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Abstract

In the present paper we prove a strong form of Arnold diffusion. Let T2 be
the two torus and B2 be the unit ball around the origin in R2. Fix ρ > 0. Our
main result says that for a “generic” time-periodic perturbation of an integrable
system of two degrees of freedom

H0(p) + εH1(θ, p, t), θ ∈ T2, p ∈ B2, t ∈ T = R/Z,

with a strictly convex H0, there exists a ρ-dense orbit (θε, pε, t)(t) in T2×B2×T,
namely, a ρ-neighborhood of the orbit contains T2 ×B2 × T.

Our proof is a combination of geometric and variational methods. The
fundamental elements of the construction are usage of crumpled normally hy-
perbolic invariant cylinders from [13], flower and simple normally hyperbolic
invariant manifolds from [47] as well as their kissing property at a strong double
resonance. This allows us to build a “connected” net of 3-dimensional normally
hyperbolic invariant manifolds. To construct diffusing orbits along this net we
employ a version of Mather variational method [54] equipped with weak KAM
theory [34], proposed by Bernard in [9].
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1 Introduction

The famous question called the ergodic hypothesis, formulated by Maxwell and Boltz-
mann, suggests that for a typical Hamiltonian on a typical energy surface all, but a
set of zero measure of initial conditions, have trajectories dense in this energy surface.
However, KAM theory showed that for an open set of nearly integrable systems there
is a set of initial conditions of positive measure with almost periodic trajectories. This
disproved the ergodic hypothesis and forced to reconsider the problem.

A quasi-ergodic hypothesis, proposed by Ehrenfest [33] and Birkhoff [17], asks if a
typical Hamiltonian on a typical energy surface has a dense orbit. A definite answer
whether this statement is true or not is still far out of reach of modern dynamics.
There was an attempt to prove this statement by E. Fermi [36], which failed (see [37]
for a more detailed account). To simplify the problem, Arnold [5] asks:

Does there exist a real instability in many-dimensional problems of perturbation
theory when the invariant tori do not divide the phase space?

For nearly integrable systems of one and a half and two degrees of freedom the
invariant tori do divide the phase space and an energy surface respectively. This
implies that instability do not occur. We solve a weaker version of this question
for systems with two and a half and 3 degrees of freedom. This corresponds to
time-periodic perturbations of integrable systems with two degrees of freedom and
autonomous perturbations of integrable systems with three degrees of freedom.

1.1 Statement of the result

Let (θ, p) ∈ T2 × B2 be the phase space of an integrable Hamiltonian system H0(p)
with T2 being 2-dimensional torus T2 = R2/Z2 3 θ = (θ1, θ2) and B2 being the unit
ball around 0 in R2, p = (p1, p2) ∈ B2. Assume that H0 is strictly convex, i.e. Hessian
∂2
pipj

H0 is strictly positive definite.
Consider a smooth time periodic perturbation

Hε(θ, p, t) = H0(p) + εH1(θ, p, t), t ∈ T = R/T.

We study a strong form of Arnold diffusion for this system, namely,

existence of orbits {(θε, pε)(t)}t going from one open set pε(0) ∈ U to another
pε(t) ∈ U ′ for some t = tε > 0.

Arnold [3] proved existence of such orbits for an example and conjectured that they
exist for a typical perturbation (see e.g. [4, 5, 7]).

Integer relations ~k · (∂pH0, 1) = 0 with ~k = (~k1, k0) ∈ (Z2 \ 0) × Z and · being
the inner product define a resonant segment. The condition that the Hessian of H0 is
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non-degenerate implies that ∂pH0 : B2 −→ R2 is a diffeomorphism and each resonant
line defines a smooth curve embedded into action space

Γ~k = {p ∈ B2 : ~k · (∂pH0, 1) = 0}.

If curves Γ~k and Γ~k′ are given by two linearly independent resonances vectors {~k,~k′},
they either have no intersection or intersect at a single point in B2.

We call a vector ~k = (~k1, k0) = (k1
1, k

2
1, k0) ∈ (Z2 \ 0) × Z and the corresponding

resonance Γ = Γ~k space irreducible if either (k1
1, k

2
1) = (1, 0) or (0, 1) or gcd(~k1) = 1,

i.e. |k1
1| and |k2

1| are relatively prime.
Consider now two open sets U,U ′ ⊂ B2. Select a finite collection of space irre-

ducible resonant segments {Γj = Γ~kj}
N
j=1 for some collection of {~kj}Nj=1

• with neighbors ~kj and ~kj+1 being linearly independent,

• Γj ∩ Γj+1 6= ∅ for j = 1, . . . , N − 1 and so that

• Γ1 ∩ U 6= ∅ and ΓN ∩ U ′ 6= ∅.

We would like to construct diffusing orbits along a connected path formed by
segments inside Γj’s, i.e. we select a connected piecewise smooth curve Γ∗ ⊂ ∪Nj=1Γj
so that Γ∗ ∩ U 6= ∅ and Γ∗ ∩ U ′ 6= ∅ (see Figure 2).

Consider the space of Cr perturbations Cr(T2 ×B2 ×T) with a natural Cr norm
given by maximum of all partial derivatives of order up to r, here r < +∞. Denote
by Sr = {H1 ∈ Cr(T2 ×B2 × T) : ‖H1‖Cr = 1} the unit sphere in this space.

Theorem 1. In the above notations fix the piecewise smooth segment Γ∗ and 4 ≤ r <
+∞. Then there is an open and dense set U = UΓ∗ ⊂ Sr and a nonnegative function
ε0 = ε0(H1) with ε0|U > 0. Let V = {εH1 : H1 ∈ U , 0 < ε < ε0}, then for an open
and dense set of εH1 ∈ W ( V the Hamiltonian system Hε = H0 + εH1 has an orbit
{(θε, pε)(t)}t whose action component satisfies

pε(0) ∈ U, pε(t) ∈ U ′ for some t = tε > 0

Moreover, for all 0 < t < tε the action component pε(t) stays O(
√
ε)-close to the

union of resonances Γ∗.

Remark 1.1. The open and dense set of perturbation U ⊂ Sr will be defined by three
sets of non-degeneracy conditions.

• In section 2.2, conditions [G0]-[G2] defines the quantitative non-degeneracy con-
dition for λ > 0. The set of λ−non-degenerate perturbations UλSR is open, and
the union

⋃
λ>0 UλSR is open and dense.
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• Each λ > 0 determines a finite set of double resonances on Γ∗. For each double
resonance p0, we define two sets of non-degeneracy conditions.

In section 3.2, conditions [DR1]-[DR3] defines the non-degeneracy at a dou-
ble resonance p0 away from singularities, the non-degenerate set UEDR(p0) is open
and dense.

In section 3.4, conditions [A0]-[A4] defines the non-degeneracy at double
resonances p0 near singularities. The non-degenerate set UCritDR (p0) is open and
dense.

We have

U =
⋃
λ>0

UλSR ∩

(⋂
p0

UEDR(p0) ∩ UCritDR (p0)

)
,

where p0 ranges over all double resonances. This set is clearly open and dense.

For any H1 ∈ U we prove that the Hamiltonian H0 + εH1 has a connected
collection of 3-dimensional normally hyperbolic (weakly) invariant manifolds in the
phase space T2×B2×T which “shadow” a collection of segments Γ∗ connecting U and
U ′ in the sense that the natural projection of these manifolds onto B2 is O(

√
ε)-close

to each point in Γ∗. Note that Marco [49, 50] announced a similar result.

Once this structure established we impose further non-degeneracy conditionW (
V . For each εH1 ∈ W we prove existence of orbits diffusing along this collection of
invariant manifolds. Our proof relies on Mather variational method [54] equipped
with weak KAM theory of Fathi [34]. The crucial element is Bernard’s notion [9] of
forcing relation (see section 5.2 for more details).

Notice that the notion of genericity we use is not standard. We show that in a
neighborhood of perturbations of H0 the set of good directions U is open dense in
Sr. Around each exceptional (nowhere dense) direction we remove a cusp and call
the complement V . For this set of perturbations we establish connected collection
of invariant manifolds. Then in the complement to some exceptional perturbations
W we show that there are diffusing orbits “shadowing” these cylinders. Mather calls
such a set of perturbations cusp residual. See Figure 1.

1. Autonomous version

Let n = 3, p̃ = (p̃1, p̃2, p̃3) ∈ B3, and H̃0(p) be a strictly convex Hamiltonian.
Consider the region ∂piH0 > ρ > 0 for some ρ > 0 and two open sets U and U ′

in this region. Then for a generic (autonomous) perturbation H̃0(p̃) + εH̃1(θ̃, p̃)
there is an orbit (θ̃ε, p̃ε)(t) whose action component connects U with U ′, namely,

7



Figure 1: Description of generic perturbations

Figure 2: Resonant net

p̃ε(0) ∈ U and p̃ε(t) ∈ U ′ for some t = tε. This can be proved using energy
reduction to time periodic system of two and a half degrees of freedom (see e.g.
[6, Section 45]).

2. Generic instability of resonant totally elliptic points

In [44] stability of resonant totally elliptic fixed points of symplectic maps in
dimension 4 is studied. It is shown that generically a convex, resonant, totally
elliptic point of a symplectic map is Lyapunov unstable.

3. Relation with Mather’s approach

Theorem 1 was announced by Mather [56]. Some parts are the proof of written
in [57]. Our approach is quite different from the one initiated in these two
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manuscripts. Here we summarize the differences:

• We start by constructing a net of normally hyperbolic invariant cylinders
“over” resonant segments Γ∗.

• We prove that certain variationally defined invariant (Aubry) sets belongs
these cylinders.

• We show that these sets have the same structure as Aubry-Mather sets for
twists maps.

• In a single resonance, mainly done in [13], the fact that these invariant sets
belong to invariant cylinders allows us to adapt techniques from [9, 23, 24].
Namely, we apply variational techniques for proving existence of Arnold
diffusion for a priori unstable systems (see section 9.8 for more details).

• One important obstacle is the problem of regularity of barrier functions
(see section 9), which outside of the realm of twist maps is difficult to
overcome. It is our understanding that Mather [62] handles this problem
without proving existence of invariant cylinders.

• In a double resonance we also construct normally hyperbolic invariant
cylinders. This leads to a fairly simple and explicit structure of mini-
mal orbits near a double resonance. In particular, in order to switch from
one resonance to another we need only one jump (see section 3.5 for an
heuristic explanation and Key Theorem 10 for the precise claim).

• It is our understanding that Mather’s approach [62] requires an implicitly
defined number of jumps. His approach resembles his proof of existence of
diffusing orbits for twist maps inside a Birkhoff region of instability [55].

4. Convexity of H0 on an open set

Suppose H0(p) is strictly convex on an open set

Conv = {p ∈ B2 : Hessian ∂2
pipj

H0(p) is strictly positive definite}.

Then for any connected component Conv′ ⊂ Conv Theorem 1 applies. More
exactly, for any pair of open sets U,U ′ ⊂ Conv′ fix a smooth segment Γ∗ ⊂
Conv′ and r ≥ 4. Then there is an open and dense set U = UΓ∗ ⊂ Sr and a
nonnegative function ε0 = ε0(H1) with ε0|U > 0. Let V = {εH1 : H1 ∈ U , 0 <
ε < ε0}, then for an open and dense set of εH1 ∈ V the Hamiltonian system
Hε = H0 + εH1 has an orbit {(θε, pε)(t)}t whose action component satisfies
pε(0) ∈ U, pε(t) ∈ U ′ for some t = tε > 0.

9



Notice that Theorem 1 guarantees that this orbit {(θε, pε)(t)}t has action com-
ponent O(

√
ε) close to Γ∗. This is a convexity region for H0. Therefore, one can

extend H0 to another Hamiltonian H̃0, which is convex outside of Conv. Then
apply Theorem 1 and notice that under the condition that action component
p ∈ Conv orbits of H0 + εH1 and H̃0 + εH1 coincide.

5. Non-convex Hamiltonians

In the HamiltonianH0 is non-convex for all p ∈ B2, for example, H0(p) = p2
1−p2

2,
the problem of Arnold diffusion is wide open. With our approach it is closely
related to another deep open problem of extending Mather theory and weak
KAM theory beyond convex Hamiltonians.

6. The Main Result

One interesting application of Theorem 1 is the following Theorem, which is
our main result.

Theorem 2. For any ρ > 0 and any r ≥ 4 there is an open and dense set
U = Uρ ⊂ Sr and a nonnegative function ε0 = ε0(H1, ρ) with ε0|U > 0. Let V =
{εH1 : H1 ∈ U , 0 < ε < ε0}, then for an open and dense set of εH1 ∈ W ( V
the Hamiltonian system Hε = H0 + εH1 has a ρ-dense orbit {(θε, pε, t)(t)}t in
T2 ×B2 × T, namely, its ρ-neighborhood contains T2 ×B2 × T.

Remark 1.2. To prove this theorem one needs to take a finite set of resonant
lines {Γj = Γ~kj}

N
j=1 so that Γ∗ = ∪Nj=1Γj is ρ/3-dense in the action domain B2.

Moreover, unperturbed resonant orbits for each p ∈ Γ∗ have angular components
θ(t) = θ(0) + t p ( mod 1) that are ρ/3-dense in T2. Since ṗ = O(ε) and by
Theorem 1 for diffusing orbits action pε(t) is O(

√
ε)-close to Γ∗, we have ρ-

density of (θε, pε, t)(t) in T2 ×B2 × T.

As the number of resonant lines N increases, the size of admissible perturbation
ε0(H1, ρ) goes to zero. Examples of Hamiltonians having orbits accumulating to
“large” sets and shadow infinitely many resonant lines are proposed in [45, 46].

The proof of the main Theorem naturally divides into two major parts:
• I Geometric: construct a connected net of normally hyperbolic invariant man-

ifolds (NHIMs) along the selected resonant lines Γ∗.
• II Variational: construct orbits diffusing along this net.
The idea to construct a connected net of NHIMs appeared in Kaloshin-Zhang-

Zheng [46]. [46] describes the construction of an example of a C∞-Hamiltonian H
in a small Ck–neighborhood k ≥ 2 of H0(p) = 1

2
‖p‖2 such that, on H−1(1/2), the

Hamiltonian flow of H has an orbit dense in a set of positive measure.
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2 Preliminary splitting of the proof of Theorem 1

into ten Key Theorems

It turns out that for action p near the diffusion path Γ∗ there are two types of
qualitative behavior. We start presenting our strategy of the proof by dividing Γ∗ into
two parts: single and (strong) double resonances. Once we make this decomposition
we impose three sets of non-degeneracy conditions a perturbation εH1.

The first set is given in section 2.2, conditions [G0]-[G2] and leads to generic
existence of certain (crumpled) normally hyperbolic invariant cylinders near single
resonances.

It turns out that near double resonances there are also two types of qualitative
behavior: away from singularity (high energy) and near singularity (low energy).
For high energy in section 3.2 we impose conditions [DR1]-[DR3] and also exhibit
existence of certain normally hyperbolic invariant cylinders. Then for low energy in
section 3.4 we define conditions [A0]-[A4] and describes more sophisticated normally
hyperbolic invariant manifolds.

These three sets of conditions lead to a definition of the set U ⊂ Sr and reveals
a connected net of normally hyperbolic invariant manifolds. Once existence of these
invariant manifolds is established we prove existence of orbits diffusing along them
under additional non-degeneracy conditions. More precisely, we divide the proof of
the main result into 10 (Key) Theorems.

— The first three establish existence of normally hyperbolic invariant manifolds
in each regime.

— The next four shows that carefully chosen family of invariant (Aubry) sets
belongs to these manifolds and satisfy a certain (Mather’s projected) graph property.
To some extent, these invariant sets are like Aubry-Mather sets for twist maps.

— The last three shows that there are orbits diffusing along these family of Aubry
sets, provided additional non-degeneracy hypothesis are satisfied.

Theorems involved into this scheme are called Key Theorems. The body of the
proof contains other claims, including Lemmas, Propositions, and Theorems, used to
prove Key Theorems.

2.1 Decomposition of the diffusion path into single and dou-
ble resonances.

Diffusion in Theorem 1 takes place along Γ∗. The first important step is to decompose
Γ∗ into two sets. This decomposition corresponds to two type of qualitative dynamic
behavior. To do this division we need to start with the unperturbed dynamics:

θ̇ = ∂pH0(p), ṗ = 0.

11



Fix a large integer K independent of ε and to be specified later. For each action p ∈ Γ∗

it belongs to one of resonant segments, i.e. p ∈ Γj = Γ~kj for some j = 1, . . . , N . For

p ∈ Γj define a slow angle θsj = ~kj · (θ, t). We say that for p ∈ Γ∗ we have

1. K-single resonance if there is exactly one slow angle θs and all others are not:
~k · (∂pH0(p), 1) = ~k · (θ̇, ṫ) 6= 0 for each ~k ∈ (Z2 \ 0)× Z with |~k| ≤ K.

2. K-(strong) double resonance if there is exactly two1 slow angle θs1 = ~k · (θ, t)
and θs2 = ~k′ · (θ, t) with ~k,~k′ ∈ (Z2 \ 0)× Z with |~k|, |~k′| ≤ K.

We omit dependence on K for brevity.
Fix j ∈ {1, . . . , N}, the corresponding resonance vector ~kj ∈ (Z2 \ 0)×Z, and the

resonant segment Γj = Γ~kj ∩ Γ∗. For other j’s the decomposition procedure is the

same. Let θs = ~kj · (θ, t) be the slow angle as above. In defining a fast angle there is

some freedom. Let ~k′ = (~k′j, k
′
0) ∦ ~kj and chosen so that

detB = 1, B =

[
~kj
~k′j

]
,

with ~kj being the Z2-component of ~kj and ~kj, ~k
′
j viewed as row vectors2.

The coordinate change can be completed to a symplectic one by considering the
extended phase space (θ, t, p, E). Define p′ = (ps, pf ) and E ′ by the relation satisfying
p = BTp′ and E = (k0, k

′
0) · p′ + E ′, (see section B), then

Lj : (θ, t, p, E) 7→ (θs, θf , t, p′, E ′)

is symplectic. By a direct calculation, we have the (θ, t, p) components of L−1
j is

independent of E, so we can treat L−1
j as a map from (θs, θf , t, p′) to (θ, t, p).

Due to non-degeneracy of the Hessian ofH0 we can use pf as a smooth parametriza-
tion of Γj, i.e.

Γj = {(ps∗(pf ), pf ) : pf ∈ [ajmin, a
j
max]},

where values ajmin and ajmax correspond to the end points of Γj. It is natural to define
the averaged potential

Zj(θ
s, p) =

∫ ∫
H1 ◦ L−1

j (θs, ps, θf , pf , t) dθf dt. (1)

When there is no confusion we omit dependence on j to keep notations simpler.

1Since ṫ = 1 and k0 6= 0 there can’t be three slow angles.
2Choice of ~k′j is not unique
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2.2 Genericity conditions at single resonances

Call a value pf on Γ regular if Z(θs, ps∗(p
f )) has a unique non-degenerate global

maximum on Ts ∼= T 3 θs at some θs∗ = θs(pf ). We say the maximum is non-
degenerate if the Hessian of Z with respect to θs is strictly negative definite.

Call a value pf on Γj bifurcation if Z(θs, ps∗(p
f )) has exactly two global non-

degenerate maxima on Ts 3 θs at some θs1 = θs1(pf ) and θs2 = θs2(pf ). If pf is a
bifurcation, due to non-degeneracy both maxima can be locally extended (see Fig-
ure 3). We assume that the values at these maxima moves with different speed with
respect to the parameter pf . Otherwise, the bifurcation value is called degenerate.
Denote amin < amax the end points of Γ parametrized by pf .

Generic conditions [G0]-[G2] that are introduced below and define U ⊂ Sr are
similar to the conditions [C1]-[C3] given by Mather [56]. These conditions can be
defined as follows:

Each value pf ∈ [amin, amax] is either regular or bifurcation. Note that the non-
degeneracy condition implies that there are at most finitely many bifurcation points.
Let a1 < · · · < as−1 be the set of bifurcation points in the interval (amin, amax), and
consider the partition of the interval [amin, amax] by {[ai, ai+1]}s−1

i=0 . Here we give an
explicit quantitative version of the above condition. Let λ > 0 be a parameter.

[G0] There are smooth functions θsi : [ai − λ, ai+1 + λ] −→ T, i = 0, · · · , s − 1 (see
Figure 3), such that for each pf ∈ [ai − λ, ai+1 + λ], θsi (p

f ) is a local maximum
of Z(θs, ps∗(p

f )) satisfying

λI ≤ −∂2
θsθsZ(θsi , p) ≤ I,

where I is the identity matrix and the inequality is in the sense of quadratic
forms.

[G1] For pf ∈ (ai, ai+1), θsi is the unique maximum for Z. For pf = ai+1, θsi and θsi+1

are the only maxima.

[G2] At pf = ai+1 the maximum values of Z have different derivatives with respect
to pf , i.e.

d

dpf
Z(θsi (ai+1), ps∗(p

f )) 6= d

dpf
Z(θsi+1(ai+1), ps∗(p

f )).

The conditions at single resonances is that [G0]-[G2] are satisfied for some λ > 0.
Now we are ready to present

the decomposition into single and (strong) double resonances.

13



Figure 3: Bifurcations

Following [13] we determine small positive δ = δ(H0, λ, r,Γ
∗) < λ as well as large

positive C = C(H0, r,Γ
∗) and Ē = Ē(H0, λ,Γ

∗). Let K be a positive integer satisfying
K > Cδ4/(r−3) (cf. Remark 3.1 [13]) and such that every Γj ∩ Γj+1, j = 1, . . . , N − 1

can be represented as a double resonance. Define |~k| as the sum of absolute values of
components. Denote

ΣK = {p ∈ Γ ∩B : ∃~k′ = (~k′1, k
′
0) ∈ (Z2 \ 0)× Z,

~k′ ∦ ~k, |~k′1|, |k′0| ≤ K, ~k′ · (∂pH0, 1) = 0}.
Call the elements of ΣK ⊂ Γ punctures or strong double resonances. Exclude a

neighborhood of each puncture from Γ. Let UĒ√ε(ΣK) denote the Ē
√
ε-neighborhood

of ΣK , then Γj \UĒ√ε(ΣK) is a collection of disjoint segments. Each of these segments
is called a passage segment. By definition crossings of Γj∩Γj+1 for each j = 1, . . . , N−
1 are (strong) double resonances. In what follows we often omit “strong” for brevity.

Recall that Sr is the unit sphere of Cr-functions. Let UλSR denote the set of
functions in Sr such that the conditions [G0]-[G2] are satisfied. Let USR =

⋃
λ>0 UλSR.

Theorem 3. Each UλSR is a Cr−open, and USR is Cr−open and Cr−dense in Sr.

Remark 2.1. We will impose two more sets of non-degeneracy hypothesis at double
resonances. The parameter K, and hence the designation of double resonances de-
pends on λ. Formally, for each λ > 0, our hypothesis at double resonance determines
an open dense subset Uλ of UλSR, and U =

⋃
λ>0 Uλ is open dense by Theorem 3.

It turns out that the analysis of single and double resonances is drastically different
and requires different tools.

14



Before we sink into description of steps of the proof we formally divide it into
ten key Theorems. This allows us to partition the proof into smaller (non-equal)
parts. We first state these Theorems and derive the Main Theorem. Only after that
we proceed with proofs of them3. We summarize this discussion in the following
diagram:

Theorem 1

⇑
∃ a net of NHIMs {Mi}i + ∃ Shadowing of Invar. Sets in {Mi}i

∃ a net of NHIMs {Mi}i
⇑︷ ︸︸ ︷

Key Theorem 1 + Key Theorem 2 + Key Theorem 3

(2)

∃ Shadowing of Invariant Sets in {Mi}i
⇑

Localization of invar. sets + “Transverse” intersection of invar.

{Aik} inside {Mi}i manifolds of neighbor invar. sets

Localization and graph property of invar. sets {Aik} inside {Mi}i
⇑︷ ︸︸ ︷

Key Theorems 4 + 5 + Key Theorems 6 + 7

(3)

“Transverse” intersection of invariant manifolds of neighbors {Aik}
⇑︷ ︸︸ ︷

Key Theorem 8 + Key Theorem 9 + Key Theorem 10

(4)

1. Existence of a net normally hyperbolic invariant manifolds.

(a) Key Theorem 1 establishes existence of crumpled normally hyperbolic in-
variant cylinders near each connected component of Γ \ UĒ√ε(ΣK). These

3We reserve the name a “Key Theorem” to refer to the global scheme of the proof summarized
here. To prove these Key Theorems we shall prove lemmas, propositions, and “local” Theorems.
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cylinders are crumpled in the sense that in the original phase space T2 ×
B2 × T they are represented by certain three dimensional graphs

{(Θ∗, P∗)(θ∗, p∗, t), (θ∗, p∗, t) ∈ T× [a−, a+]× T} ⊂ T2 ×B2 × T

with
∂Θ∗
∂p∗

. 1/
√
ε. See Section 7.1 and Figure 7 for details. It turns out

that asymptotically in ε this estimate is optimal, i.e. sup

∥∥∥∥∂Θ∗
∂p∗

∥∥∥∥ ≈ 1/
√
ε

(see Remark 7.1 for details).

(b) Key Theorem 2 establishes existence of normally hyperbolic invariant cylin-
ders near double resonances at high energy or away from singularity. En-
ergy at double resonance is energy of the corresponding slow mechanical
system defined in Appendix B, Lemma B.3.

(c) Key Theorem 3 establishes existence of variety of normally hyperbolic in-
variant manifolds near strong double resonances at low (near critical) en-
ergy.

2. Localization of invariant (Aubry) sets inside of invariant manifolds.

One of fundamental discoveries in Mather theory and weak KAM is a large class
of invariant sets often called Mather, Aubry, Mañe sets. These sets are crucial
for our construction. It turns out that these sets are naturally parametrized by
cohomologies c ∈ H1(T2,R) and usually denoted by M̃(c), Ã(c), Ñ (c) respec-
tively. They belong to the phase space T2 × R2 × T and satisfy

M̃(c) ⊂ Ã(c) ⊂ Ñ (c).

For example, these families of sets contain KAM tori as subclass. In our case
the parameter c encodes the information about rotation vector of orbits in Ñ (c).
More precisely, if (θ, p, t) ∈ Ñ (c), then

|p− c| .
√
ε and |θ̇ − ∂pH0(c)| .

√
ε.

(a) Key Theorem 4 proves that for carefully chosen c’s invariant (Aubry) sets
Ã(c)’s belong to the corresponding normally hyperbolic invariant cylinders
{Mi}i in single resonance. Theorem 5 proves that these sets also have
Mather’s projected graph property. Namely, projection of each Aubry set
onto the configuration space T2 is one-to-one with Lipschitz inverse. This
essentially means that these invariant sets are alike Aubry-Mather sets for
the twist maps.
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Figure 4: Jump from one cylinder to another in the same homology

Figure 5: Jump from one cylinder to another in different homologies

(b) Key Theorem 6 similarly to Key Theorem 4 proves that for carefully cho-
sen c’s the corresponding invariant (Aubry) sets Ã(c)’s belong to the corre-
sponding normally hyperbolic4 invariant manifolds {Ci}i in a double reso-
nance. Key Theorem 7 proves that these sets also have Mather’s projected
graph property, described above.

3. “Transverse” intersection of invariant manifolds of neighboring invariant Aubry
sets to produce shadowing

(a) Key Theorem 8 consists of two parts. First, it proves existence of shad-
owing along crumpled normally hyperbolic invariant cylinders along single
resonances. This part essentially follows from Theorem 0.11 [9]. It can

4As a matter of fact there manifolds have a boundary and have only weak invariance, namely,
the vector field is tangent
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also be proven using the method from [23, 24]. Both methods are inspired
by the papers of Mather [53, 54, 56]. The second part establishes existence
of an orbit “jumping” from one cylinder to another at bifurcation points.

(b) Key Theorem 9 proves similar statement to the previous one for double res-
onances. In particular, for certain (simple) homology directions we prove
existence of orbits crossing the double resonance (see curves crossing the
origin on Figures 12 and 17 for an heuristic description).

(c) Key Theorem 10 proves existence of an orbit “jumping” from one cylinder
to another. This allows to change from one resonant line to another. This
is a crucial element of crossing a strong double resonance.
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Figure 6: Partition

3 Theorems on existence of normally hyperbolic

invariant manifolds

Consider the natural projection π : T2×B2×T −→ B2. A net of normally hyperbolic
invariant manifolds has the following meaning. We divide Γ∗ into Γj’s and each
Γj into two parts: Ē

√
ε-neighborhoods of all strong double resonances and Ē

√
ε-

neighborhood of the complement, i.e

∪Nj=1 UĒ
√
ε(ΣK,j) ∪N−1

j=1 UĒ√ε(Γj ∪ Γj+1),

where ΣK,j are defined above punctures in Γj. The complement is called single reso-
nance.

3.1 Description of single resonances

Fix some j ∈ {1, . . . , N}. Consider a passage segment [a
(j)
− , a

(j)
+ ] of a single resonance

segment Γj which by definition is an interval whose end point is either Ē
√
ε near

a puncture or an end point of Γi. Let {a(j)
i }Mi=1 ⊂ [a

(j)
− , a

(j)
+ ] be an ordered set of

bifurcation points with a
(j)
0 = a

(j)
− and a

(j)
M = a

(j)
+ being the end points and all others

being bifurcation points 5. This leads to a partition [a
(j)
− , a

(j)
+ ] = ∪Mi=0[a

(j)
i , a

(j)
i+1] ⊂ Γj

(see Figure 6).
Recall that in non-degeneracy conditions [G0]-[G2] there is a parameter λ, which

has two different meanings. One is quantitative non-degeneracy of local maxima of
averaged potential Z(θs, p) and the other is extendability of local minima beyond
bifurcation points [ai − λ, ai+1 + λ]. It is convenient to assign this dependence to
different parameters. We denote by δ a new (extendability) parameter 0 < δ < λ. For
δ = δ(H0, H1, r,Γ

∗) > 0 in Theorem 4.1, [13] we prove that “over” each non-boundary

5M does depend on j, but dependence is omitted to keep notations simple
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Figure 7: Crumpled Cylinders

segment [a
(j)
i −δ, a

(j)
i+1 +δ] ⊂ Γj there is a 3-dimensional normally hyperbolic (weakly)

invariant cylinder C(j)
i . For the boundary segments [a

(j)
0 , a

(j)
1 + δ] and [a

(j)
M−1 − δ, a

(j)
M ]

the corresponding result is Theorem 15. Meaning of “over” is that its projection onto
the action space satisfies

dist (π(C(j)
i ), [a

(j)
i − δ, a

(j)
i+1 + δ]) .

√
ε,

where dist is the Hausdorff distance. The same statement holds for boundary seg-
ments [a

(j)
0 , a

(j)
1 +δ] and [a

(j)
M−1−δ, a

(j)
M ]. Here [a

(j)
i , a

(j)
i+1] is viewed as the corresponding

subset of Γj using parametrization by pf . Our main result about existence and loca-
tion of normally hyperbolic invariant cylinders near a single resonance is as follows:

Denote by [ai−, a
i
+] either a non-boundary segment [a

(j)
i −δ, a

(j)
i+1+δ], i ∈ {1, . . . ,M−

1} or one of boundary segments [a
(j)
0 − 3

√
ε, a

(j)
1 + δ] and [a

(j)
M−1 − δ, a

(j)
M + 3

√
ε]. We

use O(·) to denote a constant independent of ε, λ, δ, r, but dependent of H0, H1,Γj,
i.e. f = O(g) means |f | ≤ Cg. Consider the Hamiltonian Hε in the normal form

Hε ◦ Φε = H0(p) + εZ(θs, p) + εR(θ, p, t),

where ‖R‖C2 ≤ δ in the region of interest, i.e. p being O(
√
ε)-close to (ps∗(p

f ), pf )
with pf ∈ [ai−, a

i
+] (see notations before (1) and in section 7).

Key Theorem 1. With the above notations for δ and ε positive and small enough
ε > 0 there exists a C1 map

(Θs, P s)(θf , pf , t) : T× [ai−, a
i
+]× T −→ T× R
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such that the cylinder

C(j)
i = {(θs, ps) = (Θs

i , P
s
i )(θf , pf , t) : pf ∈ [ai−, a

i
+], (θf , t) ∈ T× T}

is weakly invariant with respect to Hε in the sense that the Hamiltonian vector field
is tangent to C(j)

j . The cylinder C(j)
i is contained in the set

V
(j)
i :=

{
(θ, p, t) : pf ∈ [ai−, a

i
+], ‖θs − θsi (pf )‖ 6 O

(
λ
)
, ‖ps‖ ≤ O

(
λ5/4
√
ε
)}
,

and it contains all the full orbits of Hε contained in V
(j)
i

6. We have the following
estimates

‖Θs
j(θ

f , pf , t)− θs∗(pf )‖ 6 O
(
λ−1δ

)
,

‖P s
j (θf , pf , t)‖ 6

√
εO
(
λ−3/4δ

)
,∥∥∥∥∂Θs

∂pf

∥∥∥∥ ≤ O

(
λ−5/4

√
δ√

ε

)
,

∥∥∥∥ ∂Θs

∂(θf , t)

∥∥∥∥ ≤ O
(
λ−5/4

√
δ
)
.

Notice that the segment [ai−, a
i
+] can have end points of three types: ai± corre-

sponds to the boundary of B2, a bifurcation point, and belongs to the Ē
√
ε-boundary

of a (strong) double resonance. This theorem for segments whose boundaries do not
end at a double resonance is a simplified version of Theorem 4.1 [13]. For a bound-
ary point on ending at a (strong) double resonances follows from Theorem 15. This
Theorem is an extension of Theorem 4.1 [13] and its proof is a modification of the
proof of the latter Theorem. It turns out that Theorem 4.1 [13] shows existence of a
normally hyperbolic weakly invariant cylinder only O(ε1/4)-away from a strong double
resonance. Theorem 15 extends it validity into O(

√
ε)-neighborhood.

Remark 3.1. The estimates on Θs and P s provides important information about the
geometry of the cylinder C(j)

i .
The first estimate shows that the Θs-component (i.e. slow angular component) is

localized O(λ−1δ)-near the global maximum θsi .
The second estimate provides localization of P s near the origin.
The third and forth estimates show how Θs depends on pf and angular variables

(θf , t). In Remark 7.1 we justify that generically O(
√
ε)-near double resonances Γj ∩

Γ~k′ of a fixed order, e.g. |~k′| ∈ [K, 2K], we have

max

∥∥∥∥∂Θs

∂pf

∥∥∥∥ & 1√
ε
,

6 Notice that there are orbits exiting from V
(j)
i through the “top” or “bottom” pf = ai±. This

prevents up from saying that C(j)
i is invariant.
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where & means that for some constant depending on δ, λ, r,H0, H1,Γj, |~k′|, but inde-
pendent of ε.

This explosion of the upper bound ∂Θs

∂pf
exhibits sensitive dependence on “vertical”

variable pf and is the reason we call there cylinders crumpled (see Figure 7). An

upper bound on
∂Θs

∂pf
will be essentially used in the proof of Mather’s projected graph

theorem (Key Theorem 5).
Dependence on angular (θf , t)-variables is O(λ−5/4δ)-small.
In what follows we choose δ and ε small enough compare to λ. See Theorem 4.1,

[13] and Theorem 15 for explicit bounds.

This result shows that normally hyperbolic invariant manifolds connect to Ē
√
ε-

neighborhood of strong double resonances.

3.2 Description of double resonances and generic properties
at high energy

Now we describe an heuristic picture of the Ē
√
ε-neighborhood of a strong double

resonance p0, i.e. p0 either belongs to a puncture on Γj or to an intersection Γj ∩Γj+1

for some j ∈ {1, . . . , N − 1}. We note that examples of systems near a double
resonance were studied in [16, 43, 45, 46].

We fix two independent resonant lines Γ = Γ~k, Γ′ = Γ~k′ for some ~k = (~k1, k0), ~k′ =

(~k′1, k
′
0) ∈ (Z2 \ 0) × Z, ~k ∦ ~k′ with |~k|, |~k′| < K and a strong double resonance

p0 ∈ Γ ∩ Γ′ ⊂ B2. This means

~k1 · (∂pH0(p0), 1) = 0 , ~k′1 · (∂pH0(p0), 1) = 0.

Assume that ~k and ~k′ are space irreducible, i.e. ~k1 (resp. ~k′1) is either (1, 0) or (0, 1),

or gcd(~k1) = 1 (resp. gcd(~k′1) = 1). Let Γ be an incoming line, i.e. orbits diffuse
toward p0 along this one (see Figure 12 with Γj = Γ and Γj+1 = Γ′). Then we define
slow angles

ϕss = ~k1 · θ + k0 t , ϕsf = ~k′1 · θ + k′0 t.

For p ∈ Γ ∩ {‖p − p0‖ = Ē
√
ε} (see boundary of the ball on Figure 12 crossing

Γ) we have ϕ̇sf � ϕ̇ss. This motivates division into sf — slow-fast and ss — slow-
slow. Denote the torus Ts 3 ϕs = (ϕss, ϕsf ). In section B.1, we show that in
Ē
√
ε–neighborhood of p0, we have the following the normal form

Hε ◦ Φ(θ, p, t) = H0(p) + εZ(~k1 · θ + k0 t,~k
′
1 · θ + k′0 t, p) + ε3/2R(θ, p, t),
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where Z(~k1 · θ+ k0 t,~k
′
1 · θ+ k′0 t, p) is a proper average of H1. In section B.2 we make

a linear symplectic coordinate change ΦL by taking

ps = BT (p− p0), where B =

[
~k1

~k′1

]
and detB = 1.

Since ~k and ~k′ are irreducible this can be done. After the coordinate changes we have

Hε ◦ Φ ◦ ΦL(ϕs, ps, t, E ′) = const +K(ps)− εU(ϕs) +O(ε3/2), (5)

where

• K(ps) is a positive definite quadratic form, depending on the Hessian of H0 at
p0,

• U(ϕs) is a function, depending on a proper average ofH1, and const is a constant
independent of ϕs and ps.

We call K — the slow kinetic energy and U — the slow potential energy. They are
formally defined in (54). Without loss of generality assume that U(ϕs) ≥ 0, U(0) = 0
and 0 is the only global minimum (see condition [A1]). Denote Is =

√
ε ps and call

Hs(Is, ϕs) = K(Is)− U(ϕs)

the slow mechanical system7. Its energy is called slow energy. In-depth study of this
system is the focal point of analysis at a strong double resonance. Denote by

SE = {(ϕs, Is) : Hs = E}

an energy surface of the mechanical system. According to the Mapertuis principle
for a positive “non-critical” energy E > U(0) = 0 orbits of Hs restricted to SE are
reparametrized geodesics of the Jacobi metric

gE(ϕs) = 2(E + U(ϕs)) K. (6)

Fix an integer homology class h ∈ H1(Ts,Z). Denote by γEh a shortest closed
geodesic of gE. Here is the first set of non-degeneracy hypothesis. It concerns with
what we call high slow energy. This set of genericity hypothesis is the same as in [53].
Later, however, we impose additional hypothesis for low energy and they are different
from [53].

Let E0 = E0(H0, H1) > 0 be small and specified later.

7Its orbits are time rescaling of orbits of truncation of (5)
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[DR1] For each E ∈ [E0, Ē], each shortest closed geodesic γEh of gE in the homology
class h is non-degenerate in the sense of Morse, i.e. the corresponding periodic
orbit is hyperbolic.

[DR2] For each E > E0, there are at most two shortest closed geodesics of gE in the
homology class h.

Let E∗ > E0 be such that there are two shortest geodesics γE
∗

h and γE
∗

h of ρE∗ in
the homology class h. Due to non-degeneracy [DR1] there is a local continuation
of γE

∗

h and γE
∗

h to locally shortest geodesics γEh and γEh for E near E∗. For a
smooth closed curve γ denote by `E(γ) its gE-length.

[DR3] Suppose
d(`E(γEh ))

dE
|E=E∗ 6=

d(`E(γEh ))

dE
|E=E∗ .

This means that the gE–lengths of periodic orbits γEh and γEh as function of E
have different derivatives at E = E∗. As a corollary we have only finitely many
E’s with two shortest geodesics.

Theorem 4. Let K(ps) be a positive definite quadratic form. Then the set UEDR of
functions H1 ∈ Sr such that for the corresponding averaged potential U(ϕs) the slow
mechanical system Hs(ϕs, ps) = K(ps) − U(ϕs) satisfies conditions [DR1]-[DR3] is
Cr-open and Cr-dense, where r ≥ 4.

Consider a partition of energy interval [E0, Ē], which is similar to the partition
of a single resonance line (see Figure ??). It follows from condition [DR3] that there
are only finitely many values {Ej}Nj=1 ⊂ [E0, Ē], where there are exactly two minimal
geodesics γEh and γEh . Call such E’s bifurcation energy values. Other energy value are
called regular. Order bifurcation values:

E0 < E1 < E2 < · · · < EN < Ē.

Recall that we denote δ = δ(H0, H1, r,Γ
∗) > 0 a small number. In particular, it is

chosen such that for any j = 1, . . . , N − 1 and E ∈ [Ej, Ej+1] the unique shortest
geodesic γEh has a unique smooth local continuation γEh for E ∈ [Ej − δ, Ej+1 + δ].
Consider the union

MEj ,Ej+1

h = ∪E∈[Ej−δ,Ej+1+δ] γ
E
h .

For the boundary intervals we take union over [E0, E1 + δ] and [EN − δ, Ē + δ]. It

follows from Morse non-degeneracy of γEh thatMEj ,Ej+1

h is a NHIC with the boundary.
We will see in Corollary B.5 that a rescaling of (5) C1−converges to Hs as Hamil-

tonian vector fields. Using standard persistence of normally hyperbolic invariant
cylinders, we obtain the following statement.
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Key Theorem 2. For each j = 1, . . . , N and small ε > 0 the Hamiltonian Hε has a
normally hyperbolic weakly invariant manifold MEj ,Ej+1

h,ε , i.e. the Hamiltonian vector

field of Hε is tangent toMj
h,ε. Moreover, the intersection ofMEj ,Ej+1

h,ε with the regions

{Ej − δ ≤ Hs ≤ Ej+1 + δ} × T is a graph over MEj ,Ej+1

h .
The same holds for the boundary intervals [E0, E1 + δ] and [EN − δ, Ē + δ].

Construction of normally hyperbolic weakly invariant manifolds in the high energy
region E ∈ (E0, Ē) is somewhat similar to the one in single resonance. All such invari-
ant manifolds after projection onto action space are located in O(

√
ε)-neighborhood

of p0.

3.3 Description of double resonances (low energy)

Now we turn to the low (near critical) energy region UE0
√
ε(p0). The slow mechan-

ical system Hs = K − U has at least two special resonant lines Γs1 and Γs2 such
that “over” each one there is a 3-dimensional normally hyperbolic weakly invariant
manifold ME0,s

h1,ε
and ME0,s

h2,ε
. The important feature of these manifolds is that they

“go through” the strong double resonance p0 as shown on Figure 12. We call these
manifolds simple loop manifolds by the reason explained below (see also [47]).

It turns out that these and other normally hyperbolic invariant manifolds have
kissing property near p0, which is a crucial element of “jumping” from one manifold
to another. Now we give a formal description.

Recall that p0 ∈ Γ ∩ Γ′, where Γ and Γ′ are two resonant lines. Naturally, Γ
induces an integer homology class h ∈ H1(Ts,Z). Recall that 0 ∈ Ts ×Rs ' T2 ×R2

is the singular point of the Jacobi metric ρ0. It is a saddle fixed point for the slow
Hamiltonian Hs. Let γ0

h be a shortest geodesic in the homology h with respect to the
Jacobi metric g0. Mather [61] proved that generically we have the following cases:

Definition 3.1. 1. 0 ∈ γ0
h and γ0

h is not self-intersecting. Call such homology
class h simple non-critical and the corresponding geodesic γ0

h simple loop.

2. 0 ∈ γ0
h and γ0

h is self-intersecting. Call such homology class h non-simple and
the corresponding geodesic γ0

h non-simple.

3. 0 6∈ γ0
h, then γ0

h is a regular geodesic. Call such homology class h simple critical.

It turns our there are open sets of mechanical systems, where each of the three
cases occurs. It is only the second item which is somewhat unusual. Notice that γ0

h is
self-intersecting only if 0 ∈ γ0

h, otherwise, curve shortening argument applies at the
intersection.
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We point out that there are always at least two simple homology classes h1, h2 ∈
H1(Ts,Z). To prove that minimize over all integer homology classes h′ ∈ H1(T s,Z)
and geodesics passing though the origin. Pick two minimal shortest h1 and h2. The
corresponding minimal geodesics γ0

hi
, i = 1, 2 are non-self-intersecting8.

Notice that the condition 0 ∈ γ0
h for a geodesic corresponds to a homoclinic orbit

to the origin in the phase space. They are given by intersections of stable and unstable
manifolds of the saddle 0. Existence of transverse intersections implies that there are
open sets of mechanical systems with γ0

h being self-intersecting for some h ∈ H1(T s,Z)
and, therefore, passing though the origin.

If minimal geodesics of ρ0 are self-intersecting the situation was described by
Mather [57].

Lemma 3.2. Let h be a non-simple homology class. Then generically γ0
h is the con-

catenation of of two simple loops, possibly with multiplicities. More precisely, given
h ∈ H1(Ts,Z) generically there are homology classes h1, h2 ∈ H1(Ts,Z) and integers
n1, n2 ∈ Z+ such that the corresponding minimal geodesics γ0

h1
and γ0

h2
are simple

and h = n1h1 + n2h2.

We impose the following assumption

[A0] Assume that for the Hamiltonian Hs and the homology class h, there is a
unique shortest curve γ0

h for the critical Jacobi metric with homology h. If h is non-
simple, then it is the concatenation of two simple loops, possibly with multiplicities.

For E > 0, γEh has no self intersection. As a consequence, there is a unique way
to represent γ0

h as a concatenation of γ0
h1

and γ0
h2

. Denote n = n1 + n2, we have the
following

Lemma 3.3. There exists a sequence σ = (σ1, · · · , σn) ∈ {1, 2}n, unique up to cyclical
translation, such that

γ0
h = γ0

hσ1
∗ · · · ∗ γ0

hσn
.

Now we add more assumptions to [A0] and describe generic properties of the Jacobi
metric. We emphasize that analysis of the phase space, not of the configuration space,
provides additional valuable information! This is a crucial difference with Mather
[54, 57].

8otherwise, γ0
hi

can be decomposed into a sum of at least two other geodesics crossing at the
origin and, therefore, is not shortest.
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3.4 Generic properties of homoclinic orbits and genericity at
low energy

Pick a simple critical homology class h ∈ H1(Ts,Z). Recall that for 0 ∈ γ0
h in the

phase space it corresponds to a homoclinic orbit to the origin. Now we make the
following assumptions:

[A1] The potential U has a unique non-degenerate minimum at 0 and U(0) = 0.

[A2] The linearization of the Hamiltonian flow at (0, 0) has distinct eigenvalues
−λ2 < −λ1 < 0 < λ1 < λ2

In a neighborhood of (0, 0), there exist a smooth local system of coordinates
(u1, u2, s1, s2) = (u, s) such that the ui–axes correspond to the eigendirections of λi
and the si–axes correspond to the eigendirections of −λi for i = 1, 2. Let γ+ = γ0

h,+

be a homoclinic orbit of (0, 0) under the Hamiltonian flow of Hs. Denote γ− = γ0
h,−

the time reversal of γ0
h,+, which is the image of γ0

h,+ under the involution Is 7→ −Is
and t 7→ −t. We call γ+ (resp. γ−) simple loop.

We assume the following of the homoclinics γ+ and γ−.

[A3] The homoclinics γ+ and γ− are not tangent to u2−axis or s2−axis at (0, 0). This,
in particular, imply that the curves are tangent to the u1 and s1 directions.
We assume that γ+ approaches (0, 0) along s1 > 0 in the forward time, and
approaches (0, 0) along u1 > 0 in the backward time; γ− approaches (0, 0) along
s1 < 0 in the forward time, and approaches (0, 0) along u1 < 0 in the backward
time (see Figure 9).

For the non-simple case, we consider two homoclinics γ1 and γ2 that are in the
same direction instead of being in the opposite direction. More precisely, the following
is assumed.

[A3′] The homoclinics γ1 and γ2 are not tangent to u2−axis or s2−axis at (0, 0). Both
γ1 and γ2 approaches (0, 0) along s1 > 0 in the forward time, and approaches
(0, 0) along u1 > 0 in the backward time.

Given d > 0 and 0 < δ < d, let Bd be the d–neighborhood of (0, 0) and let

Σs
± = {s1 = ±δ} ∩Bd, Σu

± = {u1 = ±δ} ∩Bd

be four local sections contained in Bd. We have four local maps

Φ++
loc : U++(⊂ Σs

+) −→ Σu
+, Φ−+

loc : U−+(⊂ Σs
−) −→ Σu

+,
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Figure 8: Homoclinic orbits to the origin

Φ+−
loc : U+−(⊂ Σs

+) −→ Σu
−, Φ−−loc : U−−(⊂ Σs

−) −→ Σu
−.

The local maps are defined in the following way. Let (u, s) be in the domain of one
of the local maps. If the orbit of (u, s) escapes Bd before reaching the destination
section, then the map is considered undefined there. Otherwise, the local map sends
(u, s) to the first intersection of the orbit with the destination section. The local map
is not defined on the whole section and its domain of definition will be made precise
later.

For the case of simple loop, i.e. assuming [A3], we can define two global maps
corresponding to the homoclinics γ+ and γ−. By assumption [A3], for a sufficiently
small δ > 0, the homoclinic γ+ intersects the sections Σu

+ and Σs
+ and γ− intersects

Σu
− and Σs

−. Let p+ and q+ (resp. p− and q−) be the intersection of γ+ (resp. γ−) with
Σu

+ and Σs
+ (resp. Σu

− and Σs
−) . Smooth dependence on initial conditions implies

that for the neighborhoods V ± 3 q± there are a well defined Poincaré return maps

Φ+
glob : V + −→ Σs

+, Φ−glob : V − −→ Σs
−.

When [A3′] is assumed, for i = 1, 2, γi intersect Σu
+ at qi and intersect Σs

+ at pi. The
global maps are denoted

Φ1
glob : V 1 −→ Σs

+, Φ2
glob : V 1 −→ Σs

+.

The composition of local and global maps for the family of periodic orbits shad-
owing γ+ is illustrated in Figure 8.

We will assume that the global maps are “in general position”. We will only phrase
our assumptions [A4a] and [A4b] for the homoclinic γ+ and γ−. The assumptions for
γ1 and γ2 are identical, only requiring different notations and will be called [A4a′]
and [A4b′]. Let W s and W u denote the local stable and unstable manifolds of (0, 0).
Note that W u ∩ Σu

± is one-dimensional and contains q±. Let T uu(q±) be the tangent
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s2

s1

u1

u2

γ

Σs
+

Σu
+

Φ++
loc

Φ+
glob

Figure 9: Global and local maps for γ+

direction to this one dimensional curve at q±. Similarly, we define T ss(p±) to be the
tangent direction to W s ∩ Σs

± at p±.

[A4a] Image of strong stable and unstable directions under DΦ±glob(q±) is transverse to
strong stable and unstable directions at p± on the energy surface S0 = {Hs = 0}.
For the restriction to S0 we have

DΦ+
glob(q+)|TS0T

uu(q+) t T ss(p+), DΦ−glob(q−)|TS0T
uu(q−) t T ss(p−).

[A4b] Under the global map, the image of the plane {s2 = u1 = 0} intersects {s1 =
u2 = 0} at a one dimensional manifold, and the intersection transversal to the
strong stable and unstable direction. More precisely, let

L(p±) = DΦ±glob(q±){s2 = u1 = 0} ∩ {s1 = u2 = 0},

we have that dimL(p±) = 1, L(p±) 6= T ss(p±) and D(Φ±glob)−1L(p±) 6= T uu(q±).

[A4′] Suppose conditions [A4a] and [A4b] hold for both γ1 and γ2.

In the case that the homology h is simple and 0 /∈ γ0
h, we assume

[A4′′] The closed geodesic γ0
h is hyperbolic.

We would like to emphasize that these non-degeneracy assumptions are restrictions
on the Hamiltonian flow in the phase space. Mather [58] imposes non-degeneracy
assumptions on the Jacobi metric in the configuration space.
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Theorem 5. Let K(ps) be a positive definite quadratic form. The set U critDR (p0)
of functions H1 ∈ Sr such that for the corresponding averaged potential U(ϕs) the
slow mechanical system Hs(ϕs, ps) = K(ps)− U(ϕs) satisfies conditions [A0]-[A4] is
Cr-open and Cr-dense, where r ≥ 2.

In what follows we need a quantitative version of conditions [A1]-[A4]. Let κ > 0.
We say conditions [A1]-[A4] holds with non-degeneracy parameter κ if

• U ′′(0) > κ, λ2 − λ1 > 5κ;

• γ± crosses Σu
± and Σs

± transversally for δ > κ;

• For the restriction to the energy surface S0 we have

](DΦ+
glob(q+)|TS0T

uu(q+), T ss(p+)) > κ,

](DΦ−glob(q−)|TS0T
uu(q−), T ss(p−)) > κ.

and
](L(p±), T ss(p±)) > κ, ](D(Φ±glob)−1L(p±), T uu(q±)) > κ.

