ [1− cosh−2 µ0, 2]ϕ for ϕ ∈ [0, π/6].(10)

Moreover, this holds in both (ψ, ϕ) and (θ, ϕ) coordinates.
Then we claim that there exists k∗ so that ϕ̄−k∗ ≤ Φq(θ̄k∗) ≤ ϕ̄+

k∗
. Observe that by

definition

f(Sq(θ̄k), ϕ̄
+
k ) = (Sq(θ̄k+1), ϕ̄−k );

by well-known properties of monotone twist maps, no orbit can cross the invariant
curve Γ1/q, thus we obtain that if ϕ̄+

k < Φq(θ̄k) (resp. ϕ̄+
k > Φq(θ̄k)), then ϕ̄−k+1 <

Φq(θ̄k+1) (resp. ϕ̄−k+1 > Φq(θ̄k+1)). We conclude that if our claim does not hold,

necessarily, either ϕ̄+
k < Φq(θ̄k) or ϕ̄+

k > Φq(θ̄k) for all k = 0, · · · , q − 1. In the first
case, the twist condition implies that θ̄k+1 − θ̄k < 1/q; but this is a contradiction,
since θ̄q = θ̄0 + 1 (passing to the covering space R). Similar arguments in the second
case also lead to a contradiction; this in turn implies our claim. Moreover, Lemma 2
implies that

ϕ̄+
k∗
− Φq(θ̄k∗) ≤ 5Ξ q ‖n‖C1 < 5q−7.

Define now the instant first integral I±k = I(θ̄k, ϕ̄
±
k ); then I+

k = I−k+1 and since

|I+
k − I−k | ≤

∣∣∣∣∣
∫ ϕ̄+

k

ϕ̄−k

∂ϕI(θ̄k, ϕ)dϕ

∣∣∣∣∣ .
and Φq(θ̄k∗) < C(e)/q (applying Lemma 5 to E), by Lemma 2 and (10) we thus
conclude (choosing a larger C)

|I+
k∗
− I∗| < C ‖n‖C1 .(11)

where I∗ = I(θ, ϕ0(θ)) and C = C(e, ‖n‖C5); inducing at most q times and applying
repeatedly the same argument we conclude |I±0 − I∗| < Cq‖n‖C1 , that implies

|ϕ̄±0 (θ)− ϕ0(θ)| < Cq2‖n‖C1

and inducing on k and using again Lemma 2 we conclude (choosing a larger C)

|θ̄k − θk| < Cq3‖n‖C1 .

The second bound of (9) follows immediately by applying the triangle inequality. �
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Lemma 4. In the notations introduced above we have∣∣∣l′k(θ)− l0k(θ)− vk(θ) cos (ϕk(θ) + αk(θ))(12)

+ vk+1(θ) cos (ϕk+1(θ)− αk+1(θ))
∣∣∣ ≤ 10

vk(θ)
2 + vk+1(θ)2

l0k(θ)
.

Proof. Let pk(θ) = ‖P ′k(θ)− P 0
k+1(θ)‖; applying the Cosine Theorem to the triangle

P 0
k (θ)P 0

k+1(θ)P ′k(θ) we have

pk(θ)
2 = vk(θ)

2 + l0k(θ)
2 − 2vk(θ)l

0
k(θ) cos(ϕk(θ) + αk(θ)).

Likewise, applying it to the triangle P 0
k+1(θ)P ′k+1(θ)P ′k(θ) we have

l′k(θ)
2 = vk+1(θ)2 + pk(θ)

2 + 2vk+1(θ)pk(θ) cos(ϕk+1(θ)− αk+1(θ)− δk+1(θ)),

where δk+1(θ) is the oriented angle ^(P 0
k (θ)P 0

k+1(θ)P ′k(θ)). Combining the above
expressions we get

l′k(θ)
2 − l0k(θ)2 = vk(θ)

2 + vk+1(θ)2 − 2vk(θ)l
0
k(θ) cos(ϕk(θ) + αk(θ))(13)

+ 2vk+1(θ)pk(θ) cos(ϕk+1(θ)− αk+1(θ)− δk+1(θ)).

Observe that by the triangle inequality:

l0k(θ)− vk(θ)− vk+1(θ) ≤ l′k(θ), pk(θ) ≤ l0k(θ) + vk(θ) + vk+1(θ).

Moreover, elementary geometry implies | sin δk+1(θ)| ≤ vk(θ)/l
0
k(θ). Now (12) im-

mediately follows dividing both sides of (13) by l′k(θ) + l0k(θ) and using the above
estimates. �

We can now conclude the proof of Theorem 1; observe that by definition L0
q(θ) =∑q−1

k=0 l
0
k(θ) and likewise L′q(θ) =

∑q−1
k=0 l

′
k(θ). By Lemma 4 we thus gather:∣∣∣L′q(θ)− L0

q(θ)−
q−1∑
k=0

vk(θ) cos (ϕk(θ) + αk(θ))

+

q−1∑
k=0

vk+1(θ) cos (ϕk+1(θ)− αk+1(θ))
∣∣∣ ≤ 20

q−1∑
k=0

vk(θ)
2

l0k(θ)
.

