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Abstract

The (planar) ERTBP describes the motion of a massless particle (a comet) under the
gravitational field of two massive bodies (the primaries, say the Sun and Jupiter) revolving
around their center of mass on elliptic orbits with some positive eccentricity. The aim of this
paper is to show that there exist trajectories of motion such that their angular momentum
performs arbitrary excursions in a large region. In particular, there exist diffusive trajectories,
that is, with a large variation of angular momentum.

The framework for proving this result consists on considering the motion close to the
parabolic orbits of the Kepler problem between the comet and the Sun that takes place when
the mass of Jupiter is zero. In other words, studying the so-called infinity manifold. Close
to this manifold, it is possible to define a scattering map, which contains the map structure
of the homoclinic trajectories to it. Since the inner dynamics inside the infinity manifold is
trivial, two different scattering maps are used. The combination of these two scattering maps
permits the design of the desired diffusive pseudo-orbits, which eventually give rise to true
trajectories of the system with the help of shadowing techniques.

Keywords: Elliptic Restricted Three Body problem, Arnold diffusion, splitting of separatrices,
Melnikov integral.

1 Main result and methodology

The (planar) ERTBP describes the motion q of a massless particle (a comet) under the gravitational
field of two massive bodies (the primaries, say the Sun and Jupiter) with mass ratio µ revolving
around their center of mass on elliptic orbits with eccentricity e. In this paper we search for
trajectories of motion which show a large variation of the angular momentum G = q × q̇. In
other words, we search for global instability (“diffusion” is the term usually used) in the angular
momentum of this problem.

If the eccentricity vanishes, the primaries revolve along circular orbits, and such diffusion is not
possible, since the (planar and circular) RTBP is governed by an autonomous Hamiltonian with
two degrees of freedom. This is not the case for the ERTBP, which is a 2+1/2 degree-of-freedom
Hamiltonian system with time-periodic Hamiltonian. Our main result is the following

Theorem 1. There exist two constants C > 0, c > 0 and µ∗ = µ∗(C, c) > 0 such that for any
0 < e < c/C and 0 < µ < µ∗, and for any two values of the angular momentum in the region
C ≤ G∗1 < G∗2 ≤ c/e, there exists a trajectory of the ERTBP such that G(0) < G1, G(T ) > G2 for
some T > 0.

∗AD, AR, and TMS were partially supported by the Spanish MINECO-FEDER Grant MTM2012-31714 and the
Catalan Grant 2014SGR504.
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This result will be a consequence of Theorem 10, where the large C and the small constant c
are explicitly computed (C = 32, c = 1/8), and where it is also shown the existence of trajectories
of motion such that their angular momentum performs arbitrary excursions along the region C ≤
G∗1 < G∗2 ≤ c/e.

Let us recall related results about oscillatory motions and diffusion for the RTBP or the ERTBP.
They hold close to a region when there is some kind of hyperbolicity in the Three Body Problem,
like the Euler libration points [LMS85, CZ11, DGR13], collisions [Bol06], the infinity [LS80, Xia93,
Xia92, Moe07, Rob84, MP94, MS14] or near mean motion resonances [FGKR14]. Among these
papers, two were very influential for our computations, namely [LS80], where the Laplace’s method
was used along special complex paths to compute several integrals, and [MP94], which contains
asymptotic formulas for a scattering map on the infinity manifold for large values of eG. Another
one, [GMS12], is very important for futute related work, since the proof of transversal manifolds
of the infinity manifold is established for the RTBP for any µ ∈ (0, 1/2].

Concerning the proof of our main result, let us first notice [LS80, GMS12] that, for a non-zero
mass parameter small enough and zero eccentricity, the RTBP is not integrable, although for large
G its chaotic zones have a size which is exponentially small in G. This phenomenon adds a first
difficulty in proving the global instability of the angular momentum G in the ERTBP for large
values of G.

The framework for proving our result consists on considering the motion close to the parabolic
orbits of the Kepler problem that takes place when the mass parameter is zero. To this end we
study the infinity manifold, which turns out to be an invariant object topologically equivalent to
a normally hyperbolic invariant manifold (TNHIM). On this TNHIM, it is possible to define a
scattering map, which contains the map structure of the homoclinic trajectories to the TNHIM.
Unfortunately, the inner dynamics within the TNHIM is trivial, so it cannot be used combined with
the scattering map to produce pseudo-orbits adequate for diffusion, and adds a second difficulty.
Because of this, in this paper we introduce the use of two different scattering maps whose combi-
nation produces the desired diffusive pseudo-orbits, which eventually give rise to true trajectories
of the system with the help of the shadowing results given in [GMS15].

The main issue to compute the two scattering maps consists on computing the Melnikov po-
tential (51) associated to the TNHIM. The main difficulty for its computation comes from the fact
that its size is exponentially small in the momentum G, so it is necessary to perform very accurate
estimates for its Fourier coefficients. Such computations are performed in Theorem 7, and they
involve a careful treatment of several Fourier expansions, as well as the computation of several
integrals using Laplace’s method along adequate complex paths, playing both with the eccentric
and the true anomaly. To guarantee the convergence of the Fourier series, we have to assume that
G is large enough (G ≥ C), and e small enough (Ge ≤ c). Under these two assumptions, the
dominant part of the Melnikov potential consists on four harmonics, from which it is possible to
compute the existence of two functionally independent scattering maps.

The combination of these two scattering maps permits the design of the desired diffusive pseudo-
orbits, under the assumption of a mass parameter very small compared to eccentricity (0 < µ < µ∗),
see (80)), which eventually give rise to true trajectories of the system with the help of shadowing
techniques.

It is worth noticing that since all the diffusive trajectories found in this paper shadow ellipses
close to parabolas of the Kepler problem, that is, with a very large semi-major axis, their energy is
close to zero, and the orientation of their semi-major axis only changes slightly at each revolution.

The case of arbitrary eccentricity 0 < e < 1 and arbitrary parameter mass parameter 0 < µ < 1
remains open in this paper. Indeed, the case eG ≈ 1 involves the analysis of an infinite number of
dominant Fourier coefficients of the Melnikov potential, whereas for the case eG > 1, the qualitative
properties of the Melnikov function should be known without using its Fourier expansion. Larger
values of the mass paratemer µ than those considered in this paper involve improving the estimates
of the error terms of the splitting of separatrices in complex domains, as is usual when the splitting
of separatrices is exponentially small. The computation of the explicit trajectories from the pseudo-
orbits found in this paper needs a suitable shadowing result given in [GMS15], which involves the
translation to TNHIM of the usual shadowing techniques for NHIM.

The plan of this paper is as follows. In Section 2 we introduce the equations of the ERTBP, as
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well as the McGehee coordinates to be used to study the motion close to infinity. In Section 3 we
recall the geometry of the Kepler problem, when the mass parameter vanishes, close to the infinity
manifold and its associated separatrix. Next, in Section 4, we study the transversal intersection of
the invariant manifolds for the ERTBP, as well as the scattering map associated, which depend on
the Melnikov potential of the problem, whose concrete computation is deferred to Section 6. The
global instability is proven in Section 5, using the computation of the Melnikov potential, and is
based on the computation of two different scattering maps, whose combination gives rise to the
diffusive trajectories in the angular momentum.

2 Setting of the problem

If we fix a coordinate reference system with the origin at the center of mass and call qS and qJ

the position of the primaries, then under the classical assumptions regarding time units, distance
and masses normalization, the motion q of a massless particle under Newton’s law of universal
gravitation is given by

d2q

dt2
= (1− µ)

qS − q
|qS − q|3

+ µ
qJ − q
|qJ − q|3

(1)

where 1− µ is the mass of the particle at qS and µ the mass of the particle at qJ. Introducing the
conjugate momentum p = dq/dt and the self-potential function

Uµ(q, t; e) =
1− µ
|q − qS|

+
µ

|q − qJ|
, (2)

equation (1) can be rewritten as a 2+1/2 degree-of-freedom Hamiltonian system with time-periodic
Hamiltonian

Hµ(q, p, t; e) =
p2

2
− Uµ(q, t; e). (3)

In the (planar) ERTBP, the two primaries are assumed to be revolving around their center
of mass on elliptic orbits with eccentricity e, unaffected by the motion q of the comet. In polar
coordinates q = ρ(cosα, sinα), the equations of motion of the primaries are

qS = µr(cos f, sin f) qJ = −(1− µ)r(cos f, sin f). (4)

By the first Kepler’s law the distance r between the primaries [Win41, p. 195] can be written as
a function r = r(f, e)

r =
1− e2

1 + e cos f
(5)

where f = f(t, e) is the so called true anomaly, which satisfies [Win41, p. 203]

df

dt
=

(1 + e cos f)2

(1− e2)3/2
. (6)

Taking into account the expression (4) for the motion of the primaries, we can write explicitly
the denominators of the self-potential function (2)

|q − qS|2 = ρ2 − 2µrρ cos(α− f) + µ2r2, (7)

|q − qJ|2 = ρ2 + 2(1− µ)rρ cos(α− f) + (1− µ)2r2. (8)

We now perform a standard polar-canonical change of variables (q, p) 7−→ (ρ, α, Pρ, Pα)

q = (ρ cosα, ρ sinα), p =

(
Pρ cosα− Pα

r
sinα, Pρ sinα− Pα

r
cosα

)
(9)

to Hamiltonian (3). The equations of motion in the new coordinates are the associated to the
Hamiltonian

H∗µ(ρ, α, Pρ, Pα, t; e) =
P 2
ρ

2
+
P 2
α

2ρ2
− U∗µ(ρ, α, t; e) (10)
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with a self-potential U∗µ
U∗µ(ρ, α, t; e) = Uµ(ρ cosα, ρ sinα, t; e). (11)

From now on we will write
G = Pα, y = Pρ,

so that Hamiltonian (10) becomes

H∗µ(ρ, α, y,G, t; e) =
y2

2
+
G2

2ρ2
− U∗µ(ρ, α, t; e). (12)

Remark 2. In the (planar) circular case e = 0 (RTBP), it is clear from equations (5) and (6) that
r = 1 and f = t, and that the expressions for the distances (7) between the primaries depend on
the time s and the angle α just through their difference α − t. As a consequence, U∗µ(ρ, α, s; 0)
as well as H∗µ(ρ, α, y,G, s; 0) depend also on s and α just through the same difference α− t. This
implies that the Jacobi constant H∗ +G is a first integral of system.

2.1 McGehee coordinates

To study the behavior of orbits near infinity, we make the McGehee [McG73] non-canonical change
of variables:

ρ =
2

x2
(13)

for x > 0, which brings the infinity ρ =∞ to the origin x = 0. In these McGehee coordinates, the
equations associated to Hamiltonian (10) become

dx

dt
= −1

4
x3y

dy

dt
=

1

8
G2x6 − x3

4

∂Uµ
∂x

(14a)

dα

dt
=

1

4
x4G

dG

dt
=
∂Uµ
∂α

(14b)

where the self-potential Uµ is given by

Uµ(x, α, t; e) = U∗µ(2/x2, α, t; e) =
x2

2

(
1− µ
σS

+
µ

σJ

)
(15)

with

|q − qS|2 = σ2
S = 1− µrx2 cos(α− f) +

1

4
µ2r2x4,

|q − qJ|2 = σ2
J = 1 + (1− µ)rx2 cos(α− f) +

1

4
(1− µ)2r2x4.

It is important to notice that the true anomaly f is present in these equations, so that the equation
for f given in (6) should be added to have the complete description of the dynamics.

2.1.1 Hamiltonian structure

Under McGehee change of variables (13), the canonical form dρ ∧ dy + dα ∧ dG is transformed to

ω = − 4

x3
dx ∧ dy + dα ∧ dG (16)

which, on x > 0, is a (non-canonical) symplectic form. Therefore, expressing Hamiltonian (12) in
McGehee coordinates

Hµ(x, α, y,G, t; e) =
y2

2
+
x4G2

8
− Uµ(x, α, t; e), (17)

4



equations (14) can be written as

dx

dt
= −x

3

4

(
∂Hµ
∂y

)
dy

dt
= −x

3

4

(
−∂Hµ
∂x

)
(18a)

dα

dt
=

∂Hµ
∂G

dG

dt
= −∂Hµ

∂α
. (18b)

Equivalently, we can write equations (18) as dz/dt = {z,Hµ} in terms of the Poisson bracket

{f, g} = −x
3

4

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
+
∂f

∂α

∂g

∂G
− ∂f

∂G

∂G

∂α
. (19)

3 Geometry of the Kepler problem (µ = 0)

3.1 The infinity manifold

x

y

h = 0

h > 0

h < 0

Figure 1: Level curves of H0

in the (x ≥ 0, y) plane, for
fixed G > 0

For µ = 0 and G > 0, Hamiltonian (17) becomes Duffing Hamilto-
nian

H0(x, y,G) =
y2

2
+
x4G2

8
− U0(x) =

y2

2
+
x4G2

8
− x2

2
(20)

and is a first integral, since the system is autonomous. Moreover,
H0 is also independent of e and α. Its associated equations are

dx

dt
= −1

4
x3y

dy

dt
=

1

8
G2x6 − 1

4
x4 (21a)

dα

dt
=

1

4
x4G

dG

dt
= 0 (21b)

where it is clear that G is a conserved quantity, which will be
restricted to the case G > 0 from now on, that is, G ∈ R+.
The phase space, including the invariant locus x = 0 is given by
(x, α, y,G) ∈ R≥0 × T × R × R+. From equations (21) it is clear
that

E∞ = {z = (x = 0, α, y,G) ∈ R≥0 × T× R× R+} (22)

is the set of equilibrium points of system (21). Moreover, for any fixed α ∈ T, G ∈ R,

Λα,G = {(0, α, 0, G)}

is a parabolic equilibrium point, which is topologically equivalent to a saddle point, since it pos-
sesses stable and unstable 1-dimensional invariant manifolds. The union of such points is the
2-dimensional manifold of equilibrium points

Λ∞ =
⋃
α,G

Λα,G.