We show that under our assumptions, for small energy, there exists “shadowing”
periodic orbits close to the homoclinics. These orbits were studied by Shil’nikov [69],
Shil’nikov-Turaev [70], and Bolotin-Rabinowitz [20].

Theorem 6. 1. In the simple loop case, we assume that the conditions A1 - A4
hold for γ+ and γ−. Then there exists E0 > 0 such that for each 0 < E ≤ E0,
there exists a unique periodic orbit γE+ corresponding to a fixed point of the map
Φ+

glob ◦ Φ++
loc restricted to the energy surface SE.

For each 0 < E ≤ E0, there exists a unique periodic orbit γE− corresponding to
a fixed point of the map Φ−glob ◦ Φ−−loc restricted to the energy surface SE.

For each −E0 ≤ E < 0, there exists a unique periodic orbit γEc corresponding to
a fixed point of the map Φ−glob ◦Φ+−

loc ◦Φ+
glob ◦Φ−+

loc restricted to the energy surface
SE.

2. In the non-simple case, assume that the assumptions [A1], [A2], [A3 ′] and [A4′]
hold for γ1 and γ2. Then there exists E0 > 0 such that for 0 < E ≤ E0, the
following hold. For any σ = (σ1, · · · , σn) ∈ {1, 2}n, there is a unique periodic
orbit, denoted by γEσ , corresponding to a unique fixed point of the map

n∏
i=1

(
Φσi

glob ◦ Φ++
loc

)
restricted to the energy surface SE. (Product stands for composition of maps).
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Figure 10: Periodic orbits shadowing γ+

The family of periodic orbits γE+ is depicted in Figure 10.

Theorem 7. In the case of simple loop, assume that conditions [A1]-[A4] are satisfied
with γ+ = γ0

h,+ and γ− = γ0
h,−. For this choice of γ+ and γ−, let γE+ , γEc and γE− be

the family of periodic orbits obtained from part 1 of Theorem 6. Then the set

ME0,s
h =

⋃
0<E≤E0

γE+ ∪ γ+ ∪
⋃

−E0≤E<0

γEc ∪ γ− ∪
⋃

0<E≤E0

γE−

is a C1 smooth normally hyperbolic invariant manifold with boundaries γE0
+ , γE0

c and
γE0
− (see Figure 11).

In the case of non-simple loop, assume that [A1], [A2], [A3 ′] and [A4′] are satisfied
with γ1 = γ0

h1
and γ2 = γ0

h2
. Let γσE denote the family of periodic orbits obtained from

applying part 2 of Theorem 6 to the sequence σ determined by Lemma 3.3. We have
that for any 0 < e < E0, the set

Me,E0

h = ∪e≤E≤E0γ
E
σ

is a C1 smooth normally hyperbolic invariant manifold with the boundary (see Figure
11).

Moreover, the conclusions of the theorem also applies to any sufficiently small C2

perturbation of the slow mechanical system Hs = K − U , where the C2-size of such
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Figure 11: Normally hyperbolic invariant manifolds with kissing property

a perturbation depends only on quantitative non-degeneracy of hypothesis [A1]-[A4],
given by κ > 0, and C2-norms of H0 and H1.

Remark 3.2. Due to hyperbolicity the cylinder ME0,s
h is Cα for any α satisfying

1 < α < λ2/λ1.
If h1 and h2 corresponds to simple loops, then the corresponding invariant man-

ifolds ME0,s
h1

and ME0,s
h2

have a tangency along a two dimensional plane at the
origin. One can say that we have “kissing manifolds”, see Figure 11. This tangency
is persistent 9 !

Remark 3.3. In the notations of the beginning of this section for small enough E0

and 0 ≤ E ≤ E0 we show that
— in the simple loop case, the shadowing orbits γE± coincides with the minimal

geodesics γEh,± (see Propositions 8.10 and 8.11).
— in the non-simple case, γEσ,± coincides with γEh,±. By Lemma 3.3, σ is uniquely

determined by h (see Proposition 8.14 and Remark 8.3).

9A. Sorrentino called persistence of this picture “power of love”
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Remark 3.4. Using Theorem 7 and Remark 3.3, if Hs satisfies conditions [A0]-[A4],
then the shortest geodesic γEh is unique and hyperbolic for any E > 0. Moreover, this
is an open condition, due to the last statement of Theorem 7. This implies the set

U critDR (p0) ∩
⋂
E0>0

UE0
DR(p0)

is an open and dense set.
Denote UEDR =

⋂
E0>0 U

E0
DR(p0), then for each p0, the set UCritDR (p0) ∩ UE0

DR(p0) is
open and dense. Since for each λ > 0 there are only finitely many double resonances,
the set

U =
⋃
λ>0

UλSR ∩

(⋂
p0

UEDR(p0) ∩ UCritDR (p0)

)
,

is open and dense.

Key Theorem 3. Let r ≥ 4 and assume that Hε = H0 + εH1 is Cr and such that
H1 ∈ U critDR (p0) ⊂ Sr, i.e. Hε satisfies the conditions of Theorem 7.

1. If homology h is simple, then Hε exhibits normally hyperbolic weakly invariant10

manifold ME0,s
h,ε . Moreover, the intersection of ME0,s

h,ε with the regions {−E0 ≤
Hs ≤ E0} × T is a C1-graph over ME0,s

h .

2. If homology h is non-simple. Then Hε exhibits simple normally hyperbolic
weakly11 invariant cylinders ME0,s

h1,ε
and ME0,s

h2,ε
satisfying the conditions of the

previous item. Moreover, for fixed 0 < e < E0, there exists a normally hy-
perbolic weakly invariant cylinder Me,E0

h,ε whose intersection with the region

{e ≤ Hs ≤ E0} × T is a C1-graph over Me,E0

h .

Remark 3.5. Notice that the theorem is stated for the Hamiltonian Hε. Hε is related
to Hs in Appendix B (sections B.1 and B.2). After a proper normal form Φ and a
linear transformation Φ′L we have that Hε◦Φ◦Φ′L is a O(ε1/2)-small fast time-periodic
perturbation of Hs.

Sometimes Me,E0

h,ε is referred as a flower cylinder due to its shape (see Figure 11).

These are all the essential stages of building a net of normally hyperbolic invariant
manifolds. The next important step is to construct diffusing orbits following this net
of invariant manifolds.

10as before weakly means that the vector field of the Hamiltonian Hε is tangent to ME0,s
h,ε

11“weakly” has the same as before
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Figure 12: An heuristic picture of a double resonance

3.5 Heuristics of the diffusion across double resonances

Before we go into description of sophisticated variational shadowing techniques we
present heuristics of crossing a strong double resonance p0 ∈ Γ ∩ Γ′. Recall that Γ is
an incoming resonant line and h the homology class induced by Γ on Ts (see Figure
12). As we described above generically there are three cases:

1. the limiting γ0
h is a simple curve and 0 ∈ γ0

h;

2. the limiting γ0
h is a non-simple curve, 0 ∈ γ0

h, and there are two simple curves
γ0
h1

= γ1 and γ0
h2

= γ2 and two integers n1, n2 ∈ Z+ such that h = n1h1 + n2h2;

3. the limiting γ0
h is a simple curve and 0 6∈ γ0

h;

In order to see the cases below one can follow from the incoming arrow to all the
outgoing arrows on Figure 12

3.5.1 Crossing through along a simple loop γ0
h 3 0

If homology h is simple, then an orbit enters along a normally hyperbolic weakly
invariant manifoldME0,s

h,ε established by Key Theorems 2 and 3. We show that it can

diffuse along ME0,s
h,ε across p0 to “the other side” (see Figure 12 in homologies and

Figure 17, part a) in cohomologies ).
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3.5.2 Crossing through along a simple loop γ0
h 63 0

Recall that mechanical systems are invariant under involution: Is −→ −Is and
t −→ −t. If homology h is simple, then the mechanical system has a normally hy-
perbolic invariant cylinder ME0,s

h and its involution ME0,s
−h . A diffusing orbit enters

along a normally hyperbolic weakly invariant cylinderME0,s
h,ε (which is a perturbation

ofME0,s
h ). Then we reach zero energy surface and go through the origin to the “oppo-

site” normally hyperbolic weakly invariant cylinderME0,s
−h,ε (which is a perturbation of

ME0,s
−h ) and continues on “the other side”. It corresponds to exactly the same picture

as the previous case.

3.5.3 Crossing through along a non-simple loop γ0
h

If h is non-simple, i.e the union of two simple loops, then an orbit enters along a
normally hyperbolic weakly invariant cylinder Me,E0

h,ε reaches a small energy e. As

energy E decreases to zero the cylinderMe,E0

h,ε goes toward the origin and becomes a

flower cylinder and its boundary approach the union of simple cylinders ME0,s
h1,ε

and

ME0,s
h2,ε

(see Figure 11). For a small enough energy e and outside of a tiny neighborhood

of the origin the flower cylinder Me,E0

h,ε is almost tangent to one of simple normally

hyperbolic weakly invariant cylindersME0,s
hi,ε

, i = 1 or 2. Near the origin both normally
hyperbolic weakly invariant manifolds have least contracting and least expanding
directions almost parallel to the u1s1–place. Moreover, their invariant manifolds have
tangent directions which are almost parallel to the u2s2–plane. As a result there
should be transverse intersection of invariant manifolds of Me,E0

hi,ε
and ME0,s

hi,ε
. This

implies

persistent existence of orbits jumping from

the flower cylinder Me,E0

h,ε to a simple loop one ME0,s
hi,ε

.

Then such orbits can cross the double resonance alongME0,s
hi,ε

. After that it jumps

back on the opposite branch of Me,E0

h,ε and can diffuse away along it as before (see
Figure 12 in homologies and Figure 17, part b) in cohomologies).

3.5.4 Turning a corner from Γ to Γ′

Let oε ⊂ T2×B2×T denote the periodic orbit whose projection onto T2×B2 is near
the origin.
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Now we cross a strong double resonance by entering along Γ and exiting along Γ′.
Denote by h′ ∈ H1(Ts,Z) the homology class induced by Γ′ on Ts. As before an orbit
enters along a normally hyperbolic weakly invariant manifold Me,E0

h,ε . As it diffused

toward the center of a strong double resonance p0 the cylinderMe,E0

h,ε becomes a flower
cylinder and approaches to a small enough energy.

• If h and h′ are simple, then we diffuse along a normally hyperbolic weakly
invariant manifoldME0,s

h,ε to the unique periodic orbit oε. This periodic orbit belongs

to both ME0,s
h,ε and ME0,s

h′,ε so we can “jump” from one cylinder to the other and

continue diffusion alongME0,s
h′,ε (see Figure 12 in homologies and Figure 17, part c) in

cohomologies).

• If h is non-simple and h′ is simple and such that h′ = h1 or h2 from the decom-
position h = n1h1 + n2h2, then we can jump to Me,E0

h′,ε directly fromMe,E0

h,ε and cross

the strong double resonance along ME0

h′,ε. (see Figure 12 in homologies and Figure
17, part b) in cohomologies).

• If h is non-simple and h′ is simple, but neither h1 nor h2 from the decomposition
h = n1h1 + n2h2, then we can jump to Me,E0

h1,ε
from Me,E0

h,ε and make a turn as in the
first item (see Figure 12 in homologies and Figure 17, part d) in cohomologies).

• If both h and h′ are non-simple, then both Me,E0

h,ε and Me,E0

h′,ε becomes flower
cylinders. In this case, there are two simple homology classes h1 and h′1 such that
a normally hyperbolic (weakly) invariant manifolds ME0,s

h1,ε
and ME0,s

h′1,ε
crosses along

the periodic orbit oε. Moreover, we can first jump onto ME0,s
h1,ε

go to the periodic

orbit along and jump to ME0,s
h′1,ε

, cross (if necessary) the double resonance, and only

afterward jump onto Me,E0

h′,ε (see Figure 12 in homologies and Figure 17, part e) in
cohomologies).
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4 Localization of the Aubry sets and the Mañe sets

and Mather’s projected graph theorems

We divide this section into two parts: single and double resonances.
In our proof we rely on various results about properties of the Aubry, Mather,

and Mane sets obtained earlier. This led to a notational conflict. Sometimes,
Ã(c), M̃(c), Ñ (c) denote (continuous) Aubry, Mather, and Mañe sets as subsets
of T ∗T2 × T ⊃ T2 × B2 × T (see e.g. [57]). These are invariant sets of the asso-
ciated Hamiltonian flow. Moreover, we need to keep track of time component (see
sections 10 and 12). Sometimes, Ã(c), M̃(c), Ñ (c) denote (discrete) Aubry, Mather,
and Mañe sets as subsets of T ∗T2 ⊃ T2 × B2 (see e.g. [9, 34]). These are invariant
sets of the time one map. To somewhat consolidate both we denote

• Ã(c), M̃(c), Ñ (c) the discrete Aubry, Mather, and Mañe sets respectively.

• ÃH(c), M̃H(c), ÑH(c) the continuous Aubry, Mather, and Mañe sets respec-
tively. Subscript H also emphasises dependence on the underlying Hamiltonian
H.

4.1 Localization and Mather’s projected graph theorem for
single resonances

In this section we study the Hamiltonian Hε near a single resonance Γj ⊂ Γ∗ away
from strong double resonances from the point of view of Mather theory and weak
KAM theory. More precisely, we analyze dynamics with action component being in
the neighborhood of the set

{p = (ps∗(p
f ), pf ), pf ∈ [a−, a+] ⊂ [amin, amax]} ⊂ Γj.

The main goal here is to state Key Theorems 4 and 5. As before we assume that the
averaged potential Z = Zj satisfies the generic conditions [G0]-[G2]. Then that there

exists a partition of [amin, amax] =
⋃N−1
i=1 [ai, ai+1], such that for pf ∈ [ai − λ, ai+1 + λ]

the function Z(θs, ps∗(p
f ), pf ) has a nondegenerate local maximum at θsi (see Figure 6).

Key Theorem 4 says that for one parameter family of c = (ps∗(c
f ), cf ) and cf ∈

[ai − λ, ai+1 + λ] we have that the corresponding Aubry sets ÃH(c) belong to a

neighborhood of the normally hyperbolic invariant cylinders C
(j)
i constructed in Key

Theorem 1. Then Key Theorem 5 improves this claim to say that these ÃH(c)’s

and even “bigger” Mañe sets ÑH(c) belong to the corresponding cylinder C(j)
i away

from bifurcation points ai, ai+1. Near a bifurcation point ai+1 they could belong to

either of the two cylinders C(j)
i and C(j)

i+1. Moreover, in all cases these Aubry sets
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ÃH(c)∩C(j)
i has a one-to-one projection onto the fast angle θf with Lipschitz inverse.

In a general setting this is the well-known Mather graph theorem. In our setting
we call it Mather’s projected graph theorem. It leads to ordering of minimizers on
the base (θf , t) ∈ T2 and shows that such Aubry sets ÃH(c) ∩ C(j)

i can be only of
Aubry-Mather type: either invariant 2-dimensional tori, or Denjoy sets, or periodic
orbits with connecting heteroclinics.

It turns out that under some circumstances it is more convenient to study con-
tinuous dynamics in T2 × B2 × T ⊂ T ∗T2 × T. In other situations one considers the
time one map and study discrete dynamics in T2×B2 −→ T2×B2. As a result there
is a one-to-one correspondence between invariant sets of the continuous flow and its
discrete version.

We first point out the following consequences of the genericity conditions [G0]-
[G2]: there exists 0 < b < δ/2 < λ/4 depending on H1 such that

[G1′]
Z(θsi (p

f ), ps∗(p
f ))− Z(θs, ps∗(p

f )) ≥ b‖θs − θsi (pf )‖,
for each pf ∈ [ai + b, ai+1 − b].

[G2′] For pf ∈ [ai+1 − b, ai+1 + b], i = 0, · · · , s− 2, we have

max{Z(θsi , p
s
∗(p

f )), Z(θsi+1, p∗(p
f ))} − Z(θs, ps∗(p

f ))

≥ bmin{‖θs − θsi ‖, ‖θs − θsi+1‖}2.

In the first case, the function Z has a single non-degenerate maximum, which we
will call the “single peak” case, while the second case will be called the “double peak”
case. The single peak case corresponds to a unique maximum for Z, and the double
peak case corresponds to a neighborhood of a bifurcation. The shape of the function
Z allows us to localize properly chosen Aubry sets and Mañe sets of the Hamiltonian
Hε.

Recall that [ai−, a
i
+] denotes either a non-boundary segment [a

(j)
i − δ, a

(j)
i+1 + δ], i ∈

{1, . . . ,M −1} or one of boundary segments [a
(j)
0 −3

√
ε, a

(j)
1 + δ] and [a

(j)
M−1− δ, a

(j)
M +

3
√
ε]. According to Key Theorem 1, for each [ai−, a

i
+] there exists

C(j)
i = {(θs, ps) = (Θs

j , P
s
j )(θf , pf , t)) : pf ∈ [ai−, a

i
+], (θf , t) ∈ T× T},

which contains all full orbits contained in

V
(j)
i := {(θ, p, t) : pf ∈ [ai−, a

i
+], ‖(θs, ps)− (θsj , p

s
∗)‖ ≤ ρ1}.

As there may be orbits in C(j)
i escaping from V

(j)
i through top/bottom boundaries

pf = ai− or ai+. Therefore, C(j)
i is not necessarily invariant in the strict sense.
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This information allows us to study the Mather set, Aubry set and Mañe set of
the Hamiltonian Hε. Let A = 2 maxp∈B2,v∈R2, |v|=1〈∂2

ppH0(p)v, v〉.
Let b > 0. Denote [āi−, ā

i
+] denotes either a non-boundary segment [a

(j)
i − b, a

(j)
i+1 +

b], i ∈ {1, . . . ,M − 1} or one of boundary segments [a
(j)
0 − 2

√
ε, a

(j)
1 + b] and [a

(j)
M−1−

b, a
(j)
M +

√
ε].

Key Theorem 4 (Localization). Let the averaged potential Z of Hε, given by (1),
satisfy [G0]-[G2], then there exist δ0 = δ0(H0, λ, r,Γ

∗) > 0, ε0 = ε0(H0, λ, r,Γ
∗) > 0,

and 0 < ρ2 < ρ1 such that for 0 < ε < ε0 and 0 < b < δ/2 < δ0/2 for the Hamiltonian
Hε the following hold.

1. For any c = (ps∗(c
f ), cf ) such that cf ∈ [āi−, ā

i
+], ÑH(c) is contained in

{(θ, p, t) : ‖p− c‖ ≤ (10A+ 1)
√
ε, ‖θs − θsj(pf )‖ ≤ ρ2}.

2. For c = (ps∗(c
f ), cf ) such that cf ∈ [āi−, ā

i
+], we have that ÃH(c) is contained in

{(θ, p, t) : ‖p− c‖ ≤ (10A+ 1)
√
ε, min{‖θs − θsi (pf )‖, ‖θs − θsi+1(pf )‖} ≤ ρ2}.

Apply the statements of the previous theorem with Key Theorem 1, we may
further localize these sets on the normally hyperbolic weakly invariant cylinders C(j)

i

and C(j+1)
i . Moreover, locally these sets are graphs over the θf component, which is

a version of Mather’s projected graph theorem.
Let δ′ > 0. Denote [âi−, â

i
+] denotes either a non-boundary segment [a

(j)
i −δ′, a

(j)
i+1+

δ′], i ∈ {1, . . . ,M − 1} or one of boundary segments [a
(j)
0 −

√
ε, a

(j)
1 + δ′] and [a

(j)
M−1−

δ′, a
(j)
M +

√
ε].

Key Theorem 5 (Mather’s projected graph theorem). Let the averaged potential
Z of Hε, given by (1), satisfy [G0]-[G2], there exist δ′ = δ′(b,H0, λ, r,Γ

∗) > 0 and
ε0 = ε0(b,H0, λ, r,Γ

∗) > 0 such that for 0 < δ ≤ δ0 and 0 < ε < ε0 we have:

1. There exists 0 < ρ2 < ρ1 such that for c = (ps∗(c
f ), cf ) with cf ∈ (âi−, â

i
+)

the Mañe set ÑH(c) ⊃ ÃH(c) is contained in the normally hyperbolic weakly

invariant cylinder C(j)
i

12.

Moreover, let πθf be the projection to the θf component, we have that πθf |ÃH(c)
is one-to-one and the inverse is Lipschitz.

2. For cf ∈ [âi+ − δ′, âi+ + δ′], we have that ÃH(c) ⊂ C(j)
i ∪ C

(j)
i+1.

Moreover, πθf |ÃH(c) ∩ C(j)
i and πθf |ÃH(c) ∩ C(j)

i+1 are both one-to-one and have
Lipschitz inverses.

12as before “weakly” means that the Hamiltonian vector field of Hε is tangent to C(j)
i .
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Recall that Key Theorem 1 for resonant segments not ending at a strong double
resonance follows from Theorem 4.1 [13]. For resonant segments ending at a strong
double resonance it follows from Theorem 15. Proofs of both Theorem 4.1 [13] and
Theorem 15 consists of two steps: find a normal form Nε = Hε ◦Φε (Corollary 3.2 [13]
and Theorem 17 respectively) and construct an isolating block for Nε (see sections
4 in [13] and section 7.3 respectively). The only difference of the two is that in the
normal form theorem we show that

Nε = Hε ◦ Φε = H0(·) + εZ(·) + εR(·, t),

where ‖R‖ ≤ δ for some small predetermined δ and two different norms. In [13] we
use the standard C2-norm, while in section 7.3 we use a skew-symmetric C2-norm. It
turns out it does not affect applicability of the isolating block arguments as shown in
section 7.3.

We observe that Key Theorem 4 can be proven in exactly the same way as Theorem
5.1 [13] and Key Theorem 5 can be proven in exactly the same way as Theorem 5.2
[13]. To see that notice that Theorems 5.1 and 5.2 are proven in section 5 and
the proof applies to the remainder R being small in the C0-norm (see Lemma 5.3
and Proposition 5.6 there). It remains to note that the skew-symmestric norm from
section 7.3 coincides with the C0-normal from section 4 in [13]. Thus, making the
proof from section 4 [13] applicable to our situation.

4.2 Localization and Mather’s projected graph theorem for
double resonances

In this section we study the Hamiltonian Hε near a strong double resonance from the
point of view of Mather and weak KAM theory. More precisely, we consider a double
resonance p0 ∈ Γ∩Γ′ and dynamics in its O(

√
ε)-neighborhood. As we pointed out in

(5) and remark 3.5 this dynamics is closely related to dynamics of the slow mechanical
system Hs(Is, ϕs). Thus, we consider the following Hamiltonian

Hs
ε (ϕ

s, Is, τ) = K(Is)− U(ϕs) +
√
εP (ϕs, Is, τ), (7)

where ϕs ∈ Ts, Is ∈ R2 and τ ∈
√
εT, with ‖P‖C2 ≤ 1. Denote Hs(ϕs, Is) =

K(Is) − U(ϕs). Without loss of generality we assume minU = 0. As before we
assume that minimum is unique.

By the Maupertuis principle, for each E > 0 and h ∈ H1(Ts,Z), there exists at
least one minimal closed geodesic in the homology class h. For the geodesic on the
critical energy surface there are three cases:

• simple loop passing though the origin,
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• simple loop not passing the origin,

• non-simple loop.

We first discuss the simple loop case.

4.2.1 NHIMs near a double resonance

The net of NHIMs near a double resonance consists of high energy and low energy
cylinders, and for low energy, the type of the cylinders depends on the properties of
the associated homologies h and h′. We summarize the content of Key Theorems 2
and 3 as follows.

For the slow system, there exists NHICs

MEj ,Ej+1

h =
⋃

Ej−δ<E<Ej+1+δ

γEh , 0 ≤ j ≤ N − 1

and the corresponding cylinders MEj ,Ej+1

h,ε for the perturbed system (constructed in
Key Theorem 2). Let I : (ϕs, Is) 7→ (ϕs,−Is), then by the symmetry of the slow

system Hs, the cylindersMEj ,Ej+1

−h = I(MEj ,Ej+1

h ). The perturbed cylindersMEj ,Ej+1

−h,ε

are graphs overMEj ,Ej+1

−h , but is not the reflection ofMEj ,Ej+1

h,ε in general. In addition,
we assume that E0 is not an bifurcation value. Otherwise, we relabel E0 as E1 and
pick a smaller E0.

In the case that h is simple and non-critical, the cylinder ME0,E1

h is smoothly
attached to the cylinder

M0,E0

h =
⋃

−δ<E<E0+δ

γEh .

If h is simple and critical, by Key Theorem 3, there exists a simple loop cylinder
ME0,s

h containing the loop γ0
h. The cylinder is smoothly attached to bothME0,E1

h and
ME0,E1

−h .
If h is non-simple, by Key Theorem 3, part 2, there exists an invariant cylinder

Me/2,E0

h =
⋃

e/2<E<E0

γEh .

By local uniqueness,Me/2,E0

h is smoothly attached toME0,E1

h . For a sufficiently small
ε, the perturbed cylinder Me,E0

h,ε is well defined.
After the perturbation, the hyperbolic fixed point (0, 0) corresponds to a hyper-

bolic periodic orbit, denoted oε. If h is simple and critical, oε ⊂ ME0,s
h,ε ; but if h is

simple and non-critical, oε ∩M0,E1

h,ε = ∅.
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For simple loops, we have a net of NHIMs

{MEj ,Ej+1

h,ε }Nj=0 ∪M
E0,s
h,ε ∪ {M

Ej ,Ej+1

−h,ε }Nj=0

that connects the high energies of homology h and homology−h. For non-simple loop,
the NHIMs does not reach critical energy. However, as h decomposes to n1h1 +n2h2,
with h1 and h2 simple, we have the corresponding simple cylindersME0,s

h1,ε
andME0,s

h2,ε
.

For all types of cylinders, we have localization of the Aubry sets and the Mañe sets,
with appropriately chosen cohomologies.

4.2.2 Choice of the cohomology classes

For the slow system Hs, each minimal geodesic γEh corresponds to a minimal measure
of the system, and has an associated cohomology class. More precisely, we assume that
γEh is parametrized so that it satisfies the Euler-Lagrange equation, and T = T (γEh )
is its period under this parametrization. Then the probability measure supported on
γEh is a minimal measure, and its rotation number is

1

T

∫ T

0

γ̇Eh dt =
1

T
.

The associated cohomology class is a convex subset

LFβ(h/T (γEh )),

of H1(T2,R), where LFβ is the Legendre-Fenchel transform of the β-function defined
by Mather (see (30) section 9.6 for definition).

Assume that the system Hs satisfies conditions [DR1]-[DR3] and conditions [A0]-
[A4]. Then for 0 < E ≤ E0, or Ej < E < Ej+1, 0 ≤ j ≤ N − 1, there exists a unique
minimal geodesic γEh for energy E. In this case, we define

λEh = 1/T (γEh ).

For the bifurcation value E = Ej, 0 ≤ j ≤ N − 1, there are two minimal geodesics
γEh and γ̄Eh . We still write λEh = 1/T (γEh ), where the choice of γEh among the two is
arbitrary. We will show that the set LFβ(λEh h) is independent of the choice of γEh
(see Theorem 28 section C), and hence LFβ(λEh h) is well defined as a set function of
E.

We call the union ⋃
E>0

LFβ(λEh h) (8)

the channel associated to the homology h, and we will choose a curve of cohomologies
within this channel. For our choice of cohomologies, the associated Aubry sets are
contained in the normally hyperbolic invariant cylinders. The choice of the cohomol-
ogy in the channel is illustrated in Figure 13.
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Figure 13: Channel and cohomology: Left: simple channel (both critical and non-
critical); right: non-simple channel

Proposition 4.1. Assume that Hs satisfies the conditions [DR1]-[DR3] and [A0]-
[A4]. Then there exists a continuous function c̄h : [0, Ē] −→ H1(Ts,R) satisfying
c̄h(E) ∈ LFβ(λEh h), E > 0, with the following properties.

1. For 0 < E ≤ E0, or Ej < E < Ej+1, 0 ≤ j ≤ N − 1,

AHs(c̄h(E)) = γEh .

2. For the bifurcation values E = Ej, j ≥ 1,

AHs(c̄h(Ej)) = γEh ∪ γ̄Eh .

3. If h is simple and critical, then

AHs(c̄h(0)) = γ0
h;

for each 0 ≤ λ < 1,
AHs(λc̄h(0)) = {ϕs = 0}.

4. If h is simple and non-critical, then

AHs(c̄h(0)) = γ0
h ∪ {ϕs = 0};

for each 0 ≤ λ < 1,
AHs(λc̄h(0)) = {ϕs = 0}.
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4.2.3 Properties of the Aubry sets and Mañe sets

For the perturbed slow systemHs
ε = Hs+

√
εP on Ts×R2×

√
εT, similar to Proposition

4.1, we have the following localization statement.

Theorem 8. Assume that Hs satisfies the conditions of Key Theorems 2 and 3. Then
there exists a constant δ = δ(Hs) > 0 such that for some ε0 = ε0(Hs, δ) > 0 and for
all 0 < ε < ε0 we have

1. For Ej + δ ≤ E ≤ Ej+1 − δ with 0 ≤ j ≤ N ,

ÑHs
ε
(c̄h(E)) ⊂MEj ,Ej+1

h,ε .

2. For Ej − δ < E < Ej + δ with 1 ≤ j ≤ N ,

ÃHs
ε
(c̄h(E)) ⊂MEj−1,Ej

h,ε ∪MEj ,Ej+1

h,ε .

3. Assume that h is simple and critical, then

ÃHs
ε
(c̄h(E)) ⊂ME0,s

h,ε ∪M
E0,E1

h,ε , 0 ≤ E ≤ E0,

ÃHs
ε
(λc̄h(0)) ⊂ME0,s

h,ε ∪M
E0,E1

h,ε , 0 ≤ λ < 1.

Note that ME0,s
h,ε ∪M

E0,E1

h,ε is one smooth cylinder.

4. If h is simple and non-critical, then

ÑHs
ε
(c̄h(E)) ⊂M0,E0

h,ε , δ ≤ E ≤ E0,

ÃHs
ε
(c̄h(E)) ⊂ oε ∪M0,E0

h,ε , 0 ≤ E < δ,

ÃHs
ε
(λc̄h(0)) ⊂ oε ∪M0,E0

h,ε , 1− δ ≤ λ < 1,

ÑHs
ε
(λc̄h(0)) ⊂ oε, 0 ≤ λ < 1− δ.

5. If h is non-simple, then

ÑHs
ε
(c̄h(E)) ⊂Me,E0

h , e ≤ E ≤ E0.

As explained in Appendix B.3, there is a relation between the Aubry sets of the
Hamiltonian Hs

ε and the Hamiltonian Hε in (ϕs, ps, t) coordinates. More precisely, we
have

AHε(ch(E)) = Φ−1
L AHs

ε
(c̄h(E)), with ch(E) = p0 + c̄h(E)BT

√
ε, (9)

where ΦL(ϕs, ps) = (ϕs, (ps − ps0)/
√
ε). Denote cλh = p0 + λBT c̄h(0)

√
ε, we have

AHε(cλh) = Φ−1
L AHs

ε
(λc̄h(0)) as well. Similar conclusions hold for the Mañe sets.

As a consequence, we obtain localization statements about cohomology classes of
the original Hamiltonian Hε.

44



Key Theorem 6. Assume that Hs satisfies the conditions of Key Theorems 2 and 3.
Then there exists δ = δ(H0, H1,Γ

∗, r) > 0 such that for some ε0 = ε0(H0, H1,Γ
∗, r, δ) >

0 and for all 0 < ε < ε0 we have

1. For Ej + δ ≤ E ≤ Ej+1 − δ with 0 ≤ j ≤ N we have

ÑHε(ch(E)) ⊂MEj ,Ej+1

h,ε .

2. For Ej − δ < E < Ej + δ with 1 ≤ j ≤ N ,

ÃHε(ch(E)) ⊂MEj−1,Ej
h,ε ∪MEj ,Ej+1

h,ε .

3. Assume that h is simple and critical, then

ÑHε(ch(E)) ⊂ME0,s
h,ε ∪M

E0,E1

h,ε , 0 ≤ E ≤ E0,

ÑHε(cλh) ⊂M
E0,s
h,ε , 0 ≤ λ < 1.

4. If h is simple and non-critical, then

ÑHε(ch(E)) ⊂M0,E0

h,ε , δ ≤ E ≤ E0,

ÑHε(ch(E)) ⊂ oε ∪M0,E0

h,ε , 0 ≤ E < δ,

ÑHε(cλh) ⊂ oε ∪M0,E0

h,ε , 1− δ ≤ λ < 1,

ÑHε(cλh) ⊂ oε, 0 ≤ λ < 1− δ.

5. If h is non-simple, then

ÑHε(ch(E)) ⊂Me,E0

h,ε , e ≤ E ≤ E0.

We have that the Aubry sets satisfy Mather’s projected graph theorem.

Key Theorem 7 (Mather’s projected graph theorem). Assume that Hs satisfies the
conditions of Key Theorem 2 and 3. Then there exist δ = δ(H0, H1,Γ, r) > 0 and
ε0 = ε0(H0, H1,Γ, r, δ) > 0 such that for all 0 < ε < ε0,

1. For Ej + δ ≤ E ≤ Ej+1 − δ with 0 ≤ j ≤ N , the Aubry set ÃHε(ch(E)) is
contained in a Lipshitz graph over γEh .

2. For Ej− δ < E < Ej + δ with 1 ≤ j ≤ N , the Aubry set ÃHε(ch(E))∩MEj−1,Ej
h,ε

and ÃHε(ch(E))∩MEj ,Ej+1

h,ε are contained in graphs over γEh and γ̄Eh , respectively.
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3. Assume that h is simple and critical, then

• for 0 ≤ E ≤ E0, the Aubry set ÃHε(ch(E)) is contained in a graph over
γEh ;

• for 0 ≤ λ < 1, the Aubry set ÃHε(cλh) is contained in a graph over γ0
h.

4. If h is simple and non-critical, then

• for 0 ≤ E ≤ E0, the Aubry set ÃHε(ch(E)) is contained in a graph over
γEh ;

• for 1− δ ≤ λ < 1, the Aubry set ÃHε(cλh)∩M
0,E0

h,ε is contained in a graph
over γ0

h;

• for 0 ≤ λ ≤ 1− δ, the Aubry set ÃHε(cλh) ⊂ oε.

5. If h is non-simple, then for e ≤ E ≤ E0, the Aubry set ÃHε(ch(E)) is contained
in a graph over γEh .

4.3 Choice of auxiliary cohomology classes for a non-simple
homology

Assume that h is a non-simple homology. Assume that condition [A0] holds and by
Lemma 3.2 we have decomposition h = n1h1+n2h2 into simple homologies. Let c̄h(E)
be the associated cohomologies as in Proposition 4.1. Since the homology h1 is simple,
we can choose a curve of cohomology ch1(E) contained in the channel associated to h1

satisfying the conclusions of Proposition 4.1. In this section, we show how to modify
the function c̄h1(E) such that it satisfies some additional properties relative to the
homology h.

Let h⊥1 ∈ H1(T2,R) be a unit homology vector orthogonal to h1.

Proposition 4.2. There exists a continuous function b̄h1 : [0, E0] −→ H1(T2,R),
b̄h1(E) ∈ LFβ(λEh1h1) for E > 0, with the following properties.

1. For 0 < E ≤ E0, AHs(b̄h1(E)) = γEh1.

2. b̄h1(0) = c̄h(0).

3.

lim
E−→0+

b̄h1(E)− c̄h(E)

‖b̄h1(E)− c̄h(E)‖
= h⊥1 .
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Figure 14: Simple channel associated to a non-simple one

In Appendix C we analyze properties of the channel
⋃
E>0 LFβ(λEh′h

′) of coho-
mologies, defined in (8), for simple and non-simple h. Most of them are summarized
in Theorem 28. Using this Theorem we can choose b̄h1(E) in such a way that the
following properties of the channels:

• The set LFβ(λEh h) is a closed interval of non-zero width for each E > 0.

• As E −→ 0, the set LFβ(λEh h) converges to a single point c∗(h).

• The set LFβ(λEh1h1) is a closed interval of non-zero width. Hence, the channel⋃
E>0 LFβ(λEh1h1) has width bounded away from zero.

• The segment LFβ(λEh1h1) is parallel to h⊥1 , where h⊥1 denotes the vector per-
pendicular to h1. As E −→ 0, the set LFβ(λEh1h1) converges to a segment of
nonzero width. Moreover, one of the end points of this segment is c∗h(h).

For an illustration of the channels, see Figure 14.
It is shown in section 3.3 that under our non-degeneracy conditions, γ0

h1
and γ0

h2

are both tangent to a common direction, let’s denote it v0. We will assume the
following.

The vector v0 is not parallel to h1.

47



However, this assumption is not restrictive, if this condition is not satisfied by h1,
we will simply switch the names of h1 and h2.

We remark that the function b̄h1 does not satisfy the conclusions of the Proposi-
tion 4.1, as the curve approaches the boundary of the channel, instead of staying in
the interior. Indeed, since b̄h1(0) = c̄h(0), then AHs(b̄h1(E)) = γEh1 ∪ γ

E
h2

, instead of
being γEh1 . However, we can modify the function b̄h1 near E = 0 such that it satisfies
the conclusions of the Proposition 4.1.

Proposition 4.3. For any e > 0, there exists a function c̄h1 : [0, E0] −→ H1(T2,R),
c̄eh1(E) ∈ LFβ(λEh1h1) for E > 0, such that

c̄eh1(E) = b̄h1(E), e ≤ E ≤ E0,

and c̄eh1(E) satisfies the conclusions of Proposition 4.1.

The modification is illustrated in Figure 14. For the purpose of diffusion, we will
“jump” from the cohomology c̄h(E) to b̄h1(E) at some energy e0 > e. We then follow
the modified cohomology curve c̄eh1(E) towards c = 0.

We define the cohomology ceh1(E) and ce,λh1 for the original coordinates in the same
way as in section 4.2.3.

Remark 4.1. As the proof of Key Theorems 7 and 6 depend only on the conclusions
of Proposition 4.1, for our choice of cohomology ch1, the conclusions of these Key
Theorems also hold.
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5 Description of c-equivalence and a variational λ-

lemma

5.1 Heuristic descriptions

We start this section with an heuristic description of c-equivalence as digesting defini-
tions and abstract objects involved here is a nontrivial task. To motivate a variational
λ-lemma we start with a simple case the standard λ-lemma.

Consider a smooth twist map f : A −→ A, A = T × R 3 (θ, I) satisfying the
standard assumptions of the Aubry-Mather theory. Suppose {xi}si=1 is a collection of
periodic points so that each xi

• is minimal,

• has rotation number ωi = pi/qi, and

• non-degenerate, i.e. it is a saddle and has smooth local stable and unstable
manifolds W s

loc(xi) and W u
loc(xi) resp.

Due to minimality we know that W
s/u
loc (xi) are smooth graphs over T. Suppose also

that
fki(W u

loc(xi)) and W s
loc(xi+1) intersect transversally

for each i = 1, . . . , s − 1. Then we have the following: for some N there is a local
graph

G ′ ⊂ ∪Nj=1f
j(W u

loc(x1))

such that it is C1-close to W u
loc(xs). Moreover, this is stable property, i.e. we can

choose a local graph G which is C1-close to W u
loc(x1) and it satisfies the same property.

It turns out this can be included into a general framework of weak KAM theory of
Fathi [34].

When one considers a unstable manifold W u(xi) of a minimal periodic orbits,
usually it is not a graph. However, there is a part of it, which is a graph with
discontinuities (see Figure 15). We also have that locally (in some open set U)
unstable manifold can be given

W u
loc = {(x, c+ dux) : x ∈ U},

where dux is the gradient of u at x.
This motivates a definition of an overlapping pseudograph. To put things in a

general framework let M be a compact manifold, TM is a tangent bundle to M , and
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Figure 15: Pseudograph for a fixed point of a twist map

π : TM −→ M is the natural projection. Given a Lipschitz function u : M −→ R
and a closed smooth form η on M , we consider the subset Gη,u of T ∗M defined by

Gη,u = {(x; ηx + dux) : x ∈M such that dux exists }.

We call the subset G ⊂ T ∗M an overlapping pseudograph if there exists a closed
smooth form η and a semi-concave function u such that G = Gη,u. It turns out that
G fit well to describe unstable manifolds. To describe stable manifolds one considers
anti-overlapping pseudographs

Ğη,u = {(x; ηx − dux) : x ∈M such that dux exists }.

Finally an analog of transverse intersection of stable and unstable manifolds Gη,u
and Ğη,u′ is a property of u(x) + u′(x) having a local minimum. We give a systematic
discussion of these facts later.

5.2 Forcing relation and shadowing

Here we define forcing relation introduced by Bernard [9].
Let G = Gc,u be an overlaying pseudograph, where u is a semi-concave function.

We write c(G) = c. We say that

G `N G ′, if G ′ ⊂
N⋃
n=1

ϕn(G),

where ϕ is the time-1-map of the Hamiltonian flow. We say that G `N c′ if there
exists a pseudograph G ′ with c(G ′) = c′ and G `N G ′. Finally, we say that c ` c′ if
there exists n ∈ N such that for any pseudograph G with c(G) = c, we have G `N c′.

50



The relation c ` c′ is transitive, and hence the relation c a` c′, defined by c ` c′
and c′ ` c, is an equivalence relation. We call the equivalent classes of this relation
the forcing classes. The a` relation implies existence of various shadowing orbits. In
particular, the following hold.

Theorem 9. [9, Proposition 0.10]

• If c a` c′, then there exists a heteroclinic orbit between Ã(c) and Ã(c′).

• Let ci, i ∈ Z be a sequence of cohomologies such that all ci a` cj. Fix a
sequence of neighbourhoods Ui of M̃(ci), then there exists an orbit (θ, p)(t) of
the underlying Hamiltonian flow H, and ti ∈ R such that (θ, p)(ti) ∈ Ui.

In order to connect forcing relation with variational problems we state the fol-
lowing proposition. Let L : TM × T −→ R be a time-periodic Tonelli Lagrangian
(see section 9.1 for definition) and a smooth one form η : M −→ T ∗M . Consider a
modified action

Aη(x, t; y, s) = inf

∫ t

s

L(γ(τ), γ̇(τ), τ)− η(γ̇(τ)) dτ,

where minimization over the set of absolutely continuous curves γ : [s, t] −→M with
γ(s) = x, γ(t) = y ∈ M . Denote by ϕts a map from time τ = s to τ = t for the
Euler-Lagrange flow of L. We have the following

Proposition 5.1. [9, Proposition 2.7] Fix an overlapping pseudograph Gη,u, an open
set U ⊂M and two times s < t. Define

v(z) = min
x∈U

u(x) + Aη(x, t; z, s),

where U is the closure of U. Let V ⊂ M be an open set and let N ⊂ M be the set
of points, where the minimum is reached in the definition of v(z) for some x ∈ V . If
N ⊂ U , then

Gη,v|V ⊂ ϕts(Gη,u|N )

and Gη,u|N is a Lipschitz graph above N . In other words, the function u is differentiable

at each point of N , and the map x 7−→ dux is Lipschitz on N .

In loose terms, having

inner minima in N ⊂ U =⇒ solutions are orbits of the Euler-Lagrange flow.

Moreover, if we have some control on properties of the function v(z), then we also have
the property that resembles forcing relation. Namely, orbits starting at a restricted
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Figure 16: Evolution of pseudographs as solutions to a variational problem

pseudograph Gη,u|N flow to contain the closure of a restricted pseudograph Gη,v|V . Fathi
[34] showed as t − s −→ ∞ the sum v(z) converges to certain limits independent
of u. Proper limits are called weak KAM solutions (see section 10.1 from precise
definitions). In order to connect with the heuristic discussion above the reader can
have in mind Gη,u|N being a part of the unstable “manifold” of one saddle W u

loc(xi)
which accumulates to the next one W s

loc(xi+1) under the Euler-Lagrange flow.
We can use Theorem 9 to prove existence of shadowing orbits.

5.3 Choice of cohomology classes for global diffusion

Using the forcing relation, we reduce the proof of our main result (Theorem 1) to the
following statement.

Theorem 10. Assume that H1 ∈ U ⊂ Sr, in other words, it satisfies all the non-
degeneracy conditions we introduced. Then there exists a subset Γ̃∗ ⊂ B2 with

dist(Γ̃∗,Γ∗) = O(
√
ε),

where dist denote the Hausdorff distance with the following property.
There exists a nonnegative function ε0 = ε0(H1) with ε0|U > 0, such that for

V = {εH1 : H1 ∈ U , 0 < ε < ε0}, for a dense set of εH1 ∈ V, the cohomologies in
Γ̃∗ are all contained in a single forcing class.

Theorem 9 and Theorem 10 imply existence of diffusion orbits for a dense set of
εH1 ∈ V . Since existence of diffusion orbits is an open property by the smooth depen-
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dence of solutions of ODE on the vector field, we conclude that our main Theorem 1
holds on an open and dense subset W of V .

Remark 5.1. Notice that we do not claim that Γ̃∗ is connected. For example, near
double resonances, when we switch from one resonant segment Γj to another Γj+1 we
might make a jump (see Figure 17 cases b),d), and e)).

Since we only need to prove denseness, Key Theorems 8 and 9 are stated in
perturbative setting: given any H1 ∈ U , there exists arbitrarily small Cr-perturbation
of εH1 such that our theorems hold.

In this section, we first describe the set Γ̃∗. It is closely related with section 3.5.
We write

Γ̃∗ =
⋃
j

Γsrj ∪ Γdrj ,

with Γsrj ∩Γdrj 6= ∅, and Γdrj ∩Γsrj+1 6= ∅. Here Γsrj corresponds to single resonance and
Γdrj corresponds to double resonance. We now describe each piece individually.

1. (Single resonance) In the single resonance regime, we choose Γsrj to be a passage
segment (see (12)). Key Theorem 8 states that all cohomogies in Γsrj are in the
same forcing class.

In order to prove forcing-equivalence of all Γ̃∗ we also need Γdrj and the nearby
Γsrj is disjoint. This is done by making a

√
ε modification to Γsrj , see section D.

2. (Double resonance) In the double resonance regime, the choice of Γdrj depends
on the homologies h and h′ associated with this double resonance, as well as the
direction of diffusion (going across or turning the corner). See Figure 17 for an
illustration of all cases.

• If h is simple and critical, and the diffusion is going across: we define

Γ0,E0

h,s =
⋃

0≤E≤E0

ch(E) ∪
⋃

0≤λ≤1

cλh, ΓE0,Ē
h =

⋃
E0≤E≤Ē

ch(E), (10)

where the function ch(E) and cλh are defined in sections 4.2.2 and 4.2.3.
We choose

Γdrj = ΓE0,Ē
h ∪

(
Γ0,E0

h,s ∪ Γ0,E0

−h,s
)
∪ ΓE0,Ē

−h .

• If h is simple and non-critical, the choice of cohomology is identical to the
critical case.

The Aubry sets of the above cohomologies are localized in the high energy
cylinders and a simple low energy cylinder. For low energy, the diffusion
orbit is going from the simple cylinder of homology h to the simple cylinder
of homology −h. See Figure 17, a) for both cases.
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Figure 17: Choice of cohomology classes for double resonance: (a) simple homology,
across resonance; (b) non-simple, across; (c) simple to simple; (d) non-simple to
simple; (e) non-simple to non-simple.

• If h is non-simple, with decomposition h = n1h1 + n2h2 into simple h1, h2.
The diffusion is going across. Let e > 0 be a small number depending only
on Hs (and hence depends on H1,Γ

∗, r) to be determined later. We define

Γe,Ēh,f =
⋃

e≤E≤E0

ch(E) (11)

and let
Γ0,E0

h1,s
=

⋃
0≤E≤E0

ceh1(E) ∪
⋃

0≤λ≤1

ce,λh1 ,

where the functions ceh1(E) and ce,λh1 are defined in section 4.3. These coho-
mologies corresponds to a simple critical loop for localization purposes, and
enjoy the additional properties specified in section 4.3 (see Propositions 4.2
and 4.3).
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We choose
Γdrj = Γe,Ēh,f ∪

(
Γ0,E0

h1,s
∪ Γ0,E0

−h1,s
)
∪ Γe,Ē−h,f .

Diffusion orbits are jumping from the flower cylinder Me,Ē
h,ε of h to the

simple cylinder M0,E0

h1,ε
of h1, which is connected to the simple cylinder

M0,E0

−h1,ε of −h1, and finally back to the flower cylinder Me,Ē
−h,ε of −h. See

Figure 17, b).

• If both h and h′ are simple, and diffusion orbits are turning the corner: we
define

Γdrj = ΓE0,Ē
h ∪

(
Γ0,E0

h,s ∪ Γ0,E0

−h′,s
)
∪ ΓE0,Ē

−h′ .

We are jumping from a simple cylinder M0,E0

h,ε of homology h to a simple

cylinder M0,E0

h′,ε of homology h′. See Figure 17, c).

• If h is non-simple with decomposition h = n1h1 + n2h2 into simple, and
we are turning to a simple h′: we define

Γdrj = Γe,Ēh,f ∪ Γ0,E0

h1,s
∪ Γ0,E0

h′,s ∪ ΓE0,Ē
h′,s .

We jump from the non-simple homology h to a simple h1, then to the
simple h′. For the case h′ is non-simple and h is simple, simply switch h
and h′ in the above definition. See Figure 17, d).

• If h and h′ are both non-simple with decompositions h = n1h1 + n2h2 and
h′ = m1h

′
1 + m2h

′
2 into simple ones, and we are turning the corner: we

define
Γdrj = Γe,Ēh,f ∪ Γ0,E0

h1,s
∪ Γ0,E0

h′1,s
∪ Γe,Ēh′,f .

Diffusion jump from the non-simple h to a simple h1, then to a simple h′1
and jumps to the non-simple h′. See Figure 17, e).

3. Key Theorem 9 states that it is possible to diffuse along high energy cylinder,
flower cylinder or simple cylinder. In the variational language, it asserts the

cohomologies in Γe,Ēh,f (resp. Γ0,E0

h,s , ΓE0,Ē
h ) are equivalent. They correspond to

the solid segments in Figure 17.

4. Key Theorem 10 covers the crucial “jump”. It asserts that there exists some
c ∈ Γe,E0

h,f and c′ ∈ Γ0,E0

h,s , such that c a` c′. The jump corresponds to the dotted

curves in Figure 17. As a consequence, all cohomologies in Γdrj are equivalent.
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6 Equivalent forcing classes

In this section we discuss equivalent forcing classes in three different regimes:

• in a single resonance along one cylinder,

• in a single resonance along cylinders of the same homology class,

• in a double resonance between kissing cylinders.

6.1 Equivalent forcing class along single resonances

In the single resonant we choose Γsrj ⊂ Γj as a passage segment. More precisely,

Γsrj = {(ps∗(pf ), pf ); pf ∈ [a−, a+]} ⊂ Γj, (12)

where [a
(j)
− , a

(j)
+ ] is as in subsection 3.1. Now we omit superscript j for brevity. We have

[a−, a+] =
⋃s−1
i=1 [ai−, a

i
+], and by Key Theorems 4 and 5, for each c ∈ Γsrj , the Aubry

set Ã(c) is contained in one of the NHICs, and is a graph over the θf component.

Key Theorem 8. Assume that the Hamiltonian Hε = H0 + εH1 satisfies the non-
degeneracy conditions [G0]-[G2], then there exists arbitrarily small perturbation εH ′1
of εH1, such that for the Hamiltonian H ′′ε = H0 + εH ′′1 , Γsri is contained in a single
forcing class.

Diffusion along Γsri contains three different phenomena: diffusing inside of the
cylinder, climbing up a cylinder using normal hyperbolicity outside of the cylinder,
and jumping from one cylinder to the other. We have the following definitions:

• (passage values) We say that c ∈ Γ1 ⊂ Γsri , if Ñ (c) is contained in only one
cylinder, has only one static class, and the projection onto θf component is not
the whole circle. Due to a result of Mather [54] (and in the forcing setting, [9]),
c is in the interior of its forcing class.

• (bifurcation values) We say that c ∈ Γ2 ⊂ Γsri , if Ã(c) has exactly two static
classes and each contained in one NHIC. In this case we would like to jump
from one cylinder to another.