Observe that
q−1∑
k=0

[
− vk(θ)(cosϕk(θ) cosαk(θ)− sinϕk(θ) sinαk(θ))

+ vk+1(θ)(cosϕk+1(θ) cosαk+1(θ) + sinϕk+1(θ) sinαk+1(θ))
]

= 2

q−1∑
k=0

vk(θ) sinϕk(θ) sinαk(θ).
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Notice that, by (9), we have vk(θ) sinαk(θ) = n(Sq(θ + k/q)) +O(q6‖n‖2
C1). There-

fore,

|L′q(θ)− L0
q(θ)−

q−1∑
k=0

n(Sq(θ + k/q)) sin Φq(θ + k/q)| ≤ Cq8‖n‖2
C1 .

This completes the proof of Theorem 1. �

5. Lazutkin parametrization and Deformed Fourier Modes

It turns out that for nearly glancing orbits, i.e. orbits having small reflection
angle, it is more convenient to study the billiard map f , defined in (1), in Lazutkin
coordinates. Recall that ΨL denotes the Lazutkin change of coordinates defined in
(3) and consider the billiard map in Lazutkin coordinates fL = ΨL ◦ f ◦ Ψ−1

L ; then
fL has the following form (see e.g. [11, (1.4)]):

fL : (x, y)→ (x+ y + y3g(x, y), y + y4h(x, y)),(14)

where g and h can be expressed analytically in terms of derivatives of the curvature

radius ρ up to order 3: hence if Ω is Cr, g, h are Cr−5. Recall that Γ̂1/q ⊂ Ω denotes
a caustic of rotation number 1/q, while Γ1/q denotes the associated non-contractible
invariant curve for the billiard map f . We denote by ΓL,1/q the corresponding in-
variant curve for the billiard map fL in Lazutkin coordinates, i.e. ΓL,1/q = ΨL Γ1/q.
Moreover, let us introduce action-angle coordinates in the Lazutkin parametrization,
i.e (X(θ, ω), Y (θ, ω)) = ΨL(S(θ, ω),Φ(θ, ω)); as before, we define Xq(θ) = X(θ, 1/q)
and Yq = Y (θ, 1/q).

Lemma 5. Let Ω be a C5 strictly convex domain and let ΓL,1/q be the invariant
curve corresponding to an integrable rational caustic of rotation number 1/q with
q > 2, given by

ΓL,1/q = {(x, yq(x)) : x ∈ T}.
Then there exists C depending on ‖ρ‖C3, such that∣∣∣∣yq(x)− 1

q

∣∣∣∣ < C

q3
for any x ∈ T.(15)

For k ∈ Z let (xk, yq(xk)) = fkL(x, yq(x)) be an orbit on the invariant curve ΓL,1/q,
and let x̃k be a lift of xk to R; then∣∣∣∣x̃k − x̃0 −

k

q

∣∣∣∣ < C

q2
, for 0 ≤ k ≤ q.(16)

Moreover, if Ω = Ee an ellipse of eccentricity e and perimeter 1. the constant C
depends on e only and it is such that C(e)→ 0 as e→ 0.
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Corollary 6. Let Ω be a C5 strictly convex domain and q > 2. Let (sk, ϕk), k =
0, · · · , q−1 be a q-periodic orbit of rotation number 1/q and Pk, k = 0, · · · , q−1 be
the corresponding collision points on ∂Ω. Then there is Ξ = Ξ(Ω) > 1, depending
on ‖ρ‖C3 such that the Euclidean length of each edge ‖Pk+1 − Pk‖ satisfies

1

Ξq
≤ ‖Pk+1 − Pk‖ ≤

Ξ

q
.

Moreover, if Ω is a perturbation n of an ellipse Ee (i.e. ∂Ω = Ee+n), then Ξ depends
continuously on the eccentricity e and ‖n‖C5.

Proof. Recall that by definition y(s, ϕ) = 4CΩ ρ
1/3(s) sin(ϕ/2). By Lemma 5 we

have y ∈ [1/q − C/q3, 1/q + C/q3] for some C depending on ρ only. Therefore,
sin(ϕ/2) ∈ [1/Cq − 1/q3, C/q + C2/q3]. Since the angle of reflection is ∼ 1/q
and curvature is uniformly bounded, we get the required bound on the distance
‖Pk+1 − Pk‖. �

Proof of Lemma 5. Choose q0 (sufficiently large depending on ‖ρ‖C3) to be specified
in due course and assume q ≥ q0. First of all, we claim that we have the preliminary
bound

yq(xk) ≤
C1

q
, for any k = 0, · · · , q − 1,

where C1 is a large constant depending on the maximal and minimal value of the
curvature ρ. In fact, recall Ψ−1

L ΓL,1/q = Γ1/q can be parametrized as the graph
{(s, ϕq(s))}s∈T. Let (sk, ϕq(sk)) = Ψ−1

L (xk, yq(xk)), so that

(sk+1, ϕq(sk+1)) = f(sk, ϕq(sk))

and s̃k be a lift to R. Since s̃q = s̃0 + 1, there exists 0 ≤ k∗ < q so that 0 <
s̃k∗+1 − s̃k∗ ≤ 1/q. For fixed sk, we can find a function ϕ(sk+1) so that the ray
leaving sk with angle ϕ(sk+1) will collide with ∂Ω at sk+1; if q0 is sufficiently large,
we can use expansion of the billiard map for small ϕ in terms of curvature (see e.g.
[11, (1.1)]) and conclude that ϕq(sk∗) < C/q, where C = C(‖ρ‖C1) and thus, by
definition of the Lazutkin coordinate map (3) we conclude that

yq(xk∗) ≤
C1

q
,

where C1 = C1(‖ρ‖C1). By iterating (14), starting from k∗, we conclude by (finite)
induction that for any 0 ≤ k < q:

|yq(xj+1)− yq(xj)| ≤
C0

q4
, yq(xj) <

C1

q
,

where C0 = max{‖g‖, ‖h‖}C4
1 and we have possibly chosen a larger C1. Observe

that since ‖g‖ and ‖h‖ depend ‖ρ‖C3 , so does C0. Moreover, by iterating the first
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inequality q times we also have

|yq(x0)− yq(xk)| ≤
C0

q3
for any k = 0, · · · , q − 1.(17)