As we will deal with a time-periodic Hamiltonian, it is natural to work in the extended phase
space

z̃ = (z, s) = (x, α, y,G, s) ∈ R≥0 × T× R× R+ × T

just by writing s instead of t in the Hamiltonian and adding the equation

ds

dt
= 1

5



to systems (18) and (21). We write now the extended version of the invariant sets we have defined
so far. For any α ∈ T, G ∈ R, the set

Λ̃α,G = {z̃ = (0, α, 0, G, s), s ∈ T} (23)

is a 2π-periodic orbit with motion determined by ds/dt = 1. The union of such periodic orbits is
the 3-dimensional invariant manifold (the infinity manifold)

Λ̃∞ =
⋃
α,G

Λ̃α,G = {(0, α, 0, G, s), (α,G, s) ∈ T× R+ × T} ' T× R+ × T, (24)

which is topologically equivalent to a normally hyperbolic invariant manifold (TNHIM).
Parameterizing the points in Λ̃∞ by

x̃0 = x̃0(α,G, s) = (x0(α,G), s) = (0, α, 0, G, s) ∈ Λ̃∞ ' T× R+ × T

the inner dynamics on Λ̃∞ is trivial, since it is given by the dynamics on each periodic orbit Λ̃α,G:

φ̃t,0(x̃0) = (0, α, 0, G, s+ t) = (x0(α,G), s+ t) = x̃0(α,G, s+ t). (25)

3.2 The scattering map

In the region of the phase space with positive angular momentum G, let us now look at the
homoclinic orbits to the previously introduced invariant objects.

The equilibrium points Λα,G have stable and unstable 1-dimensional invariant manifolds

γα,G = W u(Λα,G) = W s(Λα,G)

=

{
z = (x, α̂, y,G), H0(x, y,G) = 0, α̂ = α−G

∫
H0=0

x

y
dx

}
,

whereas the 2-dimensional manifold of equilibrium points Λ∞ has stable and unstable 3-dimensional
invariant manifolds which coincide and are given by

γ = W u(Λ∞) = W s(Λ∞) = {z = (x, α, y,G), H0(x, y,G) = 0}.

The surface

γ̃α,G = W u(Λ̃α,G) = W s(Λ̃α,G) (26)

=

{
z̃ = (x, α̂, y,G, s), s ∈ T, H0(x, y,G) = 0, α̂ = α−G

∫
H0=0

x

y
dx

}
(27)

is a 2-dimensional homoclinic manifold to the periodic orbit Λ̃α,G in the extended phase space.

The 4-dimensional stable and unstable manifolds of the infinity manifold Λ̃∞ coincide along the
4-dimensional homoclinic invariant manifold (the separatrix ), which is just the union of the homo-
clinic surfaces γ̃α,G:

γ̃ = W u(Λ̃∞) = W s(Λ̃∞) =
⋃
α,G

γ̃α,G

= {z̃ = (x, α, y,G, s), (α,G, s) ∈ T× R+ × T, H0(x, α, y,G) = 0} (28)

Due to the presence of the factor −x3/4 in front of equations (21), it is more convenient to
parameterize the separatrix γ̃α,G given in (26) by the solutions of the Hamiltonian flow contained
in H0 = 0 in some time τ satisfying (see [MP94])

dt

dτ
=

2G

x2
. (29)
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In this way, the homoclinic solution to the periodic orbit Λ̃α,G of system (21) can be written as

x0(t;G) =
2

G(1 + τ2)1/2
(30a)

α0(t;α,G) = α+ π + 2 arctan τ (30b)

y0(t;G) =
2τ

G(1 + τ2)
(30c)

G0(t;G) = G (30d)

s0(t; s) = s+ t (30e)

where α and G are free parameters and the relation between t and τ is

t =
G3

2

(
τ +

τ3

3

)
, (31)

which is equivalent to (29) on H0. From the expressions above, we see that the convergence along
the separatrix to the infinity manifold is power-like in τ and t:

x0, y0,
α− α0 − π

G
∼ 2

Gτ
∼ 2

3
√

6t
, τ, t→ ±∞. (32)

We now introduce the notation

z̃0 = z̃0(σ, α,G, s) = (z0(σ, α,G), s)

= (x0(σ;G), α0(σ;α,G), y0(σ;G), G, s) ∈ γ̃ (33)

so that we can parameterize any surface γ̃α,G as

γ̃α,G = {z̃0 = z̃0(σ, α,G, s) = (z0(σ, α,G), s), σ ∈ R, s ∈ T}.

and we can parameterize the 4-dimensional separatrix as

γ̃ = W (Λ̃∞) = {z̃0 = z̃0(σ, α,G, s) = (z0(σ, α,G), s), σ ∈ R, G ∈ R+, (α, s) ∈ T2}. (34)

The motion on γ̃ is given by

φ̃t,0(z̃0) = z̃0(σ + t, α,G, s) = (z0(σ + t, α,G), s+ t) (35)

and by equations (30), (31) the following asymptotic formula follows:

φt,0(z̃0)− φt,0(x̃0) = (z0(σ + t, α,G), s+ t)− (x0(α,G), s+ t) −−−−→
t→±∞

0 (36)

The scattering map S describes the homoclinic orbits to the infinity manifold Λ̃∞ (defined in
(24)) to itself. Given x̃−, x̃+ ∈ Λ̃∞, we define

Sµ(x̃−) := x̃+

if there exists z̃∗ ∈W u
µ (Λ̃∞) ∩W s

µ(Λ̃∞) such that

φt,µ(z̃∗)− φt,µ(x̃±)→ 0 for t→ ±∞. (37)

In the case µ = 0 the asymptotic relation (36) implies S0(x̃0) = x̃0 so that that the scattering map
S0 : Λ̃∞ −→ Λ̃∞ is the identity.

7



4 Invariant manifolds for the ERTBP (µ > 0)

4.1 The infinity manifold

In order to analyze the structure of system (18), we will write Hµ given in (17) as

Hµ(x, α, y,G, s; e) = H0(x, y,G)− µ∆Uµ(x, α, s; e) (38)

where we have written Uµ in (15) as

Uµ(x, α, s; e) = U0(x) + µ∆Uµ(x, α, s; e) =
x2

2
+ µ∆Uµ(x, α, s; e), (39)

and we proceed to study the dynamics as a perturbation of the limit case µ = 0. From (15),

∆U0(x, α, s; e) = lim
µ→0

∆Uµ(x, α, s; e)

=
x2[

4 + x4r2 + 4x2r cos(α− f)
]1/2 +

(x2

2

)2

r cos(α− f)− x2

2
(40)

where r = r(f, e) and f = f(s, e) are given, respectively, in (5-6).
For µ > 0, it is clear from equations (18) that the set E∞ remains invariant and, therefore, so

does the infinity manifold Λ̃∞, being again a TNHIM, and all the periodic orbits Λ̃α,G also persist.

The inner dynamics on Λ̃∞ is the same that in the case µ = 0, so that the parametrization x̃0 as
well as its trivial dynamics (25) remain the same.

4.2 The scattering map

From [McG73] we know that W s
µ(Λ̃∞) and W u

µ (Λ̃∞) exist for µ small enough and are 4-dimensional
in the extended phase space. The existence of a scattering map will depend on the transversal
intersection between these two manifolds.

Let us take an arbitrary z̃0 = (z0, s) = (z0(σ, α,G), s) ∈ γ̃ as in (33). Now, we have to
construct points in W s

µ(Λ̃∞) and W u
µ (Λ̃∞) to measure the distance between them. It is clear from

the definition of γ̃ that
ṽ = (∇H0(z0), 0)

is orthogonal to γ̃ = W u(Λ̃∞) = W s(Λ̃∞) at z̃0 and then if the normal bundle to γ̃ is denoted by

N(z̃0) = {z̃0 + σ ṽ, σ ∈ R}

we have that there exist unique points z̃s,u
µ = (zs,u

µ , s) such that

{z̃s,u
µ } = W s,u

µ (Λ̃∞) ∩N(z̃0). (41)

The distance we want to compute between W s
µ(Λ̃∞) and W u

µ (Λ̃∞) is the signed magnitude given
by

d(z̃0, µ) = H0(z̃u
µ)−H0(z̃sµ). (42)

We now introduce the Melnikov potential (see [DG00, DLS06])

L(α,G, s; e) =

∫ ∞
−∞

∆U0(x0(t;G), α0(t;α,G), s+ t; e) dt (43)

where ∆U0 is defined in (40). Thanks to the asymptotic behavior (32) of the solutions along the
separatrix and of the self potential close to the infinity manifold

∆U0(x, α, s; e) = O(x4) as x→∞

this integral is absolutely convergent, and will be computed in detail in Section 6.
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Proposition 3. Given (α,G, s) ∈ T× R+ × T, assume that the function

σ ∈ R 7−→ L(α,G, s− σ; e) ∈ R (44)

has a non-degenerate critical point σ∗ = σ∗(α,G, s; e). Then for 0 < µ small enough, close to the
point z̃∗0 = (z0(σ∗, α,G), s) ∈ γ̃ (see the parameterization in (33)), there exists a locally unique
point

z̃∗ = z̃∗(σ∗, α,G, s; e, µ) ∈W s
µ(Λ̃∞) tW u

µ (Λ̃∞)

of the form
z̃∗ = z̃∗0 +O(µ).

Also, there exist unique points x̃± = (0, α±, 0, G±, s) = (0, α, 0, G, s) +O(µ) ∈ Λ̃∞ such that

φt,µ(z̃∗)− φt,µ(x̃±) −→ 0 for t→ ±∞. (45)

Moreover, we have

G+ −G− = µ
∂L
∂α

(α,G, s− σ∗(α,G, s; e)) +O(µ2). (46)

Proof. From equation (33) we know that any point z̃0 ∈ γ̃ have the form

z̃0 = z̃0(σ, α,G, s).

As in (41), we consider
z̃s,u
µ = (zs,u

µ , s) ∈W s,u
µ (Λ̃∞) ∩N(z̃0),

and we are looking for z̃0 such that z̃s
µ = z̃u

µ. There must exist points x̃± = (z±, s) ∈ Λ̃∞ such
that

φt,µ(z̃s,u
µ )− φt,µ(x̃±) −−−−→

t→±∞
0, (47)

moreover φt,µ(z̃s,u
µ ) − φt,0(z̃0) = O(µ) for ±t ≥ 0 (see [McG73]). Since H0 does not depend on

time, by (38) and the chain rule we have that

d

dt
H0(φt,µ(z̃s,u

µ )) = {H0,Hµ}(φt,µ(z̃s,u
µ )) = −µ{H0,∆Uµ}(φt,µ(z̃s,u

µ ); e).

Since H0 = 0 in Λ̃∞, using (47) and the trivial dynamics on Λ̃∞ we obtain

H0(z̃s,u
µ ) = −µ

∫ ±∞
0

{H0,∆Uµ}(φt,µ(z̃s,u
µ ); e) dt.

Taylor expanding in µ and using the notation (35)

H0(z̃u
µ)−H0(z̃s

µ) = µ

∫ ∞
−∞
{H0,∆U0}(φt,0(z̃0); e) dt+O(µ2)

= µ

∫ ∞
−∞
{H0,∆U0}(z0(σ + t, α,G), s+ t; e) dt+O(µ2). (48)

On the other hand, from (43)

L(α,G, s; e) =

∫ ∞
−∞

∆U0(x0(ν − s;G), α0(ν − s;α,G), s; e) dν

and then
∂L
∂s

(α,G, s; e) = −
∫ ∞
−∞
{∆U0,H0}(z0(ν − s, α,G), s; e) dν

so that

∂L
∂s

(α,G, s− σ; e) =

∫ ∞
−∞
{H0,∆U0}(z0(ν − s+ σ, α,G), s; e) dν

=

∫ ∞
−∞
{H0,∆U0}(z0(t, α,G), s+ t; e) dt (49)

9



and therefore, from (48) and (49)

d(z̃0, µ) = H0(z̃u
µ)−H0(z̃s

µ) = µ
∂L
∂s

(α,G, s− σ; e) +O(µ2).

For µ small enough, it is clear by the implicit function theorem that a non degenerate critical value
σ∗ of the function (44) gives rise to a homoclinic point z̃∗ to Λ̃∞ where the manifolds W s

µ(Λ̃∞)

and W u
µ (Λ̃∞) intersect transversally and has the desired form z̃∗ = z̃∗0 +O(µ).

Consider now the solution of system (18) represented by φt,µ(z̃∗). By the fundamental theorem
of calculus and (38) we have

G+ −G− = −
∫ ∞
−∞

∂Hµ
∂α

(φt,µ(z̃∗)) dt =

∫ ∞
−∞

∂∆Uµ
∂α

(φt,µ(z̃∗); e) dt

= µ

∫ ∞
−∞

∂∆U0

∂α
(φt,0(z̃∗0); e) dt+O(µ2)

= µ

∫ ∞
−∞

∂∆U0

∂α
(z0(σ∗ + t, α,G), s+ t; e) dt+O(µ2)

= µ
∂L
∂α

(α,G, s− σ∗; e) +O(µ2).

Once we have found a critical point σ∗ = σ∗(α,G, s; e) of (44) on a domain of (α,G, s), we can
define the reduced Poincaré function (see [DLS06])

L∗(α,G; e) := L(α,G, s− σ∗; e) = L(α,G, s∗; e) (50)

with s∗ = s− σ∗. Note that the reduced Poincaré function does not depend on the s chosen, since
by Proposition 3

∂

∂s
(L (α,G, s− σ∗(α,G, s; e); e)) ≡ 0.

Note also that if the function (44) in Proposition 3 has different non degenerate critical points
there will exist different scattering maps.