• (invariant curve values) We say that c ∈ Γ3 ⊂ Γsri , if Ã(c) is contained in a
single cylinder, but the projection onto θf component is the whole circle. In
this case it is impossible to move within the cylinder, the normal hyperbolicity
will be used.
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Theorem 11. Assume that the Hamiltonian Hε = H0 + εH1 satisfies the nondegen-
eracy conditions [G0]-[G2], then there exists an arbitrarily small perturbation εH ′1 of
εH1, such that for H ′ε = H0 + εH ′1, Γ2 is finite, and

Γsri = Γ1 ∪ Γ2 ∪ Γ3. (13)

The diffusion for both bifurcation values Γ2 and invariant curve values Γ3 requires
additional transversalities. In the case that Ã(c) is an invariant circle, this transver-
sality condition is equivalent to the transversal intersection of the stable and unstable
manifolds. This condition can be phrased in terms of the barrier functions. Recall
that if we need to emphasise dependence of the Aubry A(c) and Mañe N (c) sets on
the associated Hamiltonian H we write AH(c) and NH(c)

In the bifurcation set Γ2, the Aubry set A(c) has exactly two static classes. In
this case the Mañe set N (c) ) A(c). Let θ0 and θ1 be contained in each of the two
static classes of A(c), we define

b+
Hε,c

(θ) = hHε,c(θ0, θ) + hHε,c(θ, θ1)

and
b−Hε,c(θ) = hHε,c(θ1, θ) + hHε,c(θ, θ̃0),

where hHε,c is the Peierls barrier for cohomology class c associated to the Hamiltonian
Hε. It is defined in section 10. Let Γ∗2 be the set of bifurcation c ∈ Γ2 such that the
minima of each b+

Hε,c
and b−Hε,c outside of AHε(c) are totally isolated. In other words,

NHε(c) \ AHε(c) is discrete and not empty. These minima correspond to heteroclinic
orbits connecting different components of the Aubry set AHε(c).

Since the Aubry and the Mañe sets are symplectic invariants [10], it suffices to
prove these properties using a convenient canonical coordinates, e.g. normal forms.

In the case c ∈ Γ3, we have

Ñ (c) = Ĩ(c, u) = Ã(c)

and it is an invariant circle13. We first consider the covering

ξ : T2 −→ T2

θ = (θf , θs) 7−→ ξ(θ) = (θf , 2θs).

This covering lifts to a a symplectic covering

Ξ : T ∗T2 −→ T ∗T2

(θ, p) = (θ, pf , ps) 7−→ Ξ(θ, p) = (ξ(θ), pf , ps/2),

13see Section 9.4 for definition of Ĩ(c, u), which implies Ã(c) ⊂ Ĩ(c, u) ⊂ Ñ (c).
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and we define the lifted Hamiltonian H̃ε = Hε ◦ Ξ. It is known that

ÃH̃(c̃) = Ξ−1
(
ÃH̃(c)

)
where c̃ = ξ∗c = (cf , cs/2). On the other hand, the inclusion

ÑH̃(c̃) ⊃ Ξ−1
(
ÑH̃(c)

)
= Ξ−1

(
ÃH(c)

)
is not an equality for c ∈ Γ3. More precisely, for c ∈ Γ3(ε), the set ÃH̃(c̃) is the union
of two circles, while ÑH̃(c̃) contains heteroclinic connections between these circles.
Similarly to the case of Γ2, we choose a point θ0 in the projected Aubry set AHε(c),
and consider its two preimages θ̃0 and θ̃1 under ξ. We define

b+

H̃ε,c
(θ) = hH̃ε,c(θ̃0, θ) + hH̃ε,c(θ, θ̃1)

and
b−
H̃ε,c

(θ) = hH̃ε,c(θ̃1, θ) + hH̃ε,c(θ, θ̃0)

where hH̃ε,c is the Peierl’s barrier associated to H̃ε. Γ∗3(ε) is then the set of cohomolo-

gies c ∈ Γ3(ε) such that the minima of each of the functions b±
H̃ε,c

located outside of

the Aubry set AH̃ε(c̃) are isolated. In other words, NH̃ε(c̃)\AH̃ε(c̃) is discrete and not
empty. Since the Aubry and the Mañe sets are symplectic invariants [10], it suffices to
prove these properties using a convenient canonical coordinates, e.g. normal forms.

We can perform an additional perturbation such that the above transversality
condition is satisfied.

Theorem 12. Let H ′ε = H0 + εH ′1 be the Hamiltonian from Theorem 11. Then there
exists arbitrarily small perturbation εH ′′1 of εH ′1, preserving all Aubry sets AH̃ε(c̃) with
c ∈ Γsrj , such that for H ′′ε = H0 + εH ′′1 we have Γ2 = Γ∗2 and Γ3 = Γ∗3. Moreover,
Γsrj = Γ1 ∪ Γ∗2 ∪ Γ∗3 is contained in a single forcing class.

Clearly, Key Theorem 8 follows from Theorem 12. The proof of this theorem
relies on Key Theorems 4 and 5 about localization of Aubry sets inside of a proper
cylinder and Lipschitz graph properties of these sets over T2 3 (θf , t). Recall that
Key Theorems 4 and 5 are proven in the same way as Theorems 5.1 and 5.2 in [13].
This Theorem is analogous to Theorem 6.4 in [13].

6.2 Equivalent forcing class along cylinders of the same ho-
mology class

The chosen cohomology classes Γdri in the double resonance region consists of possibly

several connected components. Each component is either Γ0,Ē
h,s or Γ0,E0

h,s for a simple
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homology h, or Γe,Ēh,f for a non-simple homology. The following key theorem establishes
forcing equivalence for each of the connected components.

Recall that in section 4.2.3 for each homology class h ∈ H1(Ts,Z) under the
condition [A0] we have existence of only three possibilities for γ0

h:

• If h is simple and non critical, AHs(c̄h(0)) = γ0
h ∪ {0}.

• If h is simple and critical, AHs(c̄h(0)) = γ0
h and γ0

h contains 0.

• If h is non-simple and h = n1h1+n2h2 is decomposition into simple, AHs(c̄h(0)) =
γ0
h1
∪ γ0

h2
.

Key Theorem 9. With notations above consider the perturbed Hamiltonian Hε =
H0+εH1, a strong double resonance and associated integer homology classes h, h1, h

′
1 ∈

H1(Ts,Z). Suppose in each item listed below the corresponding conditions hold and
that the parameter ε is such that Key Theorem 3 applies. Then there exists an ar-
bitrary small localized Cr perturbation ε∆H1 of Hε such that for the Hamiltonian
H ′ε = Hε + ε∆H1 an appropriate family of cohomologies belongs to a single forcing
class.

• (high energy) If h is simple and satisfies the conditions [DR1]-[DR3]. Then for

H ′ε the family of cohomologies ΓE0,Ē
h is contained in a single forcing class.

• (high energy) If h is non-simple homology and satisfies the conditions [DR1]-

[DR3]. Then for H ′ε the family of cohomologies Γe,Ēh,f is contained in a single
forcing class.

• (low energy) If h1, h′1 are simple and critical homologies and satisfy the condi-
tions [DR1]-[DR3], and conditions [A1]-[A4] of Key Theorem 3. Then for H ′ε
the family of cohomologies

Γ0,E0

h1,s
∪ Γ0,E0

h′1,s
∪ Γ0,E0

−h1,s ∪ Γ0,E0

−h′1,s

is contained in a single forcing class.

• (low energy) If h is simple and non critical homology and satisfies the conditions
[DR1]-[DR3] for all energies [−δ, E0+δ]. Then for H ′ε the family of cohomologies
Γ0,E0

h ∪ Γ0,E0

−h is contained in a single forcing class.

Recall that by Proposition B.4 near a double resonance after a proper rescaling S
and a canonical change of coordinates Φε the perturbed system has the form

Hs
ε (θ

s, Is, τ) = S(Hε ◦ Φε) =
H0(p0)

ε
+K(Is)− U(θs) +

√
ε P (θs, Is, τ),
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θs ∈ Ts, Is ∈ R2, τ ∈
√
εT.

We denote
¯̄Hs
ε = S((Hε + ∆H1) ◦ Φε) = Hs +

√
ε ¯̄P.

Remark 6.1. It turns out that supports of perturbation ∆H1 of Hε (resp.
√
ε ¯̄P of√

εP ) are localized. We distinguish simple critical homologies h1 and h′1 in item 3,
because we need additional information about supports of these perturbations.

The proof of this Theorem is somewhat similar to the proof of Key Theorem 8.
In particular, the perturbation ¯̄Hs

ε = Hs +
√
ε ¯̄P consists of two steps.

Step 1. Perturb Hs
ε to

H̄s
ε = Hs +

√
εP̄

such that each of four the families of cohomologies

• (high energy simple) ΓE0,Ē
h ,

• (high energy non-simple) Γe,Ēh,f

• (low energy simple, critical) Γ0,E0

h1,s
∩ Γ0,E0

−h1,s and Γ0,E0

h′1,s
∩ Γ0,E0

−h′1,s

• (high energy simple, non-critical) Γ0,E0

h and Γ0,E0

−h

consists of only three types, defined be analogy with (13).

• (passage values) Let Γ•;∗•,1 be the union of the following two subsets.

— The first subset is the set of all c ∈ Γ such that ÑHε(c) is contained in only
one cylinder, and the image of ÑHε(c) under the projection to γEh is not the
whole curve.

— The second subset is the set of all c ∈ Γ such that ÃHε(c) ⊂ oε.

• (bifurcation values) Let Γ•;∗•,2 be the set of all c ∈ Γ such that ÃHε(c) has exactly
two static class, each contained in an invariant cylinder.

• (invariant curve values) Let Γ•;∗•,3 be the set of all c ∈ Γ such that ÃHε(c) is

contained in a single cylinder, and the projection of ÃHε(c) to γEh is onto. In

other words, the intersection of ÃHε(c) with the section {t = 0} is an invariant
curve.
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Moreover, if the slow Hamiltonian Hs satisfies conditions of Key Theorems 2 and
3, then by Key Theorem 7 the Aubry sets of Hs

ε satisfy Mather’s projected graph
theorem. The claim below improves Key Theorem 7 for a generic perturbation P . In
the item by item setting of Key Theorem 9 there exists an arbitrary small localized
Cr perturbation P̄ of P such that for the Hamiltonian

H̄s
ε = Hs +

√
ε P̄

an appropriate family of cohomologies consists of only three aforementioned classes
with the second class being finite. Here is the formal claim:

Theorem 13. • (high energy) If h is simple and satisfies the conditions [DR1]-
[DR3]. Then there is an arbitrary Cr small perturbation P̄ of P such that√
ε (P̄ − P ) is localized in a neighborhood of the normally hyperbolic weakly

invariant cylinders
N−1⋃
j=0

MEj ,Ej+1

h,ε

such that for the Hamiltonian H̄s
ε the families of cohomologies satisfy

ΓE0,Ē
h = ΓE0,Ē

h,1 ∪ ΓE0,Ē
h,2 ∪ ΓE0,Ē

h,3

where ΓE0,Ē
h,2 is finite.

• (high energy) If h be non-simple homology and satisfies the conditions [DR1]-
[DR3]. Then there is an arbitrary Cr small perturbation P̄ of P such that√
ε (P̄ − P ) is localized in a neighborhood of the invariant cylinders

Me,E0

h,ε ∪
N−1⋃
j=0

MEj ,Ej+1

h,ε

such that for the Hamiltonian H̄s
ε the families of cohomologies satisfy

Γe,Ēh,f = Γe,Ēh,1 ∪ Γe,Ēh,2 ∪ Γe,Ēh,3

where Γe,Ēh,2 is finite.

• (low energy) If h1, h′1 are simple and critical homologies and satisfy the condi-
tions [DR1]-[DR3], and conditions [A1]-[A4] of Key Theorem 3. Then there is
an arbitrary Cr small perturbation P̄ of P such that

√
ε (P̄ − P ) is localized in

a neighborhood of the normally hyperbolic weakly invariant cylinder

ME0,s
h1,ε
∪ME0,s

h′1,ε
,
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such that for the Hamiltonian H̄s
ε the families of cohomologies satisfy

Γ0,E0

h1,s
∪ Γ0,E0

−h1,s = Γ0,E0

±h1,1 ∪ Γ0,E0

±h1,2 ∪ Γ0,E0

±h1,3

and
Γ0,E0

h′1,s
∪ Γ0,2E0

−h′1,s
= Γ0,E0

±h′1,1
∪ Γ0,E0

±h′1,2
∪ Γ0,2E0

±h′1,3

where Γ0,E0

±h1,2 and Γ0,E0

±h′1,2
are finite.

• (low energy) If h is simple and non critical homology and satisfies the conditions
[DR1]-[DR3] for all energies [−δ, E0 + δ]. Then there is an arbitrary Cr small
perturbation P̄ of P such that

√
ε (P̄ − P ) is localized in a neighborhood of the

normally hyperbolic weakly invariant cylinders

M0,E0

h,ε ∪M
0,E0

−h,ε

such that
Γ0,E0

h,s ∪ Γ0,E0

−h,s = Γ0,Ē
±h,1 ∪ Γ0,Ē

h,2 ∪ Γ0,Ē
h,3 ,

where Γ0,Ē
±h,2 are finite.

Existence of diffusion in both cases bifucation values Γ•,∗•,2 and invariant curve

values Γ•,∗•,3 require additional transversalities. In the case that Ã(c) is an invariant
circle, this transversality condition is equivalent to the transversal intersection of the
stable and unstable manifolds. This condition can be phrased in terms of the barrier
functions.

Similar to the case of single resonance, we need to make some further definitions.
Let Γ•,∗•,2 be the set of bifurcation c ∈ Γ••,2 such that the set NH̄s

ε
(c) \ AH̄s

ε
(c) is

totally disconnected.
To make an analogous definition for Γ3, we need to consider a covering space.

First we define a covering map of the slow torus Ts:

ξ̄ : Ts −→ Ts, ξ̄(ϕss, ϕsf ) = (2ϕss, ϕsf ).

The covering map induces a covering map of the cotangent bundle

Ξ̄ : T ∗Ts −→ TTs, Ξ̄(ϕ, pss, psf ) = (ξ̄(ϕ), pss/2, psf ).

Let L : T ∗T2 −→ T ∗Ts be the linear coordinate change associated with the double
resonance (see section 3.2), then the map Ξ := L◦ Ξ̄◦L−1 defines a symplectic double
covering map. The Hamiltonian Hε lifts to a Hamiltonian H̃ε under the double cover.

We define the set Γ•;∗•,3 as the set c ∈ Γ••,3 such that the set

NH̄s
ε
(c) \ AH̄s

ε
(c)

is totally disconnected.
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Theorem 14. Assume that for the Hamiltonian H̄ε and an integer homology class h ∈
H1(Ts,Z) the conditions of Theorem 13 are satisfied. Then there exists an additional
arbitrarily Cr small localized perturbation

√
ε ¯̄P of

√
ε P̄ such that for all cohomology

classes c ∈ Γ the Aubry sets Ã(c) of H̄s
ε and the Hamiltonian

¯̄Hs
ε = Hs +

√
ε ¯̄P

coincide with those of Hs
ε and for ¯̄Hs

ε these sets satisfy

1. (high energy) If h is simple, then ΓE0,Ē
h,2 = ΓE0,Ē;∗

h,2 and ΓE0,Ē
h,3 = ΓE0,Ē;∗

h,3 .

2. (high energy) If h is non-simple, then Γe,Ēh,2 = Γe,Ē:∗
h,2 and Γe,Ēh,3 = Γe,Ē;∗

h,3 .

3. (low energy) If h1 and h′1 simple and critical, then Γ0,E0

±h1,2 = Γ0,E0;∗
±h1,2 and Γ0,E0

±h1,3 =

Γ0,E0;∗
±h1,3 as well as Γ0,E0

±h′1,2
= Γ0,E0;∗

±h′1,2
and Γ0,E0

±h′1,3
= Γ0,E0;∗

±h′1,3
.

4. (low energy) If h is simple and non-critical, then Γ0,E0

±h,2 = Γ0,E0;∗
±h,2 and Γ0,E0

±h,3 =

Γ0,E0;∗
±h,3 .

Furthermore, in each case the set Γ•;∗• = Γ•;∗•,1 ∪ Γ•;∗•,2 ∪ Γ•;∗•,3 is contained in a single
forcing class.

6.3 Equivalent forcing class between kissing cylinders

Let h = n1h1 +n2h2 be a non-simple homology class, h1 and h2 are the corresponding
simple ones. We have proved that the cohomologies Γe,E0

h,f (resp. Γ0,E0

h1,s
) is contained

in a single respective forcing class. To finally conclude our proof, we will show that
Γe,E0

h,f and Γ0,E0

h1,s
are equivalent to each other.

Recall that relation between cohomology of Hε and its rescaling Hs
ε is given by

ch(E) = p0 + c̄h(E)
√
ε and ch1(E) = p0 + c̄h1(E)

√
ε (see (9)). Then in Propositions

4.2 and 4.3 we modify the latter family of cohomologies c̄h1(E) relative to c̄h(E).
With these notations we have the following statement.

Key Theorem 10. Given H1 ∈ U , there exists ε0 = ε0(H0, H1,Γ
∗, r) and e0 =

e0(H0, H1,Γ
∗, r) > 0, such that the following hold. Let ¯̄Hε be the perturbed Hamilto-

nian as in Key Theorem 9. For all 0 < ε < ε0, there exists e0 ≤ E1, E2 ≤ 2e0 such
that

ch(E1) a` ce0/2h1
(E2).

Remark 6.2. Notice that on Figure 17 the only type of jump needed is the “jump”
from non-simple homology to simple critical one occurring in cases (b), (d), and (e).
In all other cases we do not need a “jump”.
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We will prove the above theorem by proving a specific constrained variational prob-
lem has a nondegenerate minimum. The minimal of this variational problem corre-
sponds to a heteroclinic orbit between the Aubry sets AHε(ch(E1)) and AHε(ch1(E2)).
We will first define a variational problem for the slow mechanical system Hs, then
for the perturbed slow system Hs

ε , and finally define it for Hε using the associated
coordinate changes. This is done in Section 12. Now we outline content of the rest
of the paper.

In section 7 the main result is Theorem 15, which along with Theorem 4.1 [13]
imply Key Theorem 1.

In section 8 we prove Key Theorem 3. Proof of Key Theorem 2 is discussed above
in section 3.2.

Key Theorems 4 and 5 are essentially proved in [13] (see Theorem 5.1 and 5.2).
In section 9 we discuss our diffusion mechanism and basic notions of weak KAM

theory: Tonelli Lagrangians/Hamiltonians, overlapping pseudographs, Lax-Oleinik
mapping, the Aubry, Mather, Mañe sets, Mather α and β-functions. Finally, we
define forcing relation proposed by Bernard [9].

In section 10 we define basic notions of Mather theory such as barrier func-
tions, the (projected) Aubry and the (projected) Mañe sets, uniform families of La-
grangians/Hamiltinians, super-differentials and semi-continuity of barrier functions.

In section 11 we prove Key Theorems 6 (localization of Aubry and Mañe sets), 7
(graph theorem) and 9 (about forcing relation) along the same homology class.

As we pointed out in section 6 Key Theorem 8 was essentially proven in [13] (see
Theorem 6.4 [13]). Proof of Key Theorems 9 in section 11 follows the same scheme.

In Appendix A we study geodesic flows on T2 and prove Theorems 4 and 5 about
their generic properties.

In Appendix B we derive a normal form for Hε at a double resonance.
In Appendix C we study Legendre-Fenichel transform LFβ(λh), λ > 0 of an

integer homology class h ∈ H1(T2,Z) and justify figures 13 and 14 about the shape
of channels of cohomologies.

In Appendix D we connect channels of cohomologies from single into double res-
onances.
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7 Normally hyperbolic invariant cylinders through

the transition zone into double resonances

The main result of this section is Theorem 15. Along with Theorem 4.1 [13] this the-
orem implies Key Theorem 1 about existence of normally hyperbolic weakly invariant
cylinders. Theorem 4.1 [13] applies O(εa)-away from a (strong) double resonance with
a ≤ 1/4. However, we need existence of such cylinders O(

√
ε)-away from a double

resonance, which is done in Theorem 15. Proof of Theorem 15 follows the proof of
Theorem 4.1 [13] with the following modification.

Proofs of both Theorem 4.1 [13] and Theorem 15 consists of two steps: find
a normal form Nε = Hε ◦ Φε (Corollary 3.2 [13] and Theorem 17 respectively) and
construct an isolating block for Nε (see sections 4 in [13] and section 7.3 respectively).
The only difference of the two is that in the normal form theorem we show that

Nε = Hε ◦ Φε = H0(·) + εZ(·) + εR(·, t),

where ‖R‖ ≤ δ for some small predetermined δ and two different norms. In [13]
we use the standard C2-norm, while in section 7.3 we define a skew-symmetric C2-
norm (see rescaling (16)). It might well happen that the C2-norm of ‖R‖ blows up
in a O(εa)-neighborhood of a double resonance for a > 1/4. This is due to sensitive
dependence of action variables. The idea of this rescaling is to stretch action variables
by 1/

√
ε making partial derivatives of R in actions less sensitive. It turns out it does

not affect applicability of the isolating block arguments as shown in section 7.3.
We recall some notations introduced in section 2.1. Fix ~k = (~k1, k0) ∈ (Z2 \0)×Z

and a resonant line Γ = Γk = {p ∈ B2 : ~k1 · ∂pH0 + k0 = 0} ⊂ B2. We pick a

complementary resonance ~k′, let θs = ~k · (θ, t) and θf = ~k′ · (θ, t). We complete it to
a L : (θ, p, t, E) −→ (θs, θf , ps, pf , t, E ′). The averaged pertubation is given by

Z(θs, p) =

∫ ∫
H1 ◦ L−1(θs, ps, θf , pf , t) dθf dt.

For a perturbation H1 ∈ UλSR, i.e. it satisfies conditions [G0]-[G2] with the pa-

rameter λ > 0, we determine a small δ = δ(λ, r) > 0 and an integer K = K(δ, r,~k),
and the set of strong double resonances is defined by

ΣK = {p ∈ Γ ∩B : ∃~k′ = (~k′1, k
′
0) ∈ (Z2 \ 0)× Z,

~k′ ∦ ~k, |~k′|, |k′0| ≤ K, ~k′1 · ∂pH0 + k′0 = 0}.
In section 2.2 we define the passage segments to be the connected components

of the set Γ \
⋃
p0∈ΣK

UĒ√ε(p0). Roughly speaking, Key Theorem 1 asserts that the
following hold for each passage segment.
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• On a neighborhood of each passage segment there exists a convenient normal
form for the original Hamiltonian Hε.

• Using this normal form one can establish existence of a (weakly) normally hyper-
bolic invariant cylinder C = C~k “over” each pasage segment. 14. This cylinder
is crumpled in the sense that it is a graph {(Θs, P s)(θf , pf , t) : (θf , pf , t) ∈

T × [aj, aj+1] × T} and

∥∥∥∥∂Θs

∂pf

∥∥∥∥ . ε−1/2 (see also Figure 7). Asymptotically in

ε, the maximum of

∥∥∥∥∂Θs

∂pf

∥∥∥∥ can be ≈ ε−1/2 near fixed order double resonances

(see Remark 7.1).

In [13], the above statements are proved for connected components of the set
Γ \ U

3ε
1
6
(ΣK). We will now focus on proving the same on the set

Γ ∩ U
5ε

1
6
(ΣK) \ UĒ√ε(ΣK).

7.1 Normally hyperbolic invariant manifolds going into dou-
ble resonances

We fix a double resonance

p0 ∈ Γ~k ∩ Γ~k′ ,
~k′ = (~k′1, k

′
0) ∈ (Z2 \ 0)× Z, ~k′ ∦ ~k, |~k′| ≤ K

and consider the resonant segment
√
ε−close to p0.

Denote by ps∗(p
f ) ∈ R the solution of the equation ∂psH0(ps∗(p

f ), pf ) = 0. Also
denote p∗(p

f ) := (ps∗(p
f ), pf ). Without loss of generality, we assumet pf = 0 at p0.

For M � 1, we consider the segment pf ∈ [M
√
ε, 5ε1/6], which overlaps with the

segment Σ \ U3ε1/6(p0) covered in [13]. We consider the neighborhood

{(θ, pf , ps, t) : pf ∈ [M
√
ε, 5ε1/6], ‖ps − ps∗(pf )‖ ≤ ε}. (14)

which we sometimes refer to the region of interest.

Theorem 15. There exist a small ε0 > 0 and a large M > 1 such that for any
0 < ε ≤ ε0λ

7/2 and 0 ≤ δ ≤ √ε0 λ
2 there exists a C1 map

(Θs, P s)(θf , pf , t) : T× [M
√
ε, 5ε1/6]× T −→ T× R

14In this notation we drop dependence of indices j (index of a resonance) and i (index of a passage
segment in Γj).
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such that the cylinder

C = {(θs, ps) = (Θs, P s)(θf , pf , t); pf ∈ [M
√
ε, 5ε1/6], (θf , t) ∈ T× T}

is weakly invariant with respect to Nε in the sense that the Hamiltonian vector field
is tangent to C 15. The cylinder C is contained in the set

V :=
{

(θ, p, t); pf ∈ [M
√
ε, ε1/6],

‖θs − θs∗(pf )‖ 6 O
(
ε

1/4
0 λ

)
, ‖ps − ps∗(pf )‖ ≤ O

(
ε

1/4
0 λ5/4ε1/2

)}
,

and it contains all the full orbits of Nε contained in V . We have the estimates

‖Θs(θf , pf , t)− θs∗(pf )‖ 6 O
(
λ−1δ + λ−3/4

√
ε
)
,

‖P s(θf , pf , t)− ps∗(pf )‖ 6
√
εO
(
λ−3/4δ + λ−1/2

√
ε
)
,∥∥∥∥∂Θs

∂pf

∥∥∥∥ ≤ O

(
ε

1/4
0 λ−1/4

√
ε

)
,

∥∥∥∥ ∂Θs

∂(θf , t)

∥∥∥∥ ≤ O
(
ε

1/4
0 λ−1/4

)
.

In notation of section 3.2 we set Ē = 2M .

Remark 7.1. Fix a double resonance p0 ∈ Γ∩ Γ~k′ 6= ∅, e.g. |~k′| ∈ [K, 2K]. We have
that O(ε)-close to p0,

max

∥∥∥∥∂Θs

∂pf

∥∥∥∥ & 1√
ε
,

where & means that there is a constant c depending on λ, δ, r,H0, H1,Γ, ~k
′, but not

on ε.
In the region Ē

√
ε−close to p0, the double resonance normal form applies. Using

results of section B.2, the dynamics of Hε is well approximated by dynamics of the
corresponding mechanical system Hs = K−U , after rescaling the action component p
by a factor 1/

√
ε. By Key Theorem 2 the Hamiltonian Hε in In(p0) has a normally

hyperbolic weakly invariant cylinder M[M,3M ]
h,ε which is a small perturbation of the

cylinder M[M,3M ]
h formed by the union of minimal geodesics γEh ’s with E ∈ [M, 3M ]

(see Section 3.2). Generically there is a nontrivial dependence of γEh on E. Rescaling

back into original action variables leads to
∥∥∥∂Θs

∂pf

∥∥∥ ≈ 1√
ε
.

15As before in notation C we drop dependence of indices j (index of a resonance) and i (index of
a passage segment in Γj).
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The rest of the proof is organized as follows. In Section 7.2 we find a proper
normal form Hε ◦ ΦTR and get estimates and properties of ΦTR . It is done in two
steps:

— determine a good normal form for an autonomous Hamiltonian near a double
resonance,

— apply this result to our time-periodic case.
In Section 7.3 we construct an isolating block for the normal form system and

apply the results of section B, [13] to finish the proof.

7.2 A Normal form in the transition zone

7.2.1 Autonomous case and slow-fast coordinates

We first state a result for autonomous systems. The time periodic version will come
as a corollary. We are interested in a normal for a Hamiltonian ε1/6-near a strong
double resonance, but M

√
ε-away from it along one of resonant directions.

Consider the Hamiltonian Hε(ϕ, J) = H0(J) + εH1(ϕ, J), where (ϕ, J) ∈ Td ×Rd

(later, we will take d = n+ 1). Let B = {|J | ≤ 1} be the unit ball in Rd. Given any
integer vector k ∈ Zd \ {0}, let [k] = max{|ki|}. To avoid zero denominators in some
calculations, we make the unusual convention that [(0, · · · , 0)] = 1.

Fix a regular energy surface and two linearly independent resonances Γ~k and Γ~k′ ,
which intersect at some point J0. We order resonances: Γ~k is the first and Γ~k′ is the
second. In the local coordinates near J0 and notations of section 6.2 we have

θs = (θss, θsf ) ∈ Ts × Tf :∼= T2 × Td−2

with θs = (θss, θsf )

θss = ~k1 · θ + k0 t and θsf = ~k′1 · θ + k′0 t.

The other variables θf are defined so that change of coordinates from θ to (θs, θf ) is
given some matrix A ∈ SLd(Z). Define a symplectic linear change of coordinates

L :

[
θ
J

]
−→


θs

θf

Js

Jf

 −→ [
A θ
A∗J

]
with A∗ = (A−1)T .

Denote action variables J = (Jss, Jsf , Jf ) conjugate to θ = (θss, θsf , θf ) and Js =
(Jss, Jsf ). Consider the Hamiltonian in the new coordinates

Hε(θ
s, Js, θf , Jf ) = H0(J) + εH1(θs, Js, θf , Jf ).16 (15)

16We somewhat abuse notations by denoting H0 and H1 by the same letter. We hope it does not
lead to confusions.
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Call these coordinates slow-fast. Note that they distinguish three time scales: slow,
slow-fast, and fast. In these local coordinates Γ~k = {Jss = 0}. Fix 1 � m � M ,
where m depends on norms of H0 and H1, while M will be specified later. We are
interested in a dynamics in a m

√
ε-neighborhood of Γ~k with Jsf ∈ [M

√
ε, ε1/6]. Due

to the implicit function theorem and convexity of H0 from H0(J0) = H0(0, Jsf∗ , J
f )

one can define a function Jf = Jf (Jsf∗ ) satisfying this condition. Define in local
coordinates

D(m,M, Jsf∗ , ε) = {J : |J − (0, Jsf∗ , J
f (Jsf∗ ))| ≤ m

√
ε}.

We are looking for normalizing coordinate changes to average out slow-fast and slow
motions. It turns out that these changes depend on slow-fast and fast action compo-
nents in much more sensitive than on slow actions. To compensate this consider a
linear change of coordinates:

Lε,Jsf∗ : (θss, θsf , θf , J̃ss, J̃sf , J̃f ) −→

(θss, θsf , θf , Jss, Jsf , Jf ) = (θss, θsf , θf , J̃ss, Jsf∗ +
√
εJ̃sf ,

√
εJ̃f ).

(16)

Theorem 16. Fix parameters r > d+4, d > 1 and δ ∈ (0, 1). There exists a constant
c = cd > 0, which depends only on d, such that the following holds.

Let H0(J) be C4 and H1(θ, J) be Cr with ‖H1‖Cr = 1. Then for sufficiently small

ε > 0 and K > cδ
−1

r−d−3 there exists a C2 symplectic diffeomorphism Φ such that, in
the new coordinates, the Hamiltonian Hε = H0 + εH1 takes the form

Hε ◦ Φ = H0 + εR1(θss, J) + εR2(θ, J)

with R1 =
∑

k∈Zd,|k|≤K, (ksf ,kf )=0 hk(J)e2πi(k·θ), here hk(J) is the kth coefficient for the
Fourier expansion of H1.

For a sufficiently large M = M(δ,H0, H1) and each Jsf∗ ∈ [M
√
ε, ε1/6] we have

Hε ◦ Φ ◦ Lε,Jsf∗ =

= H0 ◦ Lε,Jsf∗ + εR1 ◦ Lε,Jsf∗ (θss, J̃) + εR2 ◦ Lε,Jsf∗ (θ, J̃)

=: H0 + εR̃1(θss, J̃) + εR̃2(θ, J̃)

‖R̃2‖C2 ≤ δ on T× L−1

ε,Jsf∗
D(m,M, Jsf∗ , ε)× Tm−1

‖Φ◦Lε,Jsf∗ − Id‖Cl ≤ δ
√
ε for l = 0, 1, 2.

Note that Φ◦Lε,Jsf∗ should not be viewed as a change of coordinates. It is a rather
a convenient way to hide blow up of partial derivatives of Φ with respect to slow-fast
and fast action variables.
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To prove Theorem 16 we need the following basic estimates about the Fourier
series of a function g(ϕ, J). Given a multi-index α = (α1, . . . , αd), we denote |α| =
α1 + · · ·+α3. Denote also κ = κd =

∑
Z3 [k]−d−1. To avoid cumbersome notations we

will denote by c various constants independent of all parameters of the problem, but
d.

Lemma 7.1. (see e.g. [13], lemma 3.1) For g(ϕ, J) ∈ Cr(Td ×B), we have

1. If l 6 r, we have ‖gk(J)e2πi(k·ϕ)‖Cl ≤ [k]l−r‖g‖Cr .

2. Let gk(J) be a series of functions satisfying ‖∂Jαgk‖C0 6M [k]−|α|−d−1 holds for
each multi-index α with |α| ≤ l, for some M > 0. Then, we have the following
bound ‖

∑
k∈Zd gk(J)e2πi(k·ϕ)‖Cl ≤ cκM .

3. Let Π+
Kg =

∑
|k|>K gk(J)e2πi(k·ϕ). Then for l 6 r − d − 1, we have ‖Π+

Kg‖Cl ≤
κKd−r+l+1‖g‖Cr .

Proof of Theorem 16. To simplify notations let

I = (I1, I2, If ) = (Jss, Jsf , Jf ), J∗ = (0, Jsf∗ , J
f (Jsf∗ )),

ϕ = (ϕ1, ϕ2, ϕf ) = (θss, θsf , θf ).

Let G(ϕ, I) be the function that solves the cohomological equation

{H0, G}+H1 = R1 +R+,

where R+ = Π+
KH1. We have the following explicit formula for G:

G(ϕ, I) =
∑

|k|≤K, (ksf ,kf )6=0

hk(I)

k · ∂IH0

e2πi(k·ϕ).

Let Φt be the Hamiltonian flow generated by εG. Setting Ft = R1 +R+ + t(H1 −
R1 −R+), we have the standard computation

∂t
(
(H0 + εFt) ◦ Φt)

)
= ε∂tFt ◦ Φt + ε{H0 + εFt, G} ◦ Φt

= ε
(
∂tFt + {H0, G}

)
◦ Φt + ε2{Ft, G} ◦ Φt

= ε2{Ft, G} ◦ Φt,

Fix I2 = Jsf∗ ∈ [M
√
ε, 5ε1/6]. Notice that difference with calculations of the proof

of Theorem 3.2 [13] is two fold:
— we do not use ρ-mollifiers and

70



— consider skew-symmetric norms of the remainder with respect to rescaled vari-
ables. Adapting notations we have Lε,I : (ϕ, Ĩ ) −→ (ϕ, I) with I2 = I∗2 +

√
εĨ2, I

f =

If∗ +
√
ε Ĩf , The key feature is that after rescaling derivatives with respect to slow-fast

and fast action variables have an additional
√
ε-factor.

Let us estimate the C2 norm of the function R2 := R+ + ε
∫ 1

0
{Ft, G} ◦ Φtdt. It

follows from Lemma 7.1 that

‖R+‖C2 ≤ κK−r+5‖H1‖Cr ≤
1

2
δ.

We now focus on the term
∫ 1

0
{Ft, G}◦Φtdt. To estimate the norm of Ft, it is convenient

to write Ft = F̃t + (1− t)R1, where F̃t = (1− t)R+ + tH1. Notice that the coefficients
of the Fourier expansion of F̃t is simply a constant times that of H1, Lemma 7.1 then
implies that

‖F̃t‖C3 ≤
∑
k∈Z3

[k]3−r‖H1‖Cr = κ‖H1‖Cr

provided that r ≥ m + 4, where as before κ =
∑

Z3 [k]−4. The same estimate applies
to R1. Therefore,

‖F̃t‖C3 ≤ ‖Rt‖C3 + ‖F̃t‖C3 ≤ 2κ‖H1‖Cr .

For l ∈ {0, 1, 2, 3} in rescaled variables using Jsf > C
√
ε we have the following

estimates:

‖(k · ∂J̃H0)−1‖Cl ≤
m‖H0‖l+1

C4

M
√
ε

.

To estimate norms of G we use the following estimates on the derivative of com-
position of functions: For f : Rd −→ R and g : Rd −→ Rd we have

‖f ◦ g‖Cl ≤ cd,l‖f‖Cl(1 + ‖g‖lCl).

For each multi-index |α| ≤ 3 and (ksf , kf ) 6= 0, we have that

‖∂Ĩα
(
hk( Ĩ ) (k · ∂J̃H0)−1

)
‖C0 ≤

∑
α1+α2=α

‖hk‖C|α1|‖(k · ∂J̃H0)−1‖C|α2|

≤
∑

α1+α2=α

[k]−r+|α1|‖H1‖Cr ·
m‖H0‖|α2|

C4

M
√
ε
≤ m [k]−r+|α|

‖H0‖|α|+1

C4 ‖H1‖Cr
M
√
ε

This implies that

‖G(ϕ, Ĩ)‖Cl ≤ m
‖H1‖Cr‖H0‖l+1

C4

M
√
ε

for l = 0, 1, 2, 3.
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We now apply our estimates to

‖{Ft, G}‖C2 ≤
∑

|α1+α2|≤3

‖Ft‖C|α1|‖G‖C|α2| ≤
m‖H1‖2

Cr‖H0‖4
C4

M
√
ε

.

Notice that the rescaled flow Φt ◦ Lε,Jsf∗ satisfies

‖εG‖C3 6 mε
‖H1‖2

Cr‖H0‖l+1
C4

M2
√
ε

� 1.

Choosing M appropriately for l = 0, 1, 2 we get the following estimate (see e. g. [29],
Lemma 3.15):

‖Φt − Id‖Cl ≤ mε‖G‖Cl+1 ≤
√
ε ‖H1‖2

Cr‖H0‖l+1
C4

m

M
.

7.2.2 Time-periodic setting and reduction to d = 3

Consider a time-periodic Hamiltonian Hε(θ, p, t) = H0(p) + εH1(θ, p, t) with (θ, p) ∈
T2 × R2, t ∈ T. We denote by p0 the intersection of the resonance Γ~k and Γ~k′ . This
means

~k1 · ∂pH(p0) + k0 = 0, ~k′1 · ∂pH(p0) + k′0 = 0.

We consider the autonomous version of the system

Hε(θ, p, t, E) = H0(p) + εH1(θ, p, t) + E.

We can rewrite the Hamiltonian in the form

Hε(θ, p, t, E) = H0(p) + εH1(~k1 · θ + k0, ~k
′
1 · θ + k′0, p, t) + E,

Denote θss = ~k1 ·θ+k0, θsf = ~k′1 ·θ+k′0, θ
f = t, and θs = (θss, θsf ), we further rewrite

Hε(θ
ss, θsf , Jss, Jsf , t, E) = H0(ps) + E + εH̃1(θs, p, t).

Note that to make the coordinate change (θs, ps, t, E) −→ (θs, ps, θf , Jf ) symplectic,
the conjugate coordinates Js = (Jss, Jsf ) and Jf should satisfy[

p
E

]
=

[
BT 0
k0, k

′
0 1

] [
Js

Jf

]
, where B =

[
~k1

~k′1

]
.

Substituting in we have the Hamiltonian

Hε(θ
ss, θsf , Jss, Jsf , t) + Jf =

(
H0(Jss, Jsf ) + Jf

)
+ εH̃1(θss, θsf , Jss, Jsf , t).

This Hamiltonian is in the form (15) Applying Theorem 16 get the following
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Theorem 17. [Normal Form] Let p0 be a strong double resonance p0 ∈ Γ~k ∩ Γ~k′ and
let H0(p) be a C4 Hamiltonian written in the local slow-fast coordinates defined above.

Then for each δ ∈ (0, 1), m > 1, and r ≥ 7, there exist positive parameters
K0, ε0,M such that, for each Cr Hamiltonian H1 with ‖H1‖Cr 6 1 and each K0 6
K, 0 ≤ ε 6 ε0, there exists a C2 change of coordinates

ΦTR : T2 ×B × T −→ T2 × R2 × T

defined in D(m,M, Jsf∗ , ε) for each Jsf∗ ∈ [M
√
ε, 5ε1/6] and such that composition of

Φ with a linear rescaling Lε,Jsf∗ satisfies

‖ΦTR ◦ Lε,Jsf∗ − Id‖Cl 6 δ
√
ε for each l = 0, 1, 2

and such that, in the new coordinates, the Hamiltonian H0 + εH1 takes the form

Nε = Hε ◦ ΦTR = H0(p) + εZ(θss, p) + εR(θ, p, t), (17)

where
Z(θss, p) =

∑
k∈Z3,|k|<K,(ksf ,kf )=0

hk(p)e
2πikssθss

and
‖R ◦ Lε,Jsf∗ ‖C2 ≤ δ on T× L−1

ε,Jsf∗
D(m,M, Jsf∗ , ε)× T2.

7.3 Construction of an isolating block

7.3.1 Auxiliary estimates on the vector field.

Consider the equation of motion :

θ̇s = ∂psH0 + ε∂psZ + ε∂psR

ṗs = −ε∂θsZ − ε∂θsR
θ̇f = ∂pfH0 + ε ∂pfZ + ε∂pfR

ṗf = −ε ∂θfR
ṫ = 1

. (18)

It is convenient to treat all variables as those on the lines. Then the system is defined
on R×R×R×R×R. We will show that this system is a perturbation of the model
system

θ̇s = ∂psH0 , ṗs = −ε∂θsZ , θ̇f = ∂pfH0 , ṗf = 0 , ṫ = 1. (19)
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By construction the graph of the map

(θf , pf , t) −→ (θs∗(pf ), p
s
∗(pf ))

on T× [M
√
ε, 5ε1/6]× T is invariant for the model flow. For each fixed pf , the point

(θs∗(pf ), p
s
∗(pf )) is a hyperbolic fixed point of the partial system

θ̇s = ∂psH0(ps, pf ) , ṗs = −ε∂θsZ(θs, ps, pf )

where pf is seen as a parameter. This hyperbolicity is the key property we will
use, through the theory of normally hyperbolic invariant manifolds. We notice that
calculations below are similar to those in section 3.3 [13]. The major difference is that
the remainder R is not necessarily C2-small. Notice that both size of hyperbolicity
and size of perturbation are ε-dependent so there is a competition and application of
this theory is not straightforward. On top of that we have to deal with the problem of
non-invariant boundaries. We will however manage to apply the quantitative version
exposed in Appendix B, [13].

We perform some changes of coordinates in order to put the system in the frame-
work of Appendix B, [13]. These coordinates appear naturally from the study of the
model system as follows. We set

b(pf ) := ∂2
pspsH0(ps∗(p

f )) , a(pf ) := −∂2
θsθsZ(θs∗(p

f ), ps∗(p
f )).

If we fix the variable pf and consider the model system in (θs, ps), we observed that
this system has a hyperbolic fixed point at (θs∗(p

f ), ps∗(p
f )). The linearized system at

this point is
θ̇s = b(pf ) ps , ṗs = εa(pf ) θ

s. (20)

To put this system under a simpler form, it is useful to introduce two parameters

T (pf ) :=
(
a−1(pf )b(pf )

)1/4
, Λ(pf ) := T 2(pf )a(pf ).

In the new variables

ξ = T−1(pf )θs + ε−1/2T (pf )ps , η = T−1(pf )θs − ε−1/2T (pf )ps,

the linearized system is reduced to the following block-diagonal form:

ξ̇ = ε1/2Λ(pf )ξ , η̇ = −ε1/2Λ(pf )η.

x = T−1(pf )(θs − θs∗(pf )) + ε−1/2T (pf )(ps − ps∗(pf ))
y = T−1(pf )(θs − θs∗(pf ))− ε−1/2T (pf )(ps − ps∗(pf )),
If = ε−1/2pf , Θ = γθf ,

(21)
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where γ is a parameter which will be taken later equal to δ1/2. Note that

θs = θs∗(ε
1/2If ) +

1

2
T (ε1/2If )(x+ y),

ps = ps∗(ε
1/2If ) +

ε1/2

2
T−1(ε1/2If )(x− y).

The next three lemmas are proven in [13].

Lemma 7.2. We have Λ(pf ) >
√
λ/D I for each pf ∈ [M

√
ε, 5ε1/6].

Lemma 7.3. On the domain ‖x‖ 6 ρ, ‖y‖ 6 ρ, we have the estimates

‖T‖ = O(λ−1/4), ‖T−1‖ = O(1), ‖∂pfT‖ 6 O(λ−3/2),

‖∂pfT−3/2‖ 6 O(λ−3/4), ‖∂pf θs∗‖ 6 O(λ−1),

‖ps∗‖C2 = O(1), ‖θs − θs∗‖ 6 O(λ−1/4ρ), ‖ps − ps∗‖ 6 O(ε1/2ρ).

Lemma 7.4. The equations of motion in the new coordinates take the form

ẋ = −
√
εΛ(
√
εIf )x+

√
εO(λ−1/4δ + λ−3/4ρ2) +O(ε)

ẏ =
√
εΛ(
√
εIf )y +

√
εO(λ−1/4δ + λ−3/4ρ2) +O(ε)

İf = O(
√
εδ),

where ρ = max(‖x‖, ‖y‖) is assumed to satisfy ρ 6 λ. The expression for Θ̇ is not
useful here.

Lemma 7.5. In the new coordinate system (x, y,Θ, I, t), the linearized system is
given by the matrix

L =


√
εΛ 0 0 0 0
0 −

√
εΛ 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+O(λ−3/4 ρ
√
ε+ δ λ−1/4

√
ε+ λ−5/4 ε+ γ

√
ε),

where ρ = max(‖x‖, ‖y‖).
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Proof of Lemma 7.5. Most of the estimates below are based on Lemma 7.3.
In the original coordinates, the matrix of the linearized system is:

L̃ =


O(ε) ∂2

pspsH0 +O(ε) 0 ∂2
pfps

H0 +O(ε) 0

−ε∂2
θsθsZ O(ε) 0 O(ε) 0

O(ε) ∂2
pfps

H0 +O(ε) O(δε) ∂2
pfpf

H0 +O(ε) O(δε)

0 0 0 0 0
0 0 0 0 0

+

ε ·


0 0 0 ∂2

pfps
R 0

0 0 0 −∂2
pfθs

R 0

∂2
pfθs

R ∂2
pfps

R ∂2
pfθf

R ∂2
pfpf

R ∂2
pf t

R

0 0 0 −∂2
pfθf

R 0

0 0 0 0 0

 .
In our notations for the first part of the matrix we have

O(ε) B +O(ε+
√
ερ) 0 ∂2

pfps
H0 +O(ε) 0

−εA+O(ελ−1/4ρ) O(ε) 0 O(ε) 0
O(ε) O(1) O(δε) O(1) O(δε)

0 0 0 0 0
0 0 0 0 0

 .

In the new coordinates, the matrix is the product

L =

[
∂(x, y,Θ, I, t)

∂(θs, ps, θf , pf , t)

]
· L̃ ·

[
∂(θs, ps, θf , pf , t)

∂(x, y,Θ, I, t)

]
.

We have

[
∂(θs, ps, θf , pf , t)

∂(x, y,Θ, I, t)

]
=


T/2 T/2 0 O(

√
ελ−1) 0√

εT−1/2 −
√
εT−1/2 0

√
ε∂pfp

s
∗ +O(ελ−3/4ρ) 0

0 0 γ−1 0 0
0 0 0

√
ε 0

0 0 0 0 1


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Therefore,

L̃

[
∂(θs, ps, θf , pf , t)

∂(x, y,Θ, I, t)

]
=

√
ε

2
×

×


BT−1 +O(

√
ελ−1/4) −BT−1 +O(

√
ελ−1/4) 0 O(

√
ελ−3/4ρ+ ελ−1) 0

AT +O(
√
ελ−1/2ρ)

√
εAT +O(

√
ελ−1/2ρ) 0 εO(λ−5/4ρ+ λ−1) 0

O(1) O(1) O(γ−1δ
√
ε) O(1) O(δ

√
ε)

0 0 0 0 0
0 0 0 0 0



+ ε ·


0 0 0

√
ε∂pfpsR 0

0 0 0 −
√
ε∂pfθsR 0

D+ D− γ−1∂pfθfR D ∂pf tR

0 0 0 −
√
ε∂pfθfR 0

0 0 0 0 0

 ,

where

D± = ∂pfθsR · T ±
√
ε ∂pfpsR · T−1,

D =
√
ε
[
∂pfθsR O(λ−1) + ∂pfpsR (∂pfp

s
∗ +
√
εO(λ−3/4ρ)) + ∂pfpfR

]
.

(22)

This expression is the result of a tedious, but obvious, computation. Let us just
detail the computation of the coefficient on the first line, fourth row which contain
an important cancelation:

√
ε∂2
pspsH0∂pfp

s
∗(p

f ) +
√
ε∂2
pfpsH0 +O(ελ−3/4ρ+ ε3/2λ−1)

=
√
ε∂pf

(
∂psH0(ps∗(p

f ), pf )
)

+O(ελ−3/4ρ+ ε3/2λ−1) = O(ελ−3/4ρ+ ε3/2λ−1).

We now write

[
∂(x, y,Θ, I, t)

∂(θs, ps, θf , pf , t)

]
=


T−1 ε−1/2T 0 O(ε−1/2λ−1/4) 0
T−1 −ε−1/2T 0 O(ε−1/2λ−1/4) 0

0 0 γ 0 0
0 0 0 ε−1/2 0
0 0 0 0 1

 ,
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and compute that

L =


√
εΛ +O(

√
ελ−3/4ρ) O(

√
ελ−3/4ρ) 0 O(ελ−5/4) 0

O(ελ−3/4ρ) −
√
εΛ +O(

√
ελ−3/4ρ) 0 O(ελ−5/4) 0

O(γ
√
ε) O(γ

√
ε) O(δε) O(γ

√
ε) O(δγε)

0 0 0 0 0
0 0 0 0 0



+ε·


0 0 0 B+ 0
0 0 0 B− 0

γD+ γD− ∂pfθfR γD γ∂pf tR
0 0 0 −∂pfθfR 0
0 0 0 0 0

 ,
where

B± =
√
ε T−1∂pfpsR± T ∂pfθsR +O(λ−1/4) ∂pfθfR.

Now we substitute our knowledge of derivatives. By Theorem 17 we have

|∂2
pfθsR|, |∂

2
pfpsR| ≤

δ√
ε
, |∂2

pfpfR| ≤
δ

ε
.

Substituting this into B’s and D’s we have

ε|D| ≤ δ O(ελ−1 +
√
ελ−3/4ρ+

√
ε).

ε|D±| ≤ δ O(ε+
√
ε).

ε|B±| ≤ δ O(ε+
√
ε+ λ−1/4

√
ε).

Conclude the second part of the linearization L has entries bounded by O(δ
√
ε λ−1/4).

This completes the proof.

7.3.2 Constructing the isolation block

In order to prove the existence of a normally hyperbolic invariant strip (for the lifted
system), we apply Proposition B.3 [13] to the system in coordinates (x, y,Θ, I, t).
More precisely, with the notations of Appendix B [13], we set:

u = x, s = y, c1 = (Θ, t), c2 = I,Ω = R2 × Ωc2 = R2 ×
[
M
√
ε, ε1/6

]
.

We fix γ =
√
δ and α =

√
ελ/4D, recall that

√
εΛ > 2αI, by Lemma 7.2. We take

σ = λε−1/2/2, so that
Ωσ = R2 ×

[
M
√
ε, ε1/6

]
.

78



We assume that ε satisfies 0 < ε < ε0λ
7/2 and 0 6 δ <

√
ε0 λ

2. We can apply
Proposition B.3 [13] with Bu = {u : ‖u‖ 6 ρ} and Bs = {s : ‖s‖ 6 ρ} provided

ε
−1/4
0 (λ−3/4δ + λ−1/2

√
ε) 6 ρ 6 2ε

1/4
0 λ5/4. (23)

It is easy to check under our assumptions on the parameters that such values of ρ
exist. These estimates along with Lemma 7.3 imply that

‖θs − θs∗(pf )‖ 6 O
(
ε

1/4
0 λ

)
, ‖ps − ps∗(pf )‖ ≤ O

(
ε

1/4
0 λ5/4ε1/2

)
.

Provided that the cylinder C exists, this gives the first set of estimates in Theorem
15.

Let us check the isolating block condition. By Lemma 7.4, we have

ẋ · x > 2α‖x‖2 − ‖x‖ O(ε1/2λ−1/4δ + ε1/2λ−3/4ρ2 + ε)

if x ∈ Bu, y ∈ Bs. If in addition ‖x‖ = ρ, then from the lower bound on ρ we have

λ−3/4δ 6 ε
1/4
0 ‖x‖ , λ−5/4ρ2 6 2ε

1/4
0 ‖x‖ ,

√
ε/λ 6 ε

1/4
0 ‖x‖,

hence
ẋ · x > 2α‖x‖2 − ‖x‖2ε

1/4
0 O(

√
ελ) > α‖x‖2

provided ε0 is small enough. Similarly, ẏ · y 6 −α‖y‖2 on Bu × ∂Bs provided ε0 is
small enough. Concerning the linearized system, we have

Luu =
√
εΛ +O(

√
εδλ−1/4γ−1 +

√
ελ−3/4ρ+ ελ−5/4 +

√
εγ)

=
√
εΛ +O(ε

1/4
0

√
ελ) > αI,

Lss = −
√
εΛ +O(ε

1/4
0

√
ελ) 6 −αI

on Bu×Bs×Ωσ. These inequalities holds when ε0 is small enough because
√
εΛ > 2αI

and
√
ελ 6 O(α). Finally, still with the notations of Proposition B.3 [13], as in the

previous estimate for Luu we take

m = O(
√
εδλ−1/4γ−1 +

√
ελ−3/4ρ+ ελ−5/4 +

√
εγ +

√
εδ/σ)

=
√
ελO(

√
δλ−3/4 + ρλ−5/4 +

√
ελ−7/4) =

√
ελO(ε

1/4
0 ).