We now claim that |yq(x) − 1/q| ≤ 4C0/q
3. In fact assume by contradiction that

yq(x) − 1/q > 4C0/q
3; then by (17) we gather that yq(xk) − 1/q > 3C0/q

3 for any
0 ≤ k < q. Hence, by (14) and the above estimates, for any 0 ≤ k < q we have

x̃k+1 − x̃k ≥
1

q
+
C0

q3
;

iterating q times we conclude that

x̃q − x̃0 ≥ 1 +
C0

q2
,

which is a contradiction, since x̃q = x̃0 + 1. A similar argument implies that

yq(x)− 1

q
< −4C0

q3

also leads to a contradiction. This implies our claim, which in turn implies (15)
and (16). Notice that in order to have C0/q

3 to be small compared to 1/q we need
q0 (and thus q) to be sufficiently large (with respect to ‖ρ‖C3).

Observe now that if ∂Ω is an ellipse of eccentricity e, ΓL,1/q = {(Xq(θ), Yq(θ))}θ∈T.
Since both Xq and Yq vary analytically with e and if ∂Ω is a circle, Yq(θ) is the
constant function equal to 1/q. We conclude that we can choose C(e) so that
lime→0C(e) = 0. This concludes the proof. �

Lemma 7. Let Ee be an ellipse of eccentricity e and perimeter 1; then there exists
C(e) with C(e)→ 0 as e→ 0 so that

‖Xq − Id‖C1 ≤ C(e)

q2
.

Proof. In the proof of this statement, to simplify the notation, C(e) denotes a generic
constant which depends on e only; its actual value might change from an instance
to the next. Recall that X(0, ω) parametrizes a fixed point P0 for all ω ∈ [0, 1/3],
(i.e. one of end points of the major axis). Now consider the q-periodic orbit leaving
the point P0: in angle coordinates the orbit is given by {θk = k/q mod 1}. Then
by (14) and Lemma 5 we conclude that∣∣∣∣Xq(θk+1)−Xq(θk)

θk+1 − θk
− 1

∣∣∣∣ ≤ C(e)

q2
;

by the Mean Value Theorem we conclude that there exists some θ̄k ∈ (θk, θk+1)

so that |X ′q(θ̄k) − 1| < C(e)/q2. Likewise, we can find ¯̄θk ∈ (θ̄k, θ̄k+1) so that
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|X ′′q (¯̄θk)| < C(e)/q. Hence, for each θ ∈ [θ̄k, θ̄k+1] we can write

X ′q(θ) = X ′q(
¯̄θ) +

∫ θ

¯̄θk

[
X ′′q (¯̄θk) +

∫ θ′

¯̄θk

X ′′′q (θ′′)dθ′′

]
dθ′.

Now recall that Xq(θ) = S(θ, 1/q), where S is analytic in both arguments; in par-
ticular all derivatives of Xq are bounded uniformly in q. Moreover ‖X ′′′q ‖ < C(e)
such that C(e) → 0 as e → 0, since, as noted before, Xq depends analytically on e
and for e = 0 the function Xq is the identity.

We conclude that |X ′q(θ)−X ′q(¯̄θ)| < C(e)/q2 for any θ ∈ [θ̄k, θ̄k+1], which implies

that ‖X ′q − 1‖C0 < C(e)/q2. Our estimate then holds integrating in θ. �

Let s(x) be the length parametrization as a function of the Lazutkin parametriza-
tion, which can by obtained by inverting (2). Since y = 4CΩ ρ(s)1/3 sin(ϕ/2), for
any (s, ϕ) ∈ Γ1/q, (15) implies that:∣∣∣∣sin Φq

(
X−1
q (x)

)
− wq

2CΩqρ(x)1/3

∣∣∣∣ ≤ 2C

q3
.

where wq = q sin(π/q)/π ∈ [1/2, 1]. Notice that Lemma 5 implies that in the
above expression C = C(e) → 0 as e → 0. To simplify notations let ηq(x) =
sin Φq

(
X−1
q (x)

)
. Notice, moreover, that qηq(x) has a well defined limit as q → ∞.

Recall that in (4) we defined the Lazutkin Density µ(x) := 1/(2CΩρ(x)1/3). Recall
that the density function µ(x) given above, depends only on the domain (i.e. on the
eccentricity e if ∂Ω = E); in particular, it does not depend on q. Using the previous
bound we have ∣∣∣∣ qηq(x)

wqµ(x)
− 1

∣∣∣∣ ≤ C

q2
(18)

for some C depending on CΩ and ρ. For any q > 2 define4

cq(x) =
qηq(x)

wqµ(x)

1

X ′q(X
−1
q (x))

sin 2πqX−1
q (x),(19a)

sq(x) =
qηq(x)

wqµ(x)

1

X ′q(X
−1
q (x))

cos 2πqX−1
q (x).(19b)

Observe that by Lemma 7, the above functions approximate the corresponding
Fourier Modes as q → ∞; we will refer to them as the Deformed Fourier Modes.
The next lemma gives a bound on the speed of this approximation.