The next proposition gives an approximation of the scattering map in the general case µ > 0

Proposition 4. The associated scattering map (α+, G+, s+) = Sµ(α,G, s) for any non degenerate
critical point σ∗ of the function defined in (44) is given by

(α,G, s) 7−→
(
α− µ∂L

∗

∂G
(α,G; e) +O(µ2), G+ µ

∂L∗
∂α

(α,G; e) +O(µ2), s
)

where L∗ is the Poincaré reduced function introduced in (50).

Proof. By hypothesis we have a non degenerate critical point σ∗ of (44). By definition (50),
Proposition 3 gives

G+ −G = µ
∂L∗
∂α

(α,G) +O(µ2).

as well as G− = G+O(µ) to get the correspondence between G+ and G− that were looking for.
The companion equation to (46)

α+ − α = −µ∂L
∗

∂G
(α,G) +O(µ2)

is a direct consequence of the fact that the scattering map Sµ is symplectic.
Indeed, this is a standard result for a scattering map associated to a NHIM, and is proven in

[DLS08, Theorem 8]. For what concerns our scattering map defined on a TNHIM, the only differ-
ence is that the stable contraction (expansion) along W s,u

µ (Λ̃∞) is power-like (32) instead of expo-
nential with respect to time. Therefore we only have to check that Proposition 10 in[DLS08] still

10



holds, namely that Area (φt,µ(R)) → 0 when t → 0 for every 2-cell R in W s
µ(Λ̃∞) parameterized

by R : [0, 1] × [0, 1] → W s
µ(Λ̃∞) in such a way that R(t1, t2) ∈ W s

µ(Λ̃∞), R(0, t2) ∈ Λ̃∞. But this

is a direct consequence of the fact that the stable coordinates contract at least by C/ 3
√
t (see (32))

and the coordinates along Λ∞ do not expand at all.

Remark 5. In the (planar) circular case e = 0 (RTBP), ∆Uµ(x, α, s; e) depends on the time s and
the angle α just through their difference α− s, see Remark 2. From

∂∆Uµ
∂α

(x, α, s; 0) = −∂∆Uµ
∂s

(x, α, s; 0)

one readily obtains
∂L
∂s

(α,G, s; 0) = −∂L
∂α

(α,G, s; 0)

and therefore
∂L
∂α

(α,G, s− σ∗; e) = −∂L
∂s

(α,G, s− σ∗; 0) = 0

and consequently the reduced Poincaré function L∗ does not depend on α, and G+ = G−+O(µ2).
But indeed G+ ≡ G− in the circular case, since there exists the first integral provided by the

Jacobi constant CJ = Hµ + G and as Hµ = 0 on Λ̃∞, G+ = G−. Therefore in the circular case

there is no possibility to find diffusive orbits studying the intersection of W s
µ(Λ̃∞) and W u

µ (Λ̃∞)
since any scattering map preserves the angular momentum.

5 Global diffusion in the ERTBP

We have already the tools to derive the scattering maps to the infinity manifold Λ̃∞, namely
Proposition 3 to find transversal homoclinic orbits to Λ̃∞ and Proposition 4 to give their expres-
sions. Both of them rely on computations on the Melnikov potential L. Inserting in the Melnikov
potential introduced in (43) the expression for ∆U0 in (40) we get

L(α,G, s; e) =

∫ ∞
−∞

[
x2

0[
4 + x4

0r
2 + 4x2

0r cos(α0 − f)
]1/2

+
(x2

0

2

)2

r cos(α0 − f)− x2
0

2

]
dt (51)

where x0 and α0, coordinates of the homoclinic orbit defined in (30), are evaluated at t, whereas
r and f , defined in (5) and (6), are evaluated at s+ t.

To evaluate the above Melnikov potential, we will compute its Fourier coefficients with respect
to the angular variables α, s. Since x0 and r are even functions of t and f and α0 are odd, L is an
even function of the angular variables α, s: L(−α,G,−s; e) = L(α,G, s; e), and therefore L has a
Fourier Cosine series with real coefficients Lq,k:

L =
∑
q∈Z

∑
k∈Z

Lq,kei(qs+kα) = L0,0 + 2
∑
k≥1

L0,k cos kα+ 2
∑
q≥1

∑
k∈Z

Lq,k cos(qs+ kα). (52)

The concrete computation of the Fourier coefficients of the Melnikov potential (51) will be carried
out in section 6. First, some accurate bounds will be obtained:
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Lemma 6. Let G ≥ 32, q ≥ 1, k ≥ 2 and ` ≥ 0. Then |Lq,`| ≤ Bq,` and |L0,`| ≤ B0,`, where

Bq,0 = 292qe2qeqG−3/2e−qG
3/3

Bq,1 = 27eq(1 + e)4G−7/2e−qG
3/3

Bq,−1 = 292qe2qe|1−q|G−1/2e−qG
3/3

Bq,k = 252keq(1 + e)kG−2k−1/2e−qG
3/3

Bq,−k = 252q+2ke2qe|k−q|Gk−1/2e−qG
3/3

B0,` = 2822`e`G−2`−3

(53)

Directly from this lemma, we first see that the harmonics Lq,` are exponentially small in G for
q ≥ 1, so it will be convenient to split the Fourier expansion (52) as

L = L0 + L1 + L2 + · · · = L0 + L1 + L≥2 (54)

where
L0(α,G; e) = L0,0 + 2

∑
k≥1

L0,k cos kα,

Lq(α,G, s; e) = 2
∑
k∈Z

Lq,k cos(qs+ kα), q ≥ 1.
(55)

The function L0 does not depend on the angle s and it contains the harmonics of L of order 0 in s,
which are of finite order in terms of G, L1 the harmonics of first order, which are of order e−qG

3/3,
and all the harmonics of Lq for q ≥ 2 are much exponentially smaller in G than those of L1, so we
will estimate L0 and L1 and bound L≥2.

To this end, it will be necessary to sum the series in (55). From the bounds Bq,k in (53) for
the harmonics Lq,k we get the quotients

Bq,k+1

Bq,k
=

2(1 + e)

G2
for k ≥ 2,

Bq,−(k+1)

Bq,−k
= 4eG for k ≥ q, B0,`+1

Bq,`
=

4e

G2
for ` ≥ 0, (56)

which indicate that, for fixed q, we will need at least the conditions G >
√

2(1 + e) and eG < 1/4
to ensure the convergence of the Fourier series. This is the main reason why we are going to restrict
ourselves to the region G ≥ C large enough and eG ≤ c small enough along this paper to get the
diffusive orbits.

Among the harmonics L0,k of 0 order in s, by (56), the harmonic L0,0 appears to be the
dominant one, but we will also estimate L0,1 to get information about the variable α, and bound
the rest of harmonics L0,k for k ≥ 2. Among the harmonics of first order L1,k, again by (56), the
five harmonics L1,k for |k| ≤ 2 are the only candidates to be the dominant ones, but the quotients
from (53)

B1,2

B1,−1
=

(1 + e)2

8eG4
,

B1,1

B1,−1
=

(1 + e)4

8eG3
,

B1,0

B1,−1
=

e

G
=
eG

G2
, (57)

indicate that L1,−1 and L1,−2 appear to be the two dominant harmonics of order 1. Summarizing,
to compute the series (52) we estimate only the four harmonics L0,0, L0,1, L1,−1 and L1,−2, and
bound all the rest, providing the following result, whose proof will also be carried out in section 6.

Theorem 7. For G ≥ 32, eG ≤ 1/8, the Melnikov potential (51) is given by

L(α,G, s; e) = L0(α,G; e) + L1(α,G, s; e) + L≥2(α,G, s; e) (58)

with

L0(α,G; e) = L0,0 + L0,1 cosα+ E0(α,G; e) (59)

L1(α,G, s; e) = 2L1,−1 cos(s− α) + 2L1,−2 cos(s− 2α) + E1(α,G, s; e) (60)
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where the four harmonics above are given by

L0,0 =
π

2G3
(1 + E0,0)

L0,1 = −15πe

8G5
(1 + E0,1)

L1,−1 =

√
π

8G
e−G

3/3(1 + E1,−1) (61)

L1,−2 = −3
√

2πeG3/2e−G
3/3(1 + E1,−2) (62)

and the error functions satisfy

|E0,0| ≤ 212G−4 + 22 49 e2

|E0,1| ≤ 213G−4 + e2

|E1−1| ≤ 221G−1 + 2 49 e2

|E1,−2| ≤ 217G−1 +
49

3
e

|E0| ≤ 214 e2G−7

|E1| ≤ 219e−G
3/3
[
G−7/2 + e2G5/2 + eG−3/2

]
(63)

|L≥2| ≤ 228G3/2e−2G3/3 (64)

The function L1 contains only harmonics of first order in s, so we can write it as a cosine
function in s. Introducing

p := −L1,−2

L1,−1
= 12eG2 1 + E1,−1

1 + E1,−2
=: 12eG2(1 + Ep) (65)

in the definition (60) of L1 we can write

L1 = 2L1,−1

(∑
k∈Z

L1,k

L1,−1
cos(qs+ kα)

)

= 2L1,−1

cos(s− α)− p cos(s− 2α) +
∑

k 6=−1,−2

L1,k

L1,−1
cos(qs+ kα)


= 2L1,−1<

ei(s−α)

1− pe−iα +
∑

k 6=−1,−2

L1,k

L1,−1
ei(k+1)α


= 2L1,−1<

(
ei(s−α)Be−iθ

)
= 2L1,−1B cos(s− α− θ) (66)

where B = B(α,G; e) ≥ 0 and −θ = −θ(α,G; e) ∈ [−π, π) are the modulus and the argument of
the complex expression

1− pe−iα +
∑

k 6=−1,−2

L1,k

L1,−1
ei(k+1)α =: Be−iθ. (67)

Writing also in polar form the quotient of the sum in (67) by the parameter p introduced in (65)

Ee−iφ :=
∑

k 6=−1,−2

L1,k

pL1,−1
ei(k+1)α = −

∑
k 6=−1,−2

L1,k

L1,−2
ei(k+1)α,

with E = E(α,G; e) ≥ 0 and −φ = −φ(α,G; e) ∈ [−π, π), equation (67) for B and θ reads now as

Be−iθ = 1− pe−iα + pEe−iφ (68)
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or, equivalently, as the couple of real equations

B cos θ = 1− p cosα+ pE cosφ (69)

−B sin θ = p sinα− pE sinφ. (70)

The function E = E(α,G; e) is small, since, by (63), (62) and (65),

|E| ≤ |E1|
|L1,−2|

=
|E1|
|pL1,−1|

≤ (1 + e)4G−7/2√
8G/π

+
e2G5/2 + eG−3/2

3
√

2πeG3/2

=
1

3
√

2π

((
1 +

3π(1 + e)4

2G

)
1

G3
+ eG

)
= O

(
G−3, eG

)
, (71)

with an analogous bound for its derivative with respect to α. Writing equation (68) as

Be−iθ = B̂e−iθ̂ + pEe−iφ

one gets the explicit formulae for B̂ and θ̂

B̂ =
√

1− 2p cosα+ p2 =

√
(1− p)2 + 4p sin2 α ≥ 0, (72)

θ̂ = −2 arctan

(
p sinα

B̂ + 1− p cosα

)
∈ (−π, π]

from which we see that B̂ behaves like a distance to the point p = 1 and α = 0. The angle θ̂ is not
well defined when B̂ = 0, but this happens only for α = 0 and p = 1, that is, for G ' (12e)−1/2.
A totally analogous property holds for B:

Lemma 8. B(α,G; e) > 0 except for α = 0 and p = 1 +
∑
k 6=−1,−2 L1,k/L1,−1.

Proof. For B = 0, equation (70) reads as

sinα = f(α). (73)

where f(α) = f(α,G; e) := E sinφ = E sinφ(α,G; e). Since f2 + (∂f/∂α)2 < 1 due to (71),
there are exactly two simple solutions of equation (73) in the interval [−π/2, 3π/2]; one is α∗0,+ ∈
(−π/2, π/2) obtained as a fixed point of the contraction α = arcsin (f(α,G; e)), and a second
α∗0,− ∈ (π/2, 3π/2) fixed point of the contraction α = π − arcsin (f(α,G; e)). Taking a closer look
at equation (68), we see that if α changes to −α, then −φ,−θ,B are solutions of (68) or, in other
words, φ, θ are odd functions of α and B even. Therefore α = 0, π are the unique solutions of
equation (70) for B = 0. Substituting α = 0, π in (69) for B = 0, only α = 0 provides a positive
p, which is then given by p = 1 + pE = 1 +

∑
k 6=−1,−2 L1,k/L1,−1.

We are now in position to find critical points of the function s 7→ L(α,G, s; e). To this end we
will check that s 7→ L(α,G, s; e) is indeed a cosine-like function, that is, with a non-degenerate
maximum (minimum) and no other critical points. By Theorem 7, The dominant part of the
Melnikov potential L is given by L0 + L1. By equation (58) and the bounds for the error term,
for G large enough, the critical points in the variable s are well approximated by the critical
points of the function L0 + L1 and therefore will be close to s− α− θ = 0, π (mod 2π) thanks to
expression (66). For this purpose, we introduce

L∗1 = L∗1(α,G; e) = 2L1,−1B (74)

where B = B(α,G; e) is given in (67) and L1,−1 is the harmonic computed in (61). With this
notation the function L1 can be written as a cosine function in s

L1(α,G, s; e) = L∗1(α,G; e) cos(s− α− θ), (75)
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and differentiating the Melnikov potential (58) with respecto to s we get

∂L
∂s

= −L∗1 sin(s− α− θ) +
∂L≥2

∂s
= 0⇐⇒ sin(s− α− θ) =

1

L∗1
∂L≥2

∂s
(76)

which is a equation of the form (73) for s−α− θ instead of α and f = (∂L≥2/∂s) /L∗1. Therefore,
as long as B > (∂L≥2/∂s) /(2L1,−1), which by the estimate (61) for L1,−1 and the bound (64) for

L≥2 happens outside of a neighborhood of size O
(
G3/2e−G

3/3
)

of the point

(α = 0, G = G∗) where G∗ ≈ (12e)−1/2 is such that p = 1 +
∑

k 6=−1,−2

L1,k/L1,−1, (77)

there exist exactly two no-degenerate critical points s∗0,± of the function s 7→ L(α,G, s; e).
Let us recall now that the Melnikov function L, as well as its terms Lq are all expressed as

Fourier Cosine series in the angles α and s, or equivalently, they are even functions of (α, s).
Consequently, ∂Lq/∂s is an odd function of (α, s), and it is easy to check that each critical point
s∗ is an odd function of α. Moreover, using the Fourier Sine expansion of ∂Lq/∂s, one sees that
it s is a critical point of s 7→ L(α,G, s; e), s + π too, so s0,− = s0,+ + π. We state all this in the
following proposition.