If ε0 is small enough, we have 4m < α hence K 6 2m/α 6 O(ε
1/4
0 ) < 2−1/2, and

Proposition B.3 [13] applies. The invariant strip obtained from the proof of this
Proposition does not depend on the choice of ρ. It contains all the full orbits contained
in

{x : ‖x‖ 6 ε
1/4
0 λ−5/4} × {y : ‖y‖ 6 ε

1/4
0 λ−5/4} × R×

[
M, 5ε−1/3

]
× R, (24)
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hence all the full orbits contained in V , as defined in the statement of Theorem 15.
The possibility of taking ρ = ε

−1/4
0 (λ−3/4δ + λ−1/2

√
ε) now implies that the cylinder

is actually contained in the domain where

‖x‖, ‖y‖ 6 ε
−1/4
0 (λ−3/4δ + λ−1/2

√
ε).

Moreover, with this choice of ρ and using the estimate for m we have that K =
O(m/

√
ελ) = O(ε

1/4
0 ).

Observe finally that, since the system is 1/γ-periodic in Θ and 1-periodic in t, so
is the invariant strip that we obtain, as follows from Proposition B.2 [13]. We have
obtained the existence of a C1 map

wc = (wcu, w
c
s) : (Θ, I, t) ∈ R×

[
M, 5ε−1/3

]
× R −→ R× R

which is 2K-Lipschitz, 1/γ-periodic in Θ and 1-periodic in t, and the graph of which
is weakly invariant.

Our last task is to return to the original coordinates by setting

Θs(θf , pf , t) = θs∗(p
f ) +

1

2
T (pf ) · (wcu + wcs)(γθ

f , ε−1/2pf , t)

P s(θf , pf , t) = ps∗(p
f ) +

√
ε

2
T−1(pf ) · (wcu − wcs)(γθf , ε−1/2pf , t).

All the estimates stated in Theorem 15 follow directly from these expressions, and
from the fact that ‖dwc‖ 6 2K. This concludes the proof of Theorem 15.
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8 Proof of Key Theorem 3 about existence of in-

variant cylinders at double resonances

Key Theorem 3 follows from Theorem 7. Theorem 7, in turn, follows from Theorem
6.

The proof of Theorem 6 consists of two main parts:

• study properties of the local maps to establish hyperbolicity

• using hyperbolicity of the local map, construct a isolating block of Conley-
McGehee [63] for various compositions of global and local maps.

Analysis of properties of the local map has three steps:
In section 8.1 we derive a finitely-smooth normal form in a neighborhood of the

origin.
In section 8.2 we derive certain hyperbolic properties of the local map Φ∗loc, i.e.

the map from a subset inside of the (incoming) section Σs
+ to the (outgoing) section

Σu
+ (see Figure 9).

In section 8.3, using that eigenvalues are distinct, we establish strong hyperbolicity
of the local map Φ∗loc as well as existence of unstable cones17. Since the global maps
Φ∗glob have bounded time, they have bounded norms and the linearization of the proper
compositions Φ∗globΦ

∗
loc are dominated by the local component.

In section 8.4 we give definition and derive simple properties of isolating blocks of
Conley-McGehee [63].

In section 8.5, under non-degeneracy conditions [A1]-[A4], we construct isolating
blocks for the proper compositions of Φ∗globΦ

∗
loc. This proves Theorem 6 for simple

loops.
In section 8.6 we extend this analysis tp Φ∗globΦ

∗
loc · · ·Φ∗globΦ∗loc. This would im-

ply existence of families of shadowing orbits in non-simple case. This would prove
Theorem 6.

In section 8.7 we complete a proof of Theorem 7 by showing that periodic orbits
constructed in Theorem 6 are hyperbolic and their union forms a normally hyperbolic
invariant cylinder.

Now we assume that the Hamiltonian Hε is Ck+1 with k ≥ 9. In Section 8.8 using
approximation arguments we remove this condition.

17One can expect this as near the origin eigenvalues (−λ2 < −λ1 < 0 < λ1 < λ2) dominate the
linearization of the flow and provide hyperbolicity. The closer orbits pass to the origin the stronger
hyperbolicity of the local map Φ∗loc.

81



8.1 Normal form near the hyperbolic fixed point

We descirbe a normal form near the hyperbolic fixed point (assumed to be (0, 0)) of
the slow Hamiltonian Hs : T2 × R2 −→ R. For the rest of this section, we drop the
supcript s to abrieviate notations. In a neighborhood of the origin, there exists a a
symplectic linear change of coordinates under which the system has the normal form

H(u1, u2, s1, s2) = λ1s1u1 + λ2s2u2 +O3(s, u).

Here s = (s1, s2), u = (u1, u2), and On(s, u) stands for a function bounded by
C|(s, u)|n.

The main result of this section is the following improved normal form

Theorem 18. Let H be Ck+1 with k ≥ 9, then there exists neighborhood U of the
origin, m = m(λ2, λ1, k), and a C2 change of coordinates Φ on U such that Nm = H◦Φ
is a polynomial of degree m of the form

ṡ1

ṡ2

u̇1

u̇2

 =


−∂u1Nm

−∂u2Nm

∂s1Nm

∂s2Nm

 =


−λ1s1 + F1(s, u)
−λ2s2 + F2(s, u)
λu1 +G1(s, u)
λu2 +G2(s, u)

 (25)

where
F1 = s1O1(s, u) + s2O1(s, u), F2 = s2

1O(1) + s2O1(s, u),

G1 = u1O1(s, u) + u2O1(s, u), G2 = u2
1O(1) + u2O1(s, u).

The proof consists of two steps: first, we do some preliminary normal form and
then apply a theorem of Belitskii-Samovol (see, for example, [22]).

Since (0, 0) is a hyperbolic fixed point, for sufficiently small r > 0, there exists
stable manifold W s = {(u = U(s), |s| ≤ r} and unstable manifold W u = {s =
S(u), |u| ≤ r} containing the origin. All points onW s converges to (0, 0) exponentially
in forward time, while all points on W u converges to (0, 0) exponentially in backward
time. These manifolds are Lagrangian; as a consequence, the change of coordinates
s′ = s − S(u), u′ = u − U(s′) = u − U(s − S(u)) is symplectic. Under the new
coordinates, we have that W s = {u′ = 0} and W u = {s′ = 0}. We abuse notation
and keep using (s, u) to denote the new coordinate system.

Under the new coordinate system, the Hamiltonian has the form

H(s, u) = λ1s1u1 + λ2s2u2 +H1(s, u),

where H(s, u) = O3(s, u) and H1(s, u)|s=0 = H1(s, u)|u=0 = 0. Let us denote H0 =
λ1s1u1 + λ2s2u2. We now perform a further step of normalization.
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We say an tuple (α, β) ∈ N2 × N2 is resonant if
∑2

i=1 λi(αi − βi) = 0. Note that

an (α, β) with αi = βi for i = 1, 2 is always resonant. A monomial uα1
1 u

α2
2 s

β1
1 s

β2
2 is

resonant if (α, β) is resonant. Otherwise, we call it nonresonant. It is well known
that a Hamiltonian can always be transformed, via a formal power series, to an
Hamiltonian with only resonant terms (see e.g. [71], section 30, for example). We
do not use Hamiltonian structure of the flow. Thus, it suffices to have an analogous
claim for vector fields with a coordinate change being only finitely smooth. For a
complex µ ∈ C denote <µ the real part of µ.

Theorem 19 (Belitskii-Samovol). [22] Let k be positive integer. Assume that the
vector field ẋ = F (x) is of class CK , x = 0 is a hyperbolic saddle point F (0) = 0
and A = DF (0) is the linearization. Let λ = (λ1, . . . , λn) ∈ Cn be the spectrum of
A. Suppose real parts of λi’s are all nonzero and pairwise disjoint. If K ≥ dk + 1,
then for some positive integer m, this vector field near the point 0 by a transformation
y = Φ(x),Φ ∈ Ck, can be reduced to the polynomial resonant normal form

ẏ = Ay +
m∑
|τ |=2

pτy
τ ,

where τ ∈ Zn+ and pτ denotes vector coefficients of a multi-homogeneous polynomial
pτ = (p1

τ , . . . , p
n
τ ) and piτ 6= 0 for some i = 1, . . . , n implies <λi = τ 1<λ1 + · · ·+τn<λn

(by the resonant condition).

In [22] there is an upper bound on m. One can also find λ-dependent lower bounds
on smoothness exponent K there.

Application of this Theorem with n = 4, k = 2, K = 9, λ = (−λ2,−λ1, λ1, λ2), 0 <
λ1 < λ2 gives existence of a C2-change of coordinates Φ such that Nm = H◦Φ consists
of only resonant monomials.

We abuse notations by replacing (s′, u′) with (s, u). Using our assumption that
0 < λ1 < λ2, we have that all (α, β) with α 6= β, α1 = 1 and α2 = 0 are nonresonant,
and similarly, all (α, β) with α 6= β, β1 = 1 and β2 = 0 are nonresonant. Furthermore,
by performing the straightening of stable/unstable manifolds again if necessary, we
may assume that Nm|s=0 = Nm|u=0 = 0. As a consequence, the normal form Nm

must take the following form:

Corollary 8.1. The normal form Nm satisfies

Nm = λ1s1u1 + λ2s2u2+

+O1(u2
1s2) +O1(s2

1u
2
1) +O1(s2

1u2) +O1(s2u
2
1) +O1(s1u1s2u2) +O1(s2

2u
2
2).

In particular, we have Nm = λ1s1u1 + λ2s2u2 +O3(s, u).
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Explicit differentiation of the remainder terms implies the form of partial deriva-
tives of Nm given by F1, F2, G1, G2 in Theorem 18. Notice that bounds are not
optimal, but sufficient for our purposes.

8.2 Behavior of a family of orbits passing near 0 and Shil’ni-
kov boundary value problem

The main result of this section is the following

Theorem 20. Let (sT , uT ) be a family of orbits satisfying sT (0) −→ sin as T −→∞
with sT1 = δ and uT (T ) −→ uout as T −→ ∞ with sT1 = δ with |sT |, |uT | ≤ 2δ, where
δ is small enough. Then there exists T0, C > 0 and α > 1 such that for each T > T0

and all 0 ≤ t ≤ T we have

|sT2 (t)| ≤ C|sT1 (t)|α, |uT2 (t)| ≤ C|uT1 (t)|α.

In particular, the curve {(sT1 (T ), sT2 (T ))}T≥T0 ⊂ Σu
+ = {sT1 (0) = δ} is tangent to the

s1–axis at T = ∞ and {(uT1 (0), uT2 (0))}T≥T0 ⊂ Σs
+ = {sT1 (0) = δ} is tangent to the

u1–axis at T =∞.

We will use the local normal form to study the local maps. Our main technical tool
to prove the above Theorem is the following boundary value problem due to Shil’nikov
(see [69]):

Proposition 8.2. There exists κ0 > 0 such that for any 0 < κ ≤ κ0, there exist
δ > 0 such that the following hold. For any sin = (sin1 , s

in
2 ), uout = (uout1 , uout2 ) with

|s|, |u| ≤ δ and any large T > 0, there exists a unique solution (sT , uT ) : [0, T ] −→ Bδ

of the system (25) with the property sT (0) = sin and uT (T ) = uout. Let

(s(1), u(1))(t) = (e−λ1tsin1 , e
−λ2tsin2 , e

−λ1(T−t)uout1 , e−λ2(T−t)uout2 ), (26)

we have

|sT1 (t)− s(1)
1 (t)| ≤ δe−(λ1−κ)t, |sT2 (t)− s(1)

2 (t)| ≤ δe−(λ′2−2κ)t,

|uT1 (t)− u(1)
1 (t)| ≤ δe−(λ1−κ)(T−t), |uT2 (t)− u(1)

2 (t)| ≤ δe−(λ′2−2κ)(T−t),

where λ′2 = min{λ2, 2λ1}. Furthermore, for s1 and u1, we have an additional lower
bound estimate:

|sT1 (t)| ≥ 1

2
|sin1 | e−(λ1+κ)t, |uT1 (t)| ≥ 1

2
|uout1 | e−(λ1+κ)(T−t). (27)

Note that for (27) to hold, the choice of δ needs to depend on a lower bound for |sin1 |
and |uout1 |.
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Proof. Let Γ denote the set of all smooth curves (s, u) : [0, T ] −→ B(0, δ) such that
the s(0) = (sin1 , s

in
2 ) and u(T ) = (uout1 , uout2 ). We define a map F : Γ −→ Γ by

F(s, u) = (s̃, ũ), where

s̃1 = e−λ1tsin1 +

∫ t

0

eλ1(ξ−t)F1(s(ξ), u(ξ))dξ,

s̃2 = e−λ2tsin2 +

∫ t

0

eλ2(ξ−t)F2(s(ξ), u(ξ))dξ,

ũ1 = e−λ1(T−t)uout1 −
∫ T

t

e−λ1(ξ−t)G1(s(ξ), u(ξ))dξ,

ũ2 = e−λ2(T−t)uout2 −
∫ T

t

e−λ2(ξ−t)G2(s(ξ), u(ξ))dξ.

It is proved in [69] that for sufficiently small δ, the map F is a contraction in the
uniform norm. Let s(1), u(1) be as defined in (26) and (s(k+1), u(k+1)) = F(s(k), u(k)),
then (s(k), u(k)) converges to the solution of the boundary value problem. Using the
normal form (25), we will provide precise estimates on the sequence (s(k), u(k)). The
upper bound estimates are consequences of the following:

|s(k+1)
1 (t)− s(k)

1 (t)| ≤ 2−kδe−(λ1−κ)t,

|s(k+1)
2 (t)− s(k)

2 (t)| ≤ 2−kδe−(λ′2−κ)t,

|u(k+1)
1 (t)− u(k)

1 (t)| ≤ 2−kδe−(λ1−κ)(T−t),

|u(k+1)
2 (t)− u(k)

2 (t)| ≤ 2−kδe−(λ′2−κ)(T−t).

We have

|s(2)
1 (t)− s(1)

1 (t)| =
∫ t

0

eλ1(ξ−t)
∣∣∣s(1)

1 (ξ)O1(s, u) + s
(1)
2 (ξ)O1(s, u)

∣∣∣ dξ
≤
∫ T

0

eλ1(ξ−t)(O(δ2)e−λ1ξ +O(δ2)e−λ2ξ)dξ

≤ O(δ2)te−λ1t ≤ C
teε t

κt
δ2e−(λ1−κ)t ≤ Cκ−1δ2e−(λ1−κ)t ≤ 1

2
δe−(λ1−κ)t.
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Note that the last inequality can be guaranteed by choosing δ ≤ C−1κ. Similarly

|s(2)
2 (t)− s(1)

2 (t)| =
∫ t

0

eλ2(ξ−t)
∣∣∣(s(1)

1 (ξ))2O(1) + s
(1)
2 (ξ)O1(s, u)

∣∣∣ dξ
≤
∫ t

0

eλ2(ξ−t)(O(δ2)e−2λ1ξ +O(δ2)e−λ2ξ)dξ

≤ O(δ2)

∫ t

0

eλ
′
2(ξ−t)e−λ

′
2ξdξ ≤ Cδ2 te−λ

′
2t ≤ Cδ2 e

2ε t

2κ
e−λ

′
2t

≤ Cκ−1δ2e−(λ′2−κ)t ≤ 1

2
δe−(λ′2−2κ)t.

Observe that the calculations for u1 and u2 are identical if we replace t with T − t.
We obtain

|u(2)
1 (t)− u(1)

1 (t)| ≤ 1

2
δe−(λ1−κ)(T−t), |u(2)

2 (t)− u(1)
2 (t)| ≤ 1

2
δe−(λ′2−2κ)(T−t).

According to the normal form (25), we have there exists C ′ > 0 such that

‖∂sF1‖ ≤ C ′‖(s, u)‖, ‖∂uF1‖ ≤ C ′‖s‖.

Using the inductive hypothesis for step k, we have ‖s(k)(t)‖ ≤ 2δe−(λ1−κ)t. It follows
that

|s(k+2)
1 (t)− s(k+1)

1 (t)|

≤
∫ t

0

eλ1(ξ−t) (‖∂sF1‖ ‖s(k+1) − s(k)‖+ ‖∂uF1‖ ‖u(k+1) − u(k)‖
)
dξ

≤ C ′
∫ t

0

eλ1(ξ−t) (δ2−kδe−(λ1−κ)ξ + δe−(λ1−κ)ξ2−kδ
)
dξ

≤ 2−kδe−(λ1−κ)t

∫ t

0

2C ′e−κξδdξ ≤ 2−(k+1)δe−(λ1−κ)t.

Note that the last inequality can be guaranteed by choosing δ sufficiently small de-
pending on C ′ and κ. The estimates for s2 needs more detailed analysis. We write

|s(k+2)
2 (t)− s(k+1)

2 (t)| ≤
∫ t

0

eλ2(ξ−t)·(
‖∂s1F2‖|s(k+1)

1 − s(k)
1 |+ ‖∂s2F2‖|s(k+1)

2 − s(k)
2 |+ ‖∂uF2‖‖u(k+1)

2 − u(k+1)
2 ‖

)
dξ

=

∫ t

0

eλ2(ξ−t)(I + II + III)dξ.
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We have ‖∂s1F2‖ = O1(s1)O(1) +O1(s2)O(1), hence

I ≤ C ′(δe−(λ1−κ)ξ + δe−(λ′2−2κ)ξ)2−kδe−(λ1−κ)ξ ≤ C ′2−kδ2e−2(λ′1−κ)ξ.

Since ‖∂s2F2‖ = O2(s1) + O1(s, u) = O1(s, u), we have II ≤ C ′δ22−ke−(λ′2−2κ)ξ. Fi-
nally, as ‖∂uF2‖ = O2(s1) +O1(s2)O(1), we have

III ≤ C ′2−kδ(δ2e−2(λ1−κ)ξ + δe−(λ′2−2κ)ξ) ≤ C ′2−kδ2e−(λ′2−2κ)ξ.

Note that in the last line, we used λ′2 ≤ 2λ1. Combine the estimates obtained, we
have

|s(k+2)
2 (t)− s(k+1)

2 (t)| ≤ δ2−k
∫ t

0

3C ′δeλ2(ξ−t)e−(λ′2−2κ)ξdξ

≤ δ2−ke−(λ′2−2κ)t

∫ t

0

3C ′δe−2κξdξ ≤ 2−(k+1)δe−(λ′2−2κ)t.

The estimates for u1 and u2 follow from symmetry.
We now prove the lower bound estimates (27). We will first prove the estimates

for s1 in the case of sin1 > 0. We have the following differential inequality

ṡ1 ≥ −(λ1 + C ′δ)s1 + s2O1(s, u).

Note that |s2(t)| ≤ 2δe−λ
′
2t due to the already established upper bound estimates.

Choose δ such that C ′δ ≤ κ, we have

s1(t) ≥ sin1 e
−(λ1+κ)t −

∫ t

0

e−(λ1+κ)(ξ−t)2δe−(λ′2−2κ)ξ · C ′δdξ

≥ sin1 e
−(λ1+κ)t − 2C ′δ2(λ′2 − λ1 − 3κ)−1e−(λ1+κ)t ≥ 1

2
sin1 e

−(λ1+κ)t.

For the last inequality to hold, we choose κ0 small enough such that λ′2−λ1−3κ > 0,
and choose δ such that 2C ′δ2(λ′2 − λ1 − 3κ)−1 ≤ 1

2
sin1 .

The case when sin1 < 0 follows from applying the above analysis to −s1. The
estimates for u1 can be obtained by replacing si with ui and t with T − t in the above
analysis.

Proof of Theorem 20. The following estimate follows from Proposition 8.2 that |sT1 (t)| ≥
1
2
|sin1 |e−(λ1+κ)t and |sT2 (t)| ≤ 2δe−(λ′2−2κ)t. We obtain the estimates for s1 and s2 by

choosing α = λ2−2ε
λ1+κ

and C = 4δ/|sin1 |. The case of u1 and u2 can be proved simi-
larly.
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8.3 Properties of the local maps

Recall that γ+ is a homoclinic orbit satisfying the conditions [A1]-[A4], and γ− is its
time-reversal. Denote p± = (s±, 0) = γ±∩Σs

± and q± = (0, u±) = γ±∩Σu
±. Although

the local map Φ++
loc is not defined at p+ (and its inverse is not defined at q+), the map

is well defined from a neighborhood close to p+ to a neighborhood close to q+. In
particular, for any T > 0, by Proposition 8.2, there exists a trajectory (s, u)++

T of the
Hamiltonian flow such that

s++
T (0) = s+, u++

T (T ) = u+.

Denote x++
T = (s, u)++

T (0) and y++
T = (s, u)++

T (T ), we have Φ++
loc (x++

T ) = y++
T , and

x++
T −→ p+, y++

T −→ q+ as T −→ ∞. We apply the same procedure to other local
maps and extend the notations by changing the superscripts accordingly.

Let N = Nk(s, u) be the Hamiltonian in the normal form from Theorem 18,
E(T ) = N((s, u)++

T ) be the energy of the orbit, and SE(T ) = {N = E(T )} be the
corresponding energy surface. We will show that the domain of Φ++

loc |SE(T )
can be

extended to a larger subset of Σ
s,E(T )
+ containing x++

T . We call R ⊂ Σs
+ ∩ SE(T ) a

rectangle if it is bounded by four vertices x1, · · · , x4 and C1 curves γij connecting
xi and xj, where ij ∈ {12, 34, 13, 24}. The curves does not intersect except at the
vertices. Denote Bδ(x) the δ-ball around x and the local parts of invariant manifolds

Σ+
s = W s(0) ∩ Σs

+ ∩Bδ(p
+), Σ+

u = W u(0) ∩ Σu
+ ∩Bδ(q

+)

and the Σ-sections restricted to an energy surface SE by

Σs,E
+ = Σs

+ ∩ SE and Σu,E
+ = Σu

+ ∩ SE.

The main result of this section is the following

Theorem 21. There exists δ0 > 0 and T0 > 0 such that for any T > T0 and 0 <
δ < δ0, there exists a rectangle R++(T ) ⊂ Σ

s,E(T )
+ , with vertices xi(T ) and C1-smooth

sides γij(T ), such that the following hold:

1. Φ++
loc is well defined on R++(T ). Φ++

loc (R++(T )) is also a rectangle with vertices
x′i(T ) and sides γ′ij(T ).

2. As T −→ 0, γ12(T ) and γ34(T ) both converge in Hausdorff metric to a single
curve containing Σ+

s ; γ′13(T ) and γ′24(T ) converges to a single curve containing
Σ+
u .

The same conclusions, after substituting the superscripts according to the signatures
of the map, hold for other local maps.
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Φ++
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xT

yT

Figure 18: Local map Φ++
loc

To get a picture of Theorem 21, note that for a given energy E > 0, the restricted
sections Σs,E

+ and Σu,E
+ are both transversal to the s1 and u1 axes, and hence these

sections can be parametrized by the s2 and u2 components. An illustration of the
local maps and the rectangles is contained in Figure 18 and 19.

We will only prove Theorem 21 for the local map Φ++
loc . The proof for the other

local maps are identical with proper changes of notations.
Let (vs1 , vs2 , vu1 , vu2) denote the coordinates for the tangent space induced by

(s1, s2, u1, u2). As before Br denotes the r−neighborhood of the origin. For c > 0
and x ∈ Br, we define the strong unstable cone by

Cu, c(x) = {c|vu2|2 > |vu1|2 + |vs1|2 + |vs2|2}

and the strong stable cone to be

Cs, c(x) = {c|vs2 |2 > |vs1|2 + |vu1|2 + |vu2|2}.

The following properties follows from the fact that the linearization of the flow at 0 is
hyperbolic. We will drop the superscript c when the dependence in c is not stressed.

Lemma 8.3. For any 0 < κ < λ2−λ1, there exists r = r(κ, c) such that the following
holds:

• If ϕt(x) ∈ Br for 0 ≤ t ≤ t0, then Dϕt(C
u(x)) ⊂ Cu(ϕt(x)) for all 0 ≤ t ≤ t0.

Furthermore, for any v ∈ Cu(x),

|Dϕt(x)v| ≥ e(λ2−κ)t, 0 ≤ t ≤ t0.

• If ϕ−t(x) ∈ Br for 0 ≤ t ≤ t0, then Dϕ−t(C
s(x)) ⊂ Cs(ϕ−t(x)) for all 0 ≤ t ≤

t0. Furthermore, for any v ∈ Cs(x),

|Dϕ−t(x)v| ≥ e(λ2−κ)t, 0 ≤ t ≤ t0.
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Figure 19: Rectangles mapped under Φ++
loc

For each energy surface E, we define the restricted cones Cu
E(x) = Cu(x) ∩ TxSE

and Cs
E(x) = Cs(x) ∩ TxSE.

Warning: Recall that the Hamiltonian N under consideration by Theorem 18
has the form Nk = λ1s1u1 + λ2s2u2 + O3(s, u). It is easy to see that the restricted
cones Cu

E(x) and Cs
E(x) might be empty. Excluding this case requires special care!

Since the energy surface is invariant under the flow, its tangent space is also
invariant. We have the following observation:

Lemma 8.4. If ϕt(x) ∈ Br for 0 ≤ t ≤ t0, then Cu
E is invariant under the map Dϕt

for 0 ≤ t ≤ t0. In particular, if Cu
E(x) 6= ∅, then Cu

E(ϕt(x)) 6= ∅. Similar conclusions
hold for Cs

E with ϕ−t.

Let x be such that ϕt(x) ∈ Br ∩ SE for 0 ≤ t ≤ t0. A Lipschitz curve γsE(x) is
called stable if its forward image stays in Br for 0 ≤ t ≤ t0, and that the curve and
all its forward images are tangent to the restricted stable cone field {Cs

E}. For y such
that ϕ−t(y) ∈ Br ∩ SE for 0 ≤ t ≤ t0, we may define the unstable curve γuE(y) in
the same way with t replaced by −t and Cs

E replaced by Cu
E. Notice that stable and

unstable curves are not in the tangent space, but in the phase space.

Proposition 8.5. In notations of Lemma 8.3 assume that x, y ∈ SE satisfies the
following conditions.
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• ϕt(x) ∈ Br ∩ SE and ϕ−t(y) ∈ Br ∩ SE for 0 ≤ t ≤ t0.

• The restricted cone fields are not empty. Moreover, there exists a > 0 such
that Cs, c

E (ϕt0(z)) 6= ∅ for z ∈ Ua(ϕt0(x)) ∩ SE, and Cu, c
E (ϕ−t0(z

′)) 6= ∅ for each
z′ ∈ Ua(ϕ−t0(y)) ∩ SE.

Then there exists at least one stable curve γsE(x) and one unstable curve γuE(y).
If a ≥

√
c2 + 1 re−(λ2−κ)t0, then the stable curve γsE(x) and the unstable one γuE(y)

can be extended to the boundary of Br(x) and of Br(y) respectively. Furthermore,

‖ϕt(x)− ϕt(x1)‖ ≤ e−(λ2−κ)t, x1 ∈ γsE(x), 0 ≤ t ≤ t0

and
‖ϕ−t(y)− ϕ−t(y1)‖ ≤ e−(λ2−κ)t, y1 ∈ γuE(y), 0 ≤ t ≤ t0.

It is possible to choose the curves to be C1.

Remark 8.1. The stable and unstable curves are not unique. Locally, there exists a
cone family such that any curve tangent to this cone family is a stable/unstable curve.

Proof. Let us denote x′ = ϕt0(x). From the smoothness of the flow, we have that
there exist neighborhoods U of x and U ′ of x′ such that ϕt0(U) = U ′ and ϕt(U) ∈ Br

for all 0 ≤ t ≤ t0. By intersecting U ′ with Ua(x
′) if necessary, we may assume that

U ′ ⊂ Ua(x
′). We have that Cs, c

E (z) 6= ∅ for all z ∈ U ′. It then follows that there
exists a curve γsE(x′) ⊂ U ′ that is tangent to Cs, c

E . As Cs, c
E is backward invariant with

respect to the flow, we have that ϕ−t(γ
s
E(x′)) is also tangent to Cs, c

E for 0 ≤ t ≤ t0.
Let dist(γsE) denote the length of the curve γsE and let γsE(x) = ϕ−t0(γ

s(x′)). It follows
from the properties of the cone field that

dist(γsE(x)) ≥ e(λ2−κ)t0 dist(γsE(x′)).

We also remark that from the fact that γsE(x) is tangent to the cone field Cs, c
E (x), the

Euclidean diameter (the largest Euclidean distance between two points) of γsE(x) is
bounded by 1√

c2+1
dist(γsE(x)) from below and by l(γsE(x)) from above.

Let x1 be one of the end points of γsE(x) and x′1 = ϕt0(x1). We may apply the
same arguments to x1 and x′1, and extend the curves γsE(x) and γsE(x′) beyond x1 and
x′1, unless either x1 ∈ ∂Br or x′1 ∈ ∂Ua(x′). This extension can be made keeping the
C1 smoothness of γ. Denote γsE(x)|[x, x1] the segment on γsE(x) from x to x1. We
have that

‖x′1 − x′‖ ≤ dist(γsE(x′)|[x′, x′1]) ≤

≤ e−(λ2−κ)t0 dist(γsE(x)|[x, x1]) ≤ e−(λ2−κ)t0‖x− x1‖
√
c2 + 1.
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It follows that if a ≥ r
√
c2 + 1 e−(λ2−κ)t0 , x1 will always reach boundary of Br before

x′1 reaches the boundary of Ua(x
′). This proves that the stable curve can be extended

to the boundary of Br.
The estimate ‖ϕt(x)−ϕt(x1)‖ ≤ e−(λ2−κ)t follows directly from the earlier estimate

of the arc-length. This concludes our proof of the proposition for stable curves. The
proof for unstable curves follows from the same argument, but with Cs, c

E replaced by
Cu, c
E and t by −t.

In order to apply Proposition 8.5 to the local map, we need to show that the
restricted cone fields are not empty. (see also the warning after Lemma 8.3)

Lemma 8.6. There exists 0 < a ≤ δ and c > 0 such that for any x = (s, u) ∈ Σs,E
+

with ‖u‖ ≤ a, and |s2| ≤ 2δ, we have Cu, c
E (x) 6= ∅. Similarly, for any y ∈ Σu,E

+ with
|s| ≤ a and |u2| ≤ 2δ, we have Cs, c

E (y) 6= ∅.

Proof. We note that

∇N = (λ1u1 + uO1, λ2u2 + uO1, λ1s1 + sO1, λ2s2 + sO1),

and hence for small ‖u‖, ∇N ∼ (0, 0, λ1s1, λ2s2). Since |s2| ≤ 2δ = 2|s1| on Σs
+, we

have the angle between ∇N and u1 axis is bounded from below. As a consequence,
there exists c > 0, such that Cu, c has nonempty intersection with the tangent direction
of SE (which is orthogonal to ∇N). The lemma follows.

Proof of Theorem 21. We will apply Proposition 8.5 to the pair x++
T and y++

T which
we will denote by xT and yT for short. Since the curve γ+ is tangent to the s1–axis,
for δ sufficiently small, we have p+ = (δ, s+

2 , 0, 0) satisfies |s2| ≤ δ. As xT −→ p+, for
sufficiently large T , we have xT = (s1, s2, u1, u2) satisfy |u| ≤ a/2 and |s2| ≤ 3δ/2,
where a is as in Lemma 8.6. As a consequence, for each x′ ∈ Ua/2(xT )∩Σs,E

+ , we have

Cu, c
E (x′) 6= ∅. Similarly, we conclude that for each y′ ∈ Ua/2(yT ) ∩ Σu,E

+ , Cs, c
E (y′) 6= ∅.

We may choose T0 such that a/2 ≥
√
c2 + 1re−(λ2−κ)T0 .

Let γ̄ be a stable curve containing xT extended to the boundary of Br/2. Denote
the intersection with the boundary x̄1 and x̄2 and let ȳ1 and ȳ2 be their images under
ϕT . Let γ′13 and γ′24 be unstable curves containing ȳ1 and ȳ2 extended to the boundary
of Br, and let γ13 and γ24 be their preimages under ϕT . Pick x1 and x3 on the curve
γ13 and let y1 and y3 be their images. It is possible to pick x1 and x3 such that the
segment y1y3 on γ′13 extends beyond Br/2. We now let γ12 and γ34 be stable curves
containing x1 and x3 that intersects γ24 at x2 and x4.

Note that by construction, γ̄ and γ′13 are extended to the boundary of Br/2. As the
parameter T −→∞, the limit of the corresponding curves still extends to the bound-
ary of Br/2, which contains γ+

s and γ+
u respectively. Moreover, by Proposition 8.5,
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the Hausdorff distance between γ12, γ34 and γ̄ is exponentially small in T , hence they
have a common limit. The same can be said about γ′13 and γ′24.

There exists a Poincaré map taking γ12 and γ34 to curves on the section Σs
+; we

abuse notation and still call them γ12 and γ34. Similarly, γ′13 and γ′24 can also be
mapped to the section Σu

+ by a Poincaré map. These curves on the sections Σs
+ and

Σu
+ completely determines the rectangle R++(T ) ⊂ Σ

s,E(T )
+ . Note that the limiting

properties described in the previous paragraph is unaffected by the Poincaré map.
This concludes the proof of Theorem 21.

By construction curves γ12 and γ34 can be selected as stable and γ14 and γ23 —
as unstable. It leads to the following

Corollary 8.7. There exists T0 > 0 such that the following hold.

1. For T ≥ T0, Φ+
glob ◦ Φ++

loc (R++(T )) intersects R++(T ) transversally. Moreover,
the images of γ13 and γ24 intersect γ12 and γ34 transversally, and the images of
γ12 and γ34 does not intersect R++(T ).

2. For T ≥ T0, Φ−glob ◦ Φ−−loc (R−−(T )) intersects R−−(T ) transversally.

3. For T, T ′ ≥ T0 such that R+−(T ) and R−+(T ′) are on the same energy surface:
Φ−glob ◦Φ+−

loc (R+−(T )) intersect R−+(T ′) transversally, and Φ+
glob ◦Φ−+

loc (R−+(T ′))
intersect R+−(T ) transversally.

Remark 8.2. Later we show that, for fixed T , the value T ′ satisfying condition in
the third item is unique.

In the next three sections we prove existence and uniqueness of shadowing period
orbits. This results in a proof of Theorem 6.

8.4 Conley-McGehee isolating blocks

We will use Theorem 21 to prove Theorem 6. We apply the construction in the
previous section to all four local maps in the neighborhoods of the points p± and q±,
and obtain the corresponding rectangles.

For the map Φ+
glob ◦ Φ++

loc |SE(T ), the rectangle R++(T ) is an isolating block in the
sense of Conley and McGehee ([63]), defined as follows.

A rectangle R = I1 × I2 ⊂ Rd × Rk, I1 = {‖x1‖ ≤ 1}, I2 = {‖x2‖ ≤ 1} is called
an isolating block for the C1 diffeomorphism Φ, if the following hold:

1. The projection of Φ(R) to the first component covers I1.

2. Φ|I1 × ∂I2 is homotopically equivalent to the identity restricted on the set
I1 × (Rk \ int I2).
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If R is an isolating block of Φ, then the set

W+ = {x ∈ R : Φk(x) ∈ R, k ≥ 0}

(resp. W− = {x ∈ R : Φ−k(x) ∈ R, k ≥ 0})

projects onto I1 (resp. onto I2) (see [63]). If some additional cone conditions are
satisfied, then W+ and W− are in fact C1 graphs. Note that in this case, W+ ∩W−

is the unique fixed point of Φ on R.
As usual, we denote by Cu,c(x) = {c‖v1‖ ≤ ‖v2‖} the unstable cone at x. We

denote by πCu,c(x) the set x + Cu,c(x), which corresponds to the projection of the
cone Cu,c(x) from the tangent space to the base set. The stable cones are defined
similarly. Let U ⊂ Rd×Rk be an open set and Φ : U −→ Rd×Rk a C1 map. Denote
DΦx the linearization of Φ at x.

C1. DΦx preserves the cone field Cu,c(x), and there exists Λ > 1 such that ‖DΦ(v)‖ ≥
Λ‖v‖ for any v ∈ Cu,c(x).

C2. Φ preserves the projected restricted cone field πCu,c, i.e., for any x ∈ U ,

Φ(U ∩ πCu,c(x)) ⊂ Cu,c(Φ(x)) ∩ Φ(U).

C3. If y ∈ πCu,c(x) ∩ U , then ‖Φ(y)− Φ(x)‖ ≥ Λ‖y − x‖.

The unstable cone condition guarantees that any forward invariant set is contained
in a Lipschitz graph.

Proposition 8.8 (See [63]). Assume that Φ and U satisfies [C1]-[C3], then any
forward invariant set W ⊂ U is contained in a Lipschitz graph over Rk (the stable
direction).

Similarly, we can define the conditions [C1]-[C3] for the inverse map and the
stable cone, and refer to them as “stable [C1]-[C3]” conditions. Note that if Φ and U
satisfies both the isolating block condition and the stable/unstable cone conditions,
then W+ and W− are transversal Lipschitz graphs. In particular, there exists a unique
intersection, which is the unique fixed point of Φ on R. We summarize as follows.

Corollary 8.9. Assume that Φ and U satisfies the isolating block condition, and that
Φ and U (resp. Φ−1 and U ∩ Φ(U)) satisfies the unstable (resp. stable) conditions
[C1]-[C3]. Then Φ has a unique fixed point in U .
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8.5 Single leaf cylinders

We now apply the isolating block construction to the maps and rectangles obtained
in Corollary 8.7.

Proposition 8.10. There exists T0 > 0 such that the following hold.

• For T ≥ T0, Φ+
glob ◦ Φ++

loc has a unique fixed point p+(T ) on Σs
+ ∩R++(T );

• For T ≥ T0, Φ−glob ◦ Φ−−loc has a unique fixed point p−(T ) on Σs
− ∩R−−(T );

• For T, T ′ ≥ T0 such that R+−(T ) and R−+(T ′) are on the same energy surface:
Φ+

glob ◦ Φ−+
loc ◦ Φ−glob ◦ Φ+−

loc has a unique fixed point pc(T ) on R+−(T ) ∩ (Φ−glob ◦
Φ+−

loc )−1(R−+(T ′)).

Note that in the third case of Proposition 8.10, it is possible to choose T ′ depending
on T such that the rectangles are on the same energy surface, if T is large enough.
Moreover, as in remark 8.2 we later show that such T ′ = T ′(T ) is unique. As a
consequence, the fixed point pc(T ) exists for all sufficiently large T .

Each of the fixed points p+(T ), p−(T ) and pc(T ) corresponds to a periodic orbit
of the Hamiltonian flow. In addition, the energy of the orbits are monotone in T , and
hence we can switch to E as a parameter.

Proposition 8.11. The curves (p+(T ))T≥T0, (p−(T ))T≥T0 and (p c(T ))T≥T0 are C1

graphs over the u1 direction with uniformly bounded derivatives. Moreover, the energy
E(p+(T )), E(p−(T )) and E(p c(T )) are monotone functions of T . In particular, with
notations of section 3.4 if the family of minimal geodesics {γh,±E }E with 0 < E < E0

as the limit limE−→0 γ
h
E,± = γ± has a simple loop, then for E0 small enough such a

family is unique as well as the family {γcE}E with −E0 < E < 0.

We now prove Theorem 6 assuming Propositions 8.10 and 8.11.

Proof of Theorem 6. Note that due to Proposition 8.2, the sign of s1 and u1 does
not change in the boundary value problem. It follows that the energies of p±(T ) are
positive, and the energy of p c(T ) is negative. Reparametrize by energy, we obtain
families of fixed points (p±(E))0<E≤E0 and (p c(E))−E0≤E<0, where

E0 = min{E(p+(T0)), E(p−(T0)),−E(p c(T0))}.

We now denote the full orbits of these fixed points γ+
E , γ−E and γcE, and the theorem

follows.
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To prove Proposition 8.10, we notice that the rectangle R++(T ) has C1 sides, and
there exists a C1 change of coordinates turning it to a standard rectangle. It’s easy
to see that the isolating block conditions are satisfied for the following maps and
rectangles:

Φ+
glob ◦ Φ++

loc and R++(T ), Φ−glob ◦ Φ−−loc and R−−(T ),

Φ+
glob ◦ Φ−+

loc ◦ Φ−glob ◦ Φ+−
loc and (Φ−glob ◦ Φ+−

loc )−1R−+(T ) ∩R+−(T ).

It suffices to prove the stable and unstable conditions [C1]-[C3] for the corresponding
return map and rectangles. We will only prove the [C1]-[C3] conditions conditions
for the unstable cone Cu, c

E , the map Φ+
glob ◦Φ++

loc and the rectangle R++(T ); the proof
for the other cases can be obtained by making obvious changes to the case covered.

Lemma 8.12. There exists T0 > 0 and c > 0 such that the following hold. Assume
that U ⊂ Σs

+ ∩Br is a connected open set on which the local map Φ++
loc is defined, and

for each x ∈ U ,
inf{t ≥ 0 : ϕt(x) ∈ Σu

+} ≥ T0.

Then the map D(Φ+
glob◦Φ

++
loc ) preserves the non-empty cone field Cu, c, and the inverse

D(Φ+
glob◦Φ

++
loc )−1 preserves the non-empty Cs, c. Moreover, the projected cones πCu, c∩

U and πCs, c∩V are preserved by Φ+
glob◦Φ

++
loc and its inverse, where V = Φ+

glob◦Φ
++
loc (U).

The same set of conclusions hold for the restricted version. Namely, we can replace
Cu, c and Cs, c with Cu, c

E and Cs, c
E , and U with U ∩ SE.

Let x ∈ U and denote y = Φ++
loc (x). We will first show that DΦ++

loc (x)Cu, c(x) is
very close to the strong unstable direction T uu. In general, we expect the unstable
cone to contract and get closer to the T uu direction along the flow. The limiting size
of the cone depends on how close the flow is to a linear hyperbolic flow. We need the
following auxiliary Lemma.

Assume that ϕt is a flow on Rd × Rk, and xt is a trajectory of the flow. Let
v(t) = (v1(t), v2(t)) be a solution of the variational equation, i.e. v(t) = Dϕt(xt)v(0).
Denote the unstable cone Cu, c = {‖v1‖2 < c‖v2‖2}.

Lemma 8.13. With the above notations assume that there exists b2 > 0, b1 < b2 and
σ, δ > 0 such that the variational equation

v̇(t) =

[
A(t) B(t)
C(t) D(t)

] [
v1(t)
v2(t)

]
satisfy A ≤ b1I and D ≥ b2I as quadratic forms, and ‖B‖ ≤ σ, ‖C‖ ≤ δ.

Then for any c > 0 and κ > 0, there exists δ0 > 0 such that if 0 < δ, σ < δ0, we
have

(Dϕt)C
u, c ⊂ Cu,βt , βt = ce−(b2−b1−κ)t + σ/(b2 − b1 − κ).
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Proof. Denote γ0 = c. The invariance of the cone field is equivalent to

d

dt

(
β2
t 〈v2(t), v2(t)〉 − 〈v1(t), v1(t)〉

)
≥ 0.

Compute the derivatives using the variational equation, apply the norm bounds and
the cone condition, we obtain

2βt (β′t + (b2 − δβt − b1)βt − σ) ‖v2‖2 ≥ 0.

We assume that βt ≤ 2γ0, then for sufficiently small δ0, δβt ≤ κ. Denote b3 = b2−b1−κ
and let βt solve the differential equation

β′t = −b3βt + σ.

It’s clear that the inequality is satisfied for our choice of βt. Solve the differential
equation for βt and the lemma follows.

Proof of Lemma 8.12. We will only prove the unstable version. By Assumption 4,
there exists c > 0 such that DΦ+

glob(q+)T uu(q+) ⊂ Cu, c(p+). Note that as T0 −→ ∞,
the neighborhood U shrinks to p+ and V shrinks to q+. Hence there exists β > 0 and
T0 > 0 such that DΦ+

glob(y)Cu, β(y) ⊂ Cu, c for all y ∈ V .
Let (s, u)(t)0≤t≤T be the trajectory from x to y. By Proposition 8.2, we have

‖s‖ ≤ e−(λ1−κ)T/2 for all T/2 ≤ t ≤ T . It follows that the matrix for the variational
equation [

A(t) B(t)
C(t) D(t)

]
=

[
− diag{λ1, λ2}+O(s) O(s)

O(u) diag{λ1, λ2}+O(u)

]
(28)

satisfies A ≤ −(λ1 − κ)I, D ≥ (λ1 − κ)I, ‖C‖ = O(δ) and ‖B‖ = O(e−(λ1−κ)T/2). As
before Cu, c(x) = {‖vs‖ ≤ c‖vu‖}, Lemma 8.13 implies

DϕT (x)Cu, c(x) ⊂ Cu,βT (y),

where βT = O(e−λ
′T/2) and λ′ = min{λ2 − λ1 − κ, λ1 − κ}. Finally, note that

DϕT (x)Cu, c(x) and DΦ++
loc (x)Cu, c(x) differs by the differential of the local Poincaré

map near y. Since near y we have |s| = O(e−(λ1−κ)T ), using the equation of motion,
the Poincaré map is exponentially close to identity on the (s1, s2) components, and is
exponentially close to a projection to u2 on the (u1, u2) components. It follows that
the cone Cu, βT is mapped by the Poincar’e map into a strong unstable cone with
exponentially small size. In particular, for T ≥ T0, we have

DΦ++
loc (x)Cu, c(x) ⊂ Cu, β(y),

and the first part of the lemma follows. To prove the restricted version we follow the
same arguments.
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Conditions [C1]-[C3] follows, and this concludes the proof of Proposition 8.10.

Proof of Proposition 8.11. Again, we will only treat the case of p+(T ). Note that
l+(p+) := (p+(T ))T≥T0 is a forward invariant set of Φ+

glob ◦ Φ++
loc , and by Lemma 8.12,

the map Φ+
glob ◦Φ++

loc also preserves the (unrestricted) strong unstable cone field Cu, c.
Apply Proposition 8.8, we obtain that l+(p+) is contained in a Lipschitz graph over the
s1u1u2 direction. Since l+(p+) is also backward invariant, and using the invariance of
the strong stable cone fields, we have l+(p+) is contained in a Lipschitz graph over the
s1u1s2 direction. The intersection of the two Lipschitz graph is a Lipschitz graph over
the s1u1 direction. Since l+(p+) ⊂ {s1 = δ}, we conclude that l+(p+) is Lipschitz
over u1. Since the fixed point clearly depends smoothly on T , l+(p+) is a smooth
curve. The Lipschitz condition ensures a uniform derivative bound. This proves the
first claim of the proposition. Note that this also implies u1 is a monotone function
of T .

For the monotonicity, note that all p+(T ) are solutions of the Shil’nikov boundary
value problem. By definition (p+(T ))T>T0 belong to Σs

+ and we have s1 = δ. For all
finite T the union of (p+(T ))T>T0 is smooth. Since l+(p+) is a Lipschitz graph over
u1 for small u1, we have that the tangent (ds2, du1, du2) is well-defined and ratios ds2

du1

and du2
du1

are bounded.
Theorem 20 implies that the s2, u2 components are dominated by the s1, u1

directions, namely, there exist C > 0 and α > 0 such that for components of p+(T )
and all T > T0 we have |u2| ≤ C|u1|α.

Using the form of the energy given by Corollary 8.1 its differential has the form

dE(s, u) = (λ1 +O(s, u)) s1du1 + (λ1 +O(s, u))u1ds1+

+(λ2 +O(s, u)) s2du2 + (λ2 +O(s, u))u2ds2.

On the section Σs
+ differential ds1 = 0 and coefficients in front of ds2 can be make

arbitrary small. Therefore, to prove monotonicity of E(p+(T )) in T it suffices to
prove that for any τ > 0 there is T0 > 0 such that for any T > T0 tangent of l+(p+)
at p+(T ) satisfies |du2

du1
| < τ . Indeed, (s1, s2)(T ) −→ (δ, s+

2 ) as T −→∞.
We prove this using Lemma 8.13 and the form of the equation in variations (28).

Suppose |du2
du1
| > τ for some τ > 0 and arbitrary small u1. If T0 is large enough, then

T > T0 is large enough and u1 is small enough. By Theorem 20 we have |u2| ≤ C|u1|α
so u2 is also small enough. Thus, we can apply Lemma 8.13 with v1 = (s1, s2, u1) and
v2 = u2. It implies that the image of a tangent to l+(p+) after application of DΦ++

loc is
mapped into a small unstable cone Cu,β with β = (e−(λ2−λ1−ε)T0 +O(δ))/τ . However,
the image of l+(p+) under DΦ++

loc by definition is (q+(T ))T≥T0 and its tangent can’t
be in an unstable cone. This is a contradiction.

As a consequence, the energy E(p+(T )) depends monotonically on u1. Combine
with the first part, we have E(p+(T )) depends monotonically on T .
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8.6 Double leaf cylinders

In the case of the double leaf cylinder, there exist two rectangles R1 and R2, whose
images under Φglob ◦ Φloc intersect themselves transversally, providing a “horseshoe”
type picture.

Proposition 8.14. There exists E0 > 0 such that the following hold:

1. For all 0 < E ≤ E0, there exist rectangles R1(E), R2(E) ∈ Σs,E
+ such that for

i = 1, 2, Φi
glob ◦ Φ++

loc (Ri) intersects both R1(E) and R2(E) transversally.

2. Given σ = (σ1, · · · , σn), there exists a unique fixed point pσ(E) of

1∏
i=n

(
Φσi

glob ◦ Φ++
loc

)
|Rσi (E)

on the set Rσ1(E).

3. The curve pσ(E) is a C1 graph over the u1 component with uniformly bounded
derivatives. Furthermore, pσ(E) approaches pσ1 and for each 1 ≤ j ≤ n− 1,

1∏
i=j

(
Φσi

glob ◦ Φ++
loc

)
(pσ(E))

approaches pσj+1 as E −→ 0.

In particular, with notations of section 3.3 if the family of minimal geodesics
{γhE}E with 0 < E < E0 as the limit limE−→0 γ

h
E = γ± has a non-simple loop, then

γhE ∩ Σs,E
+ consists of exactly n distinct points pσ1(E), pσ2(E), . . . , pσn(E).

Remark 8.3. By Lemma 3.2 and assumption [A0] we have that γEh accumulates onto
the union of two simple loops, possibly with multiplicities.

By Lemma 3.3 there is a sequence σ = (σ1, · · · , σn) ∈ {1, 2}n, unique up to cyclical

translation, such that γh0 = γ
hσ1
0 ∗ · · · ∗ γhσn0 .

By construction the geodesics γh10 and γh20 intersect R1(E) and R2(E) respectively.
Once the sequence σ is fixed, there is a unique fixed point for pσ(E) of the composition∏1

i=n

(
Φσi

glob ◦ Φ++
loc

)
|Rσi (E). Thus, for E0 small enough the family {γEh }E with −E0 <

E < 0 is unique as well as the family.

Remark 8.4. The second part of Theorem 6 follows from this proposition.
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Proof. Let R++(E) be the rectangle associated to the local map Φ++
loc constructed in

Theorem 21, reparametrized in E. Note that for sufficiently small δ, the curve γ+
s

contains both p1 and p2, and γ+
u contains both q1 and q2.

Let V 1 3 q1 and V 2 3 q2 be the domains of Φ1
glob and Φ2

glob, respectively. It
follows from assumption A4a′ that Φ1

globγ
+
u ∩ V 1 intersects γ+

s transversally at pi.
By Proposition 21, for sufficiently small E > 0, Φ1

glob(Φ++
loc (R++(E)) ∩ V1) intersects

R++(E) transversally. Let Z1 ⊂ V 1 be a smaller neighborhood of q1. We can truncate
the rectangle Φ++

loc (R++(E)) by stable curves, and obtain a new rectangle R′1(E) such
that

Φ++
loc (R++(E)) ∩ Z1 ⊂ R′1(E) ⊂ Φ++

loc (R++(E)) ∩ V 1.

Denote R1(E) = (Φ++
loc )−1(R′1(E)). The rectangles R2(E) and R′2(E) are defined

similarly. For i = 1, 2, Φi
glob ◦ Φ++

loc (Ri(E)) intersects R++(E), and hence Ri(E)
transversally. This proves the first statement.

Let Rσ(E) denote the subset of Rσ1(E) on which the composition

1∏
i=n

(
Φσi

glob ◦ Φ++
loc

)
|Rσi (E)

is defined. Rσ(E) is still a rectangle. The composition map and the rectangle Rσ(E)
satisfy the isolation block condition and the cone conditions. As a consequence, there
exists a unique fixed point.

The proof of the C1 graph property is similar to that of Proposition 8.11.

This completes the proof of Theorem 6.