4 We will define the first five functions ci(x), i = 0, 1, 2, si(x), i = 1, 2 respectively in the next
section.
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Lemma 8. Let E be an ellipse of eccentricity e; there exists C∗(e) with C∗(e) → 0
as e→ 0 so that for any q > 2,

‖sq − sin(2πq ·)‖C0 <
C∗(e)

q2
, ‖cq − cos(2πq ·)‖C0 <

C∗(e)

q2
.

Proof. By (18) we have that qηq(x)

wqµ(x)
− 1 has variation at most C(e)q−2. By Lemma 7

we have ‖X ′q − 1‖ < C(e)q−2. Combining the above two estimates we obtain the
required bounds. �

Lemma 9. In notations of Theorem 1, let Ee be an ellipse of perimeter 1 and
eccentricity e and ∂Ω be a perturbation of Ee identified by a C5-smooth function5

n(x); assume that Ω has an integrable rational caustic of rotation number 1/q for

some 2 < q < c(e)‖n‖−1/8

C1 . Then there exists C = C(e, ‖n‖C5) so that:∣∣∣∣∫ n(x)µ(x)aq(x)dx

∣∣∣∣ ≤ Cq8‖n‖2
C1 ,

where aq = cq or sq.

Proof. Denote D(θ) = [D(n, S,Φ; 1/q)](θ) the Deformation Function given by (7);
then by definition we have∫ 1

0

D(θ) sin(2πqθ) dθ = q

∫ 1

0

n (Xq(θ)) sin Φq (θ) sin(2πqθ) dθ

=

∫ 1

0

n (Xq(θ)) [qηq(Xq(θ))] sin(2πqθ) dθ.

Notice that if Ω has an integrable rational caustic of a rotation number 1/q for some
q > 2, then, using the notation introduced in Theorem 1, perimeters L0

q(θ) and L′q(θ)
of the q-gons inscribed in E and ∂Ω, respectively, are constant. Therefore, Theorem 1
implies that the Deformation Function D(θ) is Cq8‖n‖2

C1 close to a constant. Since,

for any k,
∫ (k+1)/q

k/q
sin(2πqθ) dθ = 0, we conclude that∣∣∣∣∫ 1

0

D(θ) sin(2πqθ) dθ

∣∣∣∣ ≤ Cq8‖n‖2
C1

5 We abuse notation and denote with n the perturbation as a function of the Lazutkin coor-
dinate x; observe that since the change of variable is analytic, norms in arc-length and Lazutkin
parametrization differ by some constant depending on e.
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On the other hand, let us rewrite x = Xq(θ), θ = X−1
q (x): we obtain:∫ 1

0

n(x) [qηq(x)] sin(2πqX−1
q (x)) dX−1

q (x)

= wq

∫ 1

0

n(x) µ(x)
qηq(x)

wqµ(x)

1

X ′q(X
−1
q (x))

sin(2πqX−1
q (x)) dx

= wq

∫ 1

0

n(x)µ(x)sq(x)dx,

which gives the required inequality for sq. Repeating the argument verbatim, replac-
ing sin(2πqθ) with cos(2πqθ) gives the corresponding inequality for cq; this concludes
the proof. �

Lemma 10. Let n(x) be a C1 function, Ee be an ellipse of eccentricity e and perime-
ter 1. Then there is C = C(e) > 0 such that for each q > 2 we have∣∣∣∣∫ n(x)µ(x)cq(x)dx

∣∣∣∣ ≤ C‖n‖C1

q
,

∣∣∣∣∫ n(x)µ(x)sq(x)dx

∣∣∣∣ ≤ C‖n‖C1

q
.

Remark 11. In the above lemma, C(e) does not tend to 0 together with e.

Proof. Since µ(x) is analytic, the function n(x)µ(x) is C1-smooth; hence, its q-th
Fourier coefficients∫

n(x)µ(x) sin(2πqx) dx,

∫
n(x)µ(x) cos(2πqx) dx

are, in absolute value, bounded above by c‖n‖C1q−1 for some c = c(e). Using
Lemma 8 we have that the maximal difference |cq(x) − cos(2πqx)| and |sq(x) −
sin(2πqx)| is C∗(e)q−2. This implies the required estimate. �

6. Selection of translational, rotational, and deformational
functional directions

In this section we introduce the “missing” 5 Deformed Fourier Modes, denoted
with c0, sq, cq, q = 1, 2. These five functions correspond to homothety, a pair of
translation functions, a rotation, and a deformation of an ellipse to another of nearly
identical eccentricity.

In principle, we can define the first four of these functions for an arbitrary smooth
convex domain Ω0; we refrain to do so since all remaining Deformed Fourier Modes
have been defined only for ellipses. The reader could easily modify our construction
and apply it to the more general case.

In order to define sq, cq, q = 0, 1, 2 we need to use the geometry of the ellipse E .
To fix ideas, assume that the origin O ∈ R2 is in the interior of E . We construct
c0 to define homotheties, the first pair s1, c1 to define translations and the second
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pair s2, c2 to define rotations of E around the origin and deformations changing
eccentricity.

