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Abstract

The paper contains mathematical justification of basic facts concerning the
Brownian motor theory. The homogenization theorems are proved for the Brownian
motion in periodic tubes with a constant drift. The study is based on an applica-
tion of the Bloch decomposition. The effective drift and effective diffusivity are
expressed in terms of the principal eigenvalue of the Bloch spectral problem on the
cell of periodicity as well as in terms of the harmonic coordinate and the density of
the invariant measure. We apply the formulas for the effective parameters to study
the motion in periodic tubes with nearly separated dead zones.
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1 Introduction

The paper is devoted to mathematical theory of Brownian (molecular) motors. The
concept of a Brownian motor has fundamental applications in the study of transport
processes in living cells and (in a slightly different form) in the porous media theory. There
are thousands of publications in the area of Brownian motors in the applied literature. For
example, the review by P. Reimann [16] contains 729 references. Most of these publications
are in physics or biology journals and are not mathematically rigorous (although many
of them are based on the mathematical model described below, see, for example [4], [5],
[10], [20]). Some of them are based on numerical computations.

Consider a set of particles with an electrical charge performing Brownian motion in a
tube Ω with periodic (or stationary random) cross section (see Fig. 1).
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Figure 1: A periodic tube Ω with “fingers”. One can expect that Veff < |V −
eff |.

We will assume that the axis of Ω is directed along the x1-axis. Let’s apply a constant
external electric field E along the axis of Ω. Then the motion of the particles consists of
the diffusion and the Stocks drift, and the corresponding generator has the form

Lu = ∆u+ V
∂u

∂x1
, V = V (E),

complemented by the Neumann boundary condition on ∂Ω (we assume the normal reflec-
tion at the boundary).

One can expect that the displacement of the particles on the large time scale may
be approximated (due to homogenization) by a one-dimensional diffusion process x1(t)
along the x1-axis with an effective drift Veff and an effective diffusivity σ2, which depend
on V and the geometry of the tube Ω. If we reverse the direction of the external field
from E to −E, then the corresponding effective drift V −

eff and the corresponding effective
diffusivity (σ−)2 will be, generally, different from Veff and σ2 when Ω is not symmetric
with respect to the reflection x1 → −x1. For example, one can expect that Veff < |V −

eff |
for Ω shown in Fig. 1. The difference between the effective parameters can be significant.
Then by changing the direction of the exterior electric field E periodically in time, one
could construct a constant drift in, say, the negative direction of x1 and create a device
(motor) producing energy from Brownian motion.

The idea of molecular motors goes back to M. Smoluchowski, R. Feynman, L. Brillouin.
Starting from the 1990-s, it became a hot topic in chemical physics, molecular biology,
and thermodynamics. The following natural problem must be solved by mathematicians:

1. The homogenization procedure (reduction to a one-dimensional problem) must be
justified.

2. Expressions for effective parameters Veff , σ
2 in terms of an appropriate PDE or a

spectral problem on the period of Ω (in the case of periodic tubes) must be found.
3. For some natural geometries of Ω that include a small parameter, asymptotic

expressions for effective parameters need to be obtained.
We solve the first two problems here using an analytic approach that justifies the

homogenization procedure and allows us to express the effective parameters in terms of

2



the principal eigenvalue of a spectral problem on one period of Ω. We will also provide a
couple of simple consequences of the obtained formulas. We show that dVeff/dV = σ2 > 0
when V = 0. Thus, since Veff is analytic in V , it is a strictly monotone function of V
when |V | is small enough. Simple asymptotic formulas for the effective parameters will
be justified for periodic tubes with nearly separated dead zones. Note that the first two
problems listed above also can be solved with probabilistic techniques similar to those
used for homogenization of periodic operators in Rd, as we’ll discuss in a forthcoming
paper.

There is immense literature on homogenization and its applications. Here we only
mention the monographs of some of the founders of the method ([2], [3], [17], [19]) as well as
some recent papers where other references can be found [6], [9], [11], [13], [15], [18]). There
are various probabilistic and PDE approaches to justifying homogenization. Our approach
is based solely on the Bloch decomposition. Recently several papers appeared (see [7, 8]
and references there), where the Bloch decomposition was used to study homogenization
problems in periodic media. It was shown that this approach has many advantages (when
it is applicable). So far, this approach was applied to self-adjoint elliptic equations in the
whole space or in a domain with a finite boundary. The symmetry and the existence of a
bounded inverse operator were essential there.

We consider a parabolic problem. It is non-self-adjoint due to the drift, which can not
be neglected since it is essential for applications. Besides, the homogenization is applied
only with respect to one variable (compare with [6]). The combination of these features
makes the problem under consideration essentially different from the applications of the
Bloch decomposition in earlier work. The main difficulty is due to the presence of infinite
boundary and a drift that is transversal to the boundary.

We would like to note the presence of the boundary integral term in the formula for the
effective drift (see Theorem 2.5). In probabilistic terms, it arises from the re-normalized
time spent by the Brownian motion with the drift on the boundary (local time). Our next
paper based on a probabilistic approach to the problem will contain the detailed analysis
of the asymptotic behavior of the effective parameters with respect to the parameters
describing the geometry of the domain.

The plan of the paper is as follows. Lemma 2.2 describes the properties of the principal
eigenvalue λ0 = λ0(θ) of the Bloch spectral problem on the cell of periodicity of Ω. The
main results on homogenization are obtained in Theorems 2.1 and 2.3. In particular, it
is shown there that the effective drift Veff and the effective diffusivity σ2 are given by the
coefficients of the Taylor expansion of the eigenvalue λ0(θ). To be more exact, λ0(θ) =
iVeffθ−σ2θ2+O|θ|3, θ → 0. Expressions for the effective parameters through the harmonic
coordinate and the invariant measure are given in Theorem 2.5. The latter formulas are
applied to a particular class of domains in the last section. Periodic tubes with nearly
separated dead zones are considered there. We rigorously justified the asymptotic formula
for the effective diffusivity, which was found earlier for domains with somewhat simpler
geometry in [5], [10].

We also note that the results of this paper can be modified to allow for L to be an
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elliptic operator with smooth variable coefficients without the potential term.

2 Description of the model and main results.

Consider a tube Ω ⊂ Rd, d ≥ 2, periodic in x1 with period 1, with a smooth boundary ∂Ω
(see Fig. 1). Denote by Sx1 the cross-section of Ω by the plane Rd−1 orthogonal to the
x1-axis at the point x1 We assume that Sx1 is bounded (and periodic with respect to x1).

In the simplest case, the boundary of the cross-section is a function of the angular
variables. For instance, Sx1 is the ball of radius R (x1) if ∂Ω is the surface of revolution.
However, in general it may have a very complicated form. For example, Ω in Fig.1
contains “fingers” (“dead ends” in the terminology of [7], [8]), and Sx1 is not connected
when a < x1 < b.

Consider the cell of periodicity in Ω defined as Ω′ = Ω
∩
{0 < x1 < 1}. It is assumed

that the compact manifold obtained from Ω′ by gluing S0 to S1 is connected. For trans-
parency, one can assume that Ω′ itself is connected. For example, Ω′ in Fig.1 is connected
if the origin is slightly to the left of a. It is not connected if the origin is the midpoint be-
tween a and b, however, it still forms a connected manifold after gluing S0 to S1. One also
can define a connected cell of periodicity Ω′ in Fig.1 using planes Rd−1 through (a+ b)/2
and (a+ b)/2+1 by cutting only the central narrow part of Ω, but not cutting the fingers.
In the latter case, we use the notation S0, S1 not for the whole cross-sections of Ω, but
for the connected parts of the cross-sections that do not intersect with the fingers.