8.7 Normally hyperbolic invariant cylinders the slow me-
chanical system

In this section we will prove Theorem 7. Let us first consider the single leaf case. We
will show that the union

M :=
⋃

0<E≤E0

γ+
E ∪

⋃
0<E≤E0

γ−E ∪
⋃

−E0≤E<0

γ+−
E ∪ γ+ ∪ γ−

forms a C1 manifold with boundary. Denote

l+(p+) = {p+(E)}0<E≤E0 , l+(p−) = {p−(E)}0<E≤E0 ,

l+(q+) = Φ++
loc (l+(p+)) and l+(q−) = Φ−−loc (l+(q−)). Note that the superscript of l

indicates positive energy instead of the signature of the homoclinics. We denote

l−(p+) = {pc(E)}−E0≤E<0
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l(p−)
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l(q+)

p−

q−
l(q−)

γ
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Figure 20: Invariant manifold M near the origin

l−(q−) = Φ+−
loc (l−(p+)), l−(p−) = Φ−glob(l−(q−)) and l−(q+) = Φ−+

loc (l−(p−)). An illus-
tration of M the curves l± are included in Figure 20.

By Proposition 8.11, l±(y) (y is either p±, or q±) are all C1 curves with uniformly
bounded derivatives, hence they extend to y as C1 curves. Denote l(y) = l+(y) ∪
l−(y) ∪ {y} for y either p±, or q±.

Proposition 8.15. There exists one dimensional subspaces L(p±) ⊂ Tp±Σu
± and

L(q±) ⊂ Tq±Σs
± such that the curves l(p±) are tangent to L(p±) at p± and l(q±) are

tangent to L(q±) at q±.

Proof. Each point x ∈ l(p+) contained in SE is equal to the exiting position s(TE), u(TE)
of a solution (s, u) : [0, TE] −→ Br that satisfies Shil’nikov’s boundary value problem
(see Proposition 8.2). As x −→ p+, E −→ 0 and TE −→ ∞. According to Corol-
lary 20, l(p+) must be tangent to the plane {s1 = u2 = 0}. Similarly, l(q+) must
be tangent to the plane {u1 = s2 = 0}. On the other hand, due to assumption A4
on the global map (see Section 3.4), the image of DΦ+

glob{u1 = s2 = 0} intersects
{s1 = u2 = 0} at a one dimensional subspace. Denote this space L(p+) and write
L(q+) = D(Φ+

glob)−1L(p+). Since l(p+) must be tangent to both {u2 = s1 = 0} and

DΦ+
glob{u1 = s2 = 0}, l(p+) is tangent to L(p+). We also obtain the tangency of l(q+)

to L(q+) using l(q+) = (Φ+
glob)−1l(p+). The case for l(p−) and l(p−) can be proved

similarly.

We have the following continuous version of Lemma 8.12, which states that the
flow on M preserves the strong stable and strong unstable cone fields. The proof of
Lemma 8.16 is contained in the proof of Lemma 8.12.
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Lemma 8.16. There exists c > 0 and E0 > 0 and continuous cone family Cu(x) and
Cs(x), such that for all x ∈M, the following hold:

1. Cs and Cu are transversal to TM, Cs is backward invariant and Cu is forward
invariant.

2. There exists C > 0 such that the following hold:

• ‖Dϕt(x)v‖ ≥ Ce(λ2−κ)t, v ∈ Cu(x), t ≥ 0;

• ‖Dϕt(x)v‖ ≥ Ce−(λ2−κ)t, v ∈ Cs(x), t ≤ 0.

3. There exists a neighborhood U of M on which the projected cones πCu ∩U and
πCs ∩ U are preserved.

Note that a continuous version of Proposition 8.8 also holds. As a consequence,
the setM is contained in a Lipschitz graph over the s1 and u1 direction. This implies
that M is a C1 manifold.

Corollary 8.17. The manifold M is a C1 manifold with boundaries γ+
E0

, γ−E0
and

γ+−
−E0

.

Proof. The curves l(p±) and l(q±) sweep out the setM\{0} under the flow. It follows
that M is smooth at everywhere except may be {0}. Since any x ∈ M ∩ Br(0) is
contained in a solution of the Shil’nikov boundary value problem, Corollary 20 implies
that x is contained in the set {|s2| ≤ C|s1|α, |u2| ≤ C|u2|α}. It follows that the tangent
plane of M to x converges to the plane {s2 = u2 = 0} as (s, u) −→ 0.

Corollary 8.18. There exists a invariant splitting Es ⊕ TM⊕ Eu and C > 0 such
that the following hold:

• ‖Dϕt(x)v‖ ≥ Ce(λ2−κ)t, v ∈ Eu(x), t ≥ 0;

• ‖Dϕt(x)v‖ ≥ Ce−(λ2−κ)t, v ∈ Es(x), t ≤ 0;

• ‖Dϕt(x)v‖ ≤ Ce(λ1+κ)|t|, v ∈ TxM, t ∈ R.

Proof. The existence of Es and Eu, and the expansion/contraction properties fol-
lows from standard hyperbolic arguments, see [41], for example. We now prove
that third statement. Denote v(t) = Dϕt(x)v for v ∈ TxM. Decompose v(t) into
(vs1 , vs2 , vu1 , vu2), we have ‖(vs1 , vu1)(t)‖ ≤ Ce(λ1+κ)|t|. However, since M is a Lip-
schitz graph over (s1, u1), the (vs2 , vu2) components are bounded uniformly by the
(vs1 , vu1) components. The norm estimate follows.

Remark 8.5. Part 1 of Theorem 7 follows from the last two corollaries.
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We now come to the double leaf case. Denote l(p1) =
⋃
e≤E≤E0

pσ(E), where pσ(E)

is the fixed point in Proposition 8.14. We have that l(pσ1) sweeps outMe,E0

h in finite
time. As a consequence Me,E0

h is a C1 manifold. Similar to Lemma 8.16, the flow
on Me,E0

h also preserves the strong stable/unstable cone fields. The fact that Me,E0

h

is normally hyperbolic follows from the invariance of the cone fields, using the same
proof as that of Corollary 8.18. This concludes the proof of Theorem 7, part 2.

8.8 Smooth approximations

Notice that in Theorem 18 Hamiltonian H is required to be Ck+1 with k ≥ 9. In Key
Theorem 3 we require Hε = H0 + εH1 to be Cr with r ≥ 4. Key Theorem 3 follows
from Theorem 7. To fix this discrepancy we proceed with smooth approximation
arguments similar to [13, Section 3.3]. More exactly, we approximate Hε with analytic
H∗ε and prove Theorem 7 for it. Then we show that Hε has a C2-neighborhood of
uniform size where Theorem 7 still applies. Therefore, it applies to Hε. We need the
following

Lemma 8.19. [68] Let f : Rn −→ R be a Cr function, with r > 4. Then for each
τ > 0 there exists an analytic function Sτf such that

‖Sτf − f‖Cs < c(n, r)‖f‖Csτ r−s for each 0 < s ≤ r,

‖Sτf‖Cs < c(n, r)‖f‖Csτ−(s−r) for each s > r,

where c(n, r) is a constant which depends only on n and r.

Denote c(5, r) by c(r).
We approximate Cr smooth Hε = H0 + εH1 with an analytic H∗ε = H∗0 + εH∗1 so

that H∗0 = SτH0 and H∗1 = SτH1 for τ = ε2/(r−2). Apply Theorem 27 to H∗ε . We have

N∗ε = H∗ε ◦ Φ∗ = H̃∗0 + εZ∗ + εZ∗1 + εR∗,

where, in notations of Appendix B, Z∗(θ, p) = [H∗2 ]ω0(θ, p), ‖Z∗1(θ, p)‖ .
√
ε, and

‖R∗(θ, p, t)‖ . ε. Consider

Hε ◦ Φ∗ = H∗ε ◦ Φ∗ + (H0 − H̃∗0 ) ◦ Φ∗ + ε(H1 −H∗1 ) ◦ Φ∗.

By Lemma 8.19 applied to N∗ε after a proper rescaling we have that it has the form

H̃∗0 (p0) + 〈∂2
ppH̃

∗
0 (p0)(p− p0), (p− p0)〉+ εZ∗(θ, p) + εZ∗1(θ, p) + εR(θ, p, t).

So we can rewrite Hε ◦ Φ∗ in the form

H̃∗0 (p0) + 〈∂2
ppH̃

∗
0 (p0)(p− p0), (p− p0)〉+ εZ∗(θ, p) + εZ∗1(θ, p)
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+εR(θ, p, t) + (H0 −H∗0 ) ◦ Φ∗ + ε(H1 −H∗1 ) ◦ Φ∗.

Recall that K(p − p0) denotes the quadratic form 〈∂2
ppH0(p0)(p − p0), (p − p0)〉 up

to an integer linear change of coordinates B. Denote K∗(p− p0) the quadratic form
〈∂2
ppH̃

∗
0 (p0)(p− p0), (p− p0)〉. Define ‖K∗ −K‖ norm of the difference between these

quadratic forms by max‖p‖=1 ‖K∗(p)−K(p)‖. Using Lemma 8.19 we have the following
estimates

- ‖H∗1 −H1‖C2 6 c(r)ε2,

- ‖Z∗ − Z‖C2 6 ‖H∗1 −H1‖C2 6 c(r)ε2,

- ‖K∗ −K‖ 6 ‖H∗0 −H0‖C2 ≤ c(r)ε2,

- ‖Φ∗ − Id‖C2 6 1,

- ‖(H∗1 −H1) ◦ Φ∗‖C2 ≤ c(r)‖H∗1 −H1‖C2‖Φ∗‖2
C2 ≤ 4c(r)‖H∗1 −H1‖C2 .

- ‖(H̃∗0 −H0) ◦ Φ∗‖C2 ≤ c(r)‖H̃∗0 −H0‖C2‖Φ∗‖2
C2 ≤ 4c(r)‖H∗0 −H0‖C2 .

These estimates imply that

‖εR(θ, p, t) + (H0 −H∗0 ) ◦ Φ∗ + ε(H1 −H∗1 ) ◦ Φ∗‖C2 . ε2.

Now consider the approximating Hamiltonian H∗ε . Using Theorem 27 and Lemma
8.19 associate a slow mechanical system K∗(·)−Z(·, p0). By Theorem 7 this Hamilto-
nian system has normally hyperbolic invariant manifoldsME0,s

h andMe,E0

h for simple
critical and non-simple homologies respectively. The “moreover” part of the theorem
implies persistence of these cylinders with respect to C2-perturbations of H∗0 and H∗1 .
Since the C2-size of admissible perturbations depends only on κ and C2 norms of Hs,
it is independent of τ . Therefore, for small enough τ (resp. ε) Theorem 7 can be
applied to Hε = H0 + εH1. The rest of the proof of Key Theorem 3 for H∗ε and Hε is
the same. This completes the proof of Key Theorem 3.

8.9 Proof of Lemma 3.3 on cyclic concatenations of simple
geodesics

We provide the proof of the auxilliary result Lemma 3.3 before proceeding to the next
section.

Denote γ1 = γh10 and γ2 = γh20 and γ = γ0
h. Recall that γ has homology class

n1h1 + n2h2 and is the concatenation of n1 copies of γ1 and n2 copies of γ2. Since h1

and h2 generates H1(T2,Z), by introducing a linear change of coordinates, we may
assume h1 = (1, 0) and h2 = (0, 1).
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Given y ∈ T2 \ γ ∪ γ1 ∪ γ2, the fundamental group of T2 \ {y} is a free group of
two generators, and in particular, we can choose γ1 and γ2 as generators. (We use
the same notations for the closed curves γi, i = 1, 2 and their homotopy classes). The
curve γ determines an element

γ =
n∏
i=1

γsiσi , σi ∈ {1, 2}, si ∈ {0, 1}

of this group. Moreover, the translation γt(·) := γ(·+t) of γ determines a new element
by cyclic translation, i.e.,

γt =
n∏
i=1

γsi+mσi+m
, m ∈ Z,

where the sequences σi and si are extended periodically. We claim the following:
There exists a unique (up to translation) periodic sequence σi such that γ =∏n

i=1 γσi+m for some m ∈ Z, independent of the choice of y. Note that in particular,
all si = 1.

The proof of this claim is split into two steps.
Step 1. Let γn1/n2(t) = {γ(0) + (n1/n2, 1)t, t ∈ R}. We will show that γ is

homotopic (along non-self-intersecting curves) to γn1/n2 . To see this, we lift both
curves to the universal cover with the notations γ̃ and γ̃n1/n2 . Let p.q ∈ Z be such
that pn1 − qn2 = 1 and define

T γ̃(t) = γ̃(t) + (p, q).

As T generates all integer translations of γ̃, γ is non-self-intersecting if and only if
T γ̃ ∩ γ̃ = ∅. Define the homotopy γ̃λ = λγ̃ + (1 − λ)γ̃n1/n2 , it suffices to prove
T γ̃λ ∩ γ̃λ = ∅. Take an additional coordinate change[

x
y

]
7→
[
n1 p
n2 q

]−1 [
x
y

]
,

then under the new coordinates T γ̃(t) = γ̃(t) + (1, 0).
Under the new coordinates, T γ̃ ∩ γ̃ = ∅ if and only if any two points on the same

horizontal line has distance less than 1. The same property carries over to γ̃λ for
0 ≤ λ < 1, hence T γ̃λ ∩ γ̃λ = ∅.

Step 2. By step 1, it suffices to prove that γ = γn1/n2 defines unique sequences
σi and si. Since γ̃n1/n2 is increasing in both coordinates, we have si = 1 for all i.
Moreover, choosing a different y is equivalent to shifting the generators γ1 and γ2.
Since the translation of the generators is homotopic to identity, the homotopy class
is not affected. This concludes the proof of Lemma 3.3.
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9 Diffusion mechanisms, weak KAM theory and

forcing relation

We construct diffusing orbits using Mather variational mechanism. More specifically,
Mather in his papers [53, 55, 54] proposed to two different variational mechanisms of
diffusion. The former was developed by Cheng-Yan [23, 24], the latter — by Bernard
[9]. The foundation of Bernard’s version lies in application of weak KAM theory
proposed by Fathi [34]. We rely in main part to [9] which elaborates on [54]. A
convenient equivalence relation is introduced there. The advantage can be explained
as follows.

When one construct diffusion the very general idea is to find enough many invari-
ant sets in the phase space T2 × B2 × T. If an invariant set is an invariant KAM
torus, then one can associate rotation vector ω ∈ B2. Rotation vector can be viewed
as an element of homologies ω ∈ H1(T2 × T,R). In general, one could make sense of
rotation vector of an invariant set with an ergodic measure on it. Then “naively” in
order to diffuse it suffices to find enough many invariant sets and construct orbits go-
ing from one to the next one in turns. Certainly this vague approach faces substantial
difficulties at every stage.

For convex Hamiltonian systems there is a duality between Hamiltonian dynamics
and Lagrangian dynamics, between homologies and cohomologies by means of Leg-
endre transform L and Legendre-Fenichel transform L respectively. Both are defined
below. It turns out that a more convenient way to view invariant sets using coho-
mologies. Then the problem of diffusing along Γ∗ ⊂ B2 in action space reduces to
a problem of diffusing in velocity space along L(Γ∗). In [9] for two cohomologies
c, c′ ∈ H1(T2,R) a forcing relation c ` c′ is introduced. The relation c a` c′, defined
as c ` c′ and c′ ` c, is an equivalence relation (Proposition 5.1 [9]). Moreover, if
c a` c′, then there are two heteroclinic orbits going from c to c′ and from c′ to c
(Proposition 0.10 [9]). In particular, if we can show that on Γ∗ there is dense enough
set of c’s so that neighbors are equivalent, then end points are equivalent too. As
the outcome there is an orbit going from one end point of L(Γ∗) to the other. The
approach from [53, 55, 56, 57, 23, 24] leads to a lengthy and cumbersome variational
problems with constrains. Now we turn to definitions.

9.1 Duality of Hamiltonian and Lagrangian, homology and
cohomology

Let M be a smooth compact manifold. Consider C2 Hamiltonian function H : T ∗M×
R −→ R. Denote (θ, p) the points of T ∗M . The cotangent bundle is endowed with
its standard symplectic structure. We denote by ϕts(θ, p) the time (t− s) map of the
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Hamiltonian vector field of H with the initial time s, which is a time-dependent and
by ϕt(θ, p) the time t map with the initial time 0. Fix a Riemannian metrix g on
M used to measure norms of tangent vectors and covectors on M . Assume that the
following hypotheses hold.

• (periodicity) H(θ, p, t) = H(θ, p, t+ 1) for each (θ, p) ∈ T ∗M and each t ∈ R;

• (completeness) The Hamiltonian vector field of H generates a complete flow.
Namely, ϕt is defined for all time.

• (convexity) For each (θ, t) ∈ M × R, H(θ, p, t) is strictly convex on T ∗θM .
Namely, it has a positive definite Hessian ∂2

ppH matrix, denoted ∂2
ppH > 0.

• (super-linearity) For each (θ, t) ∈M ×R, the function H(θ, p, t) is super-linear
in p, i.e. lim|p|−→∞H(θ, p, t)/|p| =∞.

Associate to each Hamiltonian H(θ, p, t) satisfying this list of properties a La-
grangian L : TM × R −→ R

L(θ, v, t) = sup
p∈T ∗xM

v · p−H(θ, p, t),

where v · p is the natural dot product of dual objects. This is the standard Legen-
dre transform. Direct calculations shows that Legrendre transform is involutive, i.e.
Ledendgre transform of H is L and of L is again H. This transform gives rise to a
diffeomorphism

L : (θ, p, t) −→ (θ, v, t) = (θ, ∂pH, t),

whose inverse is
L−1 : (θ, v, t) −→ (θ, p, t) = (θ, ∂vL, t),

Moreover, the Hamiltonian flow of H is mapped into the Euler-Lagrange flow of L.
The Lagrangian L satisfies the following properties, which follow from the analogous
properties of H:

• (periodicity) L(θ, v, t) = L(θ, v, t+ 1) for each (θ, v) ∈ TM and each t ∈ R;

• (convexity) For each (θ, t)M × R, L(θ, v, t) is strictly convex on TθM . Namely,
it has a positive definite Hessian ∂2

vvL matrix, denoted ∂2
vvL > 0.

• (super-linearity) For each (θ, t) ∈ M × R, the function L(θ, v, t) is super-linear
in v, which means that lim|v|−→∞ L(θ, v, t)/|v| =∞.
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We call Lagrangians (resp. Hamiltonians) satisfying these hypothesis Tonelli La-
grangians (resp. Tonelli Hamiltonians).

In the next five sections we recall basic facts from Fathi’s weak KAM theory [34]
in the Hamiltonian setting. In the next chapter 10 we complement these basic facts
with complementary facts stated in the (dual) Lagrangian setting. Then using this
theory we introduce notion of Mather, Aubry, Mañe invariant sets and equivalence of
cohomology classes proposed by Bernard [9].

9.2 Overlapping pseudographs

As before we let M be a smooth compact manifold and π : TM −→M be the natural
projection. Later we use M = Td for d = 2 or 3. For many invariant sets in TM
we study there is a graph property. Namely, G ⊂ TM has a graph property if it is
a (usually Lipschitz) graph over πG ⊂ M . The basic example are KAM tori. In this
case, G is a smooth graph. However, in general the invariant sets are contained in
discontinuous graphs that are only forward (or backward) invariant. This leads to
the definition of overlapping pseudographs.

Given K > 0, a function f : M −→ R is called a K−semi-concave function if for
any θ ∈M , there exists pθ ∈ T∗M , such that for each chart ψ at x, we have

f ◦ ψ(y)− f ◦ ψ(x) ≤ pθ(dψx(y − x)) +K‖y − x‖2

for all y. The linear form pθ is called a super-differential at θ. f is called semi-concave
if it is K−semi-concave for some K > 0. A semi-concave function is Lipschitz (see
[9],(A.7)).

Given a Lipschitz function u : M −→ R and a closed smooth form η on M , we
consider the subset Gη,u of T ∗M defined by

Gη,u = {(x, ηx + dux) : x ∈M such that dux exists }.

We call the subset G ⊂ T ∗M an overlapping pseudograph if there exists a closed
smooth form η and a semi-concave function u such that G = Gη,u. It turns out that
G is well suited to describe unstable manifolds. To describe stable manifolds one
considers anti-overlapping pseudographs

Ğη,u = {(x, ηx − dux) : x ∈M such that dux exists }.

Each pseudograph G has a well defined cohomology class c = c(G) ∈ H1(M,R).
Indeed, if an overlapping graph is represented in two different ways as Gη,u and Gη′,u′ ,
the closed forms η and η′ have to have the same cohomology class. Therefore, we
associate to each pseudograph G we associate a cohomology c(G) by setting

c(Gη,u) = [η],
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where [η] is the De Rham cohomology of η.
The function u is then uniquely defined up to an additive constant. As a conse-

quence, denoting by S the set of semi-concave functions on M , and by P the set of
overlapping pseudographs, we have the identification

P = H1(M,R)× S/R.

This identification endows P with the structure of a real vector space. Let us endow
the second factor S/R with the norm u = (maxu − minu)/2 which is the norm
induced from the uniform norm on S. More precisely, we have |u| = minv‖v‖, where
the minimum is taken on functions v which represent the class u. We endow P with
the norm

‖Gc,u‖ = |c|+ (maxu−minu)/2,

The set P is now a normed vector space. We define in the same way the set P̆ of
anti-overlapping pseudographs Ğ, which are the sets Gη,−u with η a smooth form
and u ∈ S. This set is similarly a normed vector space. Denote by Pc the set of
pseudographs with a fixed cohomology c ∈ H1(M,R).

9.3 Evolution of pseudographs and the Lax-Oleinik mapping

Denote C0(M,R) the space of continuous functions on M . Let Σ(t, θ; s, ϕ) be the set
of absolutely continuous curves γ : [t, s] −→ M such that γ(t) = θ and γ(s) = ϕ.
Denote by

dγ(τ) = (γ(τ), γ̇(τ), τ) the one-jet of γ(τ).

It is well defined for almost every τ . Fix a closed form η and a cohomology class
c ∈ H1(M,R). Denote

Lc(dγ(τ)) = L(dγ(τ))− c(γ̇(τ)) Lη(dγ(τ)) = L(dγ(τ))− η(γ̇(τ)).

We define the associated Lax-Oleinik mapping on C0(M,R) as follows:

Tηu(θ) = min
ϕ∈M,γ∈Σ(0,ϕ;1,θ)

( u(ϕ) +

∫ 1

0

Lη(dγ(τ)) dτ ).

As shown by Fathi [34] (see also [9]) for each closed form η the functions Tηu, u ∈
C(M,R) are equiv-semi-concave. Moreover, the mapping Tη is contracting:

‖Tηu− Tηv‖∞ ≤ ‖u− v‖∞,

non-decreasing and satisfies Tη(a+ u) = Tηu+ a for all a ∈ R (see e.g. [34, Corollary
4.4.4] or [9, section 2.4]).
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It turns out there exists a unique mapping Φ : P −→ P in the space of pseudo-
graphs

Φ(Gη,u) = Gu,Tηu
for all smooth forms η and all semi-concave functions u (see e.g. [9, section 2.5]). We
also have

c(Φ(G)) = c(G).

The mapping Φ is continuous and preserves Pc for each cohomology c ∈ H1(M,R).
It turns out that the image Φ(Pc) is a relatively compact subset of Pc. This follows
directly from the properties of the Lax-Oleinik transformation. Along with contrac-
tion property this implies the existence of a fixed point of Φ in each Pc, discovered by
Fathi. Denote by Vc the set of these fixed points, and by V = ∪cVc their union.

Even though the setting is quite abstract in the case of a twist maps one can
get a feel for this transformation by drawing pictures. If M = T is a circle, then
overlapping pseudographs are graphs of functions which have only discontinuities
with downward jumps. In other words, functions which can be locally written as
the sum of a continuous and a decreasing function. Such sets were introduced by
Katznelson-Ornstein [48] and many known properties of twist maps were proven.
The above operator Φ is a multidimensional generalization of this idea. To described
it consider a twist map with a non-degenerate saddle fixed point. It has stable and
unstable manifolds (separatrices), which have to intersect. “Trim” parts of the image
of an unstable separatrix so that it is a pseudograph over T and discontinuity with
downward jumps only (see Figure 15). There is a freedom of choice, but it can be
done so that the following fundamental property holds:

Φ(G) ⊂ ϕ1(G),

where as before ϕ = ϕ1 is the time one map of the Hamiltonian flow and c(Φ(G)) =
c(G). Indeed, due to twist property the image of the pseudograph on Figure 15 at
images of discontinuities will be overlapping and often inclusion is proper.

9.4 Aubry, Mather, Mañe sets in Hamiltonian setting and
properties of forcing relation

Fathi’s weak KAM theorem states that for each cohomology class c ∈ H1(M,R) the
operator Φ has a fixed point of cohomology c in Pc. We denote the set of fixed points
Vc. The set of fixed points satisfy

G ⊂ ϕ(G),
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and naturally gives rise to invariant compact sets

Ĩ(G) := ∩n≥0 ϕ
−n(G).

We shall also use notation Ĩ(c, u), where G = Gη,u and c = [η]. Using these invariant
sets one can define another three classes of invariant sets introduced by Mather [54].
Namely, for each cohomology class c ∈ H1(M,R) we associate the non-empty compact
invariant sets

M̃(c) ⊂ Ã(c) ⊂ Ñ (c),

where
Ã(c) := ∩G∈Vc Ĩ(G) and Ñ (c) := ∪G∈Vc Ĩ(G), (29)

are the Aubry set and the Mañe set. The Mather set M̃(c) is the union of the

supports of the invariant measures of the Hamiltonian flow ϕ on Ã(c).
In the next section we define a forcing relation introduced by Bernard [9]. The

main motivation to study this relation is the following

Proposition 9.1. (Proposition 0.10) (i) Let G and G ′ be two Lagrangian graphs of
cohomologies c and c′ ∈ H1(M,R) . If c a` c′, then there exists an integer time n
such that ϕn(G) intersects G ′.

(ii) If c a` c′, there exist two heteroclinic trajectories of the Hamiltonian flow

from Ã(c) to Ã(c′) and from Ã(c′) to Ã(c).
(iii) Let {ci}i∈Z be a sequence of cohomology classes all of which force the others.

Fix, for each i a neighborhood Ui of the corresponding Mather M̃(ci) in T ∗M . There
exists a trajectory of the Hamiltonian flow ϕt which visits in turn all the sets Ui. In
addition, if the sequence stabilizes to c− on the left, or (and) to c+ on the right, the

trajectory can be selected to be negatively asymptotic to Ã(c−) or (and) asymptotic to

Ã(c+).

The main feature is that one it is shown that in a sequence ci a` ci+1 we have

orbits traveling among the family of sets {M̃(ci)}i∈Z in any prescribed order. While
the method of Mather [53, 55, 23, 24] requires a construction of a special variational
problem with constrains, which often a difficult task both to write and to read. We
also point out that in [25] the authors extend the result of [23, 24] from time-periodic
to autonomous setting. In [26] the authors extend the result from [55] to the case when
initial velocity is not assumed to be large. The preprint [55] was quite influential.
Later the main result and its extensions were proved using different methods in [21,
31, 38, 42].
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9.5 Symplectic invariance of the Mather, Aubry, and Mañe
sets

The concepts of the α-function, Mather, Aubry and Mañe sets are symplectic invari-
ants. We consider the canonical one-form λ = pdx naturally defined on T ∗M . A
symplectic map

Ψ : T ∗M −→ T ∗M, (X,P ) 7→ (x, p)

is called exact if the form Ψ∗λ− λ is exact. Here I and θ are considered as functions
of ϕ and J .

Theorem 22. [10] Assume that Ψ is exact symplectic. Then for H : T ∗M −→ R,
and c ∈ H1(M,R), we have

αH(c) = αΨ∗H(Ψ∗c), MH(0) = Ψ(MΨ∗H(Ψ∗c)),

AH(c) = Ψ(AΨ∗H(Ψ∗c)), NH(0) = Ψ(NΨ∗H(Ψ∗c)).

In particular, for the case M = Tm, we can identify H1(M,R) with Rm. If Ψ
is homotopic to identity, then Ψ∗λ = λ under this identification. Our normal form
transformations are homotopic to identity, as they are constructed as time−ε flow of
some Hamiltonian.

9.6 Mather’s α and β-functions, Legendre-Fenichel transform
and barrier functions

We also need existence of so-called Mather’s α-function. There are several ways to
introduce it. To fit to the previous discussion we use the following proposition of
Fathi [34] (see Theorems 4.6.2 and 4.6.5 there).

Proposition 9.2. There is a function α : H1(M,R) −→ R such that for each con-
tinuous function u and each closed one form η of cohomology class c , the sequence
T nη u(x) + nα(c), n ≥ 1 of continuous functions is equi-bounded and equi-Lipschitz.
The function c 7→ α(c) is convex and super-linear. More precisely, there exists a
constant K(c), which does not depend on a continuous function u, such that

minu−K(c) ≤ T nη u(x) + nα(c) ≤ maxu+K(c)

for each positive integer n and each point x ∈M .

We also need
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Proposition 9.3. (Proposition 3.2 [9]) Fix a closed one form η of some cohomology
class [η] = c ∈ H1(M,R) and a continuous function u. Set a function

v := lim inf
n−→∞

(T nη u+ nα(c)),

then v is a fixed point of Tη +α(c) and, therefore, the corresponding pseudograph Gη,v
is a fixed point of Φ.

Consider the Legendre transform of the α-function:

β(h) = − min
c∈H1(M,R)

{α(c)− c · h},

where h ∈ H1(M,R) and c · h is a dot product of elements of cohomologies and
homologies of M . This defines a function

β : H1(M,R) −→ R

called Mather’s β-function. Due to convexity of the α-function, β-function is well-
defined (see e.g. Theorem 20.3, [51]). Define the Legendre-Fenichel transform associ-
ated to the β-function.

LFβ : H1(M,R) −→
the collection of nonempty, compact,

convex subsets of H1(M,R),

(30)

defined by
LFβ(h) = {c ∈ H1(M,R) : β(h) + α(c) = c · h }.

Following Mather for any pair of points x, y ∈M define a barrier function:

hc(x, y) := lim inf
n−→∞

∫ n

0

Lc(dγ(t)) dt+ nα(c),

where γ is an absolutely continuous curve with boundary conditions γ(0) = x and
γ(n) = y. Notice that by Proposition 9.3 the function hc(x, ·) is a fixed point of the
operator Tc+α(c). Similarly, the function −hc(·, y) is a fixed point of Ťc−α(c). Recall
some basic properties of the function hc (see e.g. Section 3.8 [9] for more details).

• For each x, y, z ∈M and c ∈ H1(M,R) there is a triangle inequality

hc(x, y) + hc(y, z) ≥ hc(x, z).

• For each x, y ∈M and c ∈ H1(M,R) we have hc(x, y) +hc(y, x) ≥ hc(x, x) ≥ 0.
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• For each compact set C ⊂ H1(M,R) the set of functions hc : M×M −→ R, c ∈
C is Lipschitz and even equi-semi-concave.

It is also useful to define a time-dependent barrier function on T2 × T:

hc(x, t; y, s) := lim inf
τ−σ−→∞

∫ τ

σ

Lc(dγ(t)) dt+ (τ − σ)α(c),

where γ is an absolutely continuous curve with boundary conditions γ(σ) = x and
γ(τ) = y.

9.7 Forcing relation of cohomology classes and its dynamical
properties

Following Bernard [9] section 5 we define the forcing relation a`, and describe its
dynamical consequences. Introduce some useful notations. Given two pseudographs
G and G ′ in TM , we define the relation G ` G ′ as follows:

G ` G ′ ⇐⇒ G ′ ⊂ ∪Nn=1ϕ
n(G),

where as usual G is the closure of G. We say that G forces G ′, and write G ` G ′ if there
exists an integer N such that G `N G ′. If G is a subset of T ∗M and if c ∈ H1(M,R),
the relations

G ` c and G `N c

mean that there exists an overlapping pseudograph G ′ of cohomology c and such that
G ` G ′ (resp. G `N G ′). Finally, for two cohomology classes c and c′, the relation

c `N c′

means that, for each pseudograph G ∈ Pc, we have G `N c′. Naturally we say that c
forces c′ (c ` c′) if there exists an integer N such that c `N c′. The relation ` (between
pseudographs as well as between cohomology classes) is obviously transitive. We need
this relation ` between cohomology classes. For this purpose, it is useful to introduce
the symmetric relation

c a` c′ ⇐⇒ c ` c′ and c′ ` c.

We say that c and c′ force each other if c a` c′.

Proposition 9.4. (Proposition 5.1 [9]) The forcing relation a` is an equivalence
relation on H1(M,R).

A few simple remarks about this property.
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• Note that we have c `1 c for each c because by definition Φ(G) ⊂ ϕ(G) for each
G ⊂ Pc, which can be written G `1 Φ(G).

• Suppose G is an invariant graph (e.g. KAM torus), then the relation c(G) ` c
holds if and only if c = c(G).

• Proving that two truly distinct cohomology classes c and c′ with Ã(c) and Ã(c′)
disjoint have c a` c′ is a non-trivial problem studied in [9]. In general, it does

not seem sufficient to prove existence of heteroclinic orbits from Ã(c) to Ã(c′)
and back.

9.8 Other diffusion mechanisms and apriori unstable systems

Here we would like to give a short review of other diffusion mechanisms. In the case
n = 2 Arnold proposed the following example

H(q, p, ϕ, I, t) =
I2

2
+
p2

2
+ ε(1 cos q)(1 + µ(sinϕ+ sin t)).

This example is a perturbation of the product of a a one-dimensional pendulum
and a one-dimensional rotator. The main feature of this example is that it has a
3-dimensional normally hyperbolic invariant cylinder. There is a rich literature on
Arnold example and we do not intend to give extensive list of references; we mention
[8, 14, 12, 15, 75], and references therein. This example gave rise to a family of
examples of systems of n+ 1/2 degrees of freedom of the form

Hε(q, p, ϕ, I, t) = H0(I) +K0(p, q) + εH1(q, p, ϕ, I, t),

where (q, p) ∈ Tn1 × Rn1, I ∈ R, ϕ, t ∈ T . Moreover, the Hamiltonian K0(p, q)
has a saddle fixed point at the origin and K0(0, q) attains its strict maximum at
q = 0. For small ε a 3-dimensional NHIC C persists. For n = 2 systems of this type
were successfully studied by different groups. Two groups were using deep geometric
methods.

– In [29, 32, 39, 30] the authors carefully analyze two types of dynamics induced
on the cylinder C. These two dynamics are given by so-called inner and outer maps.

– In [72, 73] a return (separatrix) map along invariant manifolds of C is con-
structed. A detailed analysis of this separatrix map gives diffusing orbits.

As we mentioned on several other occasions the other two groups [9, 23] are in-
spired and influenced by Mather variation method [53, 54, 55] and build diffusing
orbits variationally. Recently apriori unstable structure was established for the re-
stricted planar three body problem [35]. It turns out that for this problem there are
no large gaps.
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The case n > 2 was studied in [24] also by a variational method. Recently Treschev
[74] proved the existence of Arnold diffusion the product of a one-dimensional pen-
dulum and n-dimensional rotator using his separatrix map approach.

A multidimensional diffusion mechanism of different nature, but also based on
existence and persistence of a 3-dimensional NHIC C is proposed in [19].
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10 Properties of the barrier functions

In this section we provide several equivalent definition of some concepts introduced in
Section 9. They were introduced in Hamiltonian setting. Here is concentrate on the
dual description in Lagrangian setting. We will also describe properties of the barrier
functions, used in our proof. There is a notational conflict. In Section 9.4 we denote
by Ã(c), M̃(c), Ñ (c) ⊂ TM the (discrete) Aubry, Mather, Mañe sets respectively for

the time 1 map ϕ = ϕ1. In this section we denote by ÃH(c), M̃H(c), ÑH(c) ⊂ TM×T
the (continuous) Aubry, Mather, Mañe sets respectively for the Hamiltonian flow with
the Hamiltonian H. Definitions of Tonelli Hamiltonian and Tonelli Lagrangian are
given in Section 9.1.

10.1 The Lagrangian setting

For simplicity of presentation, we restrict to the case M = Td in this section. This
means we identify the spaces T ∗M ' Td × Rd ' TM , and H1(M,R) ' Rd. Given
a Tonelli Hamiltonian H : T ∗M × T −→ R, we denote by LH : TM × T −→ R its
associated Lagrangian.

• The α-function

Given a cohomology c ∈ H1(M,R), an equivalent definition of the α-function
is given by

αH(c) := − inf
µ

∫
(LH(x, v, t)− c · v) dµ(x, v, t),

where the infimum is taken over all invariant measures of the Euler-Lagrange
flow in TM ×T (see [34, Corollary 4.6.7] and [34, Theorem 4.6.2] for the equiv-
alence with the previous definition of the α-function).

• The dual Lagrangians, minimizers, and the action function

Given a cohomology c ∈ H1(M,R), denote

LH,c(x, v, t) := LH(x, v, t)− c · v + αH(c).

The action function AH,c : M × R×M × R −→ R is defined by

AH,c(x, s̃; y, t̃ ) = inf

∫ t̃

s̃

LH,c(γ(t), γ̇(t), t)dt,

where the infimum is taken over all absolute continuous γ : [s̃, t̃ ] −→ M such
that γ(s̃ ) = x, γ(t̃ ) = y. A curve γ is called a minimizer or a minimizing
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extremal for AH,c(x, s̃; y, t̃ ) if it realizes the associated infimum. By Tonelli’s
theorem (see [53], Appendix 1), γ is always an orbit of the Euler-Lagrange flow,
and hence is C2.

• The barrier functions

Given a cohomology c ∈ H1(M,R), the barrier function hH,c : M×T×M×T −→
R is defined by

hH,c(x, s; y, t) = lim inf
n−→∞

AH,c(x, s; y, t+ n),

where s and t are interpreted as numbers in [0, 1) on the right hand side. Up
to change of notations this definition is the same as the one in section 9.6. We
list it to adjust to notations of this section.

• The projected Aubry set

Given a cohomology c ∈ H1(M,R), the projected Aubry set AH(c) is defined
by

{(x, t) ∈M × T : hH,c(x, t;x, t) = 0}.

We will also be using the time-zero section of the projected Aubry set, defined
by

A′(c) = {x ∈M : (x, 0) ∈ AH(c)}.

Consider the natural projection π : TM −→ M given by π(θ, p, t) = (θ, t).
In section 9.4 we define the Aubry set Ã(c). Denote by πÃ(c) = A(c) its
projection. This definition of the Aubry set A′(c) and definition (29) of the
Aubry set A(c) are equivalent (see e.g. Proposition 3.11 [9]), namely, A′(c) =
A(c).

• The projected Mañe set

The projected Mañe set NH(c) is defined by⋃
(x,t1),(z,t2)∈AH(c)

{(y, t) ∈M × T :

hH,c(x, t1; y, t) + hH,c(y, t; z, t2) = hH,c(x, t1; z, t2)},

and the time-zero section

N ′(c) = {x ∈M : (x, 0) ∈ NH(c)}.
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In section 9.4 we define the Mañe set Ñ (c). Let πÑ (c) = N (c) denote its
projection. This definition of the Mañe setN ′(c) and definition (29) of the Mañe
set N (c) are equivalent (see e.g. Proposition 3.12 [9]) 18, namely, N ′(c) = N (c).

It turns out that the α and ω-limit sets of orbits of the Mañe set are contained
in the corresponding Aubry set (see e.g. [11]). In this sense the Mañe set
consists of heteroclinic and homoclinic orbits to “components” of Aubry set.
These “components” of Aubry sets are called static classes and are introduced
later in the section.

• Mañe’s potential

Following Mañe, we define the function mH,c : M × T×M × T −→ R by

mH,c(x, s; y, t) = inf
s<t+n, n∈N

AH,c(x, s; y, t+ n).

This function is sometimes called Mañe’s potential.

• Static and semistatic curves

Denote γ : R −→M a C1 smooth curve and by dγ(t) = (γ(t), γ̇(t), t) the 1-jet.
A curve γ : R −→M is called c−semi-static if for any a < b,∫ b

a

LH,c(dγ(t))dt = mH,c(γ(a), a; γ(b), b).

A curve γ : R −→M is called static if it is semi-static, and for all a < b,∫ b

a

LH,c(dγ(t))dt = −mH,c(γ(b), b; γ(a), a).

By Tonelli’s Theorem, both semi-static and static curves are orbits of the Euler-
Lagrange flow. Write p(t) = ∂vLH(γ, γ̇, t)), then (γ, p)(t) is an orbit of the
Hamiltonian flow.

• The Aubry and Mañe sets

Recall that in Section 9.4 we define the Aubry Ã(c) and Mañe Ñ (c) sets in
T ∗M . Here we give equivalent definitions in continuous setting.

Let π : T ∗(M×T) −→M×T be the standard projection, we have πÃ(c) = A(c)

and πÑ (c) = N (c).

18Lemma 12.9 connection of the continuous Aubry AH(c) and Mañe NH(c) sets with the discrete
ones A′(c) and N ′(c) resp.
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We define the Aubry set ÃH(c) ⊂ T∗(M × T) by

{(x, p, s,−H(x, p, s)) : ϕts(x, p), t ∈ R is static}.

By [34, Proposition 9.2.5] a curve is static if and only if it is a part of the
projected Aubry set.

We define the Mañe set ÑH(c) ⊂ T∗(M × T) by

{(x, p, s,−H(x, p, s)) : ϕts(x, p), t ∈ R is semi-static}.

By [9, Proposition 3.6] Mañe set consists of semi-static curves.

• Dominated functions

A function u : M × T −→ R is called dominated by LH,c if

u(γ(t), t)− u(γ(s), s) ≤
∫ t

s

LH,c(dγ(σ)) dσ (31)

for each curve q(t) ∈ C1(M,R) and each s < t in R. This implies

u(y, t)− u(x, s) ≤ hH,c(x, s; y, t) ∀(x, s), (y, t) ∈M × T.

• Calibrated curves

A C1 curve γ : I −→ M is called calibrated on an interval I ⊂ R by the
dominated function u if, for each s < t in I, we have

u(γ(t), t)− u(γ(s), s) =

∫ t

s

LH,c(dγ(σ)) dσ. (32)

It is clear that calibrated curves are minimizing extremals. For each dominated
function u, we define the set points in TM × T

ĨH(u) = {(x, v, t) :

∃ a calibrated curve γ : R −→M satisfying (x, v, t) = dγ(t)} . (33)

It is known that ĨH(u) is a compact invariant set of the Euler-Lagrange flow
of L(H) (see e.g. [11]). The projection π : (x, v, t) −→ (x, t) induces a bi-

Lipschitz homeomorphism between ĨH(u) and its image IH(u) ⊂M × T. Fathi
[34], Proposition 9.2.3 proved that a curve is semi-static if and only if it is
calibrated by a dominated function u.
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• Weak KAM solutions

The function u is called a weak KAM solution (of negative type) if it is domi-
nated and if, in addition, for each point (x, s) ∈M×T, there exists a calibrated
curve γ : (−∞, s) −→ M such that γ(s) = x. u is a weak KAM solution of
positive type if it is dominated, and for each (x, s) there is a calibrated curve
γ : (s,∞) −→M such that γ(s) = x.

Given a weak KAM solution u, we define the set

GH(u) ⊂ TM × T

as points (x, v, s) such that there exists a calibrated curve γ : (−∞, s) −→ M
satisfying γ(s) = x and γ̇(s) = v. The set GH(u) is compact and negatively
invariant for the Euler-Lagrange flow ϕtH of LH . Note also that π(GH(u)) =
M × T and that

ĨH(u) =
⋂
t≤0

ϕtH(GH(u)).

Fathi [34] proved existence of weak KAM solutions.

• Elementary solutions and one-sided minimizers

For all (x, s) ∈M ×T, the functions hH,c(x, s; ·, ·) are weak KAM solutions (see
[34], Theorem 5.3.5). As a consequence, at each (y, t) ∈ M × T, there exists a
calibrated curve

γ− : (−∞, t) −→M, γ−(t) = y.

We call this curve a backward minimizer, and it can be viewed as an extremal
curve “realizing” the action hH,c(x, s; y, t). Similarly, the functions hH,c(·, ·; y, t)
are positive weak KAM solutions and there exists a forward minimizer

γ+ : (s,∞) −→M for each (x, s) ∈M × T.

• Static classes

Using the barrier function defined above we denote

dH(x, s; y, t) := hH(x, s; y, t) + hH(y, t;x, s)

Mather showed that the function dH is positive, symmetric and satisfies the
triangle inequality (see e.g. [58, 59]), but there may exist points (x, s) 6= (y, t)
such that dH(x, s; y, t) = 0. One can define the relation on AH(c) by

(x, s) ∼ (y, t) if dH(x, s; y, t) = 0.

This is an equivalence relation on AH(c). The equivalence classes are called the
static classes. Their lifts to ÃH(c) are compact invariant subsets.
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10.2 Properties of the action and barrier functions

10.2.1 Uniform family and Tonelli convergence

In order to state uniform properties of the minimizers over a family, we introduce the
notion of uniform families of Tonelli Hamiltonians and Lagrangians (see [9]). Recall
that ‖ · ‖x denotes a norm on TxM induced by a Riemannian metric.

A family of Tonelli Lagrangians L ⊂ C2(TM × T,R) is called uniform if:

1. There exist two super-linear functions l0 and l1 : R+ −→ R such that each
Lagrangian L of the family for each (x, t) ∈M × T satisfies

l0(‖v‖) ≤ L(x, v, t) ≤ l1(‖v‖).

2. There exists an increasing function K : R+ −→ R+ such that, if ϕ is the Euler-
Lagrange flow of a Lagrangian of the family, then, for each t ∈ [−1, 1] and time
t map ϕt, we have

ϕt ({‖v‖ ≤ k}) ⊂ {‖v‖ ≤ K(k)} ⊂ TM × T.

3. There exists a finite atlas Ψ on M such that, for each chart ψ ∈ Ψ and each
Lagrangian L of the family, we have

‖∂2
vvL ◦Dψ(q, v, t)‖x ≤ K(k) for ‖v‖ ≤ k,

where Dψ is the differential.

We say that a family of Tonelli Hamiltonians H ⊂ Cr(T ∗M × T,R), r ≥ 3 is
uniform if the family of Legendre transforms L = L(H) or, equivalently, the family
of associated Lagrangians is uniform.

A sequence {Ln}n≥1 of Lagrangians Tonelli converges to L if {Ln} belong to a
uniform family of Tonelli Lagrangians and Ln converge to L uniformly on compact
sets as n −→∞. Similarly, we say that a sequence {Hn}n≥1 of Tonelli Hamiltonians
Tonelli converges to H if the sequence of corresponding Lagrangians Ln = LHn =
L(Hn) Tonelli converges to LH = L(H).

Our interest in Tonelli convergence is due to the following fact. Consider a family
of Hamiltonians

Hε(ϕ, I, τ) = K(I)− U(ϕ) +
√
εP (ϕ, I, τ), (ϕ, I) ∈ T ∗T2 ∼= T2 × R2, τ ∈

√
εT,

where K(I) = 〈AI, I〉 is a positive definite quadratic form, U and P are smooth
functions with P being

√
ε-periodic in τ . This is the perturbed slow system (7)

derived in section B. Notice that Hε does not converge to H0 in the C2-topology,
due to the fast perturbation in P . It is proved in Proposition B.5 that Hε Tonelli
converges to H0,
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10.2.2 Properties of the action function

For the action function AH,c, the following hold over a uniform family.

Proposition 10.1. For a uniform family of Tonelli Hamiltonians H the following
conditions hold.

1. (Theorem B.5, [9]) Given a bounded set B ⊂ H1(M,R) and δ > 0, for each
c ∈ B and each H ′ ∈ H, there exists a uniform constant K > 0 such that any
minimizer γ of AH′,c(x, s̃; y, t̃ ) with t̃− s̃ ≥ δ satisfies ‖γ̇‖ ≤ K.

2. (Theorem B.7, [9]) With the same assumptions as item 1, there exists a uniform
constant C > 0, such that the function AH′,c(x, s̃; y, t̃ ) defined on the set t̃−s̃ >
δ is C−semi-concave in x and y.

3. (Theorem B.7, [9]) Let γ be a minimizer for AH′,c(x, s̃; y, t̃ ), with t̃− s̃ > δ. Let
p(t) = ∂vLH(γ(t), γ̇(t)) be the associated momentum. Then

−p(s̃) + c, p(t̃)− c

are super-differentials of AH′,c(x, s̃; y, t̃ ) at x and y respectively19.

The action functional is also semi-concave in the time variable.

Proposition 10.2. Let H ⊂ Cr(T ∗M × T,R), r ≥ 3 be a uniform family of Tonelli
Hamiltonians. For any fixed bounded set B ⊂ H1(M,R), K > 0, H ′ ∈ H, and c ∈ B,
the function AH′,c(x, s̃; y, t̃ ) is uniformly semi-concave in the s̃ and t̃ variables in the
domain 1 < t̃− s̃ < K. Moreover, if γ is a minimizer for AH′,c(x, s̃; y, t̃ ) and let p(t)
be the associated momentum, then we have

H ′(x(s̃), p(s̃), s̃ )− αH′(c), −H ′(x(t̃), p(t̃), t̃ ) + αH′(c)

are super-differentials at s̃ and t̃ respectively.

Proof. We first prove the statement for a fixed Hamiltonian H satisfying αH(0) = 0,
and for c = 0. Moreover, it suffices to prove that the functions AH,0(x, 0; y, T ), T > 1
and AH,0(x, T ; y, 0), T < −1 are semi-concave in T . Otherwise, we will consider the
Hamiltonian H(x, p, t+ s̃) or H(x, p, t+ t̃) instead.

We drop all subscripts from the notations and consider A(x, 0; y, T ) for T > 0.
Given any ∆T ∈ R with 1 < T +∆T < K, we write λ = ∆T/T . Let γ be a minimizer

19In convex analysis super-differential is often called sub-differential. Since we often refer to [9]
we keep his terminology to avoid further confusion
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for A(x, 0; y, T ), we define ξ : [0, T + ∆T ] −→M by ξ(t) = γ(t/(1 + λ)). We have

A(x, 0; y, T + ∆T ) ≤
∫ T+∆T

0

L(ξ(t), ξ̇(t), t)dt

=

∫ T

0

L(γ(s), γ̇(s)/(1 + λ), (1 + λ)s)ds

with s = t/(1 + λ). We will use O(λ2) to denote a quantity bounded by Cλ2, with C
depending on T , ‖L‖C2 , K and sup ‖γ̇‖. Recall that dγ(s) denotes (γ(s), γ̇(s)). We
have

A(x, 0; y, T + ∆T )

≤ (1 + λ)

∫ T

0

[
L(dγ(s))− ∂vL(dγ(s)) · λ

1 + λ
γ̇(s) + ∂tL(dγ(s)) · λs

]
ds+O(λ2)

=

∫ T

0

[(1 + λ)L(dγ(s))− λ∂vL(dγ(s)) · γ̇(s) + λ∂tL(dγ(s))s ] ds+O(λ2).

Hence

A(x, 0; y, T + ∆T )− A(x, 0; y, T )

≤ λ

∫ T

0

(
L(dγ(s))− Lv(dγ(s)) · γ̇(s) + s · ∂tL(dγ(s))

)
ds+O(λ2). (34)

We have the following calculations using the Euler-Lagrange equations:

d

ds
L(dγ) = ∂tL(dγ) + ∂xL(dγ)γ̇ + ∂vL(dγ)γ̈

= ∂tL(dγ) +
(
∂xL(dγ)− d

ds
(∂vL(dγ))

)
· γ̇ +

d

ds

(
∂vL(dγ) · γ̇

)
= ∂tL(dγ) +

d

ds

(
∂vL(dγ) · γ̇

)
.

Hence,

∂tL(dγ) =
d

ds

(
L(dγ)− ∂vL(dγ) · γ̇

)
.

Using the above equality in (34), we have

A(x, 0; y, T + ∆T )− A(x, 0; y, T )

≤ λ

∫ T

0

d

ds

(
s ·
(
L(dγ)− ∂vL(dγ) · γ

))
ds+O(λ2)

= λT
[
L(dγ(T ))− ∂vL(dγ(T )) · γ̇(T )

]
+O(λ2)

= −H(γ(T ), p(T ), T ) ·∆T +O(∆T 2).
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This proves semi-concavity, and that in this case, −H(y, p(T ), T ) is a sub-differential.
For a general Hamiltonian and for c 6= 0, we reduce to the above case by con-

sidering the Hamiltonian H(x, p + c, t)− αH(c) instead. For the case of A(x, T ; y, 0)
with T < 0, we formally write A(y, 0;x, T ) = A(x, T ; y, 0), and notice that all the
above computations go through with a negative T . Finally, the constant in O(·) can
be chosen to be uniform for all Hamiltonians and c’s stated in the assumption. This
concludes the proof for the general case.

10.2.3 Properties of the barrier function

We first state some properties of semi-concave functions.

Lemma 10.3. 1. (Corollary A.9, [9]) Assume that fn : M −→ R are K−semi-
concave and fn −→ f uniformly, then f is also K−semi-concave. Moreover,
let pn(x) be super-differentials of fn at x with pn(x) −→ p ∈ TxM , then p is a
super-differential of f at x.