Let (r, φ) denote polar coordinates and let r(φ) be the polar equation for E , i.e.
E = {(r(φ), φ)}φ∈T. Let s be length parametrization of E starting at (0, r(0)) and
s(φ) be the corresponding function, which is invertible and let φ(s) denote its inverse.
Recall that we can assume without loss of generality that the perimeter of E is 1. Let
ψ(φ) be angle between the normal to E at (φ, r(φ)) and the radial direction, measured
in the counterclockwise direction. Naturally, ψ(s) := ψ(φ(s)), r(s) := r(φ(s)) and
all functions on E can be given with respect to either the φ-parametrization or the
s-parametrization and differ via an analytic change of variable.

Consider the ellipse Eh obtained by replacing the radial component r(φ) with
(1 + ε)r(φ) and denote with nh the corresponding perturbation function so that
Eh = E + nh. Let nh

∗(s) = εr(s) cosψ(s).

Lemma 12. For C depending on the eccentricity e we have

‖nh − nh
∗‖C39 ≤ C‖nh

∗‖2
C39 .

Likewise, for any unit vector (a1, b1), consider the ellipse E t obtained by translating
E by a vector ε(a1, b1) and denote with nt the corresponding perturbation function.
Choose α ∈ [0, 2π) and such that tanα = b1/a1. Let nt

∗(s) = ε cos(φ(s)−α+ψ(s)).

Lemma 13. For C depending on the eccentricity e we have:

‖nt − nt
∗‖C39 ≤ C‖nt

∗‖2
C39 .

Define

c0(s) := r(φ(s)) cosψ(s), c1(s) := cos(φ(s) + ψ(s)), s1(s) := sin(φ(s) + ψ(s)).

Then using the last two functions we can realize any translation ε(a1, b1) up to ε2

by choosing n = ε(a1c1 + b1s1).
Consider now an ellipse E r obtained by rotating E by angle ε around the origin and

denote with nr the corresponding perturbation function. Let nr
∗(s) = εr(s) sinψ(s).

Lemma 14. For C depending on the eccentricity e we have

‖nr − nr
∗‖C39 ≤ C‖nr

∗‖2
C39 .

Now, let E an ellipse of eccentricity e and semimajor axis 1, i.e.

E =

{
x2 +

y2

1− e2
= 1

}
.

Denote by re(φ) and ψe(φ) parameters associated to this domain. For small ε con-
sider an ε-deformation of Eε into the ellipse

Ee =

{
x2

(1 + ε)2
+

(1 + ε)2y2

1− e2
= 1

}
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obtained by hyperbolic rotation

Lε : (x, y)→ ((1 + ε)x, (1 + ε)−1y).(20)

The eccentricity of this ellipse is e′ = e+ cε+O(ε2), where c = c(e). Let ne be the
corresponding perturbation function. Define the function

ne
∗(s) = εr(s) cos(2φ(s) + ψ(s)).

Lemma 15. For C depending on the eccentricity e we have

‖ne − ne
∗‖C39 ≤ C‖ne

∗‖2
C39 .

Proofs of Lemmata 12-15. The proofs follow from elementary geometry and are left
to the reader. �

Remark 16. The number 39 in the statements of Lemmata 12-15 could in fact be
replaced with r for any r ≥ 0, since all perturbations involved are analytic functions.

Suppose 0 < e0 < 1 and 0 ≤ e < e0. Notice that ψe(kπ/2) = 0, k = 0, 1, 2, 3, while
re(φ) is analytic and strictly positive. Define maxφ | sinψe(φ)| = %(e). Naturally,
%(e) ∈ [0, 1) and ψe(φ) ∈ (−π/2, π/2) for all φ. Then there is a function θe(φ) such
that θe(kπ/2) = kπ, k = 0, 1, 2, 3, and

sinψe(φ) = %(e) sin 2θe(φ).

There is a function θ∗e(φ) such that such that θe(kπ/2) = kπ/2, k = 0, 1, 2, 3, and

cos(2φ+ ψe(φ)) = cos 2θ∗e(φ).

Notice that as e→ 0 we have that

max
φ
{|θ∗e(φ)− φ|, |θe(φ)− φ|} → 0.

Finally, we define

c2(s) := cos 2θ∗e(φ(s)), s2(s) := sin 2θe(φ(s))

We can now extend Lemma 8:

Lemma 17. In the notation of Lemma 8 and possibly increasing C∗(e), for any
positive integer q we have

‖c0 − 1‖C0 ≤ C∗(e), ‖cq − cos(2πq·)‖C0 ≤ C∗(e)

q2
, ‖sq − sin(2πq·)‖C0 ≤ C∗(e)

q2
.

Proof. The case q > 2 is covered by Lemma 8. The case q = 0, 1, 2 can be done by
direct inspection of the definition of these functions. �
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7. The Deformed Fourier basis

In the previous section we completed the definition of the Deformed Fourier modes
by introducing the first 5 modes; in this section, for convenience of notation let us
rename the functions ck and sk as follows: for j ≥ 0 define ej so that e2j = cj
and e2j+1 = sj+1; let us also introduce the corresponding Fourier Modes eFj so that

eF2j = cos(2πj·) and eF2j+1 = sin(2π(j + 1)·).
Let us define the following operator acting on L2:

L : v(x) 7→
∞∑
j=0

v̂jej(x)

where v̂j is the j-th Fourier coefficient of v, i.e. v =
∑∞

j=0 v̂je
F
j . In the sequel we

will denote by ‖ · ‖L2→L2 the usual operator norm in L2 given by:

‖T‖L2→L2 = sup
f : ‖f‖L2≤1

‖T f‖L2 .