Proposition 9. Let L be the Melnikov potential given in (58), G ≥ 32 and eG ≤ 1/8. Then,

except for a neighborhood of size O
(
G3/2e−G

3/3
)

of the point (α = 0, G = G∗) given in (77),

s 7→ L(α,G, s; e) is a cosine-like function, and its critical points are given by

s∗0,+ = s∗0,+(α,G; e) = α+ θ + ϕ∗+, s∗0,− = s∗0,+ + π = α+ θ + π + ϕ∗±

where θ = θ(α,G; e) is given in (67) and ϕ∗+ = O
(
G3/2e−G

3/3
)

.

From the proposition above we know that there exist s∗0,− and s∗0,+, non degenerate critical
points of s 7→ L(α,G, s; e). Therefore, we can define two different reduced Poincaré functions (50)

L∗±(α,G; e) = L(α,G, s∗0,±; e)

= L0(α,G; e)± L∗1(α,G; e) + E±(α,G; e).

By the symmetry properties of Lq, it turns out that each L∗q(α,G; e) = L(α,G, t∗0,; e) is an even
function of α. Moreover, since s∗0,− = s∗0,+ + π, one has that L∗q = (−1)qL∗q , so we can write the
reduced Poincaré map as

L∗± = L0 ± L∗1 + L∗2 ± L∗3 + L∗4 ± · · · (78)

From the expression for the scattering map given in Proposition 4 we can define two different
scattering maps, namely

S±(α,G, s) =
(
α+ µ

∂L∗±
∂G

(α,G; e) +O(µ2), G− µ∂L
∗
±

∂α
(α,G; e) +O(µ2), s

)
. (79)

These two scattering maps are different since they depend on the two reduced Poincaré-Melnikov
potentials L∗±. From their expression (79), the scattering maps S± follow closely the level curves
of the Hamiltonians L∗±. More precisely, up to O(µ2) terms, S± is given by the time −µ map of
the Hamiltonian flow of Hamiltonian L∗±. The O(µ2) remainder will be negligible as long as

|µ| <
∣∣∣∣∂L∗±∂G

∣∣∣∣ , ∣∣∣∣∂L∗±∂α
∣∣∣∣ .

Nevertheless, since we want to switch scattering maps, we will need to impose

|µ| < |L∗1| = 2|L1,−1B| = O
(
G−1/2e−G

3/3
)
,
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that is, µ exponentially small with respect to G in the region C ≤ G ≤ c/e which a fortiori is
satisfied for

0 < µ < µ∗ = e−(c/e)3/3. (80)

This is the relation between the eccentricity and the mass parameter that we need to guarantee
that our main result holds. This kind of relation is typical in problems with exponential splitting,
when the bound of the remainder, here O(µ2), is obtained through a direct application of the
Melnikov method for the real system. To get better estimates for this remainder, one needs to
bound this remainder for complex values of the parameter t or τ of the parameterization (30) of
the unperturbed separatrix. Such approach has recently been used for in the RTBP in [GMS12]
and it is likely to work in the ERTBP, allowing us to consider any µ ∈ (0, 1/2], that is, imposing
no restrictions on the mass parameter.

We want to show now that the foliations of L∗± = constant are different, since this will imply
that the scattering maps S± are different. Even more, we will design a mechanism in which we
will determine the places in the plane (α,G) where we will change from one scattering map to
the other, obtaining trajectories with increasing angular momentum G. To check that the level
curves of L∗+ and L∗− are different, and indeed transversal, we only need to check that their Poisson
bracket is zero. Since L∗+ and L∗− are even functions of α, their Poisson bracket {L∗+,L∗+} will be
an odd function of α, so we already know that it will have a factor sinα. Using equation (78) we
can write

{L∗+,L∗+} = {L0 + L∗1 + L∗2 + · · · ,L0 − L∗1 + L∗2 − · · · } = −2{L0,L∗1}+ E3

where E3 contains only Poisson brackets of odd order

E3 = −2 ({L0,L∗3}+ {L∗1,L∗2})− 2
∑

q≥0,q odd≥5

[q/2]∑
q=0

{L∗q′ ,L∗q−q′}.

Therefore, by the bounds (53) for the harmonics Lq,k, the error term E3 = O
(

e−G
3
)

is much

exponentially smaller for large G than {L0,L∗1}, which is O
(

e−G
3/3
)

and we now compute.

By splitting L0, using (59), and L∗1 = 2L1,−1B, using (61), (72) and (71), in their dominant
and non-dominant parts

L0 = L̂0 + E0, L1,−1 = L̂1,−1(1 + E0,1), B = B̂ + EB ,

after a straightforward computation, we arrive at

−2{L0,L∗1} = −2{L̂0, L̂∗1}+ EJ

where

−2{L0,L∗1} =
−L∗1
B2

3πp sinα

G4
d

with

d =

[
1− 25

4

eG

G3
cosα− 5

48

B2

G

[
1 +

1

2G3
− − cosα+ p

B2
· 24eG

G2

] ]
.

and a small error term

EJ = O
(
G−5 + eG−3 + e2G3 + pe2G4

(
1 + p(eG+G−6)

))
G−1/2e−G

3/3

5.1 Strategy for diffusion

The previous lemma tells us that the level curves of L∗+ and L∗− are transversal in the region
G ≥ 32 and eG ≤ 1/8, except for the three curves α = 0, α = π and d = 0 (which, by the way, are
also transversal to any of these level curves, see figure 2).
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Figure 2: Level Sets of L∗+ (L∗−) in Blue (Red) and d=0 in Green

Thus, apart from these curves, at any point in the plane (α,G) the slopes dG/dα of the level
curves of L∗+ and L∗− are different, and we are able to choose which level curve increases more the
value of G, when both slopes are positive, or alternatively, to choose the level curve which decreases
less the value of G, when both slopes are negative (see Figure 3). In the same way, we can find
trajectories along which the angular momentum performs arbitrary excursions. More precisely,
given an arbitrary finite sequence of values Gi, i = 1, . . . , n we can find trajectories which satisfy
G(Ti) = Gi, i = 1, . . . , n.

Strictly speaking, This mechanism given by the application of scattering maps produce indeed
pseudo-orbits, that is, heteroclinic connections between different periodic orbits in the infinity
manifold which are commonly known as transition chains after Arnold’s pioneering work [Arn64].
The existence of true orbits of the system which follow closely these transition chains relies on
shadowing methods, which are standard for partially hyperbolic periodic orbits (the so-called
whiskered tori in the literature) lying on a normally hyperbolic invariant manifold (NHIM). Such
shadowing methods are equally applicable in our case, where we have an infinity manifold Λ̃∞ which
is only topologically equivalent to a NHIM (see [Rob88, Rob84, Moe02, Moe07, GL06, GLS14])
and [GMS15].

With all these elements, we can finally state our main result

Theorem 10. Let G∗1 < G∗2 large enough and e > 0, µ > 0 small enough. More precisely

32 ≤ G∗1 < G∗2 ≤ 1/(8e) and 0 < µ < µ∗ = e−(8e)−3/3. Then, for any finite sequence of values Gi ∈
(G∗1, G

∗
2), i = 1, . . . , n, there exists a trajectory of the ERTBP such that G(Ti) = Gi, i = 1, . . . , n

for some 0 < Ti < Ti+1. In particular, for any two values G1 < G2 ∈ (G∗1, G
∗
2), there exists a

trajectory such that G(0) < G1, and G(T ) > G2 for some time T > 0.

17



Figure 3: Zone of diffusion: Level curves of L∗+ (L∗−) in blue (red) and diffusion trajectories in
green.

6 Computation of the Melnikov potential: Proof of Theo-
rem 7

The main difficulty to compute the Melnikov potential is that it is given by an integral (51) where
the coordinates of the separatrix x0 and α0 are given implicitly (30) in terms of the time t through
the variable τ (31), whereas r and f are given in terms of s+ t through the differential equation (6)
defining the true anomaly f . To evaluate the above Melnikov potential, we will compute its Fourier
Cosine series (52) in the angles s, α.

The next proposition gives formulas for its Fourier coefficients. To this we will consider the
Fourier expansion of the functions:

r(f(t))n eimf(t) =
∑
q∈Z

cn,mq eiqt (81)

which can be found in [MP94] and [Win41, p. 204]. Using that r is an even function and that f is
and odd function, one readily sees that the above coefficients are real and indeed they satisfy

cn,−m−q = cn,mq = cn,mq . (82)

Once these coefficients cn,mq are introduced we can give explicit formulas for the Fourier coefficients
of the Melnikov potential L.

Proposition 11. The Melnikov potential given in (51) or in (52) can be written as

L =
∑
q∈Z

Lqe
iqs with Lq =

∑
k∈Z

Lq,keikα. (83)
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with

Lq,0 =
∑
l≥1

c2l,0q N(q, l, l) (84a)

Lq,1 =
∑
l≥2

c2l−1,−1
q N(q, l − 1, l) (84b)

Lq,−1 =
∑
l≥2

c2l−1,1
q N(q, l, l − 1) (84c)

Lq,k =
∑
l≥k

c2l−k,−kq N(q, l − k, l) for k ≥ 2 (84d)

Lq,−k =
∑
l≥k

c2l−k,kq N(q, l, l − k) for k ≥ 2 (84e)

and

N(q,m, n) =
2m+n

G2m+2n−1

(−1/2

m

)(−1/2

n

)∫ ∞
−∞

eiq(τ+τ3/3)G3/2

(τ − i)2m(τ + i)2n
dτ (85)

Proof. We write Melnikov potential (51) as:

L = L̃1 +

∫ ∞
−∞

[(x2
0

2

)2

r cos(α0 − f)− x2
0

2

]
dt, (86)

where

L̃1 =

∫ ∞
−∞

x2
0[

4 + x4
0r

2 + 4x2
0r cos(α0 − f)

]1/2 dt
can be written as

L̃1 =

∫ ∞
−∞

x2
0

2

(
1 +

x2
0

2
r(f(t+ s))ei(α0−f(t+s))

)−1/2(
1 +

x2
0

2
r(f(t+ s))e−i(α0−f(t+s))

)−1/2

dt.

(87)
Using

(1 + z)−
1
2 =

∞∑
l=0

(−1/2

l

)
zl

we get

L̃1 =
∑
k≥0

∑
l≥k

L̃lk +
∑
k<0

∑
l≤k

S̃lk

where

L̃lk =
1

22l−k+1

(−1/2

l − k

) (−1/2

l

) ∫ ∞
−∞

x4l−2k+2
0 [r(f(t+ s))]2l−k eikα0e−ikf(t+s) dt; 0 ≤ k ≤ l

S̃lk =
1

2−2l+k+1

(−1/2

k − l

)(−1/2

−l

)∫ ∞
−∞

x−4l+2k+2
0 [r(f(t+ s))]−2l+keikα0e−ikf(t+s)dt; l ≤ k ≤ −1.

With these expressions is easy to see that L̃0
0 cancels out the last term in the integral (86) and

that L̃1
1 + S̃−1

−1 cancels the cosine term, and so

L =
∑
l≥1

L̃l0 +
∑
l≥2

L̃l1 +
∑
l≤−2

S̃l−1 +
∑
k>1

∑
l≥k

L̃lk +
∑
k<−1

∑
l≤k

S̃lk. (88)

Now we perform the change of variable

t =
G3

2

(
τ +

τ3

3

)
, dt =

G3

2
(1 + τ2)dτ
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introduced in (31), and we use the formulas for x0 and α0 given in (30a) and (30b). In particular
we will use that:

x2
0 =

4

G2(1 + τ2)
= 2Gdτ, eiα0 =

τ − i
τ + i

eiα,

and the expansion in Fourier series given in (81), obtaining

L̃lk = eikα
22l−k

G4l−2k−1

(−1/2

l

)(−1/2

k − l

)∑
q∈Z

eiq sc2l−k,−kq

∫ ∞
−∞

eiq(τ+τ3/3)G3/2

(τ − i)2(l−k)(τ + i)2l
dτ ; 0 ≤ k ≤ l

= eikα
∑
q∈Z

eiq sc2l−k,−kq N(q, l − k, l) (89a)

S̃lk = eikα
2−2l+k

G−4l+2k−1

(−1/2

−l

)(−1/2

k − l

)∑
q∈Z

eiq sc−2l+k,−k
q

∫ ∞
−∞

eiq(τ+τ3/3)G3/2

(τ − i)−2l(τ + i)2(k−l) dτ ; l ≤ k ≤ −1

= eikα
∑
q∈Z

eiq sc−2l+k,−k
q N(q,−l, k − l) (89b)

substituting now equations (89a) and (89b) in the expansion (88) we get

L =
∑
q∈Z

eiqs
∑
l≥1

c2l,0q N(q, l, l)

+
∑
q∈Z

ei(qs+α)
∑
l≥2

c2l−1,−1
q N(q, l − 1, l) +

∑
q∈Z

ei(qs−α)
∑
l≤−2

c−2l−1,1
q N(q,−l,−l − 1)

+
∑
q∈Z

∑
k≥2

ei(qs+kα)
∑
l≥k

c2l−k,−kq N(q, l − k, l) +
∑
q∈Z

∑
k≤−2

ei(qs+kα)
∑
l≤k

c−2l+k,−k
q N(q,−l, k − l)

(90)

Now changing the indexes l→ −l and k → −k in the third and fifth terms one obtain the desired
formulas for the Fourier coefficients Lq,k.