2. (Corollary A.8, [9]) Let f, g : M −→ R be semi-concave functions and let x
be a local minimum of f + g. Then f and g are both differentiable at x with
df(x) + dg(x) = 0.

We have the following properties of the barrier function hH,c.

Proposition 10.4. For a uniform family of Tonelli Hamiltonians H the following
conditions hold.

1. Given a bounded set B ⊂ H1(M,R), for each c ∈ B and each H ∈ H, there
exists a uniform constant C > 0 such that the functions hH,c(x, s; y, t) are
C−semi-concave in x and y.

2. Let a sequence Hn Tonelli converges to H, cn −→ c and (xn, sn; yn, tn) −→
(x, s; y, t), and assume that hHn,c(xn, sn; ·, tn) −→ hH,c(x, s; ·, t) uniformly. Let
ln be super-differentials of hHn,c(xn, sn; y, tn) in y at yn with ln −→ l, then l is
a super-differential of hH,c(x, s; y, t) in y. In particular, if hHn,c(xn, sn; y, tn) is
differentiable in y, then

ln −→ ∂yhH,c(x, s; y, t).

A similar statement holds for the super-differential in x.

3. Assume that (x, s), (y, t) ∈ AH(c) are in the same static class. Then hH,c(x, s; y, t)
is differentiable in both x and y.
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Proof. The first two statements follows from Proposition 10.1, part 2 and Lemma 10.3,
part 1.

For the third statement, we note hH,c(x, s; ·, t)+hH,c(·, t;x, s) reaches its minimum
value 0 at y and the conclusion follows from Lemma 10.3, part 2. The differentiability
in (x, s) follow from a symmetric argument.

Remark 10.1. Geometrically, part 2 of Proposition 10.4 implies the convergence
of the velocities of backward minimizers. More precisely, let γn be backward mini-
mizers for the barrier functions hHn,c(xn, sn; y, tn), γ be a backward minimizer for
hH,c(x, s; y, t), and let pn, p be the associated momentum. If hH,c(x, s; y, t) is dif-
ferentiable at y, then p(t) − c = ∂yhH,c(x, s; y, t) is unique. As a consequence,
pn(tn) −→ p(t) and velocities satisfy

γ̇n(tn) −→ γ̇(t).

10.2.4 Semi-continuity of the Aubry and Mañe set and continuity of the
barrier function

The Mañe set is semi-continuous with respect to the Hamiltonian, while the Aubry
set is semi-continuous only under specific conditions.

Proposition 10.5. Assume that a sequence Hn of Hamiltonians Tonelli converges to
H, and cn −→ c ∈ H1(M,R).

1. (See [56], [24])The upper limit of the projected Mañe sets NHn(cn) is contained
in NH(c). In other words, for any (xn, sn) ∈ NHn(cn), (xn, sn) −→ (x, s), we
have (x, s) ∈ NH(c).

2. (See [60], [11]) Assume in addition that the Aubry set has finitely many static
class. Then the upper limit of the projected Aubry sets AHn(cn) is contained in
AH(c). In other words, for any (xn, sn) ∈ AHn(cn), (xn, sn) −→ (x, s), we have
(x, s) ∈ AH(c).

In general, the barrier function hH,c may be discontinuous with respect to H.
However, the continuity properties hold in the particular case when the limiting Aubry
set contains only one static class.

Proposition 10.6. Assume that a sequence Hn of Hamiltonians Tonelli converges to
H, and cn −→ c ∈ H1(M,R). Assume that the projected Aubry set AH(c) contains a
unique static class. Let (xn, sn) ∈ AHn(cn) with (xn, sn) −→ (x, s), then the barrier
functions hHn,cn(xn, sn; ·, ·) converges to hH,c(x, s; ·, ·) uniformly.

Similarly, for (yn, tn) ∈ AHn(cn) and (yn, tn) −→ (y, t), the barrier functions
hHn,cn(·, ·; yn, tn) converges to hH,c(·, ·; y, t) uniformly.
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We can obtain uniformity over the choice of (x, s) in the Aubry set by using
convergence up to a constant. Moreover, we can show that the super-differential of
the barrier functions converges to super-differentials uniformly. In what follows, let
∂f(y) denote the set of super-differentials of a semi-concave function f at y.

Proposition 10.7. Assume that a sequence Hn Tonelli converges to H, cn −→ c ∈
H1(M,R) and the Aubry set AH(c) contains a unique static class.

1. for any (x, s) ∈ AH(c) we have

lim
n−→∞

inf
C∈R

sup
(y,t)∈M×T

|hHn,cn(xn, sn; y, t)− hH,c(x, s; y, t)− C| = 0

uniformly over (xn, sn) ∈ AHn(cn) and (y, t) ∈M × T.

2. For any ln ∈ ∂yhHn,cn(xn, sn; y, t) and ln −→ l, we have l ∈ ∂yhH,c(x, s; y, t).
Moreover, the convergence is uniform in the sense that

lim
n−→∞

inf
ln∈∂yhHn,cn (xn,sn;y,t)

d(ln, ∂yhH,c(x, s; y, t)) = 0

uniformly in (x, s) ∈ AH(c), (xn, sn) ∈ AHn(cn).

The proofs are based on several properties of the weak KAM solutions.

Lemma 10.8 ([34], Theorem 8.6.1, Representation formula). Any weak KAM solu-
tion u(x, t) for LH,c satisfies

u(x, t) = inf
(x0,t0)∈AH(c)

{u(x0, t0) + hH,c(x0, t0;x, t)}.

Using the definition of the static class, we have the following:

Lemma 10.9. Assume that AH(c) has a unique static class. Let (x1, t1) ∈ AH(c),
then any weak KAM solution differs from hH,c(x1, t1; ·, ·) by a constant.

Proof. Using the definition of the static class and the triangle inequality, it is easy to
see that, for any (x0, t0), (x1, t1) ∈ AH(c),

hH,c(x0, t0;x, t) = hH,c(x0, t0;x1, t1) + hH,c(x1, t1;x, t).

Then by the representation formula,

u(x, t) = inf
(x0,t0)∈AH(c)

{u(x0, t0) + hH,c(x0, t0;x1, t1)}+ hH,c(x1, t1;x, t)

= u(x1, t1) + hH,c(x1, t1;x, t) = hH,c(x1, t1;x, t) + const.
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The second statement is that weak KAM solutions are upper semi-continuous with
respect to Tonelli convergence.

Proposition 10.10 ([11], Lemma 7). Assume that a sequence Hn Tonelli converges to
H and cn −→ c, then if un is a weak KAM solution of LHn,c and un −→ u uniformly,
then u is a weak KAM solution of LH,c.

Proof of Proposition 10.6. We prove the second statement. By Proposition 10.4, all
functions hHn,cn(xn, sn; ·, ·) are uniformly semi-concave, and hence equi-continuous.
By Arzela-Ascoli, any subsequence contains a uniformly convergent subsequence,
whose limit is

hH,c(x, s; ·, ·) + C

due to Proposition 10.10 and Lemma 10.9. Moreover,

hH,c(xn, sn;x, s) −→ hH,c(x, s;x, s) = 0,

so C = 0. It follows that hHn,cn(xn, sn; ·, ·) converges to hH,c(x, s; ·, ·) uniformly.
Statement 1 follows from the definition of the projected Aubry set

AH(c) = {(x, s) ∈M × T : hH,c(x, s;x, s) = 0}
and statement 2.

Proof of Proposition 10.7. Part 1. We argue by contradiction. Assume that there
exist δ > 0, and by restricting to a subsequence,

inf
C∈R

sup
(y,t)

|hHn,cn(xn, sn; y, t)− hH,c(x, s; y, t)− C| > δ.

By compactness, and by restricting to a subsequence again, we may assume that
(xn, sn) −→ (x∗, s∗), (yn, tn) −→ (y, t). Using Proposition 10.6, take limit as n −→
∞, we have

inf
C∈R

sup
(y,t)

|hH,c(x∗, s∗; y, t)− hH,c(x, s; y, t)− C| > δ.

By Lemma 10.9, the left hand side is 0, which is a contradiction.
Part 2. There exists constants Cn such that hHn,cn(xn, sn; ·, t) + Cn converges

to hH,c(x, s; ·, t) uniformly. Convergence of super-differentials follows directly from
Proposition 10.4. It suffices to prove uniformity. Assume, by contradiction, that by re-
stricting to a subsequence, we have (xn, sn) −→ (x, s) ∈ AH(c), ln ∈ ∂yhHn,cn(xn, sn; y, t)
and (x, s) ∈ AH(c) such that

lim
n−→∞

ln /∈ ∂yhH,c(x, s; y, t).

By Proposition 10.4, ln −→ l ∈ ∂yhH,c(x∗, s∗; y, t), but we also have ∂yhH,c(x, s; y, t) =
∂yhH,c(x

∗, s∗; y, t) since the functions differ by a constant Lemma 10.9. This is a
contradiction.
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11 Diffusion along the same homology at double

resonance

In this section we prove Key Theorems 6 (localization of Aubry and Mañe sets), 7
(graph theorem) and 9 (forcing relation) along the same homology class.

The proof of Key Theorems 6 and 7 is covered in section 11.1, and uses well
known ideas (see for example [23], [24], [10]) involving normally hyperbolic invariant
cylinders.

The proof of Key Theorem 7 is more involved, and occupies section 11.2 and
beyond.

11.1 Localization and graph theorem

We first prove Theorem 8, which is the analog of Key Theorem 6 for the system

Hs
ε = Hs +

√
εP.

Proof of Theorem 8. The proof of all cases follows from a general argument. Assume
that the Aubry set AHs(c) is contained in either one or two NHICs of Hs. Assume
in addition that the Aubry set is upper semi-continuous in H and c at (Hs, c). Then
there exists δ, ε0 > 0, such that for |c − c′| ≤ δ and 0 < ε ≤ ε0, the perturbed
Aubry set AHs

ε
(c′) is contained in a small neighborhood of the unperturbed NHIC.

Since the perturbed NHIC (for Hs
ε ) has the weak invariance property, it contains all

the invariant set in a neighborhood. This implies that the perturbed Aubry set is
contained in the perturbed NHICs.

In all the cases, the unperturbed Aubry set is contained in the union of NHICs,
by Proposition 4.1 for high energies, and Theorem 7 for low energies. In all cases, the
Aubry set has either one or two static class, hence by Proposition 10.5, the Aubry set
is upper semi-continuous. Moreover, δ and ε0 can be chosen to be uniform over all
chosen cohomology classes due to compactness. All cases of Theorem 8 follows from
this argument.

Key Theorem 6 follows from Theorem 8, by the symplectic invariance of the Aubry
and Mañe set.

Proof of Key Theorem 7. Using symplectic invariance, it suffices to prove the theorem
for Hs

ε .
LetME∗−δ,E∗+δ

h be a NHIC for the slow system Hs in the homology h, for energy
[E∗ − δ, E∗ + δ]. The NHIC consists of periodic orbits γEh , and let s ∈ T be a
parametrization of for γE∗h . The pair (s, E) then defines a local coordinate system

for ME∗−δ,E∗+δ
h . We now extend this coordinate system to a tubular neighborhood
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of ME∗−δ,E∗+δ
h . First we let x denote the normal direction to the projection of γEh to

T2, and let y be a normal direction to ME∗−δ,E∗+δ
h that complements (s, E, x).

Figure 21: Local coordinates for NHIC at double resonance

The perturbed NHIC ME∗−δ,E∗+δ
h,ε is a smooth graph over ME∗−δ,E∗+δ

h , and hence

can be described as the graph {(x, y) = χε(s, E)}. Moreover, since ME∗−δ,E∗+δ
h,ε con-

verges to ME∗−δ,E∗+δ
h as ε −→ 0 in C1-norm, we may assume ‖χε‖C1 −→ 0.

Let (ϕ1, I1) and (ϕ2, I2) be two points on AHs
ε
(ch(E)) ∩ME∗−δ,E∗+δ

h,ε . Note that if
the Aubry set is contained in the union of two NHICs, we consider only the points on
the same cylinder. Mather’s graph theorem states that the Aubry set is a Lipschiz
graph over the angular variable, namely

‖I1 − I2‖ ≤ C‖ϕ1 − ϕ2‖.

We will use C as an unspecified generic constant. Let (s1, E1, x1, y1) and (s2, E2, x2, y2)
be the coordinates of the same points, using E = Hs(ϕ, I), we have

|E1 − E2| ≤ C‖ϕ1 − ϕ2‖ ≤ C|s1 − s2‖+ C|x1 − x2|.

on the Aubry set, where the last estimate is due to ϕ being a smooth function of
(s, x). Using {(x, y) = χε(s, E)} and ‖χε‖C1 −→ 0, we may assume for small ε,

|x1 − x2|+ |y1 − y2| ≤
1

2C
(|E1 − E1|+ |s1 − s2|),

and hence

|E1 − E2| ≤ C|s1 − s2|+ C
1

2C
(|E1 − E2|+ |s1 − s2|) =

3C

2
|s1 − s2|+

1

2
|E1 − E2|.
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As a consequence |E1 − E2| ≤ 3C|s1 − s2|. By replacing C with a bigger constant,
we obtain

|x1 − x2|+ |y1 − y2|+ |E1 − E2| ≤ C|s1 − s2|.

This implies the projection of the Aubry set to s coordinate has an Lipschitz inverse.
We note that the above argument applies whenever γEh is a smooth closed curve,

this covers all energy E 6= 0 and for a simple non-critical h, E = 0 as well.
The only remaining case is E = 0 for a simple critical h. In this case γ0

h is not
smooth in T2×R2, its tangent vector is discontinuous at the hyperbolic fixed point o.
However, its projection to T2 is smooth. Our local coordinates (s, x) are well defined.
The function E is not C1 at o, however, it is Lipschitz. However, we may modify E
near the corner point to a C1 function, while keeping the Lipschitz property. This
provides a well defined local coordinate system, and the above argument applies.

11.2 Forcing relation along the same homology class

The rest of this section is dedicated to Key Theorem 9. As we wrote in section 6.2
the proof divides into two steps:

• perturb so that all cohomologies under consideration are of at most three types
(see Theorems 13);

• perturb again so that all cohomologies under consideration belong to a single
forcing class (see Theorem 14).

Before we start proving these two Theorems notice that in Key Theorem 9 we
have the following regimes:

• (high energy) h is simple and E0 ≤ E ≤ Ē;

• (high energy) h is non-simple and e ≤ E ≤ Ē for some 0 < e < E0.

• (low energy) h1 and h′1 are simple, critical and 0 ≤ E ≤ 2E0;

• (low energy) h is simple, non-critical and 0 ≤ E ≤ E0.

It corresponds to the following families of cohomologies: ΓE0,Ē
h , Γe,Ēh,f , Γ0,2E0

±h1,s and

Γ0,2E0

±h′1,s
, Γ0,E0

±h respectively.

It turns out the cases simple, high energy and non-simple, high energy are similar.
The cases simple, critical low energy and simple, non-critical low energy are also
similar. An additional subtlety in the case of two simple critical homologies h1 and
h′1 is that we need localized perturbations in Theorem 13 with disjoint supports.
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We start discussing a simple homology, high energy case. Then describe how
it applies to non-simple homology, high energy. After that we move to the case of
two simple critical homologies, low energy followed by modifications needed to apply
arguments to simple non-critical homologies, low energy.

Recall that by Key Theorems 6 and 7 the corresponding Aubry sets are localized
inside of the corresponding cylinders20 and satisfy Mather’s projected graph property
respectively.

Recall that for a mechanical system Hs(θs, Is) = K(Is) − U(θs), energy E > 0,
and an integer homology class h ∈ H1(Ts,Z) we define a cohomology class c̄h(E).
This is the homology class whose Fenichel-Legendre transform is h (see Proposition
4.1 for the definition). By Proposition B.4 in a double resonance after a canonical
change of coordinates and proper rescaling the Hamiltonian has the form

Hs
ε (θ

s, Is, τ) = K(Is)− U(θs) +
√
ε P (θs, Is, τ),

θs ∈ Ts ' T2, Is ∈ R2, τ ∈
√
εT.

The next Theorem is an improvement of Theorem 13 and relies on Key Theorems 6
and 7. Key Theorem 6 proves that, in notations of section 4.2.3, the family of Aubry
sets {ÃHs

ε
(c̄h(E))}E∈[E0,Ē] and {ÃHs

ε
(λc̄h(0))}0≤λ<1 are localized in the corresponding

cylinders ME′,E′′

h,ε with E ∈ [E ′, E ′′] and E ′ and E ′′ properly chosen21. Key Theo-
rem 7 shows also that each of these Aubry sets are graphs over the corresponding
geodesics γEh ’s. The Theorem below insures that there are only finitely many E ′s with
ÃH̄s

ε
(c̄h(E)) having nonempty components inside two distinct cylinders. Moreover,

each nonempty component ÃH̄s
ε
(c̄h(E))∩ME′,E′′

h,ε contains a unique minimal invariant
probability measure. Here the precise statement.

Theorem 23. In the setting and notations of Theorem 13 there exists an arbitrarily
small Cr perturbation

√
ε P̄ of

√
ε P such that the perturbation

√
ε(P̄ −P ) is localized

near the normally hyperbolic weakly invariant cylinders in listed Theorem 13 and the
Hamiltonian H̄s

ε satisfies the following conditions:

1. Finiteness of bifurcations

(a) (high energy) If h is simple and satisfies the conditions [DR1]-[DR3]. Then
there exists a partition of [E0, Ē] into

⋃l−1
j=0[Ēj, Ēj+1], which is a refinement

of the partition {[Ei, Ei+1]}, each [Ēj, Ēj+1] ⊂ [Ei, Ei+1] for some i, with
the property that items i and ii of the previous case hold.

20For simple non-critical low energy we also need to add the hyperbolic periodic orbit oε at zero
energy (see Key Theorem 6, item 4 )

21In the case of simple non-critical we need to add the hyperbolic periodic orbit oε
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i. for E ∈ (Ēj, Ēj+1), the Aubry set ÃH̄s
ε
(ch(E)) is contained in a nor-

mally hyperbolic weakly invariant manifold MEj ,Ej+1

h,ε ;

ii. for E = Ēj+1, ÃH̄s
ε
(c̄h(E)) has nonempty component in both cylinders

MEj ,Ej+1

h,ε and MEj+1,Ej+2

h,ε .

(b) (high energy) If h is non-simple and satisfies the conditions [DR1]-[DR3].
Then there exists a partition of [E0, Ē] into

⋃l−1
j=0[Ēj, Ēj+1], which is a

refinement of the partition {[Ei, Ei+1]}, each [Ēj, Ēj+1] ⊂ [Ei, Ei+1] for
some i, with the property that items i and ii of the previous case hold.

(c) (low energy) If h be simple non-critical and satisfies the conditions [DR1]-
[DR3]. Then there exists a partition of [−E0, E0] into

⋃l−1
j=0[Ēj, Ēj+1] with

the property that

i. for E ∈ (Ēj, Ēj+1), the Aubry set ÃH̄s
ε
(c̄h(E)) is contained either in

one of normally hyperbolic weakly invariant manifoldsM0,E0

±h,ε or in oε;

ii. for E = Ēj+1, ÃH̄s
ε
(c̄h(E)) has nonempty component in two out of

three sets given above.

2. No invariant curve of minimal homoclinic orbits to the origin

(low energy) If h1 and h′1 are simple, critical homologies and satisfy the con-
ditions [DR1]-[DR3] and conditions [A1]-[A4] of Key Theorem 3, by Key The-
orem 6, item 3 for each 0 ≤ λ ≤ 1 the family of Aubry sets ÃH̄s

ε
(λc̄h(0)) ⊂

ÑH̄s
ε
(λc̄h(0)) is localized in a normally hyperbolic weakly invariant manifold

ME0,s
h,ε and

λ∗ = min{λ ∈ (0, 1) : (ÃH̄s
ε
(λc̄h(0)) \ oε) ∩ME0,s

h,ε 6= ∅}. (35)

By Key Theorem 7, item 3 ÃH̄s
ε
(λc̄h(0)) is a graph over γ0

h. Then ÃH̄s
ε
(λ∗c̄h(0))∩

{t = 0} is a discrete non-empty set and λ∗c̄h(0) ∈ Γ0,E0

h,s .

In all four case we also have

3. Ergodicity of Aubry sets

(a) The sets ÃH̄s
ε
(c̄h(E))∩MEi,Ei+1

h,ε (resp. M0,E0

h,ε or ME0,s
h,ε ), when nonempty,

contains a unique minimal invariant probability measure. In particular,
this implies that ÃH̄s

ε
(c̄h(E)) = ÑH̄s

ε
(c̄h(E)) for E 6= Ēj for any j.

(b) An immediate consequence of part (a) is the following dichotomy, for E 6=
Ēj, j = 1, · · · , l, one of the two holds.
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i. ÃH̄s
ε
(c̄h(E)) = ÑH̄s

ε
(c̄h(E)) and πγEh ÃH̄s

ε
(c̄h(E)) = γEh . In this case,

ÃH̄s
ε
(c̄h(E)) is an invariant circle.

ii. πγEh ÑH̄s
ε
(c̄h(E)) ( γEh , where πγEh is a composition of the natural pro-

jection π : Ts × R2 ×
√
εT −→ Ts and the projection onto γEh along

normals to γEh
22.

11.3 Local extensions of the Aubry sets and a proof of The-
orem 23

Proof of Theorem 23 is similar to the proof of Theorem 6.1 [13]. In this section we
prove item 1 (finiteness of bifurcations). Consider first the case h is either simple,
high energy or non-simple, high energy. The case 1, (c) turns out to be similar.

By Key Theorem 6, item 1 for each energy E ∈ [E0, Ē] which is not δ-close to any
bifurcation value {Ei}i=1,...,N−1 we have E ∈ [Ej+δ, Ej+1−δ] for some j = 1, . . . , N−1
and that the corresponding Aubry set ÃH̄s

ε
(c̄h(E)) is localized inside only one normally

hyperbolic weakly invariant cylinderMEj ,Ej+1

h,ε . The family of Aubry sets ÃH̄s
ε
(c̄h(E))

as a function of E has “jumps” (or bifurcations) from one cylinder to another one.
These bifurcations can occur only for E ∈ [Ej − δ, Ej + δ] by Key Theorem 6, item
2. In order to understand the bifurcations we extend

ÃH̄s
ε
(c̄h(E))|E∈[Ej+b,Ej+1−b]

from [Ej + b, Ej+1 − b] to [Ej − 2b, Ej+1 + 2b]. By definition the cylinder MEj ,Ej+1

h,ε

extends to energies [Ej − δ, Ej+1 + δ] ⊃ [Ej − 2b, Ej+1 + 2b]. It turns out one can

make sense of an extended local Aubry set, which is localized inside MEj ,Ej+1

h,ε . This
definition is inspired by Mather’s definition of a relative α-function and a relative
Aubry set (see also section 6.1 [13]).

Recall that for each energy there are at most two minimal geodesics of the Jacobi
metric ρE on Ts ' T2. For a finitely many energies E ∈ {Ej}Nj=1 there are exactly two
minimal geodesics γhE and γ̄hE. By the condition [DR2] for E = Ej both geodesics can
be smoothly continued to the interval [Ej−δ, Ej +δ] 3 E and denoted γhE and γ̄hE. To
assign dependence on j we denote by γhE,j the continuation of the minimal geodesic in
(Ej, Ej+1) and by γhE,j−1 the continuation of the minimal geodesic in (Ej−1, Ej). Let

ρ0 = max
E∈[Ej−2b,Ej+2b]

dist{γhE,j, γhE,j−1}
6

,

22It is well defined, because by Theorem 3 the projection π Ñc̄h(E) is contained in a tube neigh-
borhood of γEh . This projection is well-defined in a tube neighborhood
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Let b > 0 be small enough to have

max
E,E′∈[Ej−2b,Ej+2b]

{dist{γhE,j, γhE′,j}, dist{γhE,j−1, γ
h
E′,j−1}} ≤

ρ0

2
.

For small ρ > 0 we denote

Ti(ρ) = {θs ∈ Ts : dist(θs, γhEj ,i) < ρ}, i = j − 1, j

tube neighborhoods of γhEj ,j−1 and γhEj ,j respectively. By definition Tj−1(ρ0) and Tj(ρ0)
are disjoint.

Consider two smooth extensions of averaged potentials U , denoted Uj and Uj−1

respectively and defined as follows:

Uj(θ
s) =

{
U(θs), if θs ∈ Tj(ρ0/2)

≥ U(θs) + b
2

dist(θs, γhEj ,j)
2, if θs /∈ Tj(ρ0).

Uj−1(θs) =

{
U(θs), if θs ∈ Tj−1(ρ0/2)

≥ U(θs) + b
2

dist(θs, γhEj ,j−1)2, if θs /∈ Tj−1(ρ0),

(36)

In the regions θs ∈ Tj(ρ0) \ Tj(ρ0/2) (resp. θs ∈ Tj−1(ρ0) \ Tj−1(ρ0/2) ) we smoothly
interpolate so that Uj (resp. Uj−1) are monotonically increasing with respect to the
distance to γhEj ,j (resp. γhEj ,j−1). Since γhEj ,j and γhEj ,j−1 are smooth curve in Ts, by
choosing b small enough this is possible. In particular, Uj ≥ U in the region Tj(ρ0/2)
(resp. Uj−1 ≥ U in the region Tj−1(ρ0/2)).

We write

Hs
ε,i(θ

s, Is, τ) = K(Is)− Ui(θs) +
√
εP (θs, Is, τ) for i = j − 1, j.

For each E ∈ [Ej − 2b, Ej+1 + 2b] we define

αi(c̄h(E)) = αHs
ε,i

(c̄h(E)), Ãi(c̄h(E)) = ÃHs
ε,i

(c̄h(E)) for i = j − 1, j.

We need to justify that these definitions are independent of the choice of the modi-
fication Ui’s or the decompositions K − Ui +

√
εP, i = j − 1, j. So we provide the

following proposition. Recall that π : T ∗Ts −→ Ts denotes the natural projection.

Proposition 11.1. Let Hs
ε,j(θ

s, Is, τ) = K(Is)−Uj(θs) +
√
εP (θs, Is, τ) be a Hamil-

tonian satisfying the genericity conditions [DR1]-[DR3] for an integer homology class
h ∈ H1(Ts,Z). There exists ε0 = ε0(K,U,E) > 0 such that for 0 < ε < ε0 the
following hold.
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1. The definitions of αj and Ãj(c̄h(E)) are independent of the decomposition

Hs
ε,j(θ

s, Is, τ) = K(Is)− Uj(θs) +
√
εP (θs, Is, τ)

as long as Hs
0,j satisfies [DR1]-[DR3] for h; the definitions are also independent

of the modification Uj, as long as the extensions satisfies the above properties.

2. For each E ∈ [Ej−2b, Ej+1+2b], we have the projected local Aubry set Ãj(c̄h(E))
is contained in the tube neighborhood Tj(ρ0) by Key Theorems 2 and 6.

By Key Theorem 7 for Aubry sets Ãj(c̄h(E)) ⊂ MEj ,Ej+1

h,ε we have that the

projection πθf |Ãj(c̄h(E)) is one-to-one with Lipschitz inverse.

3. For each E ∈ [Ej − 2b, Ej+1 + 2b] we have

α(c̄h(E)) = max{αj(c̄h(E)), αj−1(ch(E))}.

In particular, αj(c̄h(E)) > αj−1(c̄h(E)) for E = Ej − b and αj+1(c̄h(E)) >
αj(c̄h(E)) for E = Ej + b.

4. For any E ∈ [Ej − b, Ej+1 + b], if α(c̄h(E)) = αj(c̄h(E)) and α(c̄h(E)) 6=
αj−1(c̄h(E)), then ÃHs

ε
(c̄h(E)) = Ãj(c̄h(E)). Similar statement hold with j and

j − 1 exchanged.

The proof uses the following lemma, which implies independence of the local Aubry
set on the decomposition or the choice of the modification.

Lemma 11.2. Let Hs,′

ε,j = K − U ′j +
√
εP ′ and Hs

ε,j = K − Uj +
√
εP be such that

• Hs,′

ε,j = Hs
ε,j for each θs ∈ Tj(ρ0).

• For E ∈ [Ej − 2b, Ej + 2b], we have that U and Uj satisfy conditions (36).

• ‖P‖C2 , ‖P ′‖C2 ≤ 1.

Then for sufficiently small ε and for E ∈ [Ej − 2b, Ej+1 + 2b]

Ã
Hs,′
ε,j

(c̄h(E)) = ÃHs
ε,j

(c̄h(E)).

The proof follows the same analysis as in the single peak case (section 5.2.1 [13]).
This completes the proof of Theorem 23 items 1.(a) and 1.(b). In the case simple,

noncritical with low energy the construction is the same with replacing the pair of
disjoint geodesics γhE,j and γhE,j−1 by the other disjoint pair γhE and γ−hE .
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11.4 Generic property of the Aubry sets ÃHs
ε
(c̄h(E))

In this section we discuss the property of the sets ÃHs
ε
(c̄h(E)) for E ∈ [Ej−2b, Ej+1 +

2b] if we allowed to make an additional perturbation. We prove Theorem 23 items 2
and 3 on absence of invarian curves of homoclinics and ergodicity of Aubry sets. It is
convenient for us to fix a modified Hamiltonian Hs

ε,j and base all discussions on this
system.

From Proposition 11.1, we have that the sets ÃHs
ε,j

(c̄h(E)) (we will write Ãj(c̄h(E))

for brevity in this section) are contained in the NHIC MEj ,Ej+1

h,ε , and πθf |Ãj(c̄h(E))
is one-to-one. We will study finer structures of the Aubry sets, by relating to the
Aubry-Mather theory of two dimensional area preserving twist maps. We will prove
the following statement.

Proposition 11.3. There exists ε0 > 0 such that for 0 < ε < ε0, there exists ar-
bitrarily small Cr perturbation Hs,′

ε of Hs
ε , such that (Hs,′

ε − Hs
ε ) is supported near

MEj ,Ej+1

h,ε and for each E ∈ [Ej − 2b, Ej+1 + 2b], ÃHs,′
ε

(c̄h(E)) supports a unique
c–minimal measure.

Similarly, there exists an arbitrarily small Cr perturbation Hs,′
ε of Hs

ε , such that
(Hs,′

ε − Hs
ε ) is supported near ME0,s

h,ε and such that for λ∗ defined in (35) the corre-

sponding Aubry set ÃH̄s
ε ,′(λ

∗c̄h(0))∩{t = 0} is a discrete non-empty set and λ∗c̄h(0) ∈
Γ0,E0

h,s .

Notice that this Proposition follows from a basic fact from dynamical systems: a
generic Hamiltonian system has Kupka-Smale property, which is all periodic orbits
are hyperbolic (eigenvalues are either real or not a root of unity) and stable/unstable
manifolds intersect transversally. In our case a slight difference is that we need to
perturb an ambient system of 2.5 degrees of freedom and recover generic properties
of a restriction onto 3-dimensional cylinder. This does not cause serious difficulties.
For additional details one can see Proposition 6.6 [13].

11.5 Generic property of the α-function and proof of Theo-
rem 13

After obtaining the desired properties for the local Aubry set, we now return to the
Hamiltonian Hs

ε . If E ∈ [Ej + b, Ej+1− b], we have that ÃHs
ε
(c̄h(E)) = ÃHε,j(c̄h(E)).

For E ∈ [Ej+1−b, Ej+1 +b], Proposition 11.1, statement 3 and 4 shows that it suffices
to identify whether α(c̄h(E)) is equal to αj(c̄h(E)) or αj+1(c̄h(E)).

Proposition 11.4. Assume that Hs
ε = K −U +

√
εP is such that it satisfies [DR1]-

[DR3] for some integer homology class h. Then there exists ε0 > 0 such that for 0 <
ε < ε0, there exists an arbitrarily small perturbation Hs,′

ε of Hs
ε such that (Hs,′

ε −Hs
ε )
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is supported near MEj ,Ej+1

h,ε and has the following properties. For the Hamiltonian
Hs,′
ε Proposition 11.1 and Proposition 11.3 still hold, in addition, there exists only

finitely many E ∈ [Ej+1 − b, Ej+1 + b] such that αj(c̄h(E)) = αj+1(c̄h(E)).

The proof relies on the following simple remark. The function αj(c̄h(E)) is as a
function of E is C1 for the same reason as it is C1 in the single peak case. It is easy
to perturb a potential Uj so that in the tube neighborhood Tj(ρ0/2) it is shifted by
a constant s and smoothly interpolated to zero outside. Denote the family of these
potentials U s

j . Notice that the α-functions αj−1 and αsj associated to ch(E) associated
to the Hamiltonian K − U s

j +
√
εP are

αj−1(ch(E)) and αsj(ch(E)) = αj(ch(E)) + s,

where αj−1(ch(E)) is the α-function associated to K−Uj−1+
√
εP . By Sard’s theorem,

there exists an arbitrary small regular value s∗ of the difference αj−1(ch(E)) −
αj(ch(E)). If s = s∗ is such a value, then 0 is a regular value of αj−1(ch(E)) −
αsj(ch(E)). Therefore, there are only finitely many solutions Ej to αj−1(ch(E)) =
αs
∗
j (ch(E)). This justifies Proposition 11.4 and completes the proof of Theorem 13 in

the case of simple or non-simple, high energy.
In the case of simple, non-critical, low energy the same arguments applies. The

only bifurcation value of the average mechanical system is E = 0. Then we can
replace γhE,j−1 and γhE,j with γh0 and γ−h0 and localize our perturbations near the latter
ones.

11.6 Nondegeneracy of the barrier functions

In this section we prove Theorem 14 and complete a proof of Key Theorem 9. We
have concluded that it suffices to show that Γ2(ε) = Γ∗2(ε) and Γ3(ε) = Γ∗3(ε), given
by Theorem 14. We show that this is the case by proving the following equivalent
statement.

Proposition 11.5. Let H ′ε be a Cr perturbation of Hε such that the conclusions of
Theorem 14 holds, then there exists an arbitrarily small Cr perturbation H ′′ε to H ′ε such

that (H ′′ε −H ′ε) is supported away from MEj ,Ej+1

h,ε and such that for the Hamiltonian
H ′′ε Theorem 14 still hold, in addition:

1. Consider E ∈ (Ēj, Ēj+1) such that AH′ε(c̄h(E)) = NH′ε(c̄h(E)) and the projection

πθfAH′ε(c̄h(E)) = T. Take θ ∈ A(c̄h(E)), and let θ̃0 and θ̃1 be its lifts to the
double cover. We have that the functions

hH′′ε ,c̄h(E)(θ̃1, θ) + hH′′ε ,c̄h(E)(θ, θ̃2)

and

hH′′ε ,c̄h(E)(θ̃2, θ) + hH′′ε ,c̄h(E)(θ, θ̃1)

(37)
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have isolated minima outside of the lifts of AH′ε(c̄h(E)). In other words, NH′′ε (c̄h(E))\
AH′′ε (c̄h(E)) is discrete and not empty.

2. For E = Ēj+1, take θ′ ∈ AH′ε(c̄h(E)) ∩ MEj ,Ej+1

h,ε and θ′′ ∈ AH′ε(c̄h(E)) ∩
MEj−1,Ej

h,ε . We have that both

hH′′ε ,c̄h(E)(θ
′, θ) + hH′′ε ,c̄h(E)(θ, θ

′′)

and

hH′′ε ,c̄h(E)(θ
′′, θ) + hH′′ε ,c̄h(E)(θ, θ

′)

(38)

has isolated minima outside of AH′ε(c̄h(E)). In other words, NH′′ε (c̄h(E)) \
AH′′ε (c̄h(E)) is discrete and not empty.

Remark 11.1. Since properties of Aubry and Mañe sets are symplectic invariants
[10], it suffices to prove this Proposition using the graph property of these cylinders
in the normal form. See Key Theorem 1.

This Proposition is essentially proven in [24] (see pages 263-274). John Mather
discussed a similar result in his Princeton graduate class in the fall of 2000. We sketch
modification of their arguments. Numerations of lemmas from there.

1. Represent local invariant manifold of an invariant curve as a graph of a gradient
of C1,1-function. It is usually called an elementary solution. See e.g. Lemma
6.1.

2. Following Fathi [34] represent the barrier function as the difference of elementary
solutions. See e.g. Lemma 6.2.

3. Introduce a new parameter σ ∈ R, given by a certain oriented area between
invariant curves23.The family of local invariant manifolds has 1/2-Holder de-
pendence on σ (see formula (6.4), [24]).

4. Show that with respect to two parameters c and σ the barrier is 1/2-Holder (see
Lemma 6.4).

5. Prove that the set of barrier functions parametrized by c’s has box-counting
dimension at most 4 (page 273) 24.

23This step will be discussed in more details later
24Estimating Hausdorff dimension of a two parameter family with 1/2-Holder dependence on

parameters is not difficult. See remark at the bottom of page 273 [24]

139



6. Show that parallel translation of the whole family of barrier functions can
achieve required nondegeneracy (see Lemma 7.2 [24]) 25.

Now we discuss steps 3 and 6 in more details.
Step 3. By Key Theorem 1 we have that our NHIC MEj ,Ej+1

h,ε (resp. MEj−1,Ej
h,ε ) is

a Lipschitz graph over (θf , pf , t) in the normal form.
Discretize by taking time one map and denote by πf projection onto (θf , pf ). Let

γ0 be an invariant curve. We parametrize other invariant curves by σ as follows:

σ =

∫ 1

0

(pf (γσ(θf ))− pf (γ0(θf )) dθf .

Each invariant curve in the domain of definition is uniquely determined by σ. Simple
geometric consideration shows that

‖γσ1 − γσ2‖ ≤ C|σ1 − σ2|1/2,

where C depends on various Lipschitz constants of the cylinder and invariant curves
in the Mather graph theorem (see end of page 266 [24]).

This leads through Lemma 6.3 to 1/2-Holder dependence of elementary solutions
of invariant curves on σ.

Step 6. We state the corresponding statement about parallel translation of the
whole family of barrier functions.

Recall that h̃c is the barrier function defined on the covering space (2T)2 × R2,
ξ : (2T)2 × R2 −→ T2 × R2 is the covering map, and H̃ is the Hamiltonian lifted to
the covering space.

Define the generating function G(x, x′) : R2 × R2 −→ R by

G(x, x′) = inf
γ(0)=x,γ(1)=x′

∫ 1

0

LH(t, γ, γ̇),

where LH is the Lagrangian corresponding to H. A convenient way of to perturb the
functions h̃c is by locally perturbing the generating functions. Denote by π : R2 −→
T2 the standard projection.

We consider the following perturbation

G′(θ, θ′) = G(θ, θ′) +G1(θ′)

and denote by h̃′c the corresponding perturbed barrier function. We have the following
statement.

25This step will be discussed in more details later
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Lemma 11.6. ([24], Lemma 7.1 in our notations) For c = c̄h(E) with E ∈ [Ēj, Ēj+1],
the following hold there are two positive radii ρ1, ρ2 > 0 with the following properties.

1. There exists a family of open sets O(c) ⊂ T × (2T) such that the full orbit of
any (θ̃, p̃, t) ∈ ÑH̃(c) \ ÃH̃(c) must intersect O(c) in the θ̃ component.

2. There exists ρ1 > 0 and u ∈ O(c) such that if we perturb G(θ, θ′) by a bump
function G1(θ′) with suppG1 ⊂ Bρ1(u), where Bρ1(u) is the ball of radius ρ1

centered at u, then for each c = c̄h(E) with E ∈ [Ēj, Ēj+1] the corresponding
barrier function

h̃′c(θ1, θ) + h̃′c(θ, θ2) = h̃c(θ1, θ) + h̃c(θ, θ2) +G1(θ)

for each θ ∈ O(c) and each pair θ1, θ2 ∈ ξ−1AH̃(c) such that θ1 and θ2 belong to
different components of AH̃(c).

3. ξO(c)∩{θ : ‖θs−θsj(c)‖ ≤ ρ2} = ∅, in particular, ξO(c)∩NH(c) = ∅. Moreover,

Ũ =
⋃
E∈[Ēj ,Ēj+1] Oc is an open set.

Due to Step 5 the family of barrier functions (37–38) parametrized by cohomology
c ∈ {c̄h(E)}E∈[Ēj ,Ēj+1] has Hausdorff dimension 4. Using Lemma 11.6 we can translate
this family so that it has only isolated minima (see Lemma 7.2). Denote by Cr

0 the
set of Cr functions with a compact support.

Lemma 11.7. ([24], Lemma 7.2 in our notations) There is a residual 26 set of func-
tions G1 ∈ Cr

0 such that with notations of Proposition 11.5 for each E ∈ [Ēj, Ēj+1]
and c = c̄h(E) we have

h̃c̄h(E)(θ̃1, θ) + h̃c̄h(E)(θ, θ̃2) +G1(θ)

and
h̃c̄h(E)(θ

′, θ) + h̃c̄h(E)(θ, θ
′′) +G1(θ))

have isolated minima outside of lifts of AH̃(c) and of AH̃(c) itself respectively.

The nontrivial part of this statement is that the nondegeneracy of these barrier
functions can be achieved for all E ∈ [Ēj, Ēj+1] simultaneously. This is an uncount-
able set. Since the aforementioned non-degeneracy property of the barrier functions
is open, it suffices to prove the above lemma only on a small interval.

26Recall that a set of a topological space is residual (or Baire generic) if it contains a countable
intersection of open dense subsets.
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12 Equivalent forcing class between kissing cylin-

ders

In this section we prove Key Theorem 10. Recall that we have two homology classes
h, h1 ∈ H1(T2,Z) such that h is non-simple, while h1 is simple critical and properly
chosen, i.e. limE−→0 γ

E
h = γ0

E = n1γ
0
h1

+ n2γ
0
h2

for some n1, n2 ∈ Z+ and a simple
critical γ0

h2
(see Lemma 3.2 for more details). We would like to prove equivalence

of cohomology classes ch(E) and ch1(E1) corresponding to there cohomologies. The
proof consists of four steps. In section B around a (strong) double resonance we define
a slow mechanical system Hs(ϕs, Is) = K(Is)− U(ϕs).

1. We construct a special variational problem for the slow mechanical system Hs.
A solution of this variational problem is an orbit “jumping” from one homology
class h to the other h1. The same can be done with h and h1 switched.

2. We modify this variational problem for the fast time-periodic perturbation
of Hs, i.e. for the perturbed slow system Hs

ε (ϕ
s, Is, τ) = K(Is) − U(ϕs) +√

εP (ϕs, Is, τ) with τ ∈
√
εT.

Recall the original Hamiltonian system Hε near a double resonance can be
brought to a normal form Nε = Hε ◦ Φε and this normal form, in turn, is
related to the perturbed slow system through an affine coordinate change and
two rescalings (see section B).

3. We adapt and modify the latter variational problem and prove that its solution
is an orbit connecting different homologies h and h1.

4. Using this variational problem we prove forcing relation between ch(E) and
ce0h1(E).

12.1 Variational problem for the slow mechanical system

Recall that the slow mechanical system is given by

Hs(ϕs, Is) = K(Is)− U(ϕs),

and let m0 denote the point achieving the minimum of U . Given m ∈ T2, a > 0 and
a unit vector ω ∈ R2, define

S(m, a, ω) = {m+ λω : λ ∈ (−a, a)}.

S(m, a, ω) is a line segment in T2 and we will refer to it as a section (see Figure 22).
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In Proposition 4.2 we defined the cohomology class b̄h1(E) satisfying the condition

lim
E−→0+

b̄h1(E)− c̄h(E)

‖b̄h1(E)− c̄h(E)‖
= h⊥1 .

The cohomology class b̄eh1(E) is a modification of b̄h1(E) for 0 ≤ E ≤ e (see also
Figure 14).

Proposition 12.1. Suppose the slow mechanical system Hs satisfies conditions [A0]-
[A4]. Then there exists e0 > 0 such that the following hold. For each 0 ≤ E ≤ e0,
there exists a section S(E) := S(m(E), a(E), ω(E)), satisfying the following condi-
tions:

1. For some a > 0 we have a(E) ≥ a.

2. m(E) can be chosen so that m(E) −→ m0.

3. We also have

αHs(c̄h(E)) = αHs(b̄h1(E)), (c̄h(E)− b̄h1(E)) · ω(E) = 0.

4. There exists a compact set K(E) ⊂ S(E) such that for all xE ∈ AHs(c̄h(E))
and zE ∈ AHs(b̄h1(E)), the minimum of the variational problem

min
y∈S(E)

{
hc̄h(E)(x

E, y) + hb̄h1 (E)(y, z
E)
}

(39)

is never reached outside of K(E).

5. Assume that the minimum in (39) is reached at y0. Let p1− c̄h(E) be any super-
differential of hc̄h(E)(x

E, ·) at y0 and −p2 + b̄h1(E) be any super-differential of
hbarbh1 (E)(·, zE) at y0, then

∂ϕsH
s(y0, p1) · (c̄h(E)− b̄h1(E)) and ∂ϕsH

s(y0, p2) · (c̄h(E)− b̄h1(E))

have the same signs.

Moreover, the same conditions are satisfied with c̄h(E) and b̄h1(E) switched.

Remark 12.1. 1. While condition 5 in Proposition 12.1 is stated in terms of
super-differentials, it can be understood as a statement on the velocity of the
minimizers. More precisely, let γ1 : (−∞0) −→ T2 be a backward minimizer
for hc̄h(E)(x

E, y), and γ2 : (0,∞) −→ T2 a forward minimizer for hb̄h1 (E)(y, z
E)

(see section 10.1), then velocities satisfy

γ̇1(0) = ∂ϕsH
s(y0, p1), γ̇2(0) = ∂ϕsH

s(y0, p2).

In this sense, condition 5 implies that the minimizers cross the section S(E) in
the same direction instead of “turning back”.
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Figure 22: Jump from one cylinder to another in the same homology

2. Conditions 3–5 imply the so-called “no corners” condition. In the language of
the minimizers, conditions 3–5 imply γ̇1(0) = γ̇2(0), and as a consequence, the
minimizers γ1 and γ2 concatenates to a smooth orbit of the Euler-Lagrange flow.

Proof of Proposition 12.1. We will first prove the statements for E = 0 and use con-
tinuity for E > 0.

Recall that AHs(c̄h(0)) = γ0
h1
∪ γ0

h2
, and the curves γ0

h1
and γ0

h2
are tangent to

a common direction at m0, which we will call v0. By the choice of h1, v0 is not
orthogonal to h⊥1 . We now explain the choice of the section S(m(E), a(E), ω(E)).
Define ω(E) to be a unit vector orthogonal to c̄h(E)− b̄h1(E). For a sufficiently small
e0, we have that ω(E) is transversal to v0 for all 0 ≤ E ≤ e0. As a consequence,
for any m(E) sufficiently close to m0, there exists a(E) > 0 such that the section
S(m(E), a(E), ω(E)) intersects γ0

h1
∪ γ0

h2
transversally. All functions m(E), a(E) and

ω(E) can be chosen to be continuous, with m(0) = 0, a(0) = a > 0 and ω(0) = v (see
Figure 22). These definitions imply conditions 1–3 of Proposition 12.1.

Note that c̄h(0) = b̄h1(0). The Aubry set ÃHs(c̄h(0)) = ÃHs(b̄h1(0)) supports a
unique invariant measure, which is the saddle fixed point. As a consequence, the
Aubry set has a unique static class. Hence for any x0 ∈ AHs(c̄h(0)) and z0 ∈
AHs(b̄h1(0)), the minimum in

min
y∈S(0)

{
hc̄h(0)(x

0, y) + hb̄h1 (0)(y, z
0)
}

is achieved at S(0) ∩ (γ0
h1
∪ γ0

h2
). This implies condition 4.

Moreover, by Proposition 10.4, part 3, we know that the barrier functions hc̄h(0)(x
0, ·)

and hb̄h1 (0)(·, z0) are both differentiable at y0 ∈ S(0) ∩ (γ0
h1
∪ γ0

h2
). Assume that
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p1 − c̄h(0) and −p2 + b̄h1(0) be the derivatives, then

∂ϕsH
s(y0, p1) and ∂ϕsH

s(y0, p2)

both equals the velocity of γh1 or γh2 as they cross the section. This implies condition
5.

Since conditions 4–5 are satisfied for E = 0, by Proposition 10.7, they are also
satisfied for a sufficiently small E > 0.

12.2 Variational problem in the original coordinates

The original Hamiltonian Hε is conjugate to the perturbed slow system

Hs
ε (ϕ

s, Is, τ) = H0(p0)/ε+K(Is)− U(ϕs) +
√
ε P (ϕs, Is, τ).

We will first describe a variational problem for the system Hs
ε , then translate it into

a variational problem for the system Hε. It is no longer true that αHs
ε
(c̄h(E)) =

αHs
ε
(b̄h1(E)) = E, instead, we have the following lemma:

Lemma 12.2. Fix e0 > 0. There exists C > 0, and ε0 > 0 such that for any
e0
3
≤ E ≤ 2e0

3
and 0 ≤ ε ≤ ε0, there exists 0 < Eε < e0 such that

αHs
ε
(c̄h(E)) = αHs

ε
(b̄h1(E

ε)), |E − Eε| ≤ C
√
ε.

Choose e = e0, we define c̄eh1(E) as in section section 4.3. By definition, c̄eh1(E) =
b̄h1(E). We choose ωε(E) to be a unit vector orthogonal to c̄h(E) − c̄eh1(E), and the
section Sε(E) = S(m(E), a(E), ωε(E)). We have:

• αHs
ε
(c̄h(E)) = αHs

ε
(c̄eh1(E

ε)) and (c̄h(E)− c̄eh1(E
ε)) · ωε(E) = 0.

• As ε approaches 0, Eε −→ E, c̄eh1(E
ε) −→ c̄eh1(E), and ωε(E) −→ ω(E).

The analog of (39) for Hs
ε is given by

min
y∈Sε(E), τ∈

√
εT

{
hHs

ε ,c̄h(E)(x
E,ε, 0; y, τ) + hHs

ε ,c̄
e
h1

(E)(y, τ ; zE,ε, 0)
}
, (40)

where (xE,ε, 0) ∈ AHs
ε
(c̄h(E)) and (zE,ε, 0) ∈ AHs

ε
(c̄eh1(E)). Note that the Aubry sets

ÃHs(c̄h(E)) and ÃHs(c̄eh1(E)) are both supported on a single periodic orbit, and hence
supports a unique minimal measure. Moreover, by Proposition B.5, Hs

ε Tonelli con-
verges to Hs. By Corollary 10.7, the time periodic variational problem (40) converges
to the slow variational problem (39) as ε −→ 0.

We now convert the variational problem (40) to the original system, and study its
relation with (39).
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Recall that the original Hamiltonian Hε can be brought into a normal form system
Nε. The perturbed slow systemHs

ε and the normal form systemNε are related through
an affine coordinate change ΦL and two rescaling operators S2 ◦ S1, see section B.

Denote

Φ1
L(ϕs, t) =

B−1 −B−1

[
k0

k′0

]
0 1

[ϕs
t

]
, (Φ1

L)−1(θ, t) =

B [
k0

k′0

]
0 1

[θ
t

]
,

this is the angular component of the affine coordinate change ΦL. The 2× 2 matrix
B is defined in (51). According to Propositions B.6 and B.7, the following relations
hold for the Aubry sets and the barrier functions of Hs

ε and Nε.
Recall that the functions ch(E) and c̄h(E) are defined by the relation

ch(E) = ps0 + c̄h(E)
√
ε.

Let θ0 be the unique minimum of the function −Z(θ, p0), we have that θ0 = B−1(m0).
A section S(m, a, ω)×

√
εT ⊂ T2 ×

√
εT is mapped under Φ1

L to

Σ(θ1, a,Ω, l) = {(θ1 + λΩ + lt, t) ∈ T2 × T : −a < λ < a, t ∈ T},

where θ1 = B−1(m), Ω = B−1ω, and l = −B−1(k0, k
′
0) ∈ Z2. We define Σε(E)

using the section Sε(E)×
√
εT. We now state the variational problem for the original

coordinates.

Proposition 12.3. Let ch and ceh1 and E be defined as before. There exist ε0 > 0
and b > 0 such that for 0 ≤ ε ≤ ε0, there exist 0 < Eε ≤ e0 and a section Σε(E) :=
Σ(θ1(E), a(E),Ωε(E), l), satisfying the following conditions:

1. For some a > 0 we have a(E) ≥ a.

2. m(E) can be chosen so that m(E) −→ m0.

3. We also have

αHε(ch(E))− αHε(ceh1(E
ε)) = −(ch(E)− ceh1(E

ε)) · l,

(ch(E)− ceh1(E
ε)) · Ωε(E) = 0.

4. There exists a compact set K such that for all (χE,ε, 0) ∈ AHε(ch(E)) and
(ξE,ε, 0) ∈ AHε(ceh1(E

ε)), the minimum of the variational problem

min
(ψ,t)∈Σε(E)

{
hHε,ch(E)(χ

E,ε, 0;ψ, t) + hHε,ch1 (E)(ψ, t; ξ
E,ε, 0)

}
(41)

is never achieved outside of K.
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5. Assume that the minimum in condition 2 is reached at (ψ0, t0). Let pε1 − ch(E)
and −pε2+ceh1(E

ε) be super-differentials of the barrier functions hHε,ch(E)(χ
E,ε, 0; ·, t0)

and hHε,ch1 (E)(·, t0; ξE,ε, 0) respectively. Then

(∂pHε(ψ0, p
ε
1, t0)− l) ·(ch(E)−ceh1(E

ε)), (∂pHε(ψ0, p
ε
2, t0)− l) ·(ch(E)−ceh1(E

ε))

have the same signs.