Proposition 18. There exists e∗ > 0 so that if E is an ellipse of eccentricity e ∈
[0, e∗], the operator L is bounded and invertible as an operator from L2 to L2.

Proof. We will proceed in two steps: for some large positive integer N > 2 to be
specified later, we introduce an auxiliary list of vectors

BN = (e0, e1, · · · , e2N , e
F
2N+1, e

F
2N+2, · · · )

We prove that BN forms a basis of L2 provided that the eccentricity e is sufficiently
small. Then, using this fact we will prove that B is indeed a basis of L2. Let MN

be the (2N + 1)× (2N + 1) correlation matrix whose (i, j)-entry is given by

[MN ]ij =

∫
eFi (x)ej(x)dx.(21)

Remark 19. Observe that if e = 0 (i.e. if E is a circle) for any N , the matrix
MN is a multiple of the identity, because Lemma 17 implies that eq = eFq . Since MN

depends analytically on e, we conclude that for any N there exists e∗(N) so that
MN is invertible for every 0 ≤ e < e∗(N). Moreover, since if N ′ > N , the matrix
MN ′ contains the matrix MN as a minor; we conclude that if e is so that MN ′ is
invertible, so is MN .

Lemma 20. Let N > 2 be an integer so that the matrix MN , defined by (21), is
invertible. Then BN is a basis of L2.

Proof. Observe that BN can be obtained by the Fourier Basis (eFq )q≥0 by replacing
the first 2N + 1 basis elements with (eq)0≤q≤2N . In order to show that BN is a
basis it thus suffices to check that every element of (eFq )0≤q≤N can be expressed as a
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linear combination of elements in BN . To this end, invertibility of the matrix MN

is enough. �

The above lemma implies that we can write L2 as the direct sum

L2 = L2
N ⊕ L̃2

N(22)

where L2
N is the subspace spanned by (eq)0≤q≤2N and L̃2

N is its complement spanned

by (eFq )q>2N . Denote by Π̃N the (non-orthogonal) projection on L̃2
N (see Figure 3).

L2
N

L̃2
N

vΠ̃Nv

Figure 3. Direct sum decomposition of L2 and definition of Π̃N

Lemma 21. Let C∗(e) be the constant appearing in the statement of Lemma 17 and
assume e to be so small that C∗(e) < 1/2. Then, in the above notations, we have:

‖Π̃N‖L2→L2 ≤ (1− 2C∗(e))−1.

Proof. Observe that by [4, Theorem 2], we have

‖Π̃N‖2
L2→L2 =

[
1− sup

v∈L2
N , u∈L̃

2
N , ‖v‖L2=‖u‖L2=1

∣∣∣∣∫ v(x)u(x)dx

∣∣∣∣2
]−1

.(23)

Moreover, Lemma 17 implies, in particular:

‖en − eFn‖L2 ≤ C∗(e).(24)

Since v ∈ L2
N , we can write v(x) =

∑2N
k=0 akek(x); let

v̂(x) = v(x)−
2N∑
k=0

ake
F
n(x).

By orthogonality of Fourier modes v̂(x)−v(x) is perpendicular to L̃2
N . Since u ∈ L̃2

N

and ‖u‖L2 = 1, application of the Schwartz inequality gives∣∣∣∣∫ v(x)u(x)dy

∣∣∣∣ =

∣∣∣∣∫ v̂(x)u(x)dx

∣∣∣∣ ≤ ‖v̂‖L2 .
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Moreover,

‖v̂‖2
L2 =

∫ ∣∣∣∣∣
2N∑
k=0

ak(ek(x)− eFk(x))

∣∣∣∣∣
2

dx

and using again the Schwartz inequality and (24), we conclude:

‖v̂‖2
L2 ≤

[
2N∑
k=0

a2
k

]
C∗(e)2.

On the other hand, ‖v‖L2 = 1 and we can also write:

‖v̂‖L2 =

∥∥∥∥∥
2N∑
k=0

ake
F
k − v

∥∥∥∥∥
L2

≥
[

2N∑
k=0

a2
k

]1/2

− 1.

Combining the two estimates for ‖v̂‖L2 and using that C∗(e) < 1/2 yields:[
2N∑
k=0

a2
k

]1/2

≤ (1− C∗(e))−1,

which in turn allows to conclude the proof by plugging this estimate in (23). �

By Lemma 20 we know that BN is a basis of L2, hence we can write any v ∈ L2

as

v =
2N∑
k=0

akek +
∞∑

k=2N+1

ake
F
k

for some unique sequence (ak)k≥0. Define the operator on L2 given by:

LN : v 7→
∞∑
k=0

akek.

Lemma 22. If N > 2, MN is invertible, and e so small that

C∗(e) <
1

2

[
1− 1

1 +N3/2

]
(25)

then ‖LN − Id‖L2→L2 ≤ 1
2
. In particular, LN is a bounded and invertible as an

operator from L2 to L2.

Proposition 18 then immediately follows from the above lemma. �

Proof of Lemma 22. By definition, L2
N ⊂ ker[LN − Id], thus, for any v ∈ L2:

[LN − Id] v = [LN − Id] Π̃N v,
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Hence by Lemma 21:

‖LN − Id‖L2→L2 = sup
v:‖v‖L2≤1

‖[LN − Id]v‖L2

≤ sup
ṽ∈L̃2

N :‖ṽ‖L2≤(1−2C∗(e))−1

‖[LN − Id]ṽ‖L2 .