Denote the exterior normal to ∂Ω by n. Let x = (s, z), where s = x1, z = (x2, ..., xd).
Consider the following parabolic problem in the tube Ω:

∂u

∂t
= ∆u+ V

∂u

∂s
, x ∈ Ω;

∂u

∂n
|∂Ω = 0; u(0, x) = φ(x), x ∈ Ω, φ ∈ L1(Ω). (1)

The main results of the first part of the paper are stated in the following two theorems.
The first theorem specifies the asymptotic behavior, as t → ∞, of the solution u of the
problem (1) in terms of the solution w of the one-dimensional problem

∂w

∂t
= σ2∂

2w

∂s2
+ Veff

∂w

∂s
, s ∈ R; w|t=0 = w0(s). (2)

Here σ2 is the effective diffusivity, Veff is the effective drift, and the initial function w0(s)
is a certain average of φ in z-variable and will be defined later in (7). The second theorem
describes the effective parameters σ2 and Veff in terms of the problem on the cell Ω′.

Theorem 2.1. 1) There are constants Veff , σ, and C independent of φ, such that

u = w + α, (3)

where w is the solution of (2), w0 is defined in (7), and the remainder term α = α(t, x)
satisfies

sup
x∈Ω

|α(t, x)| ≤ Ct−1||φ||L1(Ω), t ≥ 1.
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2) If supp(φ) ⊆ K, where K is compact, then (3) holds with w being the solution of (2)
with the initial data cδ0, where δ0 is the delta function at the origin, c =

∫
Rw0(s)ds, and

the remainder satisfying

sup
x∈Ω

|α(t, x)| ≤ C(K)t−1||φ||L1(Ω), t ≥ 1.

We need to state one important lemma before we can formulate the second theorem.
Denote by Sl the lateral part of the boundary ∂Ω′ of Ω′, i.e., Sl = ∂Ω′\[S0

∪
S1]. Consider

the following eigenvalue problem on the cell Ω′:

∆v + V
∂v

∂s
= λv, x ∈ Ω′;

∂v

∂n
|Sl = 0; v|S1 = eiθv|S0 , v

′
s|S1 = eiθv′s|S0 . (4)

This is an elliptic problem in a bounded domain, and for each θ the spectrum of this
problem consists of a discrete set of eigenvalues λ = λj(θ), j ≥ 0, of finite multiplicity.

Lemma 2.2. Let θ ∈ [−π, π]. There exists a simple eigenvalue λ = λ0(θ) of problem (4)
in a neighborhood |θ| ≤ δ of the origin θ = 0 and real constants Veff , σ such that

1) λ0 = iVeffθ−σ2θ2 +O(θ3), θ → 0, where σ2 > 0,
2) Reλ0(θ) < 0, 0 < |θ| ≤ δ,
3) Reλj(θ) < −γ1, |θ| ≤ δ, j ≥ 1, γ1 = γ1(δ) > 0,
4) Reλj(θ) < −γ2, δ ≤ |θ| < π, j ≥ 0, γ2 = γ2(δ) > 0.

Remark. Lemma 2.2 states the existence of the asymptotic expansion of λ0 with some
coefficients Veff and σ2, which, a priori, are not related to equation (2). However, in the
proof of Theorem 2.1 it will be shown that the effective coefficients Veff and σ2 in equation
(2) coincide with the coefficients in the Taylor expansion of λ0. Thus the following theorem
holds.

Theorem 2.3. The effective diffusivity σ2 and effective drift Veff defined in (2) coincide
with the constants introduced in Lemma 2.2.

Let us describe the initial function w0. We need the problem adjoint to problem (4).
This problem has the form:

∆v − V
∂v

∂s
= λv, x ∈ Ω′; (

∂

∂n
− V n1)v|Sl = 0; v|S1 = eiθv|S0 , v

′
s|S1 = eiθv′s|S0 , (5)

where n1 = n1(x) is the first component of the normal vector n. Then λ = λ0(θ) is
an eigenvalue of problem (5). Let v(θ, x) be the corresponding eigenfunction, and let
π(x) = v(0, x) be the eigenfunction of (5) when θ = 0 (and λ0 = λ0(0) = 0) normalized
by the condition ∫

Ω′
π(x)dx = 1. (6)
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Then w0 is defined by

w0(s) =

∫
Ss

π(s, z)φ(s, z)dz, (7)

where Sa is the cross-section of Ω by the plane through s = a.
The following lemma will be needed in order to prove the theorems above. Consider

the non-homogeneous problem (4) in the Sobolev space H2(Ω′):

(∆ + V
∂

∂s
− λ)v = f, x ∈ Ω′;

∂v

∂n
|Sl = 0; v|S1 = eiθv|S0 , v

′
s|S1 = eiθv′s|S0 . (8)

This is an elliptic problem, and the resolvent

Rθ
λ = (∆ + V

∂

∂s
− λ)−1 : L2(Ω

′) → H2(Ω′)

is a meromorphic in λ operator with poles at a discrete set of eigenvalues λ = λj(θ).
Denote by Qα the sector in the complex λ-plane that does not contain the negative semi-
axis and is defined by inequalities −π + α ≤ argλ ≤ π − α.

Lemma 2.4. For every α > 0 there exist constants R = R(α) and C = C(α) such that
the region Qα,R = Qα

∩
{|λ| > R} does not contain eigenvalues λj(θ), and the following

estimate is valid for the solution v = Rθ
λf of the problem (8):

|λ|∥v∥L2(Ω′) ≤ C(α)∥f∥L2(Ω′), λ ∈ Qα,R. (9)

Proof. This lemma can be proved by referencing standard a priori estimates for parameter-
elliptic problems [14]. We will provide an independent proof. We multiply equation (8)
by v and integrate over Ω′. This leads to

−
∫
Ω′
(|∇v|2 + λ|v|2)dx+

∫
Ω′
V v′svdx =

∫
Ω′
fvdx. (10)

The terms on the left in (10) can be estimated as follows

|
∫
Ω′
(|∇v|2 + λ|v|2)dx| ≥ c1(α)(∥∇v∥2L2(Ω′) + |λ|∥v∥2L2(Ω′)), λ ∈ Qα,

and

|
∫
Ω′
V v′svdx| ≤

c1(α)

2
∥v′s∥2L2(Ω′) +

V 2

2c1(α)
∥v∥2L2(Ω′).

We put R = V 2/(c1(α))
2. Then the absolute value of the left-hand side in (10) is estimated

from below by c1(α)
2

(∥∇v∥2L2(Ω′) + |λ|∥v∥2L2(Ω′)) when λ ∈ Qα,R, and (10) implies that

c1(α)

2
(∥∇v∥2L2(Ω′) + |λ|∥v∥2L2(Ω′)) ≤ ∥f∥L2(Ω′)∥v∥L2(Ω′), λ ∈ Qα,R. (11)
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We omit the first term on the left and obtain (9).