In view of proposition (11) and formulas (84), to compute the dominant part of the Melnikov
potential and obtain effective bounds of the errors we will need to estimate the constants cn,mq
defined in (81) and the integrals N(q,m, n) defined in (85) for q ≥ 0 and only for indices m,n
satisfying n ≥ 0, m ≤ n+ 1. Alternatively to (5), it will be very convenient to express the distance
r between the primaries as

r = 1− e cosE (91)

in terms of the eccentric anomaly E, given by the Kepler equation [Win41, p. 194]

t = E − e sinE. (92)

This is done in the next three propositions.

Proposition 12. Let n,m, q ∈ Z, n, q ≥ 0, m ≤ n+ 1. Then the Fourier coefficients cn,mq defined
in (81) satisfy ∣∣cn,mq ∣∣ ≤ {2q+n+1eq

√
1−e2e|m−q| m ≥ 0

(1 + e)n+1 m ≤ −1

Proof. In the integral formula for the Fourier coefficients

cn,mq =
1

2π

∫ 2π

0

rneimfe−iqtdt (93)

we change the variable of integration to the eccentric anomaly (92) (dt = rdE) to get

cn,mq =
1

2π

∫ 2π

0

(
reif

)m
rn+1−me−iqtdE. (94)
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To compute cn,mq from (94) we will use the identity (see [Win41, p. 202])(
reif

)n
= aeiE/2 − e

2a
e−iE/2, a =

√
1 + e+

√
1− e

2

which readily implies

reif = a2eiE − e+
e2

4a2
e−iE = (aeiE/2 − e

2a
e−iE/2)2 (95a)

a2 +
e2

4a2
= 1, a2 − e2

4a2
=
√

1− e2, a4 +
e2

16a4
= 1− e2, a4 − e2

16a4
=
√

1− e2. (95b)

To bound the integral (93) for m ≥ 0 we will consider two different cases: 0 ≤ q ≤ m and
0 ≤ m < q. Let us first consider the case 0 ≤ q ≤ m. By the analyticity and periodicity of the
integral we change the path of integration from =(E) = 0 to =E = ln(2a2/e):

E = u+ i ln

(
2a2

e

)
u ∈ [0, 2π]

so that
eiE = eiu−ln(2a2/e) =

e

2a2
eiu

and then, by (95a), (95b), and (92)

reif =
e

2
eiu − e+

e

2
e−iu = e(cosu− 1)

r = 1− e

2

(
e

2a2
eiu +

2a2

e
e−iu

)
= 1− e2

4a2
eiu − a2e−iu

= 1−
(
e2

4a2
+ a2

)
cosu+ i

(
e2

4a2
− a2

)
sinu = 1− cosu+ i

√
1− e2 sinu

e−it =
2a2e−iu

e
exp

(
e2

4a2
eiu − a2e−iu

)
=

2a2e−iu

e
exp

(
−
√

1− e2 cosu+ i sinu
)

therefore ∣∣reif ∣∣ = e(1− cosu) ≤ 2e

|r| =
√

(1− cosu)
2

+ (1− e2) sin2 u =

√
2 (1− cosu)− e2 sin2 u ≤ 2∣∣e−it∣∣ =

2a2

e
exp

(
−
√

1− e2 cosu
)
≤ 2a2

e
e
√

1−e2 .

Since 2a2 ≤ 2, substituting these bounds in (94) we find directly the desired result for 0 ≤ q ≤ m.
For the the case 0 ≤ m < q we now perform the change of the integration variable through

E = v − i ln

(
2a2

e

)
, v ∈ [0, 2π]

so that

eiE = eiv+ln(2a2/e) =
2a2

e
eiv

and then, by (95a), (95b), and (92)

reif =
2a4

e
eiv − e+

e3

8a4
e−iv =

2

e

((
a4 +

e4

16a4

)
cos v − e2

2
+ i

(
a4 − e4

16a4

)
sin v

)
=

2

e

(
cos v − e2

2
(1 + cos v) + i

√
1− e2 sin v

)
r = 1− e2

4a2
e−iv − a2eiv = 1− cos v − i

√
1− e2 sin v

e−it =
ee−iv

2a2
exp

(
a2eiv − e2

4a2
e−iv

)
=
ee−iv

2a2
exp

(√
1− e2 cosu+ i sinu

)
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therefore as before ∣∣reif ∣∣ ≤ 2, |r| ≤ 2
∣∣e−it∣∣ ≤ e

2a2
e
√

1−e2 .

Since 2a2 ≥ 1, substituting these bounds in (94) we find the desired result for 0 ≤ m < q.
For m ≤ −1 we bound directly the integral (94) for E ∈ [0, 2π]. Since |eif | = |e−it| = 1 we have

|cn,mq | ≤ 1

2π

∫ 2π

0

|r|n+1dE

by noticing that |r| ≤ (1 + e) we conclude the proof of the bounds for the cn,mq .

As we can see from equations (84) the Fourier coefficients of the Melnikov potential L depend
on the function N(q,m, n) defined in (85), so to bound (or to compute) these Fourier coefficients
we need to bound (or to compute) N(q,m, n).

Introducing

I(q,m, n) =

∫ ∞
−∞

e
iqG

3

2

(
τ+ τ3

3

)
(τ − i)2m(τ + i)2n

dτ

N(q,m, n) can be written as

N(q,m, n) =
2m+n

G2m+2n−1

(−1/2

m

)(−1/2

n

)
I(q,m, n).

We will call

h(τ) = i
(τ3

3
+ τ
)

(96)

the variable term in the exponencial of the integral, so that

I(q,m, n) =

∫ ∞
−∞

eq
G3

2 h(τ)

(τ − i)2m(τ + i)2n
dτ. (97)

Since the integral I(q,m, n) involves an exponential, it will be useful the Laplace’s method [Erd56]
of integration. In particular on a complex path with =(h(τ)) = 0. So, let us define the path

Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5 (98)

where 0 < ε < 1, τ∗ is a point such that =(h(τ∗)) = 0 that will be fixed later, and

Γ1 = {τ ∈ C|=(h(τ)) = 0} ∩ {τ ∈ C|<(τ) ≤ <(−τ̄∗)}
Γ5 = {τ ∈ C|=(h(τ)) = 0} ∩ {τ ∈ C|<(τ) ≥ <( τ∗)}
Γ2 = {τ ∈ C|=(h(τ)) = 0} ∩ {τ ∈ C|<(−τ̄∗) ≤ <(τ) ≤ 0} ∩ {τ ∈ C||τ − i| ≥ cε}
Γ4 = {τ ∈ C|=(h(τ)) = 0} ∩ {τ ∈ C|0 ≤ <(τ) ≤ <( τ∗)} ∩ {τ ∈ C||τ − i| ≥ cε}
Γ3 = {τ ∈ C|=(h(τ)) ≤ 0} ∩ {τ ∈ C||τ − i| = cε}. (99)

C−C̄ i
τ∗−τ̄∗

Γ1

Γ2

Γ5

Γ4

Γ3 i− c ε

τ Plane

ℑ [h(τ)]

Figure 4: The complex path Γ

By means of the Cauchy-Goursat theorem and
a limit argument, the integral I(q,m, n), defined
in (97) over the real axis, is equal to the one taken
over the path Γ thinking of τ as a complex number
(see [LS80]). In fact, by the same argument, its
value does not depend on ε.

The positive branch of the hyperbola defined
by =(h(τ)) = 0 intersects the circumference of ra-
dius ε in two points that can be expressed as Cε
and −C̄ε defined by:

Cε = Γ3 ∩ Γ4 − C̄ε = Γ3 ∩ Γ2 (100)
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Since the integral over Γ does not depend on ε, we will choose a particular value of ε to bound
I(q,m, n) and consequently N(q,m, n) defined in (85). Later on, in proposition 17 we will just
compute the ε-independent terms of this integral.

It is not difficult to see that, if we define the function

u(τ) = h(i)− h(τ) = −2

3
− i
(τ3

3
+ τ
)

= (τ − i)2 − i

3
(τ − i)3, (101)

then
u(Γ1 ∪ Γ2), u(Γ4 ∪ Γ5) ⊂ R+

0 .

Moreover, if τ− ∈ Γ1 ∪ Γ2 then τ+ = −τ̄− ∈ Γ4 ∪ Γ5 and

u(τ−) = u(τ+).

On the other hand one can see that u is an increasing function while moving along Γ1 ∪ Γ2 or
Γ4 ∪ Γ5 in the direction of increasing imaginary part. Therefore u has two inverses in R+

0 : τ+ and
τ−. Before writing them down let us notice that the point Cε defined in (100) can be written as

Cε = i+ ε eiθε with θε ∈ (0, π/2) (102)

and has the following expression in the coordinates u defined in (101)

u(Cε) = |u(Cε)| = ε2
∣∣1− ε

3
ieiθε

∣∣= ε2 kε (103)

with

kε =
∣∣1− ε

3
ieiθε

∣∣= √(1 +
ε

3
sin θε

)2

+
(ε

3
cos θε

)2

≥ 1,

since by construction, θε ∈ (0, π/2) and then 0 < sin θε.
Now, we can write the inverses of the function u

τ+ :[u(Cε),+∞) −→ Γ4 ∪ Γ5 τ− :[u(Cε),+∞) −→ Γ1 ∪ Γ2 (104)

u 7−→ ξ(u) + iη(u), u 7−→ −ξ(u) + iη(u).

The change (101) is useful over Γ1 ∪ Γ2 and Γ4 ∪ Γ5, thus performing this change in (85), we
have that for any ε > 0

N(q,m, n) =
dm,ne−q

G3

3

G2m+2n−1

[∫ ∞
u(Cε)

[F+
m,n(u)− F−m,n(u)]e−q

G3

2 udu+ (−i)eqG
3

3

∫
Γ3

fqm,n(τ)dτ

]
(105)

where

dm,n = i2m+n

(−1/2

n

)(−1/2

m

)
(106)

F±m,n(u) =
1

(τ±(u)− i)2m+1(τ±(u) + i)2n+1
(107)

fqm,n(τ) =
eq

G3

2 h(τ)

(τ − i)2m(τ + i)2n
, (108)

where h(τ) is given in (96). Now several helpful lemmas follow.

Lemma 13. Let m,n ∈ Z, m,n ≥ 0 and dm,n be defined by equation (106). Then

|dm,n| ≤ e−1/22m+n if m+ n > 0
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Proof. Let s ∈ N, then∣∣∣∣(−1/2

s

)∣∣∣∣ =

∣∣∣∣ (−1)s

s!

(1

2

)(1

2
+ 1
)
· · ·
(1

2
+ s− 1

)∣∣∣∣= 1

2s

[
1 · 3

2
· · · 2s− 1

s
]
]

≤ 1

2s

(
2− 1

s

)s
=
(

1− 1

2s

)s
≤ lim
s→∞

(
1− 1

2s

)s
= e−1/2

Next lemma gives information about the functions F±m,n(u).

Lemma 14. The function F±m,n(u) defined in (107) has the expansion

F±m,n(u) = (±√u)−2m−1
∞∑
j=0

dm,nj (±√u)j (109)

where the coefficients dm,nj satisfy

dm,n0 = 1/(2i)2n+1, |dm,nj | ≤
(

4

3

)m(
3

2

) j+3
2

. (110)

Consequently, the series (109) is convergent for |√u| <
√

2/3.

Proof. Let us introduce the function

T±m,n(x) := (±)x2m+1F±m,n(x2) =

∞∑
j=0

dm,nj (±x)j ,

which is well defined since u = x2 is a good change of variables in R+ and has the two inverses
x = ±√u. To bound the coefficients dm,nj we use Cauchy formula:

(±1)jdm,nj =
1

2πi

∫
|x|=ε

T±m,n(x)

xj+1
dx =

−1

2πi

∫
|x|=ε

F±m,n(x2)

xj−2m
dx.

Applying the change of variables

x = ±
√

(τ − i)2 − i

3
(τ − i)3 = ±(τ − i)

√
(1− i

3
(τ − i)) = ±τ − i√

3
(
√

2− iτ), (111)

we obtain

(±1)jdm,nj = ∓ 1

2πi

∫
|τ−i|=ρ

(τ − i)2m−j

3
2m−j

2

(2− iτ)
2m−j

2
1

(τ − i)2m+1(τ + i)2n+1

3(1− iτ)

2
√

3(2− iτ)
1
2

dτ

= ∓1

2

i
j+1
2 −m

2π3m−
j+1
2

∫
|τ−i|=ρ

dτ

(τ − i)j+1(τ + i)2n(τ + 2i)
j+1−2m

2

.

Now, taking ρ = 1 and using that |τ + i| ≥ 1 and that 2 ≤ |τ + 2i| ≤ 4 we have

|dm,nj | ≤
(

4

3

)m(
3

2

) j+3
2

,

which is the desired bound. From this bound it is clear that the series defining T±m,n(x) is convergent

for |x| <
√

2/3 and therefore the one for F±m,n(u) is convergent for
√
u <

√
2/3.
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From equation (109) we have

F±m,n(u) = (±√u)−2m−1
2m∑
j=0

dm,nj (±√u)j + g±m,n(±√u), (112)

where the regular part of the function F±m,n(u) is given by

g±m,n(±√u) = (±√u)−2m−1
∞∑

j=2m+1

dm,nj (±√u)j (113)

and dm,nj are defined by equation (109) and satisfy bounds (110).