Moreover, the same conditions are satisfied with ch(E) and ceh1(E
ε) switched.

Theorem 24. Assume that the conclusions of Proposition 12.3 hold. In addition,
assume that both AHε(ch(E)) and AHε(ceh1(E

ε)) admits a unique static class. Then

ch(E) a` ceh1(E
ε).

We prove Key Theorem 10 assuming Proposition 12.3, Theorem 10 and Theo-
rem 23 in section 11.

Proof of Key Theorem 10. By Proposition 12.3, for the system ¯̄Hε, which is a per-
turbation of Hε, all conditions of Theorem 24 are satisfied, except the condition of
uniqueness of static classes.

The uniqueness of static class is satisfied by the particular choice of perturbations.
It is proved in Theorem 23 that for the perturbed system, for each ch(E) and ceh1(E

ε),
the associated c−minimal measure is unique. This implies uniqueness of static class.

We prove Proposition 12.3 in section 12.3 and prove Theorem 10 in section 12.4.

12.3 Scaling limit of the barrier function

In this section we prove Proposition 12.3. It is readily verified that conditions 1–3
are satisfied by our choice of the section Σε. It remains to prove conditions 4 and 5.

We will show that the variational problem (39) is a scaling limit of the variational
problem (41).

Proposition 12.4. The family of functions hHε,ch(E)(χ
E,ε, 0; ·, t)/

√
ε is uniformly

semi-concave, and

lim
ε−→0+

inf
C∈R

sup
(y,t)∈T2×T

∣∣∣hHε,ch(E)(χ
E,ε, 0;ψ, t)/

√
ε−hHs,c̄h(E)(x

E, Bψ+(k0, k
′
0)t)−C

∣∣∣ = 0.

uniformly over (χE,ε, 0) ∈ AHε(ch(E)) and (xE, 0) ∈ AHs
ε
(c̄h(E)).
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Moreover, the super-differential ∂yhHε,ch(E)(χ
E,ε, 0;ψ, t)/

√
ε converges uniformly

to a super-differential of the limit, in the sense that

lim
ε−→0

inf
lε∈∂ψhHε,ch(E)(χ

E,ε,0;ψ,t)/
√
ε
d(ln, ∂ψhHs,ch(E)(x

E, Bψ + (k0, k
′
0)t)) = 0

uniformly over χE,ε and xE. The same conclusions apply to the barrier function
hHε,ceh1 (E)(·, t; ξE,ε, 0)/

√
ε.

To prove Proposition 12.4, we first state some relations between the Aubry sets
and the barrier functions for the system Hε and the perturbed slow system Hs

ε .

Proposition 12.5. Assume that the cohomologies c and c̄ satisfy

c̄ = (BT )−1(c− p0)/
√
ε. (42)

Then the following hold:

• αHε(c) = εαHε
s
(c̄)−

√
ε c̄ · (k0, k

′
0).

• d(AHε(c), B−1AHs
ε
(c̄)) = O(ε), where d is Hausdorff distance between sets in

T2 × T.

• For (θi, ti) = Φ1
L(ϕsi , τi/

√
ε), i = 1, 2, we have

hHε,c(θ1, t1; θ2, t2) = hHs
ε ,c̄(ϕ1, τ1;ϕ2, τ2) ·

√
ε+O(ε).

Proposition 12.5 is a consequence of Propositions B.6, B.7 and B.8. In addition,
the following is known about semi-concavity of the barrier function, for a nearly
integrable system.

Proposition 12.6 ([13], Proposition 5.4). Let B ⊂ H1(T2,R) be a bounded set, there
is a constant K > 0 and ε0 > 0, such that all weak KAM solutions of LHε,c for c ∈ B
and 0 ≤ ε < ε0 are K

√
ε−semi-concave.

Proof of Proposition 12.4. By Proposition 12.5 and Proposition 12.6, we have that
the family of functions hHε,ch(E)(χ

E,ε, 0;ψ, t)/
√
ε is uniformly semi-concave, and con-

verges to the same limit as
hHs

ε
(xE,ε, 0; y, τ)

as ε −→ 0. Here xE,ε ∈ AHs
ε

and (y, τ/
√
ε) = (Φ1

L)−1(ψ, t). By Corollary 10.7, the
functions hHs

ε
(xE,ε, 0; y, τ) converges uniformly to hHs(xE, y) as ε −→ 0. This proves

uniform convergence.
The convergence of super-differential is proved in the same way as the second part

of Corollary 10.7.

Proposition 12.3 immediately follows from Proposition 12.4 and Proposition 12.1.
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12.4 Proof of forcing relation

In this section we prove Theorem 24. We fix a Tonelli HamiltonianH : T ∗T2×T −→ R
and drop all subscript indicating the Hamiltonian. We rephrase the three conditions
in Theorem 12.3 as follows:

There exists cohomologies c1, c2 and a section Σ(θ1, a,Ω, l) such that the following
hold.

N1. α(c1)− α(c2) = −(c1 − c2) · l, (c1 − c2) · Ω = 0.

N2. There exists a compact set K such that for any x ∈ A(c1) and z ∈ A(c2), the
minimum of the variational problem

min
(y,t)∈Σ

{hc1(x, 0; y, t) + hc2(y, t; z, 0)}

is never taken outside of K.

N3. Assume that the minimum N2 is reached at (y0, t0), and let p1−c1 and −p2 +c2

be any super-differentials of hc1(x, 0; ·, t) and hc2(·, t0; z, 0) respectively. Then

(∂pH(y0, p1, t0)− l) · (c1 − c2), (∂pH(y0, p2, t0)− l) · (c1 − c2)

have the same signs.

N4. Both A(c1) and A(c2) contains a unique static class.

The following statement implies Theorem 24.

Proposition 12.7. Assume that c1, c2 and Σ satisfies the conditions N1–N4. Then
the following hold.

1. (interior minimum) There exists N < N ′,M < M ′ ∈ N and a compact set
K ′ ⊂ Σ, such that for any semi-concave function u on T2, the minimum in

v(z) := min{u(x) + Ac1(x, 0; y, t+ n) + Ac2(y, t+ n; z, n+m)}, (43)

where the minimum is taken in

x ∈ T2, (y, t) ∈ Σ, N ≤ n ≤ N ′, M ≤ m ≤M ′,

is never achieved for (y, t) /∈ K ′.

2. (no corner) Assume the minimum in (43) is achieved at (y, t) = (y0, t0), (n,m) =
(n0,m0), and the minimizing curves are γ1 : [0, t0 + n0] −→ T2 and γ2 :
[t0 + n0, t0 + n0 + m0] −→ T2. Then γ1 and γ2 connect to an orbit of the
Euler-Lagrange equation, i.e.

γ̇1(t0 + n0) = γ̇2(t0 + n0).
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3. (connecting orbits) The function v is semi-concave, and its associated pseudo-
graph satisfies

Gc2,v ⊂
⋃

0≤t≤N ′+M ′
ϕtGc1,u.

As a consequence,
c1 ` c2.

Remark 12.2. This Proposition represents a more sophisticated version of Propo-
sition 5.1. Points x ∈ T2, where minimum is achieved for some (y, t) ∈ K ′, z ∈
T2, n,m, are points of differentiability of u. At such points the pseudograph Gc1,u1
is well-defined. Similarly, to Proposition 5.1 we prove that for each minima x0 ∈
T2, (y0, t0) ∈ K ′, N ≤ n0 ≤ N ′, M ≤ m0 ≤ M ′ we have ϕn0+m0(x0, du + c1) =
(z, dv + c2).

Taking N and M large forces solutions to this variational problem to start at
some x0, then approaches A(c1) and spend long time nearby, then approach A(c2)
and also spend long time nearby. Thus, the corresponding solutions approach to some
heteroclinic orbits connecting A(c1) and A(c2).

Conclusion 1 from Proposition 12.7 is a finite time version of condition N2. In
order to prove this statement, we need a uniform convergence property of the function
Ac to the barrier function hc, and a characterization of hc.

Lemma 12.8. 1. Let u be a continuous function on T2. The limit

lim
N−→∞

lim
N ′−→∞

min
x∈T2, N≤n≤N ′

{u(x) + Ac(x, 0; y, t+ n)} =

= min
x∈D
{u(x) + hc(x, 0; y, t)}

is uniform in u and (y, t).

2. The limit
lim

N−→∞
lim

N ′−→∞
min

N≤n≤N ′
Ac(y, t; z, n) = hc(y, t; z, 0)

is uniform in y, t, z.

Proof. The proof of the first item is similar to the proof of Proposition 6.3 of [9] with
some auxiliary facts proven in Appendix A there. The proof of the second item is
similar to that of Proposition 6.1 from [9].

In both cases the action function, defined in (2.4) and (6.1) of [9], is restricted
to have integer time increment. For non-integer time increments the same argument
applies.
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Using Lemma 10.8 and Lemma 10.9, we have the following characterization of the
barrier functions.

Lemma 12.9. Assume that A(c) has only one static class. For each point (y, t) ∈
T2 × T and each z ∈ T2

1. there exists x0 ∈ T2 and x1 ∈ A(c) such that

min
x∈T2

{u(x) + hc(x, 0; y, t)} = u(x0) + hc(x0, 0;x1, 0) + hc(x1, 0; y, t).

2. there exists z1 ∈ A(c) such that

hc(y, t; z, 0) = hc(y, t; z1, 0) + hc(z1, 0; z, 0).

To prove the second conclusion of Proposition 12.7, we need a characterization of
the super-differentials of the function Ac obtained in Propositions 10.1 part 3, and
10.2.

Proof of Proposition 12.7. According to Lemma 12.8, (43) converges uniformly as
N,M −→∞ to

min
x,y,t
{u(x) + hc1(x, 0; y, t) + hc2(y, t; z, 0)},

which is equal to

min
(y,t)
{u(x0) + hc1(x0, 0;x1, 0) + hc1(x1, 0; y, t) + hc2(y, t; z1, 0) + hc2(z1, 0; z, 0)}

= min
(y,t)
{const+ hc1(x1, 0; y, t) + hc2(y, t; z1, 0) + hc2(z1, 0; z, 0)}.

by Lemma 12.9. Since the above variational problem has a interior minimum due to
condition N2, by uniform convergence, the finite-time variational problem (43) also
has an interior minimum for sufficiently large N,M .

We now prove the second conclusion. Let γ1 and γ2 be the minimizers for
Ac1(x0, 0; y0, t0 + n0) and Ac2(y0, t0 + n0; z, n0 + m0), and let p1 and p2 be the as-
sociated momentum, we will show that

p1(t0 + n0) = p2(t0 + n0),

which implies γ̇1(t0 + n0) = γ̇2(t0 + n0). To abbreviate notations, we write p0
1 =

p1(t0 + n0) and p0
2 = p2(t0 + n0) for the rest of the proof.

Note that

u1(x0) + Ac1(x0, 0; y0, t0 + n0) = min
x∈T2
{u1(x) + Ac1(x, 0; y0, t0 + n0)}.
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By semi-concavity, the function u1(x)+Ac1(x, 0; y0, t0 +n0) is differentiable at x0 and
the derivative vanishes. By Proposition 10.1 part 3,

dx(u1)(x0) = p1(0)− c1. (44)

By a similar reasoning, we have

Ac1(x0, 0; y0, t0 + n0) + Ac2(y0, t0 + n0; z, n0 +m0)

= min
(y,t)∈Σ

{Ac1(x0, 0; y, t+ n0) + Ac2(y, t+ n0; z, n0 +m0)}.

By semi-concavity, we have

0 = dy(Ac1(x0, 0; y, t0 + n0) + Ac2(y, t0 + n0; z, n0 +m0))|y=y0 · Ω
= (p0

1 − c1 − p0
2 + c2) · Ω = (p0

1 − p0
2) · Ω.

Hence
p0

1 − p0
2 ∈ R(c1 − c2).

We proceed to prove p0
1 = p0

2.
By the definition of Σ(θ1, a,Ω, l), the vector (l, 1) is tangent to Σ. As a conse-

quence,

0 = d(y,t)(Ac1(x0, 0; y, t+ n0) + Ac2(y, t+ n0; z, n0 +m0))|t=t0 · (l, 1)

= (p0
1 − p0

2) · l − (c1 − c2) · l −H(y0, p
0
1, t0)− α(c1) +H(y0, p

0
2, t0) + α(c2)

= −H(y0, p
0
1, t0) +H(y0, p

0
2, t0) + (p0

1 − p0
2) · l,

where the last equality uses condition N1.
Since the function H(y0, p, t0)− p · l is convex in p, the equation (in λ)

H(y0, p
0
1, t0)− p0

1 · l = H(y0, p
0
1 + λ(c1 − c2), t0)− (p0

1 + λ(c1 − c2)) · l,

has at most two solutions, one of which is λ = 0. If λ = 0, we have p0
1 = p0

2.
To rule out the other possibility, we observe the following simple property of a

one-variable convex function. For f convex, if the equation f(λ) = a has two solutions
λ1 and λ2, then f ′(λ1) and f ′(λ2) have different signs. Indeed, by Rolle’s theorem,
there is λ0 ∈ (λ1, λ2) with f ′(λ0) = 0, and f ′ is a monotone function. Apply this
observation to H(y0, p

0
1 + λ(c1 − c2), t0) − (p0

1 + λ(c1 − c2)) · l, we conclude that if
p0

2 = p0
1 + λ(c1 − c2), with λ 6= 0, then

(∂pH(y0, p1, t0)− l) · (c1 − c2), (∂pH(y0, p2, t0)− l) · (c1 − c2)
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have different signs. This is not possible due to condition N3. Since coincidence of
momentum for the Hamiltonian flow is equivalent to the coincidence of velocity for
the Euler-Lagrange flow, the second conclusion follows.

As a consequence, (γ1, p1) and (γ2, p2) connect as a solution of the Hamiltonian
flow. Using (44), we have

ϕn0+m0(x0, dux(x0) + c1) = (z, p2(n0 +m0)).

Note that p2(n0 +m0)− c2 is a super-differential to v at z. If v is differentiable at z,
then p2 = dv(z) + c2. This implies

Gc2,v ⊂
⋃

0≤t≤N ′+M ′
ϕtGc1,u

and the forcing relation.
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A Generic properties of mechanical systems on

the two-torus

Most of this section is devoted to proving Theorem 4. At the end of the section we
prove Theorem 5.

Fix a homology class h ∈ H1(T2,R). We call a periodic orbit of the Hamiltonian
system (globally) ρE-minimal, if it is associated to a shortest geodesic curve for the
Jacobi metric ρE in the homology class h. We will also introduce the notion of a
locally minimal orbit, if the associated closed curve minimize the length, over all
closed curves in its neighborhood and with homology h.

We will prove that for a generic Hs, for energies E0 ≤ E ≤ Ē, the globally minimal
orbits are hyperbolic. To achieve this, we study generic properties of non-degenerate
orbits. We say that a periodic orbit of a Hamiltonian system is non-degenerate, if
the differential of the associated Poincaré return map on its energy surface does not
have 1 as an eigenvalue. Note that a non-degenerate orbit could have eigenvalues on
the unit circle, hence not necessarily hyperbolic.

The proof of Theorem 4 consists of three parts.

1. In section A.1, we prove a Kupka-Smale-like theorem about non-degeneracy of
periodic orbits. For a fixed energy surface, generically, all periodic orbits are
non-degenerate. This fails for an interval of energies. We show that while de-
generate periodic orbits exists, there are only finitely many of them. Moreover,
there could be only a particular type of bifurcation for any family of periodic
orbits crossing a degeneracy.

2. In section A.2, we show that a non-degenerate locally minimal orbit is always
hyperbolic. Using part I, we show that for each energy, the globally minimal
orbits is chosen f a finite family of hyperbolic locally minimal orbits.

3. In section A.3, we finish the proof of Theorem 4. This amounts to proving the
finite local families obtained from part II are “in general position”.

A.1 Generic properties of periodic orbits

We simplify notations and drop the supscript “s” from the notation of the slow me-
chanical system. Moreover, we treat U as a parameter, and write

HU(ϕ, I) = K(I)− U(ϕ), θ ∈ T2, I ∈ R2, U ∈ Cr(T2). (45)

We shall use U as an infinite-dimensional parameter. As before K is a kinetic energy
and it is fixed. Denote by Gr = Cr(T2) the space of potentials, x denotes (ϕ, I),
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W — T2 × R2, and either ϕUt or Φ(·, t, U) denotes the flow of (45). We will use
χU(x) = (∂K, ∂U)(x) to denote the Hamiltonian vector field of HU and use SE to
denote the energy surface {HU = E}. We may drop the superscript U when there is
no confusion.

By the invariance of the energy surface, the differential map Dxϕ
U
t defines a map

Dxϕ
U
t (x) : TxSH(x) −→ TϕUt (x)SH(x).

Since the vector field χ(x) is invariant under the flow, Dxϕ induces a factor map

D̄xϕ
U
t (x) : TxSH(x)/Rχ(x) −→ TϕUt (x)SH(x)/Rχ(ϕt(x)).

Given U0 ∈ Gr, x0 ∈ W and t0 ∈ R, let

V = V (x0)× (t0 − a, t0 + a)× V (U0)

be a neighborhood of (x0, t0, U0), V (x0, t0) of (x0, t0), and V (ϕU0
t0 (x0)) a neighborhood

of ϕU0
t0 (x0), such that

ϕUt (x) ∈ V (ϕU0
t0 (x0)), (x, t, U) ∈ V .

By fixing the local coordinates on V (x0) and V (ϕUt0(xx)), we define

D̃xΦ : V −→ Sp(1),

where D̃xΦ(x, t, U) is the 2 × 2 symplectic matrix associated to D̄xϕ
U
t (x) under the

local coordinates. The definition depends on the choice of coordinates.
Let {ϕU0

t (x0)} be a periodic orbit with minimal period t0. The periodic orbit is
non-degenerate if and only if 1 is not an eigenvalue of D̃xΦ(x0, t0, U0) 27. Furthermore,
we identify two types of degeneracies:

1. A degenerate periodic orbit (x0, t0, U0) is of type I if D̃xΦ(x0, t0, U0) = Id, the
identity matrix;

2. It is of type II if D̃xΦ(x0, t0, U0) is conjugate to the matrix [1, µ; 0, 1] for µ 6= 0.

Denote

N =

{[
1 µ
0 1

]
: µ ∈ R \ {0}

}
, O(N) = {BAB−1 : A ∈ N,B ∈ Sp(1)}.

Then (x0, t0, U0) is of type II if and only if D̃xΦ(x0, t0, U0) ∈ O(N).

27Note that we are interested in non-degeneracy for minimal period of periodic orbits only. As
the result eigenvalues given by exp(2π i p/q) with integer p, q 6= 0 are allowed

155



Lemma A.1. The set O(N) is a 2–dimensional submanifold of Sp(1).

Proof. Any matrix in O(N) can be expressed by[
a b
c d

] [
1 µ
0 1

] [
d −b
−c a

]
=

[
1− acµ a2µ
−c2µ 1− acµ

]
,

where ad− bc = 1 and µ 6= 0. Write α = a2µ and β = acµ, we can express any matrix
in O(N) by [

1− β α
1− β2/α 1− β

]
. (46)

The standard Kupka-Smale theorem (see [66], [67]) no longer holds for an interval
of energies. Generically, periodic orbits appear in one-parameter families and may
contain degenerate ones. However, while degenerate periodic orbits may appear,
generically, a family of periodic orbits crosses the degeneracy “transversally”. This is
made precise in the following theorem.

Theorem 25. There exists residue subset of potentials G ′ of Gr, such that for all
U ∈ G ′, the following hold:

1. The set of periodic orbits for ϕUt form a submanifold of dimension 2. Since a
periodic orbit itself is a 1-dimensional manifold, distinct periodic orbits form
one-parameter families.

2. There is no degenerate periodic orbits of type I.

3. The set of periodic orbits of type II form a 1-dimensional manifold. Factoring
out the flow direction, the set of type II degenerate orbits are isolated.

4. For U0 ∈ Gr, let ΛU0 ⊂ W × R+ denote the set of periodic orbits for ϕUt , and
ΛU0
N ⊂ ΛU0 denote the set of type II degenerate ones. Then for any (x0, t0) ∈ ΛU0

N ,
let V (x0, t0) be a neighborhood of (x0, t0). Then

D̃xΦ|U=U0 : ΛU0 ∩ V (x0, t0) −→ Sp(1)

is transversal to O(N) ⊂ Sp(1).

Remark A.1. Statement 4 of the theorem can be interpreted in the following way.
Let A(λ) be the differential of the Poincare return map on associated with a family of
periodic orbits. Then if A(λ0) ∈ O(N), then the tangent vector A′(λ0) is transversal
to O(N).
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We can improve the set G ′ to an open and dense set, if there is a lower and upper
bound on the minimal period.

Corollary A.2. 1. Given 0 < T0 < T1, there exists an open and dense subset
G ′ ⊂ Gr, such that the set of periodic orbits with minimal period in [T0, T1]
satisfies the conclusions of Theorem 25.

2. For any U0 ∈ G ′, there are at most finitely many type II degenerate periodic
orbits. Moreover, there exists a neighbourhood V (U0) of U0, such that the set
of type II degenerate periodic orbits depends smoothly on U . (This means the
number of such periodic orbits is constant on V (U0), and each periodic orbit
depends smoothly on U .)

We define
F : W × R+ × Gr −→ W ×W, (47)

F (x, t, U) = (x,Φ(x, t, U)).

F is a Cr−1−map of Banach manifolds. Define the diagonal set by ∆ = {(x, x)} ⊂
W ×W . Then {ϕU0

t (x0)} is an period orbit of period t0 if and only if (x0, t0, U0) ∈
F−1∆.

Proposition A.3. Assume that (x0, t0, U0) ∈ F−1∆ or, equivalently, x0 is periodic
orbit of period t0 for HU and that t0 is the minimal period, then there exists a neigh-
borhood V of (x0, t0, U0) such that the map

dπ⊥∆D(x,t,U)F : T(x,t,U)(W × R+ × Gr) −→ TF (x,t,U)(W ×W )/T∆

has co-rank 1 for each (x, t, U) ∈ V, where dπ⊥∆T (W ×W ) −→ T (W ×W )/T∆ is the
standard projection along T∆.

Remark A.2. If the aforementioned map has full rank, then the map is called
transversal to ∆ at (x0, t0, U0). However, the transversality condition fails for our
map.

Given δU ∈ Gr, the directional derivative DUΦ · δU is defined as follows
∂
∂ε
|ε=0Φ(x, t, U+εδU). The differentialDUΦ then defines a map from TGr to TΦ(x,t,U)W .

The following hold for this differential map:

Lemma A.4. [66] Assume that there exists ε > 0 such that the orbit of x has no
self-intersection for the time interval (ε, τ − ε), then the map

DUΦ(x, τ, U) : Gr −→ TΦ(x,τ,U)W

generates a subspace orthogonal to the gradient ∇HU(Φ(x, τ, U)) and the Hamiltonian
vector field χU(Φ(x, τ, U)) of HU .
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Proof. We refer to [66], Lemma 16 and 17. We note that while the proof was written
for a periodic orbit of minimal period τ , the proof holds for non-self-intersecting
orbit.

Proof of Proposition A.3. We note that if {ϕUt (x)} is a periodic orbit of minimal
period τ , then the orbit {ϕU ′t (x′)} satisfies the assumptions of Lemma A.4. It follows
that the matrix

dπ⊥∆ ◦DUF =
[
DxΦ− I DtΦ DUΦ

]
has co-rank 1, since the last two component generates the subspace

Image (DUΦ) + RχU ,

which is a subspace complementary to ∇HU .

Proposition A.3 allows us to apply the constant rank theorem in Banach spaces.

Proposition A.5. The set F−1∆ as a subset of a Banach space is a submanifold
of codimension 2n − 1. If r ≥ 4, then for generic U ∈ Gr, F−1∆ ∩ π−1

U {U} is a
2-dimensional manifold.

Proof. We note that the kernel and cokernel of the map dπ ◦ DUF has finite codi-
mension, hence the constant rank theorem (see [1], Theorem 2.5.15) applies. As
a consequence, we may assume that locally, ∆ = ∆1 × (−a, a) and that the map
π1 ◦ F has full rank. Since the dimension of ∆1 is 2n− 1, F−1∆ is a submanifold of
codimension 2n− 1. The second claim follows from Sard’s theorem.

Denote Λ = F−1∆. On a neighbourhood V of each (x0, t0, U0) ∈ Λ, we define the
map

D̃xΦ : Λ ∩ V −→ Sp(1), D̃xΦ(x, t, U) = D̃ϕUt (x). (48)

First we refer to the following lemma of Oliveira:

Lemma A.6 ([66], Theorem 18). For each (x0, t0, U0) ∈ Λ such that t0 is the minimal
period, let G̃ be the set of tangent vectors in T(x0,t0,U0)Λ of the form (0, 0, V ). Then
the map

DUD̃xΦ : G̃ −→ TD̃xΦ(x0,t0,U0)Sp(1)

has full rank.

Corollary A.7. The map (48) is transversal to the submanifold {Id} and O(N) of
Sp(1).
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Denote

ΛId = Λ ∩ D̃xΦ)−1({Id}) and ΛN = Λ ∩ D̃xΦ)−1(O(N)).

Note that the expression is well defined because both preimages are defined indepen-
dent of local coordinate changes.

Proof of Theorem 25. The first statement of the theorem follows from Proposition A.5.
As the subset {Id} has codimension 3 in Sp(1), ΛId has codimension 3 in Λ, and

hence has codimension 2n+2 in W×R+×Gr. By Sard’s lemma, for a generic U ∈ Gr,
the set ΛId ∩ π−1

U is empty. This proves the second statement of the theorem.
Since the set O(N) has codimension 1, ΛN has codimension 1 in Λ, and hence has

codimension 2n in W×R+×Gr. As a consequence, generically, the set ΛU
N = ΛN∩π−1

U

has dimension 1. This proves the third statement.
Fix U0 ∈ G ′, the set ΛU0 = Λ ∩ π−1

U (U0) has dimension 2, while ΛU0
N ⊂ ΛU0 has

dimension 1. It follows that at any (x0, t0) ∈ ΛU0
N , there exists a tangent vector

(δx, δt) ∈ T(x0,t0)Λ
U0 \ T(x0,t0)Λ

U0
N

such that
(δx, δt, 0) ∈ T(x0,t0,U0)Λ \ T(x0,t0,U0)ΛN .

It follows that

D(x,t)D̃xΦ|U=U0(x0, t0) = D(x,t,U)D̃xΦ(x0, t0, U0) · (δx, δt, 0)

is not tangent to O(N). Since O(N) has codimension 1, this implies that the map
D̃xΦ|U=U0 is transversal to O(N). This proves the fourth statement.

Proof of Corollary A.2. If a potential U ∈ G ′, then by Theorem 25 conditions 1–4
are satisfied. In particular, all periodic orbits are either non-degenerate or degenerate
satisfying conditions 3 and 4. Non-degenerate periodic orbits of period bounded both
from zero and infinity form a compact set. Therefore, they stay non-degenerate for
all potential Cr-close to U . By condition 3 degenerate periodic orbits are isolated.
This implies that there are finitely many of them. Condition 4 is a transversality
condition, which is Cr open for each degenerate orbit.

Fix U ∈ G ′ as in Corollary A.2. It follows that periodic orbits of ϕUt for one-
parameter families. We now discuss the generic bifurcation of such a family at a
degenerate periodic or

Proposition A.8. Let (xλ, tλ) be a family of periodic orbits such that (x0, λ0) is
degenerate. The one side of λ = λ0, the matrix D̃xϕ

U
tλ

(xλ) has a pair of distinct real
eigenvalues; on the other side of λ = λ0, it has a pair of complex eigenvalues.
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Proof. Write A(λ) = D̃xϕ
U
tλ

(xλ) for short. By choosing a proper local coordin we may
assume that A(λ0) = [1, µ; 0, 1]. The tangent space to Sp(1) at [1, µ; 0, 1] is given by
the set of traceless matrices [a, b; c,−a]. Using (46), we have a basis of the tang space
to O(N) to [1, µ; 0, 1] is given by[

0 1
−β2/α2 0

]
and

[
−1 0
−2β/α −1

]
.

An orthogonal matrix to this space, using the inner product tr(ATB), is given by
[0, 0; 1, 0]. As a consequence, a matrix [a, b; c,−a] is transversal to O(N) if and only
if c 6= 0.

The eigenvalues of the matrix[
1 + ah µ+ bh
ch 1− ah

]
are given by λ = 1 ±

√
a2h2 − bch2 − µch. Using µ 6= 0 and c 6= 0 we obtain that

a2h2 − bch2 − µch changes sign at h = 0. This proves our proposition.

A.2 Generic properties of minimal orbits

In this section we study the second item of the plan proposed in the beginning of
this Appendix. Namely, we analyze properties of families of minimal orbits. It turns
out that non-degenerate minimizers are hyperbolic. Naturally, hyperbolic periodic
orbits form smooth families parametrized by energy. However, generically there are
not only non-degenerate local minimizers, but also isolated degenerate ones, which is
somewhat surprising (see Proposition A.14). We manage to show that such degenerate
local minimizers generically are not global. The main result of the section is Theorem
26.

Let dE denote the metric derived from the Riemannian metric ρE. We define the
arclength of any continuous curve γ : [t, s] −→ T2 by

lE(γ) = sup
N−1∑
i=0

dE(γ(ti), γ(ti+1)),

where the supremum is taken over all partitions {[ti, ti+1]}N−1
i=0 of [t, s]. A curve γ is

called rectifiable if lE(γ) is finite.
A curve γ : [a, b] −→ T2 is called piecewise regular, if it is piecewise C1 and

γ̇(t) 6= 0 for all t ∈ [a, b]. A piecewise regular curve is always rectifiable.
We write

lE(h) = inf
η∈CEh

lE(η),
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where CEh denote the set of all piecewise regular closed curves with homology h ∈
H1(T2,Z). A curve realizing the infimum is the shortest geodesic curve in the homol-
ogy h, which we will also refer to as a global (ρE, h)-minimizer.

We fix the homology h and will omit h when there is no confusion.
It is well known that for any E > −minϕ U(ϕ), a global ρE−minimizer is a closed

ρE−geodesic. Hence, it corresponds to a periodic orbit of the Hamiltonian flow.
A global ρE−minimizer is always a closed geodesic of the Riemannian metric ρE,

and hence is associated with a periodic orbit of the Hamiltonian flow. We say that a
a closed geodesic γ of the m ρE is hyperbolic if the associated Hamiltonian orbit γ̃ is
hyperbolic. We have the follo statement, in relation to the discussions in section A.1.

Proposition A.9. Assume that γ is a (ρE, h)−minimizer, and assume that the as-
sociated periodic orbit γ̃ is nondegenerate. Then γ is hyperbolic.

We first introduce some definitions. Let LH(ϕ, v) be the Lagrangian associated
to the Hamiltonian H(ϕ, I), and we use the same notation to denote its lift to the
universal cover R2×R2. A piecewise C1 curve x : R −→ R2 is called LH−minimizing,
if ∫ b

a

LH(x(t), ẋ(t))dt = inf
y

∫ b

a

LH(y, ẏ(t))dt,

where the infimum is taken over all piecewise C1 curves y : [a, b] −→ R2 with y(a) =
x(a) and y(b) = x(b). It is well known that any LH−minimizing curve is a solution
of the Euler-Lagrange equation, and corresponds to a solution of the Hamiltonian
equation.

Let γ̃(t) = (x(t), p(t)) be a solution of the Hamiltonian equation. We use (δx, δp)
to denote the local coordinates of T (T2 × R2) induced by the coordinates (x, p). We
call the linear subspace V (x, p) = {(0, δp)} ⊂ T(x,p)(T2 × R2) the vertical subspace.
The orbit γ̃ is called disconjugate, if

Dϕt(x(s), p(s))V (x(s), p(s)) ∩ V (x(s+ t), p(s+ t)) = {0},

for any s ∈ R and t > 0.

Lemma A.10. 1. If γ is a (ρE, h)−minimizer, then the associated Hamiltonian
orbit γ̃ lift to an LH−minimizer.

2. If an orbit (x(t), p(t)) is an LH−minimizer, then it is disconjugate.

3. If an orbit (x(t), p(t)) ∈ R2 ×R2 is disconjugate, then the differential map Dϕt
admits a 2-dimensional invariant bundle contained in TSH(x(t),p(t)).
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The statements in Lemma A.10 are now classical, so we will only point to some
references. It follows from a theorem of Diaz Carneiro [28] that a (ρE, h)−minimizer
corresponds to a Mather minimal measure with rotation number h. All orbits con-
tained in the support of a Mather minimal measures are LH−minimimal (see [53], for
example). For the second statement, we refer to Contreras and Iturriaga ([27], Corol-
lary 4.2). The invariant bundle in the third statement is one of the Green bundles,
for the Hamiltonian version, we refer to [27], Proposition A.

Proof of Proposition A.9. Assume that γ is a (ρE, h)−minimizer, and its lift γ̃(t) =
(ϕ(t), p(t)) is a nondegenerate periodic orbit of period T . We have that either γ̃
is hyperbolic, or the matrix D̃ϕT (ϕ(0), p(0)), defined in section A.1, has complex
eigenvalues. As a consequence, D̃ϕT (ϕ(0), p(0)) admits no one-dimensional invariant
subspace. Recall that the map D̃ϕt is the restriction of Dϕt to the energy surface,
with the flow direction quotient out. Hence, the map DϕT (ϕ(0), p(0)), restricted to
the energy surface, admits no 2-dimensional invariant bundles. This is a contradiction
with Lemma A.10.

We recall the notion of local ρE−minimizers. Given an open set V ⊂ T2, a
continuous closed curve γ ⊂ V with homology h is a (ρE, h, V )−minimizer, if

lE(γ) = inf
η∈CEh ,η⊂V̄

lE(η), (49)

where CEh denote the set of all piecewise regualr closed curves with homology h. (γ
is necessarily rectifiable.) A curve γ is a local (ρE, h)−minimizer, if there exists an
open set V ⊃ γ such that γ is a (ρE, h, V )−minimizer. By Lemma A.11 below, local
minimizers are also closed geodesics, and hence corresponds to a Hamiltonian orbit.

The main goal of this section is to prove that, generically, each (global) ρE−minimi-
zer is chosen among finitely many hyperbolic local minimizers.

Theorem 26. Given 0 < E0 < Ē, there exists an open and dense subset G ′ of Gr,
such that for each U ∈ G ′, the Hamiltonian H(ϕ, I) = K(I) − U(ϕ) + minϕ U(ϕ)
satisfies the following statements. There exists finitely many smooth families of local
minimizers

ξEj , aj − σ ≤ E ≤ bj + σ, j = 1, · · · , N,
and σ > 0, with the following properties.

1. All ξEj for aj − σ ≤ E ≤ bj + σ are hyperbolic.

2.
⋃
j[aj, bj] ⊃ [E0, Ē].

3. For each E0 ≤ E ≤ Ē, any global minimizer is contained in the set of all ξEj ’s
such that E ∈ [aj, bj].
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Proof of Theorem 26, occupies the rest of this section.

Lemma A.11. 1. If the set {η ∈ CEh ; η ⊂ V̄ } is nonempty, then the infimum in
(49) can be achieved at a rectifiable curve.

2. Any rectifiable local ρE−minimizer is a closed geodesic of the Riemannian metric
ρE.

Proof. Statement 1. Let ηn ∈ CEh , η ⊂ V̄ be a sequence of piecewise regular curves
with

lim
n−→∞

lE(ηn) = inf
η∈CEh ,η⊂Ū

lE(η).

Assume that all ηn are parametrized on [t, s] with uniformly bounded derivatives.
This is possible because all ηn has uniformly bounded length. Then by passing to a
subsequence, we may assume that ηn converges uniformly to η∗. It suffices to show
that

lE(η∗) ≤ lim
n−→∞

lE(ηn).

Take any finite partition {[ti, ti+1]}N−1
i=0 of [t, s], we have

dE(η∗(ti), η∗(ti+1)) = lim
n−→∞

dE(ηn(ti), ηn(ti+1)) ≤ lim sup
n∞

lE(ηn|[ti,ti+1]),

hence

N−1∑
i=0

dE(η∗(ti), η∗(ti+1)) ≤ lim sup
n−→∞

N−1∑
i=0

lE(ηn|[ti,ti+1]) = lim sup
n−→∞

lE(ηn).

Taking supremum over all partitions, we obtain statement 1.
Statement 2. Let δ > 0 be such that any two points with the dE–distance less

than δ can be connected by a unique geodesic realizing the distance.
For a rectifiable local ρE−minimizer γ : [t, s] −→ T2, define δ0 = min{δ, dE(γ, ∂U)}.

Let {[ti, ti+1]}N−1
i=0 be a partition [t, s] with lE(γ|[ti,ti+1]) < δ. Then γ(ti) and γ(ti+1)

can be connected by a geodesic ξi contained in U with the same arc-length as γ|[ti,ti+1].
It follows that ξ := ξ0 ∗ · · · ∗ ξN−1 is also a local minimizer. Using the standard

arguments of Riemannian geometry, we conclude that ξi and ξi+1 must have matching
unit tangent vector, and hence ξ itself is a geodesic.

We obtained a geodesic ξ which coincide with γ at the points γ(ti). Since the ar-
gument works with arbitrary refinement of the partition, we conclude that γ coincide
with ξ.

Any hyperbolic orbit is locally unique on the energy surface, and extends to a one
parameter family of hyperbolic orbits.

163



Lemma A.12. Assume that γ̃E0 is a hyperbolic periodic orbit in the energy surface
SE0. Then the following hold:

1. There exists a neighbourhood Ṽ of γ̃ in SE0, such that γ̃ i the unique periodic
orbit in this neighbourhood.

2. There exists δ > 0 and a neighbourhood Ṽ of γ̃E0 such that for any Hamiltonian
H ′ that is δ-close to H in the C2 norm, and |E ′−E0| ≤ δ, there exists a unique
hyperbolic periodic orbit γ̃′ of H ′ in Ṽ with energy E ′.

3. There exists δ > 0 and a smooth family γ̃E ⊂ Ṽ , E0 − δ ≤ E E0 + δ, each of
them hyperbolic, and is unique on Ṽ .

4. Any smooth one-parameter family of hyperbolic periodic orbit is monotone in
energy.

Proof. Choose a transversal section to γ̃(0), and define a Poincare return map ΦE0

on this section. A periodic orbit corresponds to a fixed point of the Poincare return
map. The first three statement of this lemma follows directly from the inverse function
theorem.

We now prove the fourth statement. Assume that γ̃λ is a family of hyperbolic
periodic orbits, and the functionH(γ̃λ(0)) is not monotone. Assume, by contradiction,
that λ0 is a local minimum, with E0 = H(γ̃λ0(0)). Then for small E > E0, there exists
at least two periodic orbits γλ1(E) and γλ2(E). However, this contradicts with statement
2. We can similarly rule out local maxima.

For hyperbolic local minimizers, we have the following local description.

Lemma A.13. Assume that γE0 is a hyperbolic local ρE0−minimizer. The following
hold.

1. There exists a neighbourhood V of γE0, such that γE0 is the unique local ρE0−mi-
nimizer on V .

2. There exists δ > 0 such that for any U ′ ∈ Cr(T2) with ‖U − U ′‖C2 ≤ δ and
|E ′ − E0| ≤ δ, the Hamiltonian H ′(ϕ, I) = K(I) − U ′(ϕ) admits a hyperbolic
local minimizer in V .

3. There exists δ > 0 and a smooth family γE ⊂ V , E0 − δ ≤ E ≤ E0 + δ, such
that each of them a hyperbolic local minimizer.

Proof. Statement 1. Assume, by contradiction, that there are a sequence of local
minimizers ηn accumulating to γE0 . By Lemma A.11, statement 2, each local mini-
mizer is a closed geodesic, and hence corresponds to a periodic orbit. Let η̃n and γ̃E0
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be the associated Hamiltonian orbit. We have that η̃n converges to γ̃E0 in the phase
space but this contradicts with Lemma A.12, statement 1.

Statement 2. We will show that the depth of the minimum is nondegenerate.
More precisely, we show there exists a neighbourhood V of γE0 , such that

inf
η⊂V̄ , η∩∂V 6=∅η∈CE0

h

lE0(η) > inf
η⊂V̄ , η∈CE0

h

lE0(η). (50)

Assume, by contradiction, that there exists a sequence of shrinking neighbourhoods
Vn, such that (50) is an equality for each Vn. By an identical argument to the proof
of Lemma A.11, statement 1, we conclude that the infimum in the left hand side of
(50) can be achieved at a rectifiable curve ξn, not identical to γE0 , each n. Each ξn is
a local minimizer. This contradicts with uniqueness obtained from statement 1.

Statement 3. We note that (50) persists under small perturbation of the metric
conclude that for |E−E0| ≤ δ, the metric ρE admits a local minimizer in V , where V
is the neighborhood from statement 2. By choosing V and δ smaller if necessary, we
can make sure the associated periodic orbits γ̃E are contained in Ṽ , where Ṽ is the
neighborhood in Lemma A.12, statement 3. Uniqueness then imply that the family
γ̃E coincide with the family obtained in Lemma A.12, statement 3.

We now use the information obtained to classify the set of global minimizers.

• Consider the HamiltonianH(ϕ, I) = K(I)−U(ϕ)+minϕ U(ϕ). For 0 < E0 < Ē,
it is easy to see that any periodic orbit in the energy E0 ≤ E ≤ Ē has a lower
bound and upper bound on the minimal period, which depends only on E0 and
Ē. Hence, Corollary A.2 applies.

• By Corollary A.2, generically, there are at most finitely many degenerate global
minimizers, the rest are nondegenerate (as periodic orbits). By Proposition A.9,
they must hyperbolic.

• Since a global minimizer is always a local minimizer, using Lemma A.13, it
extends to a smooth one parameter family of local minimizers. The extension
can be continued until the family accumulates to a degenerate minimizer. This
family can no longer be extended as potential global minimizers – by Proposi-
tion A.8, it is accumulated by periodic orbits of complex eigenvalues.

• It is well known that for a fixed energy, any two global minimizers do not cross
(see for example, [51]). We assume that the local extension of these global
minimizers also do not cross, for a fixed energy.

• There are at most finitely many families of local minimizers, because they are
isolated (Lemma A.13, statement 1), and do not accumulate (Lemma A.12,
statement 4).
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• We haven’t excluded the case that a global minimizer is taken at an isolated
degenerate periodic orbit. While by Proposition A.8, it must be accumulated
by hyperbolic orbits, these hyperbolic orbit may not be minimizers.

We have proved the following statement.

Proposition A.14. Given 0 < E0 < Ē, there exists an open and dense subset G ′
of Gr, such that for each U ∈ G ′, for the Hamiltonian H(ϕ, I) = K(I) − U(ϕ) +
minϕ U(ϕ), such that the following hold.

1. There are at most finitely many (maybe none) isolated global minimizers ξ
cj ,d
j ,

that are degenerate.

2. There are finitely many smooth families of local minimizers

ξ̄Ej , āj ≤ E ≤ b̄j, j = 1, · · · , N,

with [E0, Ē] ⊃
⋃

[āj, b̄j], such that ξ̄Ej are hyperbolic for āj < E < b̄j. The set
ξ̄Ej for E = āj, b̄j may be hyperbolic or degenerate.

3. For a fixed energy surface E, the sets {ξE,dj } and
⋃
āj≤E≤b̄j ξ

E
j are pairwise dis-

joint.

4. For each E0 ≤ E ≤ Ē, the global minimizer is chosen among the set of all ξ
cj ,d
j

with E = cj, or one of the local minimizers ξ̄Ej with E ∈ [āj, b̄j].

Proof of Theorem 26. We first show that the set of potentials U satisfying the conclu-
sion of Theorem 26 is open. By Lemma A.13,the family of local minimizers persists
under small perturbation of the potential U . It suffices to show that for sufficiently
small perturbation of U satisfying the conclusion, the global minimizer is still taken
at one of the local families. Assume, by contradiction, that there is a sequence Un
approaching U , and for each Hn = K − Un, there is some global minimizer ξEnn not
from these families. By picking a subsequence, we can assume that it converges to
a closed curve ξ∗, which belong one of the local families ξEj . Using local uniqueness
from Lemma A.13, ξEnn must belong to one of the local families as well. This is a
contradiction.

To prove denseness, it suffices to prove that for a potential U satisfying the con-
clusion of Proposition A.14, we can make an arbitrarily small perturbation, such that
there are no degenerate global minimizers.

Our strategy is to eliminate the degenerate global minimizers one by one using
a sequence of perturbations. Let η̃E1

1 , · · · , η̃ENN be the set of all degenerate periodic
orbits from Corollary A.2, and let ηE1

1 , · · · ηENN be their projection to T2. The set
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of degenerate periodic orbits depends continuously on small perturbations to the
Hamiltonian (Corollary A.2).

Let S ⊂ {1, · · · , N} denote the indices of the global (ρE, h)−minimizers among

ηE1
1 · · · η

EN
N . Note that for all j /∈ S, either the homology of η

Ej
j is not h, or the homol-

ogy of η
Ej
j is h but lE(η

Ej
j ) < lE(h). In either case, for sufficiently small perturbation

to the potential U , we still have j /∈ S.
Consider i ∈ S, we have lEi(ξ

Ei
i ) = lEi(h). We note that from Proposition A.14, ξEii

can never be the unique global minimizer. Indeed, since the local branch containing
ξEii cannot be continued to both sided of Ei, there is at least another local branch.
Let V be an neighborhood of ξEii , such that V̄ is disjoint from the set of other global
minimizers with the same energy. For δ > 0 we define Uδ : T2 −→ R such that
Uδ|ξEii = δ and suppUδ ⊂ V . Let Hδ = K − U − Uδ, and let lE,δ be the perturbed
length function. We have

lEi,δ(ξ
Ei
i ) =

∫
ξ
Ei
i

√
2(Ei + U + δ)K > lEi(ξ

Ei
i ) = lEi(h) = lEi,δ(h).

As a consequence, ξEii is no longer a global minimizer for the perturbed system.
Moreover, for sufficiently small δ, no new degenerate global minimizer can be created.
Hence the perturbation has decreased the number of degenerate global minimizers
strictly. By repeating this process finitely many time can eliminate all degenerate
global minimizers.

A.3 Proof of Theorem 4 about genericity of [DR1]-[DR3]

In this section we complete the plan laid out in the introduction to this section. We
complete the proof of Theorem 26. This amounts to proving that finite local families
of local minimizers, obtained from the previous section, are “in general position”.

We assume that the potential U0 ∈ Gr satisfies the conclusions of Theorem 26. Let
ξE,Uj denote the branches of local minimizers from Theorem 26, where we have made
the dependence on U explicit. There exists an neighbourhood V (U0) of U0, such that
the local branches ξE,Uj are defined for E ∈ [aj − σ/2, bj + σ/2] and U ∈ V (U0).

Define a set of functions

fj : [aj − σ/2, bj + σ/2]× V (U0) −→ R, fj(E,U) = lE(ξE,Uj ).

Then ξE,Ui is a global minimizer if and only if

fi(E,U) = fmin(E,U) := min
j
fj(E,U),
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where the minimum is taken over all j’s such that E ∈ [aj, bj].
The following proposition implies Theorem 4.

Proposition A.15. There exists an open and dense subset V ′ of V (U0) such that for
every U ∈ V ′, the following hold:

1. For each E ∈ [E0, Ē], there at at most two j’s such that fj(E,U) = fmin(E,U);

2. There are at most finitely many E ∈ [E0, Ē] such that there are two j’s with
fj(E,U) = fmin(E,U);

3. For any E ∈ [E0, Ē] and j1, j2 be such that fj1(E,U) = fj2(E,U) = fmin(E,U);
we have

∂

∂E
fj1(E,U) 6= ∂

∂E
fj2(E,U).

Proof. We first note that it suffices to prove the theorem under the additional assump-
tion that all functions fj’s are defined on the same interval (a, b) with fmin(E,U) =
minj fj(E,U). Indeed, we may partition [E0, Ē] into finitely many intervals, on which
the number of local branches is constant, and prove proposition on each interval.

We define a map

f = (f1, · · · , fN) : (a, b)× V (U0) −→ RN ,

and subsets

∆i1,i2,i3 = {(x1, · · · , xn);xi1 = xi2 = xi3}, 1 ≤ i1 < i2 < i3 ≤ N,

∆i1,i2 = {(x1, · · · , xn);xi1 = xi2}, 1 ≤ i1 < i2 ≤ N

of RN × RN . We also write fU(E) = f(E,U). The following two claims imply our
proposition:

1. For an open and dense set of U ∈ V (U0), for all 1 ≤ i1 < i2 < i3 ≤ N , the set
(fU)−1∆i1,i2,i3 is empty.

2. For an open and dense set of U ∈ V (U0), and all 1 ≤ i1 < i2 ≤ N , the map
fU : (a, b) −→ RN is transversal to the submanifold ∆i1,i2 .

Indeed, the first claim imply the first statement of our proposition. It follows from
our second claim that there are at most finitely many points in (fU)−1∆i1,i2 , which
implies the second statement. Furthermore, using the second claim, we have for any
E ∈ (fU)−1∆i1,i2 , the subspace (DfU(E))R is transversal to T∆i1,i2 . This implies the
third statement of our proposition.
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For a fixed energy E and (v1, · · · , vN) ∈ RN , let δU : T2 −→ R be such that
δU(ϕ) = vj on an open neighbourhood of ξEj for each j = 1, · · ·N . Let lE,ε and ξE,εj

denote the arclength and local minimizer corresponding to the potential U+εδU . For
any ϕ in a neighbourhood of ξEj , we have

E + U(ϕ) + δU(ϕ) = E + U(ϕ) + εvj,

hence for sufficiently small ε > 0, ξE,εj = ξ
E+εvj
j .

The directional derivative

DUf(E,U) · δU =
d

dε

∣∣∣
ε=0
lE,ε(ξ

E,ε
j ) =

d

dε

∣∣∣
ε=0
lE+εvj(ξ

E+εvj
j ) =

∂

∂E
fj(E,U)vj.

It follows from a direct computation that each fj is strictly increasing in E and the
derivative in E never vanishes. As a consequence, we can choose (v1, · · · , vN) in such
a way, that DUf(E,U) · δU takes any given vector in RN . This implies the map

DUf : (a, b)× TV (U0) −→ RN

has full rank at any (E,U). As a consequence, f is transversal to any ∆i1,i2,i3 and
∆i1,i2 . Using Sard’s lemma, we obtain that for a generic U , the image of fU is disjoint
from ∆i1,i2,i3 and that fU is transversal to ∆i1,i2 .

A.4 Proof of Theorem 5

Now we prove the second Theorem about genericity of properties of geodesic flows.
Proving Theorem 5 consists of two steps consisting of two localized perturbations of
the potential U .

First, we perturb U near the origin to achieve properties [A1]–[A2]. Then we
perturb it away from the origin around a point on a homoclinic orbit γ+ and satisfy
[A3]–[A4].

Let W ′ be a ρ-neighborhood of the origin in R2 for small enough ρ > 0 so that
it does not intersect sections Σs

± and Σu
±. Consider ξ(θ) a C∞-bump function so

that ξ(θ) ≡ 1 for |θ| < ρ/2 and ξ(θ) ≡ 0 for |θ| > ρ. Let Qζ(θ) =
∑
ζijθiθj be a

symmetric quadratic form. Consider Uζ(θ) = U(θ) + ξ(θ)(Qζ(θ) + ζ0). In W ′ × R2

we can diagonalize both: the quadratic form K(p) = 〈Ap, p〉 and the Hessian ∂2U(0).
Explicit calculation shows that choosing properly ζ one can make the minimum of U
at 0 being unique and eigenvalues to be distinct.

Suppose now that conditions [A1]–[A2] hold. We perturb U and satisfy [A3]–[A4].
Fix a point θ∗ ∈ γ+ at a distance of order of one from the origin. In particular, it
is away from sections Σs

±. Let W ′′ be its small neighborhood so that intersects only
one homoclinic γ+. Denote wu = W u ∩ Σu

+ an unstable curve on the exit section Σu
+
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and ws = W s ∩ Σs
+ a stable curve on the enter section Σs

+. Denote on wu (resp. ws)
the point of intersection Σu

+ (resp. Σs
+) with strong stable direction qss (resp. quu).

Recall that q+ (resp. p+) denotes the point of intersection of γ+ with Σu
+ (resp. Σs

+).
We also denote by T uu(q+) (resp. T ss(p+)) subspaces the tangent to wu (resp. ws) at
the corresponding points. The critical energy surface {H = K − U = 0} is denoted
by S0. In order to satisfy condition [A3]–[A4] the global map Φ+

glob has satisfy

• Φ+
globw

u ∩ ws 6= qss and (Φ+
glob)

−1(ws) ∩ wu 6= quu.