Proof of Lemma 2.2. Denote by Hθ = ∆+ V ∂
∂s

the operator in L2(Ω
′) defined on the

functions from the Sobolev space H2(Ω′) satisfying the boundary conditions (4). One can
define the parabolic semi-group etHθ . Its integral kernel is the fundamental solution of
the corresponding parabolic boundary value problem in Ω′. When θ = 0, this kernel is
real and positive. Thus Perron-Frobenius theorem is applicable to the operator etH0 , i.e.,
the operator etH0 has a unique maximal eigenvalue µ such that µ > 0, µ is simple, the
corresponding eigenfunction is positive, all the other eigenvalues µj (perhaps complex) are
strictly less than µ in absolute value (|µj| < µ), and the operator does not have strictly
positive eigenfunctions with eigenvalues different from µ.

We note that v0 ≡ 1 is an eigenfunction ofH0 with the eigenvalue λ0 = 0. Thus v0 is an
eigenfunction of etH0 with the eigenvalue µ = 1. Since v0 > 0, from the Perron-Frobenius
theorem it follows that µ = 1 is the maximal eigenvalue of etH0 . This implies that
Reλj < λ0 = 0 for all the eigenvalues λj ̸= 0 of the operator H0. Since the eigenvalues
λj form a discrete set, from Lemma 2.4 it follows that there exists a γ > 0 such that
Reλj < −γ for all λj ̸= 0.

Since Hθ depends analytically on θ, the location of the eigenvalues λj when θ = 0
and Lemma 2.4 imply that there exists δ > 0 such that the operator Hθ has the following
structure of the spectrum when |θ| ≤ δ: the operator has a simple, analytic in θ eigenvalue
λ = λ0(θ), λ0(0) = 0, and Reλj(θ) < −γ1 = −γ/2 for all other eigenvalues λj(θ) of Hθ.
The statement 3 of Lemma 2.2 is proved. Consider now the eigenvalue λ = λ0(θ) for
purely imaginary θ = iz, z > 0. If v belongs to the domain of the operator Hiz, then v
also belongs to the domain of the operator Hiz. From here it follows that both λ = λ0(iz)
and λ = λ0(iz) are eigenvalues of Hiz. Since, λ = λ0(θ) is the unique eigenvalue in a
neighborhood of the point λ = 0, it follows that λ0(iz) is real. This implies statement 1
of Lemma 2.2, except the inequality σ2 > 0. The latter inequality will be proved below
(in Theorem 2.5) by a direct calculation of σ2 (see formula (32)). It is important to note
that while the proofs of Theorems 2.1 and 2.3 essentially rely on the fact that σ2 > 0,
the proof of Theorem 2.5 is independent of Theorems 2.1 and 2.3, so there is no circular
argument here. It remains to justify statements 2 and 4. This will be done if we prove
that for every δ1 > 0, there exists γ = γ(δ1) > 0 such that Reλj(θ) < −γ for all the
eigenvalues of the operator Hθ when θ is real, δ1 ≤ |θ| ≤ π.

Let us prove the latter estimate for the eigenvalues λj(θ), δ1 ≤ |θ| ≤ π. We fix
an arbitrary rational θ = θ′ = ±m

n
in the set δ1 ≤ |θ| ≤ π. Consider the domain

Ω̂ = Ω
∩
{0 < x1 < n}, which consists of n elementary cells of periodicity Ω(j) = Ω

∩
{j <

x1 < j + 1}, 0 ≤ j ≤ n − 1 (Ω(0) coincides with the cell Ω′ introduced earlier). The

lateral side of the boundary of the domain Ω̂ will be denoted by Ŝl, and the parts of the
boundary located in the planes through the points x1 = 0 and x1 = n will be denoted by
S0 and Sn, respectively. Let H

(n)
θ = ∆+ V ∂

∂s
be the operator in L2(Ω̂) that corresponds
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to the following analogue of the problem (4):

∆v + V
∂v

∂s
= αv, x ∈ Ω̂;

∂v

∂n
|Ŝl = 0; v|Sn = einθv|S0 , v

′
s|Sn = einθv′s|S0 . (12)

We denote its eigenvalues by α = αj, and we keep the notation λ = λj for the eigenvalues

of this operator when n = 1 (and Ω̂ = Ω′).
When θ = θ′, the conditions on S0, Sn become the periodicity condition. Thus the

spectrum ofH
(n)
θ′ has the same structure as the spectrum ofH0, i.e., α0 = 0 is an eigenvalue

with the eigenfunction v0 = 1, and

Reαj < −γ < 0 (13)

for all other eigenvalues αj of H
(n)
θ′ .

We compare the set {λj} of the eigenvalues of the operator Hθ′ and the set {αj} of

the eigenvalues of the operator H
(n)
θ′ . The following inclusion holds: {λj} ⊂ {αj}. Indeed,

if v is an eigenfunction of the operator Hθ′ , then one can construct the corresponding
eigenfunction of H

(n)
θ′ with the same eigenvalue by defining it as eijθv in each elementary

cell Ω(j) ⊂ Ω̂, 0 ≤ j ≤ n − 1. However, these two sets of eigenvalues do not coincide.
In particular, λ = 0 is not an eigenvalue of Hθ′ (while α = 0 is an eigenvalue of H

(n)
θ′ ).

Indeed, from the simplicity of the eigenvalue α = 0 it follows that λ = 0 could be an
eigenvalue of Hθ′ only if v0 = 1 is its eigenfunction, but v0 does not satisfy the boundary
conditions (4). Thus, (13) implies that Reλj < −γ < 0 for the set of eigenvalues of the
operator Hθ′ . Then the same estimate with γ/2 instead of γ is valid for the eigenvalues of
Hθ when θ is in a small enough neighborhood of θ′ = ±m

n
. One can find a finite covering

of the set {θ : δ1 ≤ |θ| ≤ π} by some of these neighborhoods. Thus, the desired estimate
of eigenvalues λj(θ) is valid for all θ of the set {θ : δ1 ≤ |θ| ≤ π}.

Proof of Theorems 2.1 and 2.3. In Part A of the proof we solve problem (1) via the
Bloch decomposition, followed by a straightforward evaluation of the resulting integral.
This leads to a slightly weaker statement of Theorem 2.1, where an additional assumption
is used. Namely, let us assume that φ ∈ L1(Ω) ∩ L2(Ω). We’ll show that

sup
(s,z)∈Ω

|u(t, (s, z))− w(t, s)| ≤ Ct−1(∥φ∥L1(Ω) + ∥φ∥L2(Ω)), t ≥ 1. (14)

In Part B of the proof, we’ll show that the assumption φ ∈ L2(Ω) is not needed and
the second term on the right hand side of (14) can be omitted. We’ll also prove the second
statement of Theorem 2.1 and Theorem 2.3.

Part A. Let us assume here that φ ∈ L1(Ω) ∩ L2(Ω). The solution u of problem (1)
can be found using the Laplace transform in t:

u =
1

2πi

∫ a+i∞

a−i∞
v(λ, x)eλtdλ, a > 0,
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where v ∈ L2(Ω) is the solution of the corresponding stationary problem:

∆v + V
∂v

∂s
− λv = −φ, x ∈ Ω;

∂v

∂n
|∂Ω = 0. (15)

In order to solve (15), we apply the Bloch transform in the variable s = x1:

w(x) → ŵ(θ, x) =
∞∑
−∞

w(s− n, z)einθ, θ ∈ [−π, π], x ∈ Ω.