Lemma 15. Let g±m,n(±√u) as in equation (113), 0 < β < 1 and 0 <
√
u < β

√
2/3. Then∣∣g±m,n(±√u)

∣∣ < 9

1− β 2m−2.

Proof. It is clear from equation (113) that

g±m,n(±√u) =

∞∑
s=0

dm,ns+2m+1(±√u)s.

Since by hypothesis 0 <
√
u < β

√
2/3 with β < 1, we can apply lemma 14 to get

|g±m,n(±√u)| ≤
(

4

3

)m(
3

2

) 2m+4
2

∞∑
s=0

(
3

2

) s
2

(
√
u)s

≤
(

4

3

)m(
3

2

) 2m+4
2

∞∑
s=0

(
3

2

) s
2 (
β
√

2/3
)s

=
9

1− β 2m−2

which proves the lemma.

Next proposition gives a bound for N(q,m, n).

Proposition 16. Let N(q,m, n) as defined in (105) for q > 0, m,n ≥ 0, m+n > 0, G > 1 . Then

|N(q,m, n)| ≤ 2n+m+3 eq Gm−2n−1/2 e−qG
3/3.

Proof. We will bound the integrals of N(q,m, n) choosing

ε = G−3/2, G > 1.

We write down then, using (103) and that kε > 1,∣∣∣∣∣
∫ ∞
u(Cε)

F±m,n(u)e−q
G3

2 u du

∣∣∣∣∣ ≤
∫ ∞
G−3kε

|F±m,n(u)|e−qG
3

2 u du ≤
∫ ∞
G−3

|F±m,n(u)|e−qG
3

2 u du

≤ |F±m,n(u(Cε))|
∫ ∞
G−3

e−q
G3

2 u du ≤ G3m+ 3
2

(2− (G−
3
2 ))2n+1

2

qG3

[
e−

q
2

]
≤ 2G3m− 3

2 . (114)

It remains only the last integral of (105) where the integrand is given in (108) and the domain
Γ3 in (99). The path Γ3 can be parameterized by

τ = i+ G−
3
2 eiθ with θ ∈ [θ1, θ2] = [π − θε, θε], (115)

with θε given in (102). If we define

h̃(θ) = h(τ(θ)) = i

(
τ(θ)3

3
+ τ(θ)

)
,
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a straightforward computation using (101) shows that

h̃(θ) = −2

3
−G−3

(
e2iθ +

1

3i
G−

3
2 e3iθ

)
and then, as G > 1:∣∣eqG3

2 h̃(θ)
∣∣ = e−

q
3G

3

e−
q
2 (cos 2θ+ 1

3G
− 3

2 sin 3θ) ≤ e−
q
3G

3

e
q
2 (1+ 1

3G
− 3

2 ) ≤ e−
q
3G

3

eq. (116)

Note that, by (115), over Γ3 we have that |τ − i| = G−
3
2 < 1 and therefore |τ + i| > 1, and we can

bound the last integral of (105) using (116):∣∣∣∣∣
∫

Γ3

eq
G3

2 h(τ)

(τ − i)2m(τ + i)2n
dτ

∣∣∣∣∣ =

∣∣∣∣∣
∫ θ2

θ1

eq
G3

2 h̃(θ)

(τ(θ)− i)2m(τ(θ) + i)2n
iG−

3
2 eiθ dθ

∣∣∣∣∣
≤
∫ θ2

θ1

|eqG
3

2 h̃(θ)|
|G−3/2|2mG

− 3
2 dθ ≤

∫ θ2

θ1

e−
q
3G

3

eq

G−3m
G−

3
2 dθ ≤ πG3m−3/2e−

q
3G

3

eq. (117)

From lemma 13 and the bounds (114) and (117), we can bound N(q,m, n) by equation (105)
as follows

|N(q,m, n)| ≤ e−1/22m+ne−q
G3

3 Gm−2n− 1
2

(
4 + πeq

)
≤ 2m+n+3eqe−q

G3

3 Gm−2n− 1
2 .

Next proposition provides an asymptotic expression for N(q,m, n).

Proposition 17. Let n + m > 0 and the constants dm,nj be defined by equation (109) and dn,m
by equation (106). For q > 0, m,n ≥ 0 and G > 1 we have

N(q,m, n) =
dm,ne−q

G3

3

G2m+2n−1

[
m∑
s=0

(−1)s
√
π

2
3
2 qs−

1
2

(2s− 1)!!
dm,n2m−2sG

3s− 3
2 + T qm,n +Rqm,n

]
where

|T qm,n| ≤ 45 22m+2 ·G−3 |Rqm,n| ≤ 18 qm−1G3m−3.

When s = 0 the factor 1/(2s− 1)!! in the formula above should be replaced by 1.

Proof. We proceed as in the proof of proposition 16 changing the path of integration to the path Γ
defined in (98) leading to the integral (105). The important fact is that the integral (105) does not
depend on ε. So, we will compute only the ε-independent terms of that integral. We will follow a
series of lemmas leading to the proof of the statement.

Lemma 18. Let 0 < ε < 1 and u(Cε) be as in equation (103), F±m,n defined by (107). For any
ε > 0 small enough we have, if G > 1:∫ ∞

u(Cε)

F±m,n(u)e−q
G3

2 udu =

2m∑
j=0

∫ ∞
u(Cε)

e−q
G3

2 udm,nj (±√u)−2m−1+jdu+ Ê

where the constants dm,nj are defined by equation (109) and Ê satisfies

|Ê| ≤ 45 22m+2G−3.

Proof. Let us take
√
u∗ = β

√
2/3 with β = −1 +

√
11
4

√
3 +
√

11/2 ' 0.79. A simple calculation

using (101) shows that |τ±(u∗) − i| = 1
2 . By definition, for ε > 0 small enough we have that

0 < u(Cε) < u∗ <
√
u∗ <

√
2/3, so∫ ∞

u(Cε)

F±m,n(u)e−q
G3

2 udu =

∫ u∗

u(Cε)

F±m,n(u)e−q
G3

2 udu+ Ê1
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with

Ê1 =

∫ ∞
u∗

F±m,n(u)e−q
G3

2 udu,

which can be bounded as

|Ê1| =
∣∣∣∣∫ ∞
u∗

F±m,n(u)e−q
G3

2 u du

∣∣∣∣ ≤ ∫ ∞
u∗

e−q
G3

2 u

|(τ±(u)− i)2m+1(τ±(u) + i)2n+1| du

≤ 2e−q
G3

2 u∗

qG3

1

|τ±(u∗)− i|2m+1

1

|τ±(u∗) + i|2n+1

≤ 22m+2G−3e−q
G3

2 u∗ ≤ 22m+2G−3. (118)

By lemma 14 and equation (112) we have∫ u∗

u(Cε)

F±m,n(u)e−q
G3

2 udu =

2m∑
j=0

∫ u∗

u(Cε)

dm,nj e−q
G3

2 u(±√u)−2m−1+jdu+ Ê2

where

Ê2 =

∫ u∗

u(Cε)

g±m,n(±√u)e−q
G3

2 udu.

Using that
√
u∗ = β

√
2/3, by lemma 15 we have that, for any ε > 0 small enough,

|Ê2| ≤
∫ u∗

u(Cε)

|g±m,n(±√u)|e−qG
3

2 udu ≤ 9
2m−2

1− β

∫ ∞
0

e−q
G3

2 udu

≤ 9
2m−1

q(1− β)
G−3 ≤ 9

2m−1

1− βG
−3.

Finally,∫ u∗

u(Cε)

dm,nj e−q
G3

2 u(±√u)−2m−1+jdu =

∫ ∞
u(Cε)

dm,nj e−q
G3

2 u(±√u)−2m−1+jdu+ Ê3(j) (119)

where

Ê3(j) = −
∫ ∞
u∗

dm,nj e−q
G3

2 u(±√u)−2m−1+jdu.

Let us bound Ê3(j) using the inequalities of Lemma 14:

|Ê3(j)| ≤ |dm,nj |(√u∗)−2m−1+j

∫ ∞
u∗

e−q
G3

2 udu ≤ |dm,nj |(√u∗)−2m−1+j2e−q
G3

2 u∗
G−3

q

≤ 2|dm,nj |
(
β
√

2/3
)−2m−1+j

G−3 ≤ 2

(
4

3

)m(
3

2

) j+3
2 (

β
√

2/3
)−2m−1+j

G−3

= 9 2m−1β−2m−1+jG−3,

then, calling Ê3 =
∑2m
j=1 Ê3(j), we have

|Ê3| ≤ 9 2m−1G−3
2m∑
j=0

β−2m−1+j ≤ 9 2m−1G−3 β
−2m−1

1− β .

Now the lemma is proven using that 1/β <
√

2 and

|Ê| = |Ê1 + Ê2 + Ê3|
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The next lemma is a straightforward application of the last one.

Lemma 19. Let 0 < ε < 1 and u(Cε) be as in equation (103), F±m,n defined by (107) for any ε > 0
small enough we have, if G > 1:∫ ∞

u(Cε)

[
F+
m,n(u)− F−m,n(u)

]
e−q

G3

2 udu = 2

m∑
s=0

∫ ∞
u(Cε)

e−q
G3

2 udm,n2m−2s(
√
u)−2s−1du+ 2Ê

where Ê is the same as in lemma 18.

Proof. By lemma 18 we have∫ ∞
u(Cε)

[
F+
m,n(u)−F−m,n(u)

]
e−q

G3

2 udu =

2m∑
j=0

∫ ∞
u(Cε)

e−q
G3

2 udm,nj [1−(−1)−2m−1+j ](
√
u)−2m−1+jdu+2Ê

then the non trivial terms in the sum are given when −2m − 1 + j = −2s − 1 with s = 0, . . . ,m.
This observation proves the lemma.

Lemma 20. Let 0 < ε < 1 and u(Cε) be as in equation (105). Then the ε-independent term of∫ ∞
u(Cε)

e−q
G3

2 udm,n2m−2s(
√
u)−2s−1du

is

(−1)s2s+
3
2 (2s+ 1)

(s+ 1)!

(2s+ 2)!
dm,n2m−2sq

s− 1
2G3s− 3

2 Γ(1/2)

Proof. By equation (103) we know that u(Cε) = O(ε2) and then the following definitions make

sense, calling δ = G3

2 :

Ip,s(ε) =

∫ ∞
u(Cε)

e−qδu up−(2s+1)/2 du

fp,s(ε) = u(Cε)
p−(2s+1)/2 e−qδu(Cε).

Using this notation and integrating by parts we have

Ip−1,s(ε) =
qδ

p− s− 1/2

∫ ∞
u(Cε)

e−qδuup−(2s+1)/2 du− u(Cε)
p−(2s+1)/2 e−qδu(Cε)

p− s− 1/2

=
1

p− s− 1/2
(qδIp,s(ε)− fp,s(ε)) (120)

and also ∫ ∞
u(Cε)

e−q
G3

2 udm,n2m−2s(
√
u)−2s−1du = dm,n2m−2sI0,s(ε). (121)

Now, in the case where s > 0, using equation (120) s times we get

I0,s(ε) =
(qδ)s

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )
Is,s(ε)−

s∑
p=1

(qδ)p−1fp,s(ε)

(−s− 1
2 + 1) · · · (−s− 1

2 + p)
.

The ε-independent term of I0,s(ε) is given by

(qδ)s

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )

lim
ε→0

Is,s(ε) =
(qδ)s

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )

1√
qδ

Γ(1/2)

=
(
√
qδ)2s−1

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )

Γ(1/2).
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Then the ε-independent term of the integral in equation (121) is

dm,n2m−2s(
√
qδ)2s−1

(−s− 1
2 + 1)(−s− 1

2 + 2) · · · (− 1
2 )

Γ(1/2)

when s > 0.
In the same way, we have that the ε-independent term of

I0,0(ε) =

∫ ∞
u(Cε)

e−q
G3

2 udm,n2m (
√
u)−1du

is dm,n2m (
√
qδ)−1 Γ(1/2). Therefore the lemma is proved if we notice that

(
− s− 1

2
+ 1
)(
− s− 1

2
+ 2
)
· · ·
(
− 1

2

)
=

(−1)s

2s
(2s− 1)(2s− 3) · · · (1)

=
(−1)s

2s
(2s+ 1)!!

2s+ 1
=

(−1)s

22s+1(2s+ 1)

(2s+ 2)!

(s+ 1)!

where we have used that

(2s+ 1)!! =
(2s+ 2)!

2s(s+ 1)!
.

This expression allow us to write the cases s > 0 and s = 0 in one equation which completes the
proof.

Next Lemma is a straightforward application of lemmas 19 and 20.

Lemma 21. Let u(Cε) given in equation (103) and F±m,n defined by (107), then the ε-independent
terms of ∫ ∞

u(Cε)

[
F+
m,n(u)− F−m,n(u)

]
e−q

G3

2 udu

are given by
m∑
s=0

(−1)s2s+
5
2 (2s+ 1)

(s+ 1)!

(2s+ 2)!
dm,n2m−2sq

s− 1
2G3s− 3

2 Γ(1/2) + 2Ê

where Ê is the same as in lemma 18.

Lemma 22. Let fqm,n be defined in equation (108), then

Res(fqm,n(τ), i) = 2i e−qG
3/3

m−1∑
l=0

1

l!

(−qG3

2

)l
dm,n2m−1−2l (122)

Proof. We use the definition of fqm,n given in (108), with h(τ) given in (96). Now, using (101),

h(τ) = −2/3− (τ − i)2 + i(τ − i)3/3

and we have, taking any δ > 0 small enough,

Res(fqm,n(τ), i) =
1

2πi

∫
|τ−i|=δ

fqm,n(τ)dτ =
1

2πi

∫
|τ−i|=δ

eq
G3

2 h(τ)

(τ − i)2m(τ + i)2n
dτ.