By definition there exists a sequence (aq)q>2N so that

ṽ =
∞∑

q=2N+1

aqe
F
q ,

hence, by the Cauchy Inequality

‖[LN − Id]ṽ‖L2 ≤
∞∑

q=2N+1

|aq|‖eq − eFq‖L2

≤
[

∞∑
q=2N+1

|aq|2
]1/2 [ ∞∑

q=2N+1

‖eq − eFq‖2
L2

]1/2

.

Thus, using Parseval identity we conclude
∑∞

q=2N+1 |aq|2 = ‖ṽ‖2
L2 and, therefore, by

Lemma 8 we gather

‖LN − Id‖L2→L2 ≤ C∗(e)

1− 2C∗(e)

[
∞∑

q=2N+1

1

q4

]1/2

≤ C∗(e)

2(1− 2C∗(e))N3/2
<

1

2
,

where the last inequality follows from (25). �

8. Proof of the Main Theorem

The proof of our Main Theorem relies on the following crucial

Lemma 23. Let Ee be an ellipse of perimeter 1 and eccentricity e ∈ [0, e∗] sufficiently
small so that Lemma 22 applies. Let Ω be a rationally integrable C39 deformation
identified by a C39 function n(x), i.e. ∂Ω := E + n. Then there exists an ellipse Ē
and n̄ so that ∂Ω = Ē + n̄ and

‖n̄‖C1 ≤ C(e, ‖n‖C39) ‖n‖703/702

C1 .

Before giving the proof of Lemma 23, let us use it to give the

Proof of the Main Theorem. Let Ee be an ellipse of perimeter 1 and eccentricity
e ∈ [0, e∗), where e∗ is the constant appearing in the statement of Lemma 23. Let
us fix K > 0 arbitrarily and ε sufficiently small to be specified later. Denote with
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Eε(E) the set of ellipses whose C0-Hausdorff distance from E is not larger than
2ε, i.e. Eε(E) = {E ′ ⊂ R2, distH(E , E ′) ≤ 2ε}. We assume ε so small that every
E ′ ∈ Eε(E) has perimeter `′ ∈ [3/4, 5/4] and eccentricity e′ ∈ [0, e∗]. Observe that
any ellipse in R2 can be parametrized by 5 real quantities (e.g. the coefficients of
the corresponding quadratic equation): let Aε(E) be the set of parameters a ∈ R5

corresponding to ellipses in Eε(E); then Aε(E) is compact.
Let now n be a C39 perturbation with ‖n‖C39 < K and ‖n‖C1 < ε and consider

the domain Ω given by

∂Ω = Ee + n.

For any 5-tuple of parameters a ∈ A we associate the corresponding ellipse Ea and
perturbation na so that ∂Ω = Ea + na. Observe that the tubular coordinates (s, n)
of Ω change analytically with respect to a, hence na varies analytically with respect
to a. In particular, we can assume ε so small that for any a ∈ Aε(E), ‖na‖C39 < 2K.
Moreover, the function a 7→ ‖na‖C1 is a continuous function and as such it will have
a minimum, which we denote by a∗ ∈ Aε(E). Let E∗ and n∗ be the corresponding
ellipse and perturbation, respectively; then

0 ≤ ‖n∗‖C1 ≤ ‖n‖C1 ≤ ε.

Modulo a possible linear rescaling (which also rescales linearly n, since the Lazutkin
perimeter is normalized to be 1) we can assume that Ē has perimeter 1 and, thus,
apply Lemma 23 to E∗ and n∗ and obtain Ē∗ and n̄∗. But if ε is small enough, then
there exists % ∈ (0, 1) so that ‖n̄∗‖C1 ≤ %‖n∗‖C1 . Hence, by the triangle inequality,

distH(E , Ē∗) ≤ distH(E ,Ω) + distH(Ω, Ē∗) ≤ (1 + %)ε < 2ε

thus Ē∗ ∈ Eε(E). Since ‖n∗‖C1 was minimal, we conclude that ‖n∗‖C1 = ‖n̄∗‖C1 = 0,
i.e. Ω = E∗ is an ellipse. �

We conclude this article by giving the

Proof of Lemma 23. Let us once again rename the basis vectors ck and sk as follows:
let ej, j ≥ 0 so that e2j = cj and e2j+1 = sj+1. First, we claim that the vectors
{ej}0≤j≤4 are µ-orthogonal to the subspace generated by {ej}j>4. Indeed, for any
fixed 0 ≤ j ≤ 4 and ε > 0 small, consider the deformation of the ellipse Ee into
the ellipse6 Ee′(ε) = Ee + εej + O(ε2). Certainly, all caustics Γ1/q with q > 2 are

preserved; therefore, by Lemma 9, for 4 < q ≤ ε−1/9 we can conclude:∣∣∣∣ε∫ ej(x) µ(x) eq(x) dx

∣∣∣∣ ≤ Cq8ε2 ≤ Cε10/9.(26)

Since ε can be chosen arbitrarily and the functions {ej} do not depend on the
perturbation, but only on E , we proved µ-orthogonality.