This map is unitary (up to the factor 1/
√
2π) from L2(Ω) to L2(Ω

′ × [−π, π]), and the
inverse transform is given by

w(x) =
1

2π

∫ π

−π
ŵ(θ, x)dθ, x ∈ Ω.

Note that the function e−iθsŵ(θ, x) is periodic in s. Thus the knowledge of ŵ on Ω′ allows
one to recover ŵ on the whole tube Ω.

The Bloch transform reduces problem (15) to a problem for v̂ on the cell of periodicity
Ω′. The latter problem has form (8) with f = −φ̂, i.e., v̂ = −Rθ

λφ̂. Thus

u(t, x) =
−1

4π2i

∫ a+i∞

a−i∞

∫ π

−π
(Rθ

λφ̂)(x)e
λtdθdλ, x ∈ Ω. (16)

The function Rθ
λφ̂ here is defined in Ω′, but it is extended to the whole tube Ω in such a

way that e−iθsRθ
λφ̂ is periodic in s.

Now that formula (16) for u is established, we are going to study the asymptotic
behavior of u as t → ∞. We split u as u = u1 + u2, where the terms u1, u2 are given
by (16) with integration in θ over sets |θ| ≤ δ and δ ≤ |θ| ≤ π, respectively. We choose
δ small enough, so that Lemma 2.2 holds, and then make it even smaller (if needed) to
guarantee that −γ1

2
<Reλ0(θ) ≤ 0, |θ| ≤ δ.

Let us show that u2 does not contribute to the main term of asymptotics of u. Lemmas
2.4 and 2.2 allow us to rewrite u2 in the form

u2(t, x) =
−1

4π2i

∫
Γ

∫
δ≤|θ|≤π

(Rθ
λφ̂)(x)e

λtdθdλ, x ∈ Ω, (17)

where Γ is the contour shown in Fig. 2 with γ = γ2. From Lemmas 2.4 and 2.2 it follows
that

∥Rθ
λφ̂∥L2(Ω′) ≤

c1
1 + |λ|

∥φ̂∥L2(Ω′), λ ∈ Γ, δ ≤ |θ| ≤ π.

Thus∫
δ≤|θ|≤π

∥Rθ
λφ̂∥L2(Ω′)dθ ≤

c1
1 + |λ|

∥φ̂∥L2(Ω′×[−π,π]) =
c2

1 + |λ|
∥φ∥L2(Ω), λ ∈ Γ. (18)
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Figure 2: Contour Γ = Γ1 + Γ2 + Γ3, where γ coincides with γ1 or γ2 defined in Lemma
2.2, and Γ2 is long enough, so that the estimate (9) is valid on Γ1 and Γ3.

One can replace Ω′ here by a shifted cell of periodicity Ω(j) defined by the inequalities
j ≤ x1 ≤ j + 1, since the function e−iθx1Rθ

λφ̂ is periodic in x1. We put (18) with Ω′

replaced by Ω(j) into (17) and estimate the integral over Γ. This gives

∥u2(t, x)∥L2(Ω(j)) ≤ ce−γt∥φ(x)∥L2(Ω),

where c does not depend on j.
In the end of this section, in Lemma 2.7, we show that there are positive constants a

and b such that
|G(1, x, y)| ≤ ae−b(x1−y1)

2

, (19)

where G(t, x, y) is the Green function of problem (1). Using (19), we obtain a uniform
estimate of u2, namely

|u2(t, x)| ≤
∫
Ω

|G(1, x, y)u2(t− 1, y)|dy ≤ Ae−γt
∞∑

j=−∞

e−b(x1−j)
2∥φ∥L2(Ω)

≤ Ce−γt∥φ∥L2(Ω), x ∈ Ω, t ≥ 1.

Hence u2 does not contribute to the main term of the asymptotics of u.
In order to study u1, we also shift the contour of integration (in λ) to Γ. Now we take

γ = γ1, and in this case the simple pole of Rθ
λ at λ = λ0(θ) must be taken into account.

The residue of Rθ
λ at this pole is the integral operator with the kernel −ψ(θ, x)ψ∗(θ, y),

where ψ is an eigenfunction of the problem (4), ψ∗ is an eigenfunction of the problem (5),
and they are normalized by the biorthogonality condition∫

Ω′
ψ(θ, x)ψ∗(θ, x)dx = 1. (20)
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Note that the minus sign in the expression for the kernel is needed since the residue is a
negative operator. Thus

u1(t, x) =
1

2π

∫
|θ|≤δ

∫
Ω′
ψ(θ, x)ψ∗(θ, y)eλ0(θ)tφ̂dydθ − 1

4π2i

∫
Γ

∫
|θ|≤δ

Rθ
λφ̂e

λtdλ, x ∈ Ω,

(21)
where the functions ψ, ψ∗ are extended to Ω using the Bloch periodicity condition, i.e.,

ψ(θ, x) = eiθsψ0(θ, x), ψ∗(θ, x) = eiθsψ∗
0(θ, x), (22)

where the functions ψ0, ψ
∗
0 are periodic with respect to s. The second term in (21) can be

estimated similarly to u2. Thus

u(t, x) =
1

2π

∫
|θ|≤δ

∫
Ω′
ψ(θ, x)ψ∗(θ, y)eλ0(θ)tφ̂dydθ + α1(t, x),

where x ∈ Ω, t ≥ 1, and
|α1| ≤ Ce−γt∥φ(x)∥L2(Ω). (23)

Let y = (s′, z′). Then

φ̂ =
∞∑
−∞

φ(s′ − n, z′)einθ.

Hence (with (22) taken into account),

u(t, x) =
1

2π

∞∑
n=−∞

∫
|θ|≤δ

∫
Ω′
eiθ(s−s

′+n)ψ0(θ, x)ψ∗
0(θ, y)e

λ0(θ)tφ(s′ − n, z′)dydθ + α1(t, x)

=
1

2π

∞∑
n=−∞

∫
|θ|≤δ

∫
Ω(n)

eiθ(s−s
′)ψ0(θ, x)ψ∗

0(θ, y)e
λ0(θ)tφ(s′, z′)dydθ + α1(t, x)

=
1

2π

∫
|θ|≤δ

∫
Ω

eiθ(s−s
′)ψ0(θ, x)ψ∗

0(θ, y)e
λ0(θ)tφ(s′, z′)dydθ + α1(t, x).(24)

We split the double integral I above in two parts I = I1+ I2, where the integration in
θ in the part I1 extends only over the segment |θ| ≤ min(δ, t−1/3) and I2 = I − I1. From
Lemma 2.2 it follows that Reλ0(θ) < −σ2

2
θ2, |θ| ≤ δ, if δ is small enough. Since we can

take δ as small as we please, and the functions ψ0, ψ
∗
0 are bounded, it follows that

I2 ≤ C

∫
|θ|∈[t−1/3,δ]

∫
Ω

e−
σ2

2
θ2t|φ(y)|dydθ ≤ C∥φ∥L1(Ω)e

−σ2

2
t1/3 .

We replace λ0(θ) in the integral I1 by its quadratic approximation found in Lemma 2.2:

eλ0(θ)t = e(iVeffθ−σ
2θ2)t(1 +O(|θ|3t)).