We use again one of the changes (111), for instance

x =
√
h(i)− h(τ) =

τ − i√
3

(
√

2− iτ),
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obtaining

Res
(
fqm,n(τ), i

)
=

e−qG
3/3

π

∫
|x|=δ̄

e−qG
3x2/2

(τ+(x)− i)2m+1(τ+(x) + i)2n+1
x dτ

= 2i e−qG
3/3 Res

(
xFn,m+ (x2)e−q

G3

2 x2

, 0
)
.

Now we can use the Taylor expansion of the function Fn,m+ (x2) =
∑
j≥0 d

m,n
j xj−2m−1 and the

expansion of e−qG
3x2/2 =

∑
l≥0

1
l!

(
−qG3x2/2

)l
to obtain the desired formula.

From this lemma one and the bounds for dm,nj given in (110), one has

∣∣Res
(
fqm,n(τ), i

)∣∣ ≤ 3 2me−qG
3/3

m−1∑
l=0

1

l!

(
qG3

3

)l
≤ 3 2m+1e−qG

3/3

(
qG3

3

)m−1

=
2m+1qm−1G3m−3

3m−2
e−qG

3/3. (123)

Now we can prove proposition 17. N(q,m, n) is given in (105), and since it does not depend
on ε we can apply lemmas 21 and 22 and bound (123) to obtain

N(q,m, n) =
dm,ne−q

G3

3

G2m+2n−1

[
m∑
s=0

(−1)s2s+
5
2 (2s+1)

(s+ 1)!

(2s+ 2)!
dm,n2m−2sq

s− 1
2G3s− 3

2 Γ(1/2)+T qm,n+Rqm,n

]

where

Rqm,n = (−i)eqG
3

3

∫
Γ3

fqm,n(τ)dτ

and by lemma 21
|T qm,n| = 2Ê ≤ 45 22m+2 ·G−3.

By lemma 22

|Rqm,n| ≤
2m+1qm−1

3m−2
G3m−3 < 18 qm−1G3m−3.

Using that 2s+1(s+ 1)!(2s+ 1)!! = (2s+ 2)! to show that

(2s+ 1)(s+ 1)!

(2s+ 2)!
=

1

2s+1(2s− 1)!!
.

completes the proof of the proposition 17. Due to the fact that the right hand side of this last
expression is not defined when s = 0 but the left hand side is and is equal to one, we need to point
out that when s = 0, the term 1/(2s− 1)!! in the final formula should be replaced by 1.

The proof of Theorem 7 will be done constructively through the following series of lemmas and
propositions.

Let us first compute some coefficients cn,mq , more precisely c3,11 , c2,21 , c2,00 and c3,10

Lemma 23. Let cn,mq be defined by (81). Then

c3,11 = 1 +Q1, c2,21 = −3e+Q2, c2,00 = 1 +Q3, c3,10 = −5

2
e+Q4,

with
|Qi| ≤ 98e2, i = 1, 2, 3, 4.

30



Proof. From its definition given in (81) and using the change of variable t = E − e sinE we have

c3,11 =
1

2π

∫ 2π

0

(
reif(E)

)
r3e−itdE, c2,21 =

1

2π

∫ 2π

0

(
reif(E)

)2

re−itdE,

c2,00 =
1

2π

∫ 2π

0

r3dE, c3,10 =
1

2π

∫ 2π

0

(
reif(E)

)
r3dE.

From equations (95) we have

c3,11 =
1

2π

∫ 2π

0

[a2eiE − e+
e2

4a2
e−iE ](1− e cosE)3e−iEeie sinEdE (124)

c2,21 =
1

2π

∫ 2π

0

[a2eiE − e+
e2

4a2
e−iE ]2(1− e cosE)e−iEeie sinEdE (125)

c2,00 =
1

2π

∫ 2π

0

(1− e cosE)3dE (126)

c3,10 =
1

2π

∫ 2π

0

[a2eiE − e+
e2

4a2
e−iE ](1− e cosE)3dE . (127)

In what follows we will use (see (95b)) that

0 ≤ e ≤ 1,
1

2
≤ a2 ≤ 1, a2 +

e2

4a2
= 1. (128)

To bound c3,11 we use equation (124). It is easy to see that

a2eiE − e+
e2

4a2
e−iE = eiE − e+ Ē1, (129a)

(1− e cosE)3 = 1− 3e cosE + Ē2, eie sinE = 1 + ie sinE + Ē3, (129b)

where

Ē1 = (a2 − 1)eiE +
e2

4a2
e−iE , Ē2 = 3e2 cos2E − e3 cos3E, Ē3 =

1

2

∞∑
j=0

2
(ie sinE)j+2

(j + 2)!
,

satisfy ∣∣Ē1

∣∣ ≤ e2

2
+
e2

2
= e2,

∣∣Ē2

∣∣ ≤ 4e2,
∣∣Ē3

∣∣ ≤ e2

2
ee ≤ e2 e

2
≤ 2e2.

Using equations (129), we have from equation (124) that c3,11 is the Fourier coefficient of order 1
of the function

(eiE − e+ Ē1)(1− 3e cosE + Ē2)(1 + ie sinE + Ē3) =

eiE − e− 3e cosEeiE + ie sinEeiE + Q̃1(E)

where

Q̃1(E) =Ē1 − 3e2 cosE − 3eĒ1 cosE + Ē2(eiE − e+ Ē1)− ie2 sinE − 3ie2 cosE sinEeiE

− 3ie3 cosE sinE − 3ie2 sinE cosEĒ2 + ie sinEĒ2(eiE − e+ Ē1)

+ Ē3(eiE − e+ Ē1 − 3e cosEeiE − 3e2 cosE − 3eĒ1 cosE + Ē2(eiE − e+ Ē1)),

which implies that, up to order one in e, the Fourier coefficient c3,11 is exactly 1. From the bounds
for Ē1, Ē2 and Ē3 we find |Q̃1(E)| ≤ 98e2, which implies the lemma for c3,11 .

From equation (129), it is easy to see that

[
a2eiE − e+

e2

4a2
e−iE

]2
=
[
eiE − e+ Ē1

]2
= e2iE − 2eeiE + Ē4
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where

Ē4 = e2 + 2Ē1(eiE − e) + Ē2
1

can be bounded, in regard of equations (128) and the bound for Ẽ1, as

|Ē4| ≤ e2 + 2e2(1 + e) + e4 ≤ 6e2.

Using equation (129), we see from equation (125) that c2,21 is the Fourier coefficient of order 1 of
the function

(e2iE − 2eeiE + Ē4)(1− e cosE)(1 + ie sinE + Ē3) =

e2iE − e cosEe2iE − 2eeiE + ie sinEe2iE + Q̃2(E)

where

Q̃2(E) = 2e2 cosEeiE + Ē4 − eĒ4 cosE

= ie sinE(−e cosEe2iE − 2eeiE + 2e2 cosEeiE + Ē4 − eĒ4 cosE)

= Ē3(e2iE − e cosEe2iE − 2eeiE + 2e2 cosEeiE + Ē4 − eĒ4 cosE).

From the above expressions we conclude that, up to order one in e, the Fourier coefficient c2,21 is
exactly −3e, and from the bounds for Ē4 and Ē3 we find that |Q̃2(E)| ≤ 50e2 which implies the
lemma for c2,21 .

We compute c2,00 using equation (126), as well as equation (129b) to get

c2,00 =
1

2π

∫ 2π

0

(1− 3e cosE + Ē2)dE = 1 +Q3

with

Q3 =
1

2π

∫ 2π

0

Ē2dE

and we have immediately, using the bound for Ē2, that |Q3| ≤ 4e2, the desired result for c2,00 .
Finally, we compute c3,10 using equation (127), as well as equations (129b)

c3,10 =
1

2π

∫ 2π

0

(eiE − e+ Ē1)(1− 3e cosE + Ē2)dE.

Now, we want to find, up to order e the Fourier coefficient of order zero of the function

(eiE − e+ Ē1)(1− 3e cosE + Ē2) = eiE − 3eeiE cosE − e+ Ē5,

where
Ē5 = Ē2eiE + 3e2 cosE − eĒ2 + Ē1 − 3eĒ1 cosE + Ē2Ē1,

from where we find

c3,10 = −5

2
e+Q4

with

Q4 =
1

2π

∫ 2π

0

Ē5dE,

and using the bounds for Ē2 and Ē1, we find |Q4| ≤ 19e2.
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Lemma 24. Let G ≤ 32. If q, k ∈ N, q ≥ 1, k ≥ 2, then the Fourier coefficients of the Melnikov
potential (52) verify the following bounds:

|Lq, 0| ≤ 29
(
2e2
)q
eq G−3/2 e−qG

3/3

|Lq, 1| ≤ 27eq(1 + e)4G−7/2e−qG
3/3

|Lq,−1| ≤ 29
(
2e2
)q
e|1−q|G−1/2e−qG

3/3

|Lq, k| ≤ 252keq(1 + e)kG−2k−1/2e−qG
3/3

|Lq,−k| ≤ 2522k
(
2e2
)q
e|k−q|Gk−1/2e−qG

3/3

Proof. From equations (84) by propositions 12 and 16 we have

|Lq, 0| ≤ 24eqe−qG
3/3(2ee

√
1−e2)qG−1/2

∑
l≥1

(24G−1)l

|Lq, 1| ≤ 22eqe−qG
3/3G−3/2

∑
l≥2

((1 + e)222G−1)l

|Lq,−1| ≤ eqe−qG
3/3eq

√
1−e22qe|1−q|G3/2

∑
l≥2

(24G−1)l

|Lq, k| ≤ 242−keqe−qG
3/3(1 + e)−kG−k−1/2

∑
l≥k

((1 + e)222G−1)l

|Lq,−k| ≤ 242−2keqe−qG
3/3eq

√
1−e22qe|k−q|G2k−1/2

∑
l≥k

(24G−1)l

since by hypothesis 24/G ≤ 1/2. Since all these series converge we have proven the lemma using
that 0 ≤ e ≤ 1.

Lemma 25. If q ∈ N, q ≥ 2. Assume G ≥ 32, eG ≤ 1/8, Then for q ≥ 2

|Lq| ≤
∑
k∈Z
|Lq,k| ≤ 213e−qG

3/3(e223G)qG−1/2 (131)

Proof. From lemma (24) we have:∑
k∈Z
|Lq,k| ≤ |Lq,0|+ |Lq,1|+ |Lq,−1|+

∑
k≥2

(
|Lq,k|+ |Lq,−k|

)
≤ e−qG

3/3

[
292qeqe2qG−3/2 + 27(1 + e)4eqG−7/2 + 292qeq−1e2qG−1/2

+ 25
∑
k≥2

(
2k(1 + e)keqG−2k−1/2 + 22k+qe2qe|k−q|Gk−1/2

)]

≤ e−qG
3/3

[
2102qeq−1e2qG−1/2 + 27(1 + e)4eqG−7/2 + 25eqG−1/2

∞∑
k=2

(2(1 + e)G−2)k

+ 25e2qG−1/22qeq
q−1∑
k=2

(4Ge−1)k + 25e2qG−1/2e−q2q
∞∑
k=q

(4eG)k
]
.
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Using that eG ≤ 1/8∑
k∈Z
|Lq,k| ≤ e−qG

3/3

[
2102qeq−1e2qG−1/2 + 27G−7/2 + 210G−9/2

+ 2423qe2qGq−3/2e+ 26e2qGq−1/223q

]
≤ 210e−qG

3/3e2q23qGq−1/2

[
2−2qeq−1G−q + 2−3qe−2qG−3−q

+ 2−3qe−2qG−4−q +G−1e+ 1

]
≤ 213e−qG

3/3(e223G)qG−1/2

which concludes the proof.

The Melnikov potential L (51) has a Fourier Cosine series (52) which can be split with respect
to the variable s as L = L0 +L1 +L2 + · · · , like in (54-55), as well as a complex Fourier series (83)
L =

∑
q∈Z Lqe

iqs. Both series are related through L0 = L0 and Lq = 2<
{

eiqsLq
}

for q ≥ 1. In
the next lemma we see rather easily that the terms L≥2 = L2 +L3 +L4 + · · · of second order with
respect to s satisfy a very exponentially small bound in G.

Lemma 26. For G ≥ 32, eG ≤ 1/8, L≥2(α,G, s; e) = 2
∑
q≥2

∑
k∈Z

Lq,k cos(qs+ kα) is bounded as

|L≥2(α,G, s; e)| ≤ 228G3/2e−2G3/3.

Proof. By lemma 25

|L≥2| ≤ 213G−1/2
∑
q≥2

[
e−G

3/3e223G

]q
≤ 220e4G3/2e−2G3/3

where the last bound holds if
e−2G3/3e223G ≤ 1/2 (132)

which is true for every G ≥ 32. Now, using that e < 4 we get the result.

The next step provides an asymptotic formula for L1 = 2<
{

eisL1

}
.

Lemma 27. For G ≥ 32 and eG ≤ 1/8 we have the following formula for L1 (83)

<
{

eisL1

}
= <

{
eis
((
c3,11 N(1, 2, 1) + E3

)
e−iα +

(
c2,21 N(1, 2, 0) + E1−,2

)
e−2iα + E1

)}
(133)

where

|E1(α,G; e)| ≤ 218e−G
3/3

[
eG−3/2 +G−7/2 + e2G5/2

]
|E3(α,G; e)| ≤ 220e−G

3/3G−3/2

|E4(α,G; e)| ≤ 218e−G
3/3eG1/2.