6 Indeed e = e′ unless j = 4.
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Now, let us decompose

n(x) = n(5)(x) + n⊥(x)(27)

where n⊥ is µ-orthogonal to the subspace spanned by {ej}j≤4 and n(5) is its com-

plement; then n(5) =
∑4

j=0 ajej.

We claim that |aj| < C‖n‖C1 , where C = C(e) depends on eccentricity only. By
µ-orthogonality we have

‖n(5)‖2
L2
µ

+ ‖n⊥‖2
L2
µ

= ‖n‖2
L2
µ
≤ ‖n‖2

C1 ,

where ‖ · ‖L2
µ

denotes the L2 norm induced by the inner product with the weight

µ, i.e. ‖f‖L2
µ

= ‖√µf‖L2 ; clearly this norm is equivalent to the standard L2 norm.

In particular , we have ‖n(5)‖L2 ≤ C‖n‖C1 . This implies that |aj| ≤ C‖n‖C1 for a
constant depending on e. Since all ej, 0 ≤ j ≤ 4 are analytic, we also have

‖n(5)‖C39 < C‖n‖C1 .(28)

Now let Ē(a0, · · · , a4) be the ellipse obtained by applying to E the homothety by
(1+a0), the translation in the direction (a1, a2), the rotation by a3 around the origin
and the hyperbolic rotation La4 , defined in (20) and let n̄ be the corresponding
perturbation function so that Ē = E + n̄. By Lemmata 12–15 we conclude that

‖n̄− n(5)‖C39 ≤ C‖n‖2
C1 .(29)

Next, we show that the component n⊥ of the decomposition (27) is L2-small and
then deduce that it is indeed C1-small.

Let us define the operator Lµ from L2 → L2 given by Lµv(x) = µ(x)·[Lv](x); then
by Proposition 18 and since both µ(x) and µ(x)−1 are both bounded and analytic,
we conclude that Lµ : L2 → L2 is a bounded invertible operator; therefore, so is its
adjoint L∗µ. Hence, using Parseval’s Identity:

‖n⊥‖2
L2 = ‖(L∗µ)−1L∗µn⊥‖2

L2 ≤ C‖L∗µn⊥‖2
L2 = C

∞∑
q=0

∣∣∣∣∫ L∗µ(n⊥)eFq

∣∣∣∣2
= C

∞∑
q=0

∣∣∣∣∫ n⊥Lµ(eFq )

∣∣∣∣2 ≤ C

∞∑
q=0

∣∣∣∣∫ n⊥µeq

∣∣∣∣2 ≤ C

∞∑
q=5

|ñq|2,

where we used the fact that LµeFq = µ · LeFq = µ · eq and ñq is defined as:

ñq :=

∫ 1

0

n(x)µ(x)eq(x)dx.

Notice that these numbers are not the coefficients of the decomposition of n · µ in
the basis B, because B is not an orthonormal basis. Fix α < 1/8 to be specified
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later and let q0 = [‖n‖−αC1 ], where [x] denotes the integer part of x; by Lemma 9, for
any 4 < q ≤ q0, we have

|ñq| ≤ Cq8‖n‖2
C1 ≤ C‖n‖2−8α

C1

where C depends on e and on ‖n‖C5 , but is independent of q. Then
q0∑
q=5

|ñq|2 ≤ C‖n‖4−17α
C1 .

We now apply Lemma 10 to ñq for q > q0: we obtain

|ñq|2 ≤ C
‖n‖2

C1

q2
.

Therefore, for q ≥ q0 we have that
∞∑

q=q0+1

|ñq|2 ≤ C‖n‖2+α
C1 .

Combining the two above estimates and optimizing for α (i.e. we choose α = 1/9),

we conclude that ‖n⊥‖L2 ≤ C‖n‖19/18

C1 : in order to upgrade this L2 estimate to a C1

estimate, first, observe that we have:

‖n⊥‖C1 ≤ ‖Dn⊥‖L1 + ‖D2n⊥‖L1 ≤ ‖Dn⊥‖L2 + ‖D2n⊥‖L2 .

We then use standard Sobolev interpolation inequalities (see e.g. [6]): for any δ > 0
and any 1 ≤ j ≤ 2 we have,

‖Djn⊥‖L2 ≤ C
[
δ‖n⊥‖C39 + δ−j/(39−j)‖n⊥‖L2

]
.

Optimizing the above estimate7, we choose δ = ‖n‖703/702

C1 . Observe that ‖n⊥‖C39 is
uniformly bounded using (28). Thus, we conclude that

‖n⊥‖C1 ≤ C(e, ‖n‖C39)‖n‖703/702

C1 .

Observe, moreover, that C above depends monotonically on ‖n‖C39 .
Hence, we have:

Ω = E + n̄ +
[
n(5) − n̄ + n⊥

]
where by the above estimate and (29) we gather

‖n(5) − n̄ + n⊥‖C1 < C(e, ‖n‖C39)‖n‖703/702

C1 .

Then Ω = Ē+n̄, where n̄ is obtained by [n(5)−n̄+n⊥] via the analytic transformation
which maps Lazutkin tubular coordinates in a neighborhood of E to Lazutkin tubular

7 The number 39 has indeed been chosen to be minimal among those for which the above
interpolation inequality provides an useful bound.



28 ARTUR AVILA, JACOPO DE SIMOI, AND VADIM KALOSHIN

coordinates in a neighborhood of Ē ; since this transformation is O(‖n‖C1)-close to
the identity, we conclude our proof. �
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