11



If only the remainder term is taken into account, then the corresponding integral can be
estimated by

C

∫
|θ|≤t−1/3

∫
Ω

|θ|3te−σ2θ2t|φ(y)|dydθ ≤ C∥φ∥L1(Ω)

∫ ∞

−∞
|θ|3te−σ2θ2tdθ = C

t
∥φ(y)∥L1(Ω).

From here, (24), and (23) it follows that

u(t, x) =
1

2π

∫
|θ|≤t−1/3

∫
Ω

eiθ(s−s
′)ψ0(θ, x)ψ∗

0(θ, y)e
(iVeffθ−σ2θ2)tφ(s′, z′)dydθ + α2(t, x)),

where
|α2| ≤ Ct−1(∥φ(x)∥L1(Ω) + ∥φ(x)∥L2(Ω)), t ≥ 1.

The functions ψ0 and ψ∗
0 can be chosen to be smooth in θ at θ = 0. We put θ = 0 in

the arguments of these functions. Choose ψ0(0, x) ≡ 1 and take into account that ψ∗
0(0, y)

is real. Then ψ∗
0(0, y) will be the eigenfunction of problem (5) with λ = θ = 0, normalized,

due to (20), by the condition ∫
Ω′
ψ∗
0(0, x)dx = 1.

Thus ψ∗
0(0, y) = π(y) and ψ0(θ, x)ψ∗

0(θ, y) = π(y) + O(|θ|). We put this relation into the
formula above and note that the integral with the term O(|θ|) does not exceed

C

∫
|θ|≤t−1/3

∫
Ω

|θ|e−σ2θ2t|φ(y)|dydθ ≤ Ct−1∥φ∥L1(Ω).

Hence

u(t, x) =
1

2π

∫
|θ|≤t−1/3

∫
Ω

eiθ(s−s
′)π(s′, z′)e(iVeffθ−σ

2θ2)tφ(s′, z′)dydθ + α3(t, x), y = (s′, z′),

with the same estimate for α3 (and α4 below) as for α2. We can replace here the integration
in θ over the interval |θ| ≤ t−1/3 by the integration over the whole line since the difference
between the corresponding integrals decays exponentially as t→ ∞. Thus

u(t, x) =
1

2π

∫ ∞

−∞

∫
Ω

eiθ(s−s
′)π(s′, z′)e(iVeffθ−σ

2θ2)tφ(s′, z′)dydθ + α4(t, x), t→ ∞.

The integral above, denoted by w = w(t, s) is the main term of the asymptotics. It
does not depend on z. By simple differentiation one can check that it satisfies equation (2).
Function w(0, s) is the Fourier transform in s′ followed by its inverse (in θ), i.e.,

w(0, s) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

∫
Ss′

eiθ(s−s
′)π(s′, z′)φ(s′, z′)dz′ds′dθ =

∫
Ss

π(s, z′)φ(s, z′)dz′, (25)

where Sa is the cross-section of Ω by the plane through s = a. Thus w is the solution of
problem (2) with w0 given in (7). Therefore, (14) holds.
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Part B. We do, however, need to prove the statement under the assumption that
φ ∈ L1(Ω) and without the L2-norm in the right hand side. To prepare for this task, let
us make several simple observations.

(a) Obviously, in the estimates of all the remainder terms above one can replace the
restriction t ≥ 1 by t ≥ 1/2. Similarly, one can use (19) with t = 1/2.

(b) Suppose that a measurable function f satisfies

|f(s)| ≤ ae−bs
2

, s ∈ R.

Then there is a constant K that depends on b (and also on σ) such that

sup
s∈R

|
∫
R

1

2σ
√
πt

exp(−(s− s′ + Vefft)
2

4σ2t
)f(s′)ds′ − 1

2σ
√
πt

exp(−(s+ Vefft)
2

4σ2t
)

∫
R
f(s′)ds′|

≤ K
a

t

for t ≥ 1/2. The first integral on the left hand side is the solution of (2) with initial
data f , while the factor before the second integral is the fundamental solution of the
same equation.

(c) There is a constant K such that

sup
s∈R

| 1

2σ
√
πt

exp(−(s+ Vefft)
2

4σ2t
)− 1

2σ
√
π(t− 1

2
)
exp(−(s+ Vefft)

2

4σ2(t− 1
2
)
)| ≤ K

t
,

for t ≥ 1, i.e., we have a bound on the difference of the values of the fundamental solution
at times t and t− 1/2.

(d) Let φ ∈ L1(Ω) and suppose that supp(φ) ⊆ Ω′ (closure of Ω′). Let φ̃(x) =
u(1/2, x), where u is the solution of (1) with initial data φ. From (19) with t = 1/2 it
follows that there is a constant c such that

∥φ̃∥L1(Ω) + ∥φ̃∥L2(Ω) ≤ c∥φ∥L1(Ω).

(e) Again, suppose that φ ∈ L1(Ω) and supp(φ) ⊆ Ω′. Let

w̃0(s) =

∫
Ss

π(s, z)φ̃(s, z)dz.

Then ∫
R
w̃0(s)ds =

∫
R
w0(s)ds,

since π is the stationary solution to the adjoint problem.
(f) From (19) with t = 1/2 it follows that there are constants c and b such that

|w̃0(s)| ≤ c∥φ∥L1(Ω)e
−bs2 , s ∈ R,
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provided that supp(φ) ⊆ Ω′.
(g) Let w0(s) = w(1/2, s). Then∫

R
w0(s)ds =

∫
R
w0(s)ds

and there are constants c and b such that

|w0(s)| ≤ c∥φ∥L1(Ω)e
−bs2 , s ∈ R,

provided that supp(φ) ⊆ Ω′.
Having made these observations, we return to the proof of Theorem 2.1. First, we

claim that

sup
(s,z)∈Ω

|u(t, (s, z))− 1

2σ
√
πt

exp(−(s+ Vefft)
2

4σ2t
)

∫
Ω

φ(x)π(x)dx| ≤ Ct−1∥φ∥L1(Ω), t ≥ 1,

(26)
provided that φ ∈ L1(Ω) and supp(φ) ⊆ Ω′. Indeed, the solution u to equation (1) with
initial data φ can be viewed as the solution with initial data φ̃ (see (d)), but evaluated
at time t− 1/2 instead of time t. By (14) and observation (d), u(t, (s, z)) is close to the
solution, at time t − 1/2, of the one-dimensional equation (2) with the initial function
w̃0(s). By observations (b) and (f), the solution of (2) with the initial data w̃0(s) can
be, in turn, approximated by the fundamental solution (with the coefficient

∫
R w̃0(s)ds)

of the same equation. By observation (c), the fundamental solution at time t − 1/2 is
close to the fundamental solution at time t. The coefficient

∫
R w̃0(s)ds can be replaced

by
∫
Rw0(s)ds =

∫
Ω
φ(x)π(x)dx by the observation (e).

We have thus justified (26). In other words, we proved that the solution of the original
PDE is close to the fundamental solution of the one-dimensional equation provided that
the initial data is supported in Ω′. This proves part 2 of Theorem 2.1 provided that
K ⊂ Ω′. If K is not contained in Ω′, we can take a sufficiently large n so that K ⊂
Ω ∩ {x : x1 ∈ [−n, n]}, and treat Ω ∩ {x : x1 ∈ [−n, n]} as the unit of periodicity instead
of Ω′.