Proof. From equation (83), we have that

L1 = L1,0 +
∑
k≥1

(
L1,keikα + L1,−ke−ikα

)
= L1,−1e−iα + L1,−2e−2iα +

∑
k≥0

L1,keikα +
∑
k≥3

L1,−ke−ikα

Now, setting

E1 =
∑
k≥0

L1,keikα +
∑
k≥3

L1,−ke−ikα (134)
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we can write
<
{
L1eis

}
= <

{(
L1,−1e−iα + L1,−2e−2iα + E1

)
eis
}
. (135)

By definitions (84) we have

L1,−1 = c3,11 N(1, 2, 1) +
∑
l≥3

c2l−1,1
1 N(1, l, l − 1) (136a)

L1,−2 = c2,21 N(1, 2, 0) +
∑
l≥3

c2l−2,2
1 N(1, l, l − 2) (136b)

If we set

E3 =
∑
l≥3

c2l−1,1
1 N(1, l, l − 1) (137a)

E4 =
∑
l≥3

c2l−2,2
1 N(1, l, l − 2) (137b)

we obtain just (133) from equations (136) and (135). Once we have obtained the formula (133), it
only remains to bound properly the errors E1, E3 and E4. From equation (134), by the triangle
inequality and lemma 24 we have

|E1| ≤ |L1,0|+ |L1,1|+
∑
k≥2

|L1,k|+
∑
k≥3

|L1,−k|

≤ e−G
3/3

[
210ee2G−3/2 + 27(1 + e)4G−7/2 + 25e

∑
k≥2

2k(1 + e)kG−2k−1/2

+ 26e2
∑
k≥3

22kek−1Gk−1/2

]

≤ e−G
3/3

[
210ee2G−3/2 + 27e(1 + e)4G−7/2 + 28e(1 + e)2G−9/2 + 213e2e2G5/2

]
≤ 217e−G

3/3

[
eG−3/2 +G−7/2 +G−9/2 + e2G5/2

]
≤ 218e−G

3/3

[
eG−3/2 +G−7/2 + e2G5/2

]
. (138)

Now we proceed with E3 and E4. By propositions 12 and 16, from equations (137)

|E3| ≤
∑
l≥3

|c2l−1,1
1 N(1, l, l − 1)| ≤ 23e

√
1−e2 e e−G

3/3G3/2
∑
l≥3

(24G−1)l ≤ 216e2e−G
3/3G−3/2,

|E4| ≤
∑
l≥3

|c2l−2,2
1 N(1, l, l − 2)| ≤ 2ee

√
1−e2 e e−G

3/3G7/2
∑
l≥3

(24G−1)l ≤ 214e2e−G
3/3eG1/2.

The two estimates above, together with estimate (138) provide the desired bounds for the errors
of equation (133).

Putting together Lemmas 26 and 27 we already have

L = L0 + 2<
{

[(c3,11 N(1, 2, 1) + E3)e−iα + (c2,21 N(1, 2, 0) + E4)e−2iα + E1]eis
}

+L≥2 (139)

with

|E1(α,G; e)| ≤ 218
(
G−7/2 + e2G5/2 + eG−3/2

)
e−G

3/3

|E3(α,G; e)| ≤ 220G−3/2 e−G
3/3

|E4(α,G; e)| ≤ 218eG1/2 e−G
3/3

|L≥2(α,G, s; e)| ≤ 228G3/2 e−G
3 4

9 .

(140)
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We now compute N(1, 2, 1) and N(1, 2, 0).

Lemma 28. Let N(q,m, n) be defined by equations (85).Then

N(1, 2, 1) =
1

4

√
π

2
G−1/2e−G

3/3 + 1ETT

N(1, 2, 0) =

√
π

2
G3/2e−G

3/3 + 2ETT

where
|1ETT | ≤ 26 9G−2e−G

3/3, |2ETT | ≤ 25 9 e−G
3/3.

Proof. From proposition 17 we have

N(1, 2, 1) =
d2,1

G5
e−G

3/3
[
d2,1

4

√
π
( 2

G

)3/2

−22d2,1
2

√
π

√
G3

2
+

23

3
d2,1

0

√
π(

√
G3

2
)3 + T 1

2,1 +R1
2,1

]
(141)

where
|T 1

2,1| ≤ 45 26G−3 |R1
2,1| ≤ 18G3

and

N(1, 2, 0) =
d2,0

G3
e−G

3/3
[
2d2,0

4

√
π(

√
G3

2
)−1 − 22d2,0

2

√
π

√
G3

2
+

23

3
d2,0

0

√
π(

√
G3

2
)3 + T 1

2,0 +R1
2,0

]
(142)

where
|T 1

2,0| ≤ 45 26G−3 |R1
2,0| ≤ 18G3.

Taking the dominant terms in (141) and (142) we get:

N(1, 2, 1) = d2,1d
2,1
0

2
√

2

3

√
πG−1/2e−G

3/3 + 1E + 1ETR (143)

where

1E = 2
3
2 d2,1

√
π
(
d2,1

4 G−
13
2 − d2,1

2 G−
7
2

)
e−G

3/3 1ETR = (T 1
2,1 +R1

2,1)d2,1G
−5e−G

3/3

and

N(1, 2, 0) = d2,0d
2,0
0

2
√

2

3

√
πG3/2e−G

3/3 + 2E + 2ETR (144)

where

2E = 2
3
2 d2,0

√
π
(
d2,0

4 G−
9
2 − d2,0

2 G−
3
2

)
e−G

3/3 2ETR = (T 1
2,0 +R1

2,0)d2,0G
−3e−G

3/3.

Using the bounds given in Lemma 14 for dm,nj and the bounds given in Lemma 13 for dm,n:

|1E| ≤ 2
3
2 |d2,1|

√
π(|d1,2

4 |+ |d2,1
2 |)G−

7
2 e−G

3/3 ≤ 27 9G−
7
2 e−G

3/3

|1ETR| ≤ |d2,1| 36G−2e−G
3/3 ≤ 259G−2e−G

3/3

and also:
|2E| ≤ 2

3
2 |d2,0|

√
π(|d2,0

4 |+ |d2,0
2 |)G−

3
2 e−G

3/3 ≤ 269G−
3
2 e−G

3/3

|2ETR| ≤ |d2,0| 36e−G
3/3 ≤ 249 e−G

3/3.

Using Lemma 14, dm,n0 = 1/(2i)2n+1 and by definition (106) for dm,n we have that

d2,1d
2,1
0 = −i23

(−1/2

2

)(−1/2

1

)( i

23

)
= − 3

24

d2,0d
2,0
0 = i22

(−1/2

2

)(
− i

2

)
=

3

22
.
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We can then write equation (143) as

N(1, 2, 1) =
1

4

√
π

2
G−1/2e−G

3/3 + 1ETT (145)

where
1ETT = 1E + 1ETR,

satisfies
|1ETT | ≤ 27 9G−

7
2 e−G

3/3 + 259G−2e−G
3/3 ≤ 269G−2e−G

3/3.

In an analogous way, equation (144) can be written as

N(1, 2, 0) =

√
π

2
G3/2e−G

3/3 + 2ETT (146)

where
2ETT = 2E + 2ETR

satisfies
|2ETT | ≤ 269G−

3
2 e−G

3/3 + 249 e−G
3/3 ≤ 259 e−G

3/3

and this proves the lemma.

Using the approximations given in Lemma 28 we have from lemmas 26 and 27

Lemma 29. For G ≥ 32 and eG ≤ 1/8, the Melnikov potential L (83) is given by

L = L0 + cos(s− α)

(
c3,11

√
π

8
G−1/2e−G

3/3 + E3 + E5

)
+ cos(s− 2α)

(
c2,21

√
2πG3/2e−G

3/3 + E4 + E6

)
+ 2<{E1eis}+ L≥2

where L≥2 and Ek with k = 1, 3, 4 are given in equations (140) and

|E5| ≤ 213 9G−2e−G
3/3, |E6| ≤ 211 9 eKe−G

3/3.

Proof. By lemma 28 we have that N(1, 2, 1) and N(1, 2, 0) are real and then coincide with their
real part. Equation (139) gives the correct estimation of L. To complete the proof is enough to
take

E5 = c3,11 · 1ETT and E6 = c2,21 · 2ETT
where 1ETT and 2ETT are given in lemma 28. Therefore by proposition 12 we find directly the
bounds of E5 and E6.

Lemma 30. For G ≥ 32 and eG ≤ 1/8, the Melnikov potential L (83) is given by

L = L0 + cos(s− α)

(√
π

8
G−1/2e−G

3/3 + E3 + E5 + E7

)
− cos(s− 2α)

(
3
√

2πeG3/2e−G
3/3 + E4 + E6 + E8

)
+ 2<{E1eis}+ L≥2

where L≥2 and Ek with k = 1, 3, . . . 6 are given in equations (140) and

|E7| ≤ 98e2G−1/2e−G
3/3 |E8| ≤ 9822e2G3/2e−G

3/3
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Proof. From lemma 23 we have

c3,11

√
π

8
G−1/2e−G

3/3 =

√
π

8
G−1/2e−G

3/3 + E7

c2,21

√
2πG3/2e−G

3/3 = −3
√

2πeG3/2e−G
3/3 + E8

with

E7 = Q1

√
π

8
G−1/2e−G

3/3

E8 = Q2

√
2πG3/2e−G

3/3

Therefore by lemma (29) and the bounds ofQ1 andQ2 given in lemma 23 we conclude the proof.

It only remains to estimate the Fourier coefficient L0 = L0 defined in (55) or (83).

Lemma 31. Let N(q,m, n) be defined by equations (85). Then for m,n ∈ N, m+ n > 0,

|N(0,m, n)| ≤ 2m+n+2G−2m−2n+1.

Proof. Since τ ∈ R in the integral (85), it is easy to see that

1

|τ + i| ,
1

|τ − i| ≤ 1

and then
1

|τ + i|2n
1

|τ − i|2m ≤
1

1 + τ2
.

For n,m > 0, using equation (85) and lemma 13 to bound dm,n, the lemma follows:

|N(0,m, n)| ≤ 2m+nG−2m−2n+1e−1/2

∫ ∞
−∞

dτ

1 + τ2

= 2m+nG−2m−2n+1e−1/2π ≤ 2m+n+2G−2m−2n+1.

Lemma 32. Let k ∈ N and L0,k defined by equation (55). Then

L0,k =
∑
l≥k+1

c2l−k,−k0 N(0, l − k, l)

Proof. From equations (84), we have just to prove that for k ≥ 2

N(0, 0, k) = N(0, k, 0) = 0.

By equations (85) this reduces to show that∫ ∞
−∞

dτ

(τ ± i)2k
= 0

where the positive sign in the denominator correspond to I(0, 0, k) and the negative to I(0, k, 0).
Since the variable τ ∈ R this integral is trivial∫ ∞

−∞

dτ

(τ ± i)2k
= − 1

2k − 1

1

(τ ± i)2k−1

∣∣∣∣∞
−∞

= 0

this proves the lemma.
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Lemma 33. Let L0,k be defined by equations (84) for k ≥ 0. If G ≥ 32,

|L0,k| ≤ 22k+8ekG−2k−3.

Proof. From lemma 32 we have

|L0,k| ≤
∑
l≥k+1

|c2l−k,−k0 ||N(0, l − k, l)|,

and by propositions 12 and 16,

|L0,±k| ≤ 2−2k+3ekG2k+1
∑
l≥k+1

(24G−4)l ≤ ek22k+8G−2k−3.

Lemma 34. Let L0 = L0 be defined by equations (55) or (83). Then for G ≥ 32

L0 = L0,0 + (c3,10

3

4
πG−5 + F2) cos(α) + F3

L0,0 = c2,00

π

2
G−3 + F1

where
|F1| ≤ 212G−7, |F2| ≤ 215eG−9, |F3| ≤ 214e2G−7.

Proof. From proposition 11 we know that

L0 = L0,0 + 2
∑
k≥1

L0,k cos kα,

and from lemma 32 we have that

L0,0 = c2,00 N(0, 1, 1) +
∑
l≥2

c2l,00 N(0, l, l) (147a)

L0,1 = c3,−1
0 N(0, 1, 2) +

∑
l≥3

c2l−1,−1
0 N(0, l − 1, l) (147b)

L0,k =
∑
l≥k+1

c2l−k,−k0 N(0, l − k, l) for k ≥ 2. (147c)

Introducing

F1 =
∑
l≥2

c2l,00 N(0, l, l), F2 = 2
∑
l≥3

c2l−1,−1
0 N(0, l − 1, l), F3 = 2

∑
k≥2

cos kαL0,k,

by lemmas 31, 33 and proposition 12, using the hypothesis on G we have

|F1| ≤ 23G
∑
l≥2

(24G−4)l ≤ 212G−7

|F2| ≤ 22eG3
∑
l≥3

(24G−4)l ≤ 215eG−9

|F3| ≤ 2
∑
k≥2

|L0,k| ≤ 214e2G−7.

Now, from definition (85) we have that

N(0, 1, 1) =
22

G3

(−1/2

1

)(−1/2

1

)∫ ∞
−∞

dτ

(τ2 + 1)2
= 22

(
−1

2

)(
−1

2

)
G−3 =

π

2
G−3,

N(0, 1, 2) =
23

G5

(−1/2

1

)(−1/2

2

)∫ ∞
−∞

dτ

(τ − i)(τ + i)2
= 23

(
−1

2

)( 3

23

)(
−π

4

)
G−5 =

3

8
πG−5.

From these equations, substituting equations (147) in the definition of L0 and the bounds given in
equations (148) we have proven this lemma.
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A refinement of this lemma is

Lemma 35. Let L0 = L0 be defined by equations (55) or (83). Then if G ≥ 23/2

L0 = L0,0 + (−15

8
πeG−5 + F2 + F5) cos(α) + F3

L0,0 =
π

2
G−3 + F1 + F4

where F1, F2 and F3 are given in lemma 34 and

|F4| ≤ 2 98G−3e2, |F5| ≤ 22 98G−5e2.

Proof. In lemma 23 we have computed the constants c2,00 and c3,10 , then by setting

F4 =
π

2
Q3G

−3, F5 =
3

4
πQ4G

−5 cosα,

and using the bounds for Q3 and Q4 we find the desired bound for F4 and F5.

With this lemma we can rewrite lemma 30 exactly as Theorem 7, and so we have proved it.
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