By observations (b) and (g), the fundamental solution (multiplied by
∫
Ω
φ(x)π(x)dx)

at time t− 1/2 is close to the solution of (2) with the initial data w0. The latter is equal
to w evaluated at time t. Therefore, we can replace the fundamental solution by w in
the estimate (26), thus obtaining part 1 of Theorem 2.1 under the additional assumption
that supp(φ) ⊆ Ω′.

This assumption is not essential, however, since every initial function φ can be written
as

φ =
∞∑

i=−∞

φχ{x:x1∈[i,i+1]}.

Since the statement hold for each of the terms in the series, it holds for the function φ as
well. Thus Theorem 2.1 is proved.
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Finally, Theorem 2.3 holds true since the expressions for Veff and σ2 were introduced
in the course of the proof of Theorem 2.1 as the coefficients in the expansion of λ0 from
Lemma 2.2.

In conclusion of this section we will provide some formulas that can be useful for
practical evaluation of the effective drift Veff and the effective diffusivity σ2.

Recall that λ0(θ) is a simple eigenvalue of problem (4) due to Lemma 2.2. Therefore,
the eigenvalue and the corresponding eigenfunction v are analytic in θ. We can choose v
in such a way that v = 1 when θ = 0. Then it is defined uniquely up to a scalar factor
that is analytic in θ. Let

v = 1 + iθv1(x)− θ2v2(x) +O(θ3), θ → 0, (27)

be the Taylor expansion of v at θ = 0. We plug (27) and the expansion for λ0(θ) from
Lemma 2.2 into (4) and take into account that conditions on S0, S1 in (4) can be rewritten
as periodicity in s = x1 of the function e

−ixθv. Then we obtain the following problems for
the coefficients v1, v2:

∆v1 + V
∂v1
∂s

= Veff , x ∈ Ω′;
∂v1
∂n

|Sl = 0; v1 = s+ ψ1(x), (28)

∆v2 + V
∂v2
∂s

= Veffv1 + σ2, x ∈ Ω′;
∂v2
∂n

|Sl = 0; v2 =
s2

2
+ sψ1(x) + ψ2(x), (29)

where ψ1, ψ2 are some periodic functions and Veff , σ
2 are defined in Lemma 2.2 (see also

Theorem 2.3). Function v1 is called the harmonic coordinate (it is defined up to an
additive constant). Usually the harmonic coordinate satisfies a homogeneous equation,
but this equation (see (28)) becomes inhomogeneous in the presence of a drift in the
problem. Recall that π = π(x) is the principal eigenfunction (normalized by (6)) with
eigenvalue λ = 0 for the adjoint problem (5) with θ = 0, i.e.,

∆π − V
∂π

∂s
= 0, x ∈ Ω′; (

∂

∂n
− V n1)π|Sl = 0; π|S1 = π|S0 , π

′
s|S1 = π′

s|S0 . (30)

This is a positive function due to the Perron-Frobenius theorem (see details in the proof
of Lemma 2.2). This function is the density of the invariant measure. Note that π(x) ≡
1/|Ω′| if V = 0.

Theorem 2.5. The effective drift Veff can be found from either of the following three
formulas:

Veff =

∫
S

(V π − π′
s)dS = V −

∫
Ω′
π′
sdx = V −

∫
∂Sl

n1πdS, (31)

where S is a cross-section of the domain Ω by an arbitrary hyperplane s = const., n1 is
the first component of the outward normal vector n, and Sl = ∂Ω′\[S0

∪
S1] is the lateral

part of the boundary of Ω′. The effective diffusivity is given by

σ2 =

∫
Ω′
|∇v1|2πdx. (32)
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Remark. Note that π ≡ 1/|Ω′| if V = 0. Formula (31) then implies that Veff = 0. We’ll
also show that in this case

σ2 = 1−
∫
Ω′ |∇ψ1|2dx

|Ω′|
.

The latter formula shows that the effective diffusivity is always smaller than in the free
space if Ω is not a cylinder (i.e., if ψ1 is not identically zero).

Proof of Theorem 2.5. Let L = ∆+V ∂
∂s

be the differential expression in the left-hand
side of (28), and let L∗ = ∆− V ∂

∂s
be the conjugate expression (see (30)). Since L∗π = 0

and v1 satisfies (28), we have∫
Ω′
(Lv1)πdx−

∫
Ω′
v1L

∗πdx = Veff

∫
Ω′
πdx = Veff .

This relation can be re-written using the Green formula and applying the divergence

theorem to the vector field
−→
F = (v1π, 0, 0). This leads to

Veff =

∫
∂Ω′

[(∆v1)π − v1∆π + V
∂(v1π)

∂s
]dx =

∫
∂Ω′

(
∂v1
∂n

π − v1
∂π

∂n
+ V v1πn1)dS.

The integrand on the right hand side vanishes on Sl since π satisfies the boundary condi-
tion (30) on Sl and ∂v1

∂n
= 0 on Sl. Thus

Veff =

∫
S0

∪
S1

(
∂v1
∂n

π − v1
∂π

∂n
+ V v1πn1)dS. (33)

We substitute here v1 = s+ψ1. The integral with ψ1 is zero due to the periodicity of the
functions ψ1 and π. Thus (33) holds with v1 replaced by s. If we also take into account
that ∫

S0
∪
S1

∂s

∂n
πdS = 0,

then we obtain the first equality (31) with S = S1. Then this equality holds with any
S since Veff is invariant with respect to the shift s → s + a. Let us provide another
way to show that the second term in (31) does not depend on the choice of S. Let
Ωa,b = Ω

∩
{a < s < b}. Then

0 =

∫
Ωa,b

L∗πdx =

∫
∂Ωa,b

(π′
n − V πn1)dS =

∫
Sa

∪
Sb

(π′
n − V πn1)dS

=

∫
Sb

(π′
s − V π)dS −

∫
Sa

(π′
s − V π)dS.

In order to prove the second equality (31), we write the first one with S = Sa and
integrate with respect to a over the interval (0, 1). The last equality (31) follows from the
divergence theorem.
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The proof of (32) is similar. We have∫
Ω′
(Veffv1 + σ2)πdx =

∫
Ω′
(Lv2)πdx−

∫
Ω′
v2L

∗πdx =

∫
S0

∪
S1

(
∂v2
∂n

π − v2
∂π

∂n
+ V v2πn1)dS.

We plug here v2 =
s2

2
+ sψ1 + ψ2. The integral with ψ2 vanishes due to the periodicity of

ψ2 and π. Hence v2 can be replaced by s2

2
+ sψ1. We reduce the integral over S0 to an

integral over S1 using the substitution s → s− 1. Taking into account the periodicity of
ψ1 and π we obtain∫

Ω′
(Veffv1 + σ2)πdx =

∫
S1

[(1 +
∂ψ1

∂s
)π − (

1

2
+ ψ1)

∂π

∂s
+ V (

1

2
+ ψ1)π]dS

=

∫
S1

[
∂v1
∂s

π − v1
∂π

∂s
+ V v1π]dS − 1

2
Veff .

The last relation is the consequence of the first equality (31) and the equality v1 = s+ψ1.
Hence,

σ2 =

∫
S0

[
∂v1
∂s

π − v1
∂π

∂s
+ V v1π]dS − Veff

∫
Ω′
v1πdx−

1

2
Veff . (34)

It remains to show that∫
Ω′
|∇v1|2πdx =

∫
S0

[
∂v1
∂s

π − v1
∂π

∂s
+ V v1π]dS − Veff

∫
Ω′
v1πdx−

1

2
Veff . (35)

We note that L(v21) = 2v1Lv1 + 2|∇v1|2 = 2Veffv1 + 2|∇v1|2. Thus∫
Ω′
|∇v1|2πdx =

1

2

∫
Ω′
L(v21)πdx− Veff

∫
Ω′
v1πdx

=

∫
S0

∪
S1

[v1
∂v1
∂n

π − 1

2
v21(

∂π

∂n
− V πn1)]dS − Veff

∫
Ω′
v1πdx.

We took into account here that the integrand of the first term on the right vanishes on Sl.
The last inequality implies (35) if the integral over S1 in the equality above is rewritten in
terms of the integral over S0 using the first formula (31) and periodicity of the functions
π and v1 − s. The proof of the theorem is complete. Now let us justify the remark.

Assume that V = 0. From the divergence theorem and periodicity of ψ1 it follows that∫
Ω′

∂ψ1

∂s
dx =

∫
∂Ω′

ψ1n1dS =

∫
Sl

ψ1n1dS.

Since n1 =
∂s
∂n

and the latter function on Sl is equal to −∂ψ1

∂n
(due to (28)), we have∫

Ω′

∂ψ1

∂s
dx =

∫
∂Ω′

ψ1n1dS = −
∫
Sl

ψ1
∂ψ1

∂n
dS = −

∫
∂Ω′

ψ1
∂ψ1

∂n
dS.
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Now we recall that ∆ψ1 = ∆(v1 − s) = 0. Hence the latter formula together with the
Green formula imply ∫

Ω′

∂ψ1

∂s
dx = −

∫
Ω′
|∇ψ1|2dx. (36)

Furthermore, π ≡ 1/|Ω′| since V = 0. From v1 = ψ1 + s, (32), and (36) it follows that

σ2|Ω′| =
∫
Ω′
|∇v1|2dx =

∫
Ω′
(1 + 2

∂ψ1

∂s
+ |∇ψ1|2)dx =

∫
Ω′
(1− |∇ψ1|2)dx

Theorem 2.6. The following relation holds: Veff = σ2
0V + O(V 2) as V → 0 where

σ2
0 = σ2|V=0 > 0 is the effective diffusivity at V = 0. In particular, if |V | is small enough,

then Veff ̸= 0 when V ̸= 0 and Veff is a monotone function of V .

Proof. From (30) it follows that π is an analytic function of V . Then (31) implies that
Veff is analytic in V , and (28) implies that v1 and ψ1 depend on V analytically. We expand
π = 1

|Ω′| +V π1 +O(V 2) using the Taylor approximation at V = 0. Then (30) leads to the
following problem for π1:

∆π1 = 0, x ∈ Ω′;
∂π1
∂n

|Sl =
n1

|Ω′|
; π1|S1 = π1|S0 , (π1)

′
s|S1 = (π1)

′
s|S0 .

Since n1 =
∂s
∂n
, only the factor −1/|Ω′| in the boundary condition makes the problem for

π1 different from the problem for ψ0
1 = ψ1|V=0. The latter problem can be obtained from

(28) if we put there V = Veff = 0. Hence π1 = − ψ0
1

|Ω′| , i.e., π = 1
|Ω′| −

V ψ0
1

|Ω′| +O(V 2). We put

this into the second of relations (31) and obtain that

Veff = V (1 +

∫
Ω′(ψ

0
1)

′
sdx

|Ω′|
) +O(V 2) = V (1−

∫
Ω′ |∇ψ0

1|2dx
|Ω′|

) +O(V 2).

The last relation follows from (36). It remains only to use the Remark after Theorem 2.5.

We still need to prove inequality (19), which was used in the arguments above.

Lemma 2.7. There are positive constants a and b such that the inequality

|G(1, x, y)| ≤ ae−b(x1−y1)
2

holds for the Green function G(t, x, y) of problem (1).

Proof. The statement is very similar to the upper Aronson estimate at a fixed time for
the Green function of a parabolic problem. The difference from the classical estimate is
that here we have reflection on the boundary of the tube, rather than a problem in the
entire space. For this reason, we sketch an independent proof.
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For each y, denote by D the domain that consists of three cells of periodicity of Ω: the
one which contains y, and two adjacent cells. Denote by S(1), S(2) the vertical parts of the
boundary of D that are defined by the equations x1 = [y] − 1, x1 = [y] + 2, respectively.

Let G̃(t, x, y) be the Green function of the problem

∂G̃

∂t
= ∆G̃+ V

∂G̃

∂s
, x ∈ D;

∂G̃

∂n
|∂D∩

∂Ω = 0; G̃(0, x, y) = δy(x), x ∈ D, (37)

supplemented by the standard periodicity condition on S(1), S(2). The Green function G̃
exists and is infinitely smooth when t ̸= 0, x ̸= y [12]. Let ζy(t, x) be a cut-off function
that is equal to one in a small neighborhood of the point t = 0, x = y and is equal to
zero when t > 1/2 or |x − y| > 1/2. Obviously, one can choose ζy in such a way that
∂ζy

∂n
|∂D∩

∂Ω = 0.
Now, instead of estimating the fundamental solution, we can estimate uy(t, x) =

G(t, x, y)− ζy(t, x)G̃(t, x, y), which satisfies

∂uy

∂t
= ∆uy + V

∂uy

∂s
+ h1(t, x, y), x ∈ Ω;

∂uy

∂n
|∂Ω = 0; uy(0, x) = h2(x, y), x ∈ Ω,

where h1, h2 are smooth, uniformly in t, x, y bounded functions supported in the 1/2-
neighborhoods of the points t = 0, x = y and x = y, respectively.

Consider the diffusion process Xx
t defined via

dXx
t =

√
2dWt + V dt+ χ∂Ω(X

x
t )n(X

x
t )dξ

x
t , Xx

0 = x, (38)

where ξxt is the local time of Xx
t on the boundary of Ω. By the Feynman-Kac formula,

the solution uy can be represented as

uy(1, x) =

∫ 1

1/2

Eh1(t,X
x
t )dt+ Eh2(X

x
1 ).

By the uniform boundedness of h1 and h2, we conclude that

uy(1, x) ≤ C sup
0≤t≤1

P(Xx
t ∈ By) ≤ P(Xx

t reaches By before time 1),

where By is the unit ball centered at x = y. From the large deviation principle for
diffusion processes with reflection on the boundary (see [1]), it follows that there are
positive constants c1 and c2 such that

sup
x∈Ω

P( sup
t∈[0,ε]

|Xx
t − x| ≥ 1) ≤ c1e

−c2/ε (39)

for each ε > 0. In order for the process Xx
t to reach the unit neighborhood of y, it needs

to cross at least k := [|x1−y1|−1] regions, each bounded by a pair of vertical hyperplanes
separated by unit distance. Since the total time available is equal to one, at least [k/2] of
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the regions need to be crossed in time that is smaller than 2/k. By (39) and the Markov
property of the process, the probability that [k/2] given regions are crossed in time smaller
than 2/k is estimated from above by (c1e

−kc2/2)[k/2]. Therefore,

P(Xx
t reaches By before time 1) ≤ k!

[k/2]!(k − [k/2])!
(c1e

−kc2/2)[k/2],

where the combinatorial factor is due to the fact that a priori we don’t know which of
the regions will be crossed fast. The right hand side is estimated from above by c3e

−c4k2

with positive c3 and c4. Finally, the desired estimate on uy(1, x) follows once we recall
that k = [|x1 − y1| − 1].

3 Periodic tubes with nearly separated dead zones.

Consider problem (1) with V = 0 (i.e., without drift) in a periodic domain Ω = Ω(ε) ⊂ Rd

that has the form of an ε-independent periodic tube Ω0 with a periodic system of cavities
connected to the tube Ω0 by narrow channels (see Fig. 3). Denote one cell of periodicity
of the domain Ω(ε) by Ω′(ε) and one cell of periodicity of Ω0 by Ω′

0.
We do not impose restrictions on the shape of the cavities and channels besides the

periodicity condition, smoothness of the boundary ∂Ω(ε) and the assumption that the
channel enters the cell of periodicity Ω′

0 of the main tube in an ε neighborhood of some
point x0 ∈ ∂Ω′

0. The latter means that by omitting an ε-neighborhood of x0 from Ω′(ε),
one disconnects Ω′

0 from the other part of Ω′(ε). For simplicity we will assume that there
is only one cavity and one channel on each period, but it is not difficult to extend all the
arguments to the case of several cavities per period or multiple channels connecting the
cavity with the tube. Let us stress that no regularity in ε of the cavity and channels is
assumed. For example, their volume may grow, decay, or oscillate as ε → 0. We also do
not need to make a distinction between the cavity and the channel.

s = x 1

ε

Figure 3: Periodic tube with nearly separated cavities (dead zones).

We assume that the cell Ω′
0 is defined by the restriction 0 < s = x1 < 1. We denote

by S0, S1 the parts of the boundary of Ω′
0 that belong to the planes through the points
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s = 0 and s = 1, respectively. Let Sl = ∂Ω′
0\[S0

∪
S1] be the lateral part of the boundary

∂Ω′
0 of the cell corresponding to the main tube.
In order to describe the effective diffusivity σ2 for the problem in Ω(ε) and the effective

diffusivity σ2
0 for the problem in the main tube Ω0 (without the cavities and channels),

we introduce the auxiliary problem

∆u = 0, x ∈ Ω0; u = s+ ψ, where ψ is 1-periodic in s; u′n|Sl = 0. (40)

We will call function u the harmonic coordinate (for the domain Ω0). This function was
introduced in the previous section where it was denoted by v1 (see (28)).

Theorem 3.1. Let V = 0. Then the following formulas are valid for the effective diffu-
sivity σ2

0 in the case of a periodic tube Ω0 and for the effective diffusivity σ2
0(ε) in the case

of the tube with cavities:

σ2
0 =

∫
Ω′

0
|∇u|2dx
|Ω′

0|
, (41)

σ2(ε) =
|Ω′

0|σ2
0

|Ω′(ε)|
+O(ε

d
2 ), ε→ 0. (42)

Remark. When Ω0 is a cylinder, formula (42) can be found in [5], [10], under certain
assumptions on the connecting channels.

Proof of Theorem 3.1. In the case of domain Ω0, we will use notations u, ψ for functions
v1, ψ1, defined in (27), (28) (compare (28) and (40)), and we preserve the original notations
v1, ψ1 when the problem in Ω(ε) is considered.

We note that π is a constant when V = 0. From the normalization condition (
∫
Ω′ πdx =

1) it follows that π = 1/|Ω′
0| for the problem in Ω0 and π = 1/|Ω′(ε)| for the problem in

Ω(ε). Hence, formula (41) follows from (32). It only remains to prove (42). In fact, (32)
was derived without any specific assumptions on the periodic domain Ω, and it is valid
for both domains Ω0 and Ω(ε). Thus

σ2(ε) =

∫
Ω′(ε)

|∇v1|2dx
|Ω′(ε)|

. (43)

We are going to compare the functions u and v1 and derive (42) from (43) and (41).
Let x0 ∈ Sl be the point on the lateral side of the cell Ω′

0 where the channel enters
the main tube. Harmonic coordinates u and v1 (for tubes Ω0 and Ω(ε), respectively)
are defined up to arbitrary additive constants. We fix these constants assuming that
u(x0) = v1(x0) = 0.

We fix a function α = α(ε, x) ∈ C∞(Ω′
0) such that α = 0 when |x − x0| < 2ε, α = 1

when |x− x0| > 3ε and ∂α
∂n

= 0 on Sl. Moreover, we assume that |∇α| ≤ c1/ε for some ε-
independent c1. We consider function w = α(x)u(x) and extend it by zero in the channel
and the cavity. Then w ∈ C∞(Ω′(ε)).
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Let us estimate v1 − w. Obviously, this difference satisfies the following relations in
Ω′(ε):

∆(v1 − w) = f := 2∇α∇u+ u∆α, x ∈ Ω′(ε);
∂(v1 − w)

∂n
= 0, x ∈ Sl(ε), (44)

and satisfies the periodicity condition on S0, S1. We multiply both sides of the equation
above by v1 −w, integrate over Ω′(ε) (the right hand side is supported in Ω′

0), and apply
the Green formula to the left-hand side and to the second term on the right. This implies
that

∥∇(v1 − w)∥2L2(Ω′(ε)) =

∫
Ω′

0

[2(v1 − w)∇α∇u+ (v1 − w)u∆α]dx =∫
Ω′

0

[2(v1 − w)∇α∇u−∇((v1 − w)u)∇α]dx =

∫
Ω′

0

[(v1 − w)∇α∇u− u∇(v1 − w)∇α]dx

=

∫
Ω′

0

(v1 − w)∇(α− 1)∇u−
∫
Ω′

0

u∇(v1 − w)∇αdx. (45)

Next, we use the following Green formula based on (40) and the fact that α− 1 vanishes
in a neighborhood of S0

∪
S1:

0 =

∫
Ω′

0

(v1 − w)(α− 1)∆udx = −
∫
Ω′

0

∇[(v1 − w)(α− 1)]∇udx.

Thus, the first term in the right-hand side of (45) can be replaced by

−
∫
Ω′

0

(α− 1)∇(v1 − w)∇udx.

After that, (45) implies the following estimate:

∥∇(v1 − w)∥L2(Ω′(ε)) ≤ ∥(α− 1)∇u∥L2(Ω′
0)
+ ∥u∇α∥L2(Ω′

0)
.

Function u is smooth and ε-independent. Obviously, ∥α − 1∥L2(Ω′
0)

= O(εd/2), ε → 0.
A similar estimate is valid for u∇α since |u| < Cε on the support of ∇α (recall that
u(x0) = 0). Hence

∥∇(v1 − w)∥L2(Ω′(ε)) = O(ε
d
2 ), ε→ 0.

Thus one can make the following changes in formula (43) with the accuracy of O(εd/2):
replace v1 by w = αu, replace integration over Ω′(ε) by the integration over Ω′

0, and then
drop α (since it was shown above that ∥∇[(α− 1)u]∥ = O(εd/2)). In other words, one can
replace the numerator in (43) by the numerator from (41) plus O(εd/2). Then it remains
only to use (41).
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