• DΦ+
glob(q+)|TS0T

uu(q+) t T ss(p+), DΦ−glob(q−)|TS0T
uu(q−) t T ss(p−).

The first condition can also be viewed as a property of the restriction of Φ+
glob|S0 .

Notice that Φ+
glob, restricted to S0, is a 2-dimensional map.

Consider perturbations δU ∈ Gr of the potential U localized in W ′′. By Lemma
A.4 the differential map DUΦ generates a subspace orthogonal to the gradient ∇HU

and the Hamiltonian vector field χU(·) of HU . Notice that when we restrict Φ+
glob onto

Σu
+ ∩ S0 we factor out ∇HU and χU(·). Both conditions on Φ+

glob (resp. DΦ+
glob|S0)

are non-equality conditions on images and preimages for a 2-dimensional map. Thus,
these conditions can be satisfies by Lemma A.4.

170



B Derivation of the slow mechanical system

In this section we consider the system

Hε(θ, p, t) = H0(p) + εH1(θ, p, t)

near a double resonance p0 = Γ~k ∩ Γ~k′ . Note that this implies

(~k1, k0) · (∂pH0(p0), 1) = (~k′1, k
′
0) · (∂pH0(p0), 1) = 0,

where ~k = (~k1, k0) and ~k′ = (~k′1, k
′
0). In particular, we have ~k1 ∦ ~k′1. We may choose

~k′ differently without changing the double resonance p0, such that

detB = 1, B =

[
~k1

~k′1

]
, (51)

with ~k1, ~k
′
1 viewed as row vectors.

We will describe a series of coordinate changes and rescalings that reduce the
system to a perturbation of the slow system.

In section B.1, we describe a resonant normal form.
In section B.2, we describe the affine coordinate change and the rescaling, revealing

the slow system.
In section B.3, we discuss variational properties of these coordinate changes.

B.1 Normal forms near double resonances

Write ω0 := ∂pH0(p0), then the orbit (ω0, 1) t is periodic. Let

T = inf
t>0
{t(ω0, 1) ∈ Z3}

be the minimal period, then there exists some constant c > 0 such that T ≤ c‖~k‖‖~k′‖.
Given a function f : T2 × R2 × T −→ R, we define

[f ]ω0(θ, p, t) =
1

T

∫ T

0

f(θ + ω0s, p, t+ s)ds.

[f ] corresponds to the resonant component related to the double resonance.

Writing H1(θ, p, t) =
∑

~l∈Z3 hk(p)e
2πi~l·(θ,t), and let Λ = spanZ{~k,~k′} ⊂ Z3, we

define
Z(θ, p, t) = [H1]ω0 =

∑
~l∈Λ

hk(p)e
2πi~l·(θ,t).
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Z only depends on ~k · (θ, t), ~k′ · (θ, t), and p.
We define a rescaled differential in the action variable by

∂If(θ, p, t) =
√
ε∂pf(θ, p, t),

and use the notation Cr
I to denote the Cr norm with ∂p replaced by ∂I .

Theorem 27. Assume that r ≥ 4. Then there exists a C2 coordinate change

Φε : T2 × UĒ√ε(p0)× T −→ T2 × U2Ē
√
ε(p0)× T,

which is the identity in the t component, and a constant
C̃ = C̃(~k,~k′, Ē, ‖H1‖Cr , ‖H0‖Cr), such that

Nε(θ, p, t) := Hε ◦ Φε(θ, p, t) =

H0(p) + εZ(θ, p) + εZ1(θ, p) + εR(θ, p, t),

where Z1 = [Z1]ω0 and

‖Z1‖C2
I
≤ C̃
√
ε, ‖R‖C2

I
≤ C̃ε,

and
‖Φε − Id‖C2

I
≤ C̃ε.

Remark B.1. Our normal form is the cut-off from a formal series obtained by a
sequence of “partial averaging”, see, for example expansion (6.5) in [8, Section 6.1.2].
While this expansion is classical, our goal here is to obtain precise control of the norms
with minimal regularity assumptions. In particular, the norm estimate of Φε − Id is
stronger than the usual results, and is needed in the proof of Proposition B.6.

The rest of this section is dedicated to proving Theorem 27. Denote Πθ(θ, p, t) =
θ, Πp(θ, p, t) = p the natural projections.

Lemma B.1. We have the following properties of the rescaled norm.

1. ‖f‖CrI ≤ ‖f‖Cr , ‖f‖Cr ≤ ε−r/2‖f‖CrI .

2. ‖∂θf‖Cr−1
I
≤ ‖f‖CrI , ‖∂pf‖CrI ≤

1√
ε
‖f‖CrI .

3. ‖fg‖CrI ≤ ‖f‖CrI ‖g‖CrI .

4. Let Φ = (Φθ,Φp, Id) : T2×U ×T −→ T2×R2×T be a smooth mapping. Then

‖f ◦ Φ‖CrI ≤ ‖f‖CrI
(

max{‖ΠθΦ‖CrI , ‖ΠpΦ‖CrI /
√
ε}
)r
.
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5. Let Φ be as above, then

‖f ◦ Φ‖CrI ≤ ‖f ◦ Φ‖C0 + ‖f‖CrI + ‖f ◦ (Φ− Id)‖CrI .

Proof. The first two conclusions follow directly from definition. For the third conclu-
sion, we have ‖f̃‖Cr = ‖f‖CrI , where

f̃(θ, I) = f(θ,
√
εI).

The third conclusion follows from properties of the Cr−norm.
For the fourth conclusion, we note

f ◦ Φ = f̃ ◦ Φ̃,

where f̃ is as before, and Φ̃(θ, I) = (Φθ(θ,
√
εI),Φp(θ,

√
εI)/
√
ε). We have ‖Φ̃‖Cr =

max{‖ΠθΦ‖CrI , ‖ΠpΦ‖CrI /
√
ε}. The fourth conclusion follows a property of Cr func-

tions known as the Faa-di Bruno formula ‖f ◦Φ‖Cr ≤ c‖f‖Cr‖Φ‖rCr for some c = c(r),
see e.g. [29].

For the fifth conclusion, since the differential operator is linear,

‖f ◦ Φ‖CrI ≤ ‖f ◦ Φ‖C0 + ‖∂(θ,I)(f ◦ Φ)‖Cr−1
I

≤ ‖f ◦ Φ‖C0 + ‖∂(θ,I)f‖Cr−1
I

+ ‖∂(θ,I)(f ◦ (Φ− Id))‖Cr−1
I
.

The estimate follows.

We reserve the notations c for a unspecified absolute constant, and C̃ for a un-
specified constant depending on ~k, ~k′, Ē, ‖H1‖Cr , ‖H0‖Cr . For ρ > 0, denote

Dρ = T2 × Uρ(p0)× T× R.

Our main technical tool is an adaptation of an inductive lemma due to Bounemoura.

Lemma B.2. Assume r ≥ 4, ρ > 0, µ > 0 satisfies

0 < ε ≤ µ2, Tµ < 1, (Tµ)
√
ε ≤ c

ρ

2(r − 2)
.

Assume that

H : T2 × Uρ(p0)× T× R −→ R, H(θ, p, t, E) = l + g0 + f0,

where l(p, E) = (ω0, 1) · (p, E) is linear, g0, f0 are Cr and depend only on (θ, p, t), and

‖∂θg0‖Cr−1
I (Dρ) ≤ c

√
εµ, ‖∂pg0‖Cr−1

I (Dρ) ≤ cµ,
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‖f0‖CrI (ρ0) ≤ c
√
εµ, ‖∂pf0‖Cr−1

I
≤ c
√
εµ.

Then for j ∈ {0, · · · , r − 2} and ρj = ρ − j ρ
2(r−2)

> ρ/2, there exists a collection of

C2–symplectic maps Φj : Dρj −→ Dρ, of the special form

Φj(θ, p, t, E) = (Θ(θ, p, t), P (θ, p, t), t, E + Ẽ(θ, p, t)).

The maps Φj have the properties

‖Πθ(Φj − Id)‖C2
I (Dρj ) ≤ c(Tµ)2, ‖Πp(Φj − Id)‖C2

I (Dρj ) ≤ c(Tµ)
√
ε,

and
H ◦ Φj = l + gj + fj,

for each j ∈ {0, · · · , r − 3} satisfying gj+1 = gj + [fj]ω0 and

‖∂θgj‖Cr−j−1(Dρj ) ≤ c
√
εµ, ‖∂pgj‖Cr−j−1(Dρj ) ≤ cµ,

‖fj‖Cr−j(Dρj ) ≤ c(Tµ)j
√
εµ.

Proof. The proof is an adaptation of the proof of Proposition 3.2, [18], page 9.
Following [18], we define

χj =
1

T

∫ T

0

t(fj − [fj]ω0)(θ + ω0s, p, t+ s)ds

and
Φj+1 = Φj ◦ Φ

χj
1 ,

where Φ
χj
s is the time-s map of the Hamiltonian flow of χj.

Using the fact that χj is independent of E, we have the map Φχj is independent
of E in the (θ, p, t) components. Furthermore, Φχj is the identity in the t component,
and ΠEΦχj −E is independent of E. Hence Φj takes the special format described in
the lemma. The special form of Φj implies that gj and fj are also independent of E,
allowing the induction to continue.

We now make several norm estimates.

‖[fj]‖CrI ≤ ‖fj‖CrI ≤ c(Tµ)j
√
εµ, ‖χj‖CrI ≤ T‖fj‖CrI ≤ c(Tµ)j+1

√
ε.

For j ≥ 1, using the inductive assumption,

‖∂pχj‖Cr−j−1
I

≤ 1√
ε
‖χj‖Cr−jI

≤ c(Tµ)j+1c(Tµ)2,
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while for j = 0, the initial assumption on f0 implies

‖∂pχ0‖Cr−1
I
≤ T‖∂pf‖Cr−1

I
≤ cT

√
εµ ≤ c(Tµ)

As a consequence

‖Πθ(Φ
χj − Id)‖Cr−j−1

I
≤ c‖∂pχj‖Cr−j−1

I
≤ c(Tµ)2,

‖Πp(Φ
χj − Id)‖Cr−j−1

I
≤ c‖∂θχj‖Cr−j−1

I
≤ c(Tµ)j+1

√
ε ≤ c(Tµ)

√
ε.

The assumption (Tµ)
√
ε ≤ cρ/(2r− 4) implies that {Φχj}j are well define maps from

Dρj+1
to Dρj . The norm estimate for Φj follows from that of Φχj .

We define gj+1 = gj + [fj]ω0 . The norm estimate for ‖gj+1‖ follows directly from
the inductive assumption on ‖gj‖ and ‖fj‖. By a standard computation, we have

fj+1 =

∫ 1

0

{f sj , χj} ◦ Φχj
s ds,

where f sj = gj + sfj + (1− s)[fj]ω0 .
It’s easy to see that gj is the dominant term in f sj and all estimates of gj carry

over to f sj with possibly different constants. We have

‖{f sj , χj}‖Cr−j−1
I

≤ ‖∂θf sj ‖Cr−j−1
I
‖∂χj‖Cr−j−1

I
+ ‖∂pf sj ‖Cr−j−1

I
‖∂θχj‖Cr−j−1

I

≤ c
√
εµ

1√
ε
‖χ‖Cr−jI

+ cµ‖χ‖Cr−jI
≤ c(Tµ)j+1

√
εµ.

Furthermore, by Lemma B.1, items 4 and 5,

‖{f sj , χj} ◦ Φχj
s ‖Cr−j−1

I

≤ ‖{f sj , χj} ◦ Φχj
s ‖C0 + ‖{f sj , χj}‖Cr−j−1

I
+ ‖{f sj , χj} ◦ (Φχj − Id)‖Cr−j−1

I

≤ ‖{f sj , χj}‖Cr−j−1
I

+ ‖{f sj , χj}‖Cr−j−1
I

(
max{cT 2µ2, c(Tµ)}

)r−j−1

≤ c‖{f sj , χj}‖Cr−j−1
I

≤ c(Tµ)j+1
√
εµ.

The norm estimate for fj+1 follows, and the induction is complete.

Proof of Theorem 27. We write

H(θ, p, t, E) = Hε(θ, p, t)−H0(p0) + E = l + g0 + f0,

where l(p, E) = (ω0, 1) · (p, E),

g0(θ, p, t) = H0(p)−H0(p0)− ω0 · p
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and f0 = εH1.
Define ρ = 2Ē

√
ε and µ = Ē

√
E. We have

‖∂θg0‖Cr−1
I (Dρ) = 0 ≤ c

√
εµ, ‖∂pg0‖Cr−1

I (Dρ) ≤ cĒ
√
ε = cµ,

‖f0‖CrI (Dρ) ≤ ε ≤ c
√
εµ, ‖∂pf‖Cr−1

I (Dρ)‖∂pf‖Cr(Dρ) ≤ c
√
εµ.

By choosing ε sufficiently small depending on T , we have (Tµ)
√
ε = TĒ2ε ≤ cρ/(2r−

4) and Tµ < 1. The conditions of Lemma B.2 are satisfied, and we apply the lemma
with r = 4. Since with our choice of parameters (Tµ)

√
ε < (Tµ)2, there exists a map

Φ2 : Dρ/2 −→ Dρ,
‖Φ2 − Id‖C2

I (Dρ/2) ≤ c(Tµ)2 ≤ cT 2Ē2ε,

and
H ◦ Φ2 = l + g0 + [f0]ω0 + [f1]ω0 + f2,

with
‖[f1]ω0‖C2

I (Dρ/2) ≤ c(Tµ)
√
εµ = cT Ē2ε

3
2 ,

‖f2‖C2(Dρ/2) ≤ c(Tµ)2
√
εµ = cT 2Ē3ε2.

Using l + g0 = H0(p) + εZ − H0(p0), define εZ = [f0]ω0 , εZ1 = [f1]ω0 , and εR = f2,
we obtain

(Hε + E) ◦ Φ2 = H0 + εZ + εZ1 + εR + E

with the desired estimates. Finally, we define Φε(θ, p, t) = Φ2(θ, p, t, E). This is well
defined since Φ2 is independent of E.

B.2 Affine coordinate change and rescaling

We first make a coordinate change p̄ = p−p0, shifting the double resonance to p̄ = 0.
Formally,

Sp0(θ, p̄, t, E) = (θ, p̄+ p0, t, E).

We then make a linear change of coordinate by writing ϕs = (~k1 · θ+ k0t,~k
′
1 · θ+ k′0t),

and then complete it to a symplectic coordinate change. Using the matrix B, defined
in (51), and symplecticity, formally, we have

θ
t
p̄
E

 = L


ϕs

t
ps

E ′

 =


B−1 −B−1

[
k0

k′0

]
0 1

BT 0
k0, k

′
0 1



ϕs

t
ps

E ′

 .
Denote ΦL = Sp0 ◦ L. Notice that this formula implicitly defines ps.
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Lemma B.3. In the notations of Theorem 27 for the Hamiltonian Nε = Hε ◦ Φε in
the normal form we have

(Nε + E) ◦ ΦL − E ′ = H0(p0) +K(ps)− εU(ϕs) + εP0(ϕs, ps) + εR(ϕs, ps, t),

where
K(ps) = 〈∂2

ppH0(p0)BTps, BTps〉, U(ϕs) = −Z(ϕs, p0), (52)

and ‖P0‖C2
I
≤ C̃
√
ε, ‖R‖C2

I
≤ C̃ε.

Proof. Notice that by definition of the above matrix B we have p̄ = p − p0 = BTps.
Consider (Nε + E) ◦ ΦL and expand H0(p) = H0(p0 + p̄) = H0(p0 + BTps) and
Z(ϕs, p0 + p̄) near p0. We have

(Nε + E) ◦ ΦL

= H0(p0 + p̄) + εZ(ϕs, p0 + p̄) + εZ1(ϕs, p) + εR + (k0, k
′
0) · ps + E ′

= H0(p0) + ∂pH0(p0)p̄+ 〈∂2
ppH0(p0)p̄, p̄〉+ H̃0(p̄)

+ ε{Z(ϕs, p0) + (Z(ϕs, p)− Z(ϕs, p0))}+ εZ1(ϕs, p) + εR + (k0, k
′
0) · ps + E ′

=Combine H0,p–terms H0(p0) + ∂pH0(p0) ·BTps + (k0, k
′
0) · ps+

+ 〈∂2
ppH0(p0)BTps, BTps〉+ H̃0(p̄)

+ εZ(ϕs, p0) + εZ̃(ϕs, p) + εZ1(ϕs, p) + εR + E ′

= H0(p0) +K(ps)− εU(ϕs) + εP0 + εR + E ′,

where
εP0(ϕs, ps) = εZ̃(ϕs, p) + εZ1(ϕs, p) + H̃0(p̄),

Z̃(ϕs, ps) = Z(ϕ, p0 + p̄)− Z(ϕ, p0),

and
H̃0(p̄) = H0(p0 + p̄)−H0(p0)− ∂pH0(p0) · p̄− 〈∂2

ppH0(p0)p̄, p̄〉
which is the third order Taylor remainder of H0(p0 + p̄). In the third equality, we
have used the fact that

0 = ϕ̇s = Bθ̇ +

[
k0

k′0

]
= B[∂pH0(p0)]T +

[
k0

k′0

]
= 0,

whose transpose justifies the cancellation.
Finally, by direct calculation, we have

‖H̃0‖C2
I
, ‖εZ̃(ϕs, ps)‖C2

I
≤ cε

3
2 ,

and ‖Z1‖C2
I
≤ C̃
√
ε, ‖R‖C2

I
≤ C̃ε by Theorem 27.

177



We write N s
ε (ϕs, ps, t) = (N + E) ◦ ΦL(ϕs, t, ps, E ′)− E ′.

To define the slow system precisely, we perform some rescalings to the system.
Given a Hamiltonian H(ϕs, ps, t), we define

H̄(ϕs, Is, t) = S1(H)(ϕs, Is, t) =
1√
ε
H(ϕs,

√
εIs, t),

H̃(ϕs, Is, τ) = S2(H̄)(ϕs, Is, τ) =
1√
ε
H̄(ϕs, Is, τ/

√
ε).

Note that H̃ is defined on T2×R2×
√
εT. The flows of H̄ and H̃ are both conjugate

to that of H. Write S = S2 ◦ S1.

Proposition B.4. We have

Hs
ε := S(N s

ε ) = H0(p0)/ε+K(Is)− U(ϕs) +
√
εP (ϕs, Is, τ), (53)

where
‖P‖C2(ϕs,Is) ≤ C̃, ‖(∂ϕsP, ∂IsP )‖C1(ϕs,Is,τ) ≤ C̃.

Here
‖P (ϕs, Is, τ)‖C2(ϕs,Is) = sup ‖∂2

ϕsP‖C0 , ‖∂2
IsP‖C0

is a C2 norm with τ derivatives excluded, and C1(ϕs, Is, τ) denote the normal C1

norm involving all variables.

Proof. We write
√
εP (ϕs, Is, τ) = P0(ϕs,

√
εIs) +R(ϕs,

√
εIs, τ/

√
ε).

We note that as differential operators, ∂I = ∂Is , and

∂τR(ϕs,
√
εIs, τ/

√
ε) =

√
ε
−1
∂tR(ϕs,

√
εIs, τ/

√
ε).

The norm estimates follows from Lemma B.3.

We denote
Hs(ϕs, Is) = K(Is)− U(ϕs), (54)

this is the slow mechanical system. We will lift the functions Hs
ε to T2 × R2 × R

without changing the name, and also regard Hs as a function on T2 × R2 × R by
adding trivial τ dependence. With these notations, we have

Proposition B.5. As ε −→ 0, Hs
ε −H0(p0)/ε Tonelli converges to Hs as a uniform

family (see section 10.2). Moreover,

∂(ϕs,Is)H
s
ε −→ ∂(ϕs,Is)H

s

in the C1 norm, and as a result, the Hamiltonian vector field of Hs
ε converges to that

of Hs in the C1 norm.
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B.3 Variational properties of the coordinate changes

We have made the following reductions from the original system Hε to the slow system
Hs
ε : Nε(θ, p, t) = Hε ◦ Φε(θ, p, t) is the normal form; N s

ε (ϕs, ps, t) = Nε ◦ ΦL(ϕs, ps, t)
incorporates an affine coordinate change; Hs

ε (ϕ
s, Is, τ) = S2 ◦ S1(N s

ε )(ϕs, Is, τ) is the
result of two rescalings.

Proposition B.6. We have the following relations between Hε and Nε:

1. αHε(c) = αNε(c), M̃Hε(c) = M̃Nε(c), ÃHε(c) = ÃNε(c), ÑHε(c) = ÑNε(c).

2. |AHε,c(θ1, t̃1; θ2, t̃2)− ANε,c(θ1, t̃1; θ2, t̃2)| ≤ C̃ε.

3. |hHε,c(θ1, t1; θ2, t2)− hNε,c(θ1, t1; θ2, t2)| ≤ C̃ε.

Proof of Proposition B.6. The symplectic invariance of the alpha function and the
Mather, Aubry and Mañe sets follows from exactness.

Writing Φε = (Θ, P, t), from Theorem 27, we have

‖Φε − Id‖C0 ≤ C̃ε, ‖Φε − Id‖C1 ≤ C̃
√
ε

By exactness of Φε, we have there exists a function S : T2 × U × T −→ R such that

PdΘ− pdθ = dS.

We now estimate the C0−norm of S. Write S0 = P · (Θ − θ), this is a well defined
smooth function on T2 × R2 × T. We compute

dS0 = PdΘ− pdθ + (p− P )dθ + (Θ− θ)dP,

hence
dS = dS0 + (p− P )dθ + (Θ− θ)dP.

Since ‖S0‖C0 ≤ c‖Φε − Id‖C0 ≤ C̃ε and ‖d(S − S0)‖C0 ≤ ‖Φε − Id‖C0‖Φε − Id‖C1 ≤
C̃ε

3
2 , we conclude that ‖S‖C0 ≤ C̃ε.
For the estimates of the action ANε,c(θ1, t̃1; θ2, t̃2), let γ be its minimizer, and let

ξ be a C1−curve such that
L−1dξ = Φε(L−1dγ),

where, as before, dγ(t) denotes (γ(t), γ̇(t), t). Using exactness, we have

(LHε − c · v)(dξ) = (pdθ −Hε − cdθ)(L−1dξ)

= (pdθ −Nε − cdθ + dS)(L−1dγ) = (LNε − c · v)(γ) + dS(L−1dγ).
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Integrating, we have

|ANε,c(θ1, t̃1; θ2, t̃2)− AHε,c(ξ(t̃1), t̃1ξ(t̃2), t̃2))| ≤ C‖S‖C0 ≤ C̃ε.

Since ‖Φε−Id‖C0 ≤ C̃ε, we have ‖θ1−ξ(t̃1)‖, ‖θ2−ξ(t̃2)‖ ≤ C̃ε. The estimate follows
from the Lipschitz property of AH,c.

Taking limit, we obtain the estimate for hH,c.

The relation between the normal form system Nε and the perturbed slow system
Hs
ε is summarized in Proposition 12.5. We split the proof of this proposition into two

steps.
First, we have the following relations between Nε and N s

ε .

Proposition B.7. Let c′ = (BT )−1(c− p0).

1. αNε(c) = αNs
ε
(c′)− c′ · (k0, k

′
0).

2. M̃Nε(c) = ΦL(M̃Ns
ε
(c′)), ÃNε(c) = ΦL(ÃNs

ε
(c′)), ÑNε(c) = ΦL(ÑNs

ε
(c′)).

3. Denote ϕsi = Bθi + (k0, k
′
0) t mod T2. We have

ANε,c(θ1, t̃1; θ2, t̃2) = ANs
ε ,c
′(ϕs1, t̃1;ϕs2, t̃2).

4. hNε,c(θ1, t1; θ2, t2) = hNs
ε ,c
′(ϕs1, t1;ϕs2, t2).

Proof. The first two statements can be proved using symplectic invariance of these
sets. Here, hence we provide an alternative proof based on the Lagrangian setting,
which proves all four statements.

The angular components of the coordinate transform ΦL is given by

Φ1
L

[
ϕs

t

]
=

B−1 −B−1

[
k0

k′0

]
0 1

[ϕs
t

]
, (Φ1

L)−1

[
θ
t

]
=

B [
k0

k′0

]
0 1

[θ
t

]
.

Given a curve γ̃s : [t̃1, t̃2] −→ T2, define γ : [t̃1, t̃2] −→ T2 by γ(t) = Φa
L(γs)(t). We

have
γs(t̃i) = ϕsi iff γ(t̃i) = θi, i = 1, 2.

By definition, the one forms

(p− p0)dθ = (ΦL)∗(psdϕs).

We have the following calculation:

LNε(dγ) = (pdθ −Nε)(L−1dγ) = ((p− p0)dθ −Nεdt)(L−1dγ) + p0 · γ̇
= (ΦL)∗(psdϕs −N s

ε )(L−1dγs) + p0 · γ̇ = LNs
ε
(dγs) + p0 · γ̇,
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where all expressions are evaluated at t ∈ (t̃1, t̃2).
Using

γ̇ = B−1γ̇s −B−1

[
k0

k′0

]
,

we have

(LNε − c · v)(dγ)

= LsNε(dγ
s)− (c− p0) · γ̇

= LNs
ε
(dγs)− (c− p0) · (B−1γ̇s +B−1 · (k0, k

′
0))

= (LNs
ε
− c′ · v + c′ · (k0, k

′
0)) (dγs). (55)

Note that by integrating along orbits, and using the ergodic theorem, (55) extends
to invariant measures. Since

0 = inf

∫
µ

(LNε − c · v + αNε(c))dµ = inf

∫
µ

(LNs
ε
− c · v + αNs

ε
(c))dµ,

we obtain
αNε(c) + c′ · (k0, k

′
0) = αNs

ε
(c).

The relation between alpha functions, together with (55), implies

ANε,c(θ1, t̃1; θ2, t̃2) = ANs
ε ,c
′(ϕs1, t̃1;ϕs2, t̃2).

By taking the limit, we obtain hNε,c(θ1, t1; θ2, t2) = hNs
ε ,c
′(ϕs1, t1;ϕs2, t2).

The third statement also implies that γ being semi-static (static) for (LNε , c) is
equivalent to γs being semi-static (static) for (LNs

ε
, c′). Since

ΦL(L−1dγs) = L−1dγ,

the relation for the Aubry set and Mañe set follows.
The Mather set consists of the support of all invariant measures supported on the

Aubry set (see e.g. [51]). The relation between Mather sets then follows from the
relation between Aubry sets.

Second, we have the following relations between N s
ε and Hs

ε . Note that Hs
ε is

defined on T2 ×
√
εT.

Proposition B.8. Let c̄ = c′/
√
ε.

1. αNs
ε
(c′)/ε = αHs

ε
(c̄).

2. M̃Ns
ε
(c′) = ΦS(M̃Hs

ε
(c̄)), etc., where ΦS(ϕs, Is) = (ϕs,

√
ε Is).
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3. Let τ̃i =
√
ε t̃i, i = 1, 2. Then

AHs
ε ,c̄(ϕ

s
1, τ̃1;ϕs2, τ̃2) = ANs

ε ,c
′(ϕs1, t̃1;ϕs2, t̃2)/

√
ε.

4. Let τi =
√
ε ti, i = 1, 2. Then

hHs
ε ,c̄(ϕ

s
1, τ1;ϕs2, τ2) = hNs

ε ,c
′(ϕs1, t1;ϕs2, t2)/

√
ε.

Proof. Given a curve γs : [t̃1, t̃2] −→ T2, define γ̄ : [
√
ε t̃1,
√
ε t̃2] −→ T2 by γ̄(τ) =

γs(τ/
√
ε). It follows that

γ̄′(τ) =
1√
ε
γ̇s
(
τ√
ε

)
.

We have used ˙ to denote t derivative and ′ to denote τ derivative.
Using the definition of the rescalings, we have

LS1◦H(ϕs, v, t) = LH(ϕs, v, t)/
√
ε, LS2◦H(ϕs, v, τ) = LH(ϕs,

√
εv, τ/

√
ε)/
√
ε.

It follows that
LHs

ε
(ϕs, v, τ) = LNs

ε
(ϕs,
√
ε v, τ/

√
ε)/ε.

We have

LHs
ε
(γ̄, γ̄′, τ)− c̄ · γ̄′ = (LNs

ε
(γ̄,
√
ε γ̄′, τ/

√
ε)− c̄ε · γ̄′)/ε

= (LNs
ε
(γs, γ̇s, t)− c′ · γ̇s)/ε,

where t = τ/
√
ε. Statement 1, 3 and 4 follows from the above expression, similar to

the proof of Proposition B.7. Since

ΦS(L−1dγ̄) = L−1dγs,

statement 2 follows, again similar to the proof of Proposition B.7.
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C Variational aspects of the slow mechanical sys-

tem

In this section we study the variational properties of the slow mechanical system

Hs(ϕs, Is) = K(Is)− U(ϕs),

with minU = U(0) = 0.
The main goal of this section is to derive some properties of the “channel”⋃

E>0 LFβ(λEh h), and information about the Aubry sets for c ∈ LFβ(λEh h). These
statements Propositions 4.1, 4.2 and 4.3, and justify the pictures described in Fig-
ure 13 and Figure 14.

• In section C.1, we show that each LFβ(λEh h) is an segment parallel to h⊥.

• In section C.2, we provide a characterization of the segment, and provide infor-
mation about the Aubry sets.

• In section C.3, we provide a condition for the “width” of the channel to be
non-zero.

• In section C.4, we discuss the limit of the set LFβ(λEh h) as E −→ 0 which
corresponds to the “bottom” of the channel.

We drop all supscripts “s” to simplify the notations. The results proved in this
section are closely related to discussions of Mather in [59]. However, it is difficult
to locate exact references for the statements needed, so we include statements and
proofs for completeness.

C.1 Relation between the minimal geodesics and the Aubry
sets

Assume that H(ϕ, I) satisfies the conditions [DR1]-[DR3] and the conditions [A0]-
[A4]. Then for E 6= Ej, 1 ≤ j ≤ N − 1, there exists a unique shortest geodesic γEh for
the metric gE in the homology h. For the bifurcation values E = Ej, there are two
shortest geodesics γEh and γ̄Eh .

The function lE(h) denotes the length of the shortest gE−geodesic in homology
h. lE(h) is continuous and strictly increasing on E ≥ 0, is positive homogeneous
(lE(nh) = nlE(h), n ∈ N) and sub-additive (lE(h1 + h2) ≤ lE(h1) + lE(h2)) in h.

Assume that the curves γEh are parametrized using the Maupertuis principle. Let
T (γEh ) be the period under this parametrization, and write λ(γEh ) = 1/(T (γEh )).
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We pick another vector h̄ ∈ H1(T2,Z) such that h, h̄ form a basis of H1(T2,Z)
and for the dual basis h∗, h̄∗ in H1(T2,R) we have 〈h, h̄∗〉 = 0. We denote h̄∗ by h⊥1
to emphasise the latter fact.

Theorem 28. 1. For E = Ej,

LFβ(λ(γEh ) · h) = LFβ(λ(γ̄Eh ) · h).

As a consequence, write λEh = λ(γEh ), then the set LFβ(λEh h) is well defined (the
definition is independent of the choice of γEh ).

2. For each E > 0, there exists −∞ ≤ a−E(h) ≤ a+
E(h) ≤ ∞ such that

LFβ(λEh h) = lE(h)h∗ + [a−E(h), a+
E(h)] h⊥1 .

Moreover, the set function [a−E, a
+
E] is upper semi-continuous in E.

3. For each c ∈ LFβ(λEh h), E 6= Ej, there is a unique c−minimal measure sup-
ported on γEh .

4. For each c ∈ LFβ(λ
Ej
h h), there are two c−minimal measures supported on γ

Ej
h

and c.

5. For E > 0, assume that the torus T2 is not completely foliated by shortest closed
gE−geodesics in the homology h, then a+

E(h) − a−E(h) > 0 and the channel has
non-zero width.

Assume that γ is a geodesic parametrized according to the Maupertuis principle.
First, we note the following useful relation.

L(γ, γ̇) + E = 2(E + U(γ)) =
√
gE(γ, γ̇), (56)

where L denote the associated Lagrangian.
According to the theorem of Diaz Carneiro [28], the minimal measures for L is

in one-to-one correspondence with the minimal measures of 1
2
gE(ϕ, v). On the other

hand, any minimal measure 1
2
gE with a rational rotation number is supported on

closed geodesic. The following lemma characterizes minimal measures supported on
a closed geodesic.

Lemma C.1. 1. Assume that c ∈ H1(T2,R) is such that αH(c) = E > 0. Then
for any h ∈ H1(T2,Z),

lE(h)− 〈c, h〉 ≥ 0.
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2. Let γ be a closed geodesic of gE, E > 0, with [γ] = h ∈ H1(T2,Z). Let µ be the
invariant measure supported on the periodic orbit associated to γ. Then given
c ∈ H1(T2,R) with α(c) = E,

µ is c−minimal if and only if lE(h)− 〈c, h〉 = 0. (57)

3. Let γ be a closed geodesic gE, E ≥ 0, with [γ] = h ∈ H1(T2,Z) and α(c) = E.
Then γ ⊂ AH(c) if and only if (57) holds.

Proof. Let γ be a closed geodesic of gE, E > 0, with [γ] = h. Assume that with the
Maupertuis parametrization, the periodic of γ is T . Let µ be the associated invariant
measure, then ρ(µ) = h/T . Assume that α(c) = E, by definition, we have∫

Ldµ+ E ≥ β(h/T ) + α(c) ≥ 〈c, h/T 〉.

By (56), we have∫
Ldµ+ E =

1

T

∫ T

0

(L+ E)(dγ) =
1

T

∫ T

0

√
gE(dγ) = lE(γ)/T.

Combine the two expressions, we have lE(γ) − 〈c, h〉 ≥ 0. By choosing γ such that
lE(γ) = lE(h), statement 1 follows.

To prove statement 2, notice that if µ is c−minimal, then α(c) = E and the
equality ∫

Ldµ+ E = 〈c, h/T 〉

holds. Equality (57) follows from the same calculation as statement 1.
For E > 0, γ ⊂ AH(c) if an only if γ is a minimal measure. Hence to prove

statement suffices to prove for E = 0. In this case, γ can be parametrized as a
homoclinic orbit. γ ⊂ A(c) if and only if∫ ∞

−∞
(L− c · v + α(c))(dγ) = 0.

Since ∫ ∞
−∞

(L− c · v + α(c))(dγ) =

∫ ∞
−∞

(L+ E)(dγ)− 〈c, h〉 = lE(h)− 〈c, h〉,

the statement follows.

Proof of Theorem 28. By Lemma C.1, if there are two shortest geodesics γEh and γ̄Eh
for gE, for any c, the invariant measure supported on γEh is c− minimal if and only if
the measure on γ̄Eh is c−minimal. This implies statement 1.

Statement 2 follows from the fact that LFβ(λEh h) is a closed convex set, and (57).
Statement 3 and 4 follows directly from Lemma C.1.
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C.2 Characterization of the channel and the Aubry sets

In this section we provide a precise characterization of the set

LFβ(λEh h) = lE(h)h∗ + [a−E(h), a+
E(h)]h⊥.

For each E > 0, we define

d±E(h) = ± inf
n−→∞

(lE(nh± h̄)− lE(nh)),

where h, h̄ is a basis in H1(T 2,R) and the dual of h̄ satisfies 〈h̄∗, h〉 = 0 so we denote
it h⊥. Note that the sequence lE(nh ± h̄) − lE(nh) is decreasing, so the infimum
coincides with the limit. We will omit dependence on h when it is not important.

Proposition C.2. For each E > 0, we have

d±E(h) = a±E(h).

Proof. We first show
d−E(h) ≤ a−E(h) ≤ a+

E(h) ≤ d+
E(h).

Omit dependence on h. Denote c+ = lE(h)h∗+a+
Eh
⊥, by definition, lE(h)−〈c+, h〉 = 0.

By Lemma C.1, statement 1, for n ∈ N,

0 ≤ lE(nh+ h̄)− 〈c+, nh+ h̄〉 = lE(nh+ h̄)− nlE(h)− 〈c+, h̄〉
= lE(nh+ h̄)− nlE(h)− a+

E.

Take infimum in n, we have d+
E − a

+
E ≥ 0. Perform the same calculation with nh+ h̄

replaced by nh− h̄, we obtain 0 ≤ lE(nh− h̄)− nlE(h) + a−E, hence a−E − d
−
E ≥ 0.

We now prove the opposite direction. Take any c ∈ lE(h)h∗ + [d−E, d
+
E]h⊥, we first

show that α(c) = E.
Take ρ ∈ Qh + Qh̄, then any invariant measure µ with rotation number ρ is

supported on some [γ] = m1h + m2h̄ with m1,m2 ∈ Z. Let T denote the period, by
Lemma C.3 below,

β(ρ) + E = lE(m1h+m2h̄)/T ≥ 〈c,m1h+m2h̄〉/T = 〈c, ρ〉.

Since β is continuous, we have α(c) = sup〈c, ρ〉 − β(ρ) ≤ E, where the supremum is
taken over all rational ρ’s. Since the equality is achieved at ρ = h, we conclude that
α(c) = E.

By Lemma C.1, statement 2, the measure supported on γEh is c−minimal, and
hence c ∈ LFβ(λEh h).
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Recall h, h̄ form a basis in H1(T 2,Z) and the dual of h̄ is perpendicular to h and
denoted by h⊥.

Lemma C.3. For any c ∈ lE(h)h∗ + [d−E, d
+
E]h⊥ and m1,m2 ∈ Z, we have

lE(m1h+m2h̄)− 〈c,m1h+m2h̄〉 ≥ 0.

Moreover, if c ∈ lE(h)h∗ + (d−E, d
+
E)h⊥ and m1,m2 6= 0, there exists a > 0 such that

lE(m1h+m2h̄)− 〈c,m1h+m2h̄〉 > a > 0.

Proof. The inequality for m1 = 0 or m2 = 0 follows from positive homogeneity of lE.
We now assume m1,m0.

If m2 > 0, for a sufficiently large n ∈ N, have

lE(m1h+m2h̄)− 〈c,m1h+m2h̄〉
= lE(m1h+m2h̄) + lE((nm2 −m1)h)− 〈c, nm2h+m2h̄〉
≥ lE(m2(nh+ h̄))− 〈c,m2(nh+ h̄) = m2(lE(nh+ h̄)− 〈c, nh+ h̄〉)
≥ lE(nh+ h̄)− 〈c, nh+ h̄〉.

Since
lE(nh+ h̄)− 〈c, nh+ h̄〉 = lE(nh+ h̄)− nlE(h)− 〈c, h̄〉,

for c ∈ lE(h)h∗ + (d−E, d
+
E)h⊥, then there exists a > 0 such that for sufficiently large

n,
lim
n−→∞

lE(nh+ h̄)− nlE(h)− 〈c, h̄〉 > a.

For m2 < 0, we replace the term (nm2 −m1)h with (−nm2 −m1)h in the above
calculation.

We have the following characterization of the Aubry sets for the cohomologies
contained in the channel.

Proposition C.4. For any E > 0 and c ∈ lE(h)h∗ + (d−E, d
+
E)h⊥, we have

AH(c) = γEh

if E is not a bifurcation value and

AH(c) = γEh ∪ γ̄Eh

if E is a bifurcation value.
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Proof. We first consider the case when E is not a bifurcation value. Since γEh is
the unique closed shortest geodesic, if AH(c) ⊇ γEh , it must contain an infinite orbit
γ+. Moreover, as γEh supports the unique minimal measure, the orbit γ+ must be
biasumptotic to γEh . As a consequence, there exists Tn, T

′
n −→∞ such that γ+(−Tn)−

γ+(T ′n) −→ 0. By closing this orbit using a geodesic, we obtain a closed piece-wise
geodesic curve γn. Moreover, since γ+ has no self-intersection, we can arrange it such
that γn also have no self-intersection. We have∫

(L− c · v + α(c))(dγn) =

∫
(L+ E)(dγn)− 〈c, [γn]〉 = lE(γn)− 〈c, [γn]〉.

By the definition of the Aubry set, and take limit as n −→∞, we have

lim
n−→∞

lE(γn)− 〈c, [γn]〉 = 0.

Since γn has no self intersection, we have [γn] is irreducible. However, this contradicts
w the strict inequality obtained in Lemma C.3.

We now consider the case when E is a bifurcation value, and there are two shortest
geodesics γEh γ̄Eh . Assume by contradiction that AH(c) ⊇ γEh ∪ γ̄Eh . For mechanical
systems on T2, the Aubry set satisfies an ordering property. As a consequence, there
must exist two infinite orbits γ+

1 and γ+
2 contained in the Aubry set, where γ+

1 is
forward asymptotic to γEh and backward asymptotic to γ̄Eh , and γ+

2 is forward asymp-
totic to γ̄Eh and backward asymptotic to γEh . Then there exists Tn, T

′
n, Sn, S

′
n −→ ∞

such that
γ+

1 (T ′n)− γ+
2 (−Sn), γ+

2 (S ′n)− γ+
1 (−Tn) −→ 0

as n −→ ∞. The curves γ+
1,2, γEh , γ̄Eh are all disjoint on T2. Similar to the previous

case, we can construct a piecewise geodesic, non-self-intersecting closed curve γn with

lim
n−→∞

∫
(L− c · v + α(c))(dγn) = 0.

This, however, lead to a contradiction for the same reason as the first case.

C.3 The width of the channel

We show that under our assumptions, the “width” of the channel

d+
E(h)− d−E(h) = inf

n∈N
(lE(nh+ h̄)− lE(nh)) + inf

n∈N
(lE(nh− h̄)− lE(nh)),

is non-zero.
The following statement is a small modification of a theorem of Mather (see [59]),

we provide a proof using our language.
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Proposition C.5. For E > 0, assume that the torus T2 is not completely foliated by
shortest closed gE−geodesics in the homology h. Then

d+
E(h)− d−E(h) > 0.

Remark C.1. This is the last item of Theorem 28.

Proof. Let M denote the union of all shortest closed gE−geodesics in the homology
h. We will show that M 6= T2 implies d+

E(h) − d−E(h) > 0. Omit h dependence. For
n ∈ N , denote

dn = (lE(nh+ h̄)− lE(nh)) + (lE(nh− h̄)− lE(nh)).

Assume by contradiction that inf dn = lim dn > 0.
Let γ0 be a shortest geodesic in homology h. We denote γ̃0 its lift to the universal

cover, and use “≤” to denote the order on γ̃ defined by the flow. Let γ1 and γ2 be
shortest curves in the homology nh+ h̄ and nh− h̄ respectively, and let T1 and T2 be
their periods. γi depends on n but we will not write it down explicitly.

Let γ̃i, i = 0, 1, 2 denote a lift of γi to the universal cover. Using the standard
curve shortening lemma in Riemmanian geometry, it’s easy to see that γ̃i and γ̃j may
intersect at most once. Let a ∈ γ0 ∩ γ1 and lift it to the universal cover without
changing its name. Let b ∈ γ0 ∩ γ2, and we choose a lift in γ̃0 by the largest element
such that b ≤ a. We now choose the lifts γ̃i of γi, i = 1, 2, by the relations γ̃1(0) = a
and γ̃2(T2) = b.

We have for 1 ≤ k ≤ 2n, γ̃2(T2) + kh > γ̃1(0) and

γ̃2(0) + kh = b− (nh− h̄) + kh ≤ a+ nh+ h̄ = γ̃1(T1).

As a consequence, γ̃2 + kh and γ̃1 has a unique intersection. Let

xk = (γ̃2 + kh) ∩ γ̃1, x̄k = (γ̃2 + (k − 1)h) ∩ (γ̃1 − h).

We have xk is in increasing order on γ̃1 and x̄k is in decreasing order on γ̃2. Define

γ̃∗k = γ̃2|[x̄k+1, x̄k] ∗ γ̃1|[xk, xk+1],

and let γ∗k be its projection to T2. We have [γk] = h and

2n∑
k=1

lE(γ∗k) = lE(γ1) + lE(γ2).

Using lE(γk) ≥ lE(h) and lE(γ1) + lE(γ2) ≤ 2nlE(h) + dn, we obtain

lE(h) ≤ lE(γk) ≤ lE(h) + dn.
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Any connected component in the completement ofM is diffeomorphic to an annulus.
Pick one such annulus, and let b > 0 denote the distance between its boundaries. Since
γ1 intersects each boundary once, there exists a point yn ∈ γ1 such that d(yn,M) =
b/2. Since γ1 ⊂

⋃
k γ
∗
k there exists some γ∗k containing yn. By taking a subsequence if

necessary, we may assume yn −→ y∗. Using the above discussion, we have

lE(h) ≤ inf
y∗∈γ,[γ]=h

lE(γ) ≤ inf
n
lE(h) + dn = lE(h).

Using a similar argument as in the proof of Lemma A.11, we conclude that there
exists a rectifiable curve γ∗ containing y∗ with lE(γ∗) = lE(h), hence γ∗ is a shortest
curve. But y∗ /∈M, leading to a contradiction.

Proposition C.5 clearly applies to the slow system as there are either one or two
shortest geodesics.

C.4 The case E = 0

We now extend the earlier discussions to the case E = 0. While the functions a±E is
not defined at E = 0, the functions d±E is well defined at E = 0. Recall h, h̄ form a
basis in H1(T 2,Z) and the dual of h̄ is perpendicular to h and denoted by h⊥.

Proposition C.6. The properties of the channel and the Aubry sets depends on the
type of homology h.

1. Assume h is simple and critical.

(a) d+
0 (h)− d−0 (h) > 0.

(b) l0(h)h∗ + [d−0 (h), d+
0 (h)]h⊥ ⊂ LFβ(0).

(c) For c ∈ l0(h)h∗ + [d−0 (h), d+
0 (h)]h⊥, we have γ0

h ⊂ AHs(c);

For c ∈ l0(h)h∗ + (d−0 (h), d+
0 (h))h⊥, we have γ0

h = AHs(c).

2. Assume h is simple and non-critical.

(a) d+
0 (h)− d−0 (h) > 0.

(b) l0(h)h∗ + [d−0 (h), d+
0 (h)]h⊥ ⊂ LFβ(0).

(c) For c ∈ l0(h)h∗ + [d−0 (h), d+
0 (h)]h⊥, we have γ0

h ∪ {0} ⊂ AHs(c);

For c ∈ l0(h)h∗ + (d−0 (h), d+
0 (h))h⊥, we have γ0

h ∪ {0} = AHs(c).

(d) The functions d±E(h) is right-continuous at E = 0.

3. Assume h is non-simple and h = n1h1 + n2h2, with h1, h2 simple.
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(a) d+
0 (h) = d−0 (h). Moreover, let c∗(h) = lE(h1)h∗1 + lE(h2)h∗2, where (h∗1, h

∗
2)

is the dual basis to (h1, h2), then

c∗ = lE(h)h∗ + d±0 (h)h⊥,

where h⊥ is a unit vector perpendicular to h.

(b) γ0
h1
∪ γ0

h2
= AHs(c∗).

(c) d+
0 (h1)− d−0 (h1) > 0 with

lE(h1)h∗1 + d+
0 (h1)h∗2 = c∗.

Before proving Proposition C.6, we first explain how the proof of Proposition C.5
can be adapted to work even for E = 0.

Lemma C.7. Assume that there is a unique g0−shortest geodesic in the homology h.
Then

d+
0 (h)− d−0 (h) > 0.

Proof. We will try to adapt the proof of Proposition C.5. Let γ0, γ1 and γ2 be shortest
geodesics in homologies h, nh + h̄ and nh − h̄, respectively. We choose an arbitrary
parametrization for γi on [0, T ]. Note that the parametrization is only continuous in
general.

The proof of Proposition C.5 relies only on the property that lifted shortest
geodesics intersects at most once. For E = 0, we will rely on a weaker property.

Let γ̃i be the lifts to the universal cover R2. The degenerate point {0} lifts to the
integer lattice Z2. Since g0 is a Riemannian metric away from the integers, using the
shortening argument, we have: if γi intersect γj at more than one point, then either
the intersections occur only at integer points, or the two curve coincide on a segment
with integer end points.

Let a0 ∈ γ0 ∩ γ1 and let γ̃0 and γ1 be lifts with γ̃0(0) = γ̃1(0) = a0. If a /∈ Z2,
then it is the only intersection between the two curves. If a0 ∈ Z2, we define a′0
to be the largest intersection between γ̃0|[0, T ) and γ̃1 according to the order on γ̃0.
a′0 is necessarily an integer point, and since a′0 ∈ γ̃0, there exists n1 < n such that
a′0 − a0 = n0h. Moreover, using the fact that γ̃0 is minimizing, we have

l0(γ̃0|[a0, a
′
0]) = l0(γ̃1|[a0, a

′
0]).

We now apply a similar argument to γ̃0 + h̄ and γ̃1. Let a1 = γ̃0(T ) + h̄ = γ̃1(T )
and let a′1 be the smallest intersection between γ̃0|(0, T ] and γ̃1. Then there exists
n1 ∈ N , n0 + n1 < n, such that a1 − a′1 = n1h. Moreover,

l0((γ̃0 + h̄)|[a′1, a1]) = l0(γ̃1|[a′1, a1]).
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Let η̃1 = γ̃1|[a′0, a′1] and η1 be its projection. We have [η] = (n − n0 − n1)h + h̄ =:
m1h+ h̄, and

l0(η1)−m1l0(h) = l0(γ1)− nl0(h).

The curve η1 has the property that it intersects γ0 only once. Apply the same argu-
ment to γ2, we obtain a curve η2 with [η2] = m2h− h̄, and

l0(η2)−m2l0(h) = l0(γ2)− nl0(h).

To proceed as in the proof of Proposition C.5, we show that if η̃1 and η̃2 are lifts
of η1 and η2 with the property that

η̃1(0), η̃2(T ) ∈ {γ̃0(t)}, η̃1(T ), η̃2(0) ∈ {γ̃0(t) + h̄},

then η̃1 and η̃2 intersects only once. Indeed, there are no integer points between γ̃0

and γ̃0 + h̄.
We have

l0(η1)−m1l0(h) + l0(η2)−m2l0(h) = dn,

where dn is as defined in Proposition C.5. Assume inf dn = 0, proceed as in the proof
of Proposition C.5, we obtain curves [γk] = h, positive distance away from γ0, such
that

l0(h) ≤ l0(γk) ≤ l0(h) + dn.

This leads to a contradiction.

Proof of Proposition C.6. Case 1, h is simple and critical.
(a) This follows from Lemma C.7.
(b) We note that Lemma C.3 depends only on positive homogeinity and sub-

additivity of lE(h), and hence applies even when E = 0. We obtain for c ∈ l0(h)h∗ +
[d−0 (h), d+

0 (h)]h̄∗

l0(h′)− 〈c, h′〉 ≥ 0, ∀h′ ∈ H1(T2,Z2).

Since lE(h) is strictly increasing, we obtain lE(h′) − 〈c, h′〉 > 0 for E > 0. By
Lemma C.1, there are no c−minimal measures with energy E > 0. As a consequence,
α(c) = 0. Since {0} is a c−minimal measure with rotation number 0, we conclude
l0(h)h∗ + [d−0 (h), d+

0 (h)]h̄∗ ⊂ LFβ(0).
(c) Since we proved α(c) = 0, the first conclusion follows from Lemma C.1. For

the second conclusion, we verify that the proof of Proposition C.4 for non-bifurcation
val applies to this case.

(d) The set function [d−E(h), d+
E(h)] is upper semi-continuous at E = 0 from the

right, by definition We will show that it is continuous. Assume by contradiction that

[lim inf
E−→0+

d−E(h), lim sup
E−→0+

d+
E(h)] ( [d−0 (h), d+

0 (h)].
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Then there exists c ∈ l0(h)h∗ + (d−0 (h), d+
0 (h))h̄∗ and

c(E) /∈ lE(h)h∗ + [d−E(h), d+
E(h)]h⊥

such that c(E) −→ c. By part (c), the Aubry set AHs(c) supports a unique minimal
measure. By Proposition 10.6, the Aubry set is upper semi-continuous in c. Hence any
limit point of A(c(E)) as E −→ 0 is in A(c). This implies that Ã(c(E)) approaches
γEh as E −→ 0. Since γEh is the unique closed geodesic in a neighbourhood of itself
(see Remark 3.3), we conclude that Ã(c(E)) = γEh for sufficiently small E. But this
contradicts with c(E) /∈ lE(h)h∗ + [d−E(h), d+

E(h)]h⊥

Case 2, h is simple and non-critical.
(a) This follows from Lemma C.7.
(b) The proof is identical to case 1.
(c) For the first conclusion, we can directly verify that γ0

h ⊂ A(c) and {0} ⊂ A(c).
For the second conclusion, we note that proof of Proposition C.4 for bifurcation values
applies to this case.

Case 3, h is non-simple with h = n1h1 + n2h2.
(a) Assume that h̄ = m1h1 + m2h2 for some m1,m2 ∈ Z. For sufficiently large

n ∈ N, we have nh± h̄ ∈ Nh1 + Nh2. As a consequence,

l0(nh± h̄)− l0(nh)

= (nn1 ±m1)l0(h1) + (nn2 ±m2)l0(h2)− (nn1l0(h1) + nn2l0(h2))

= ±m1l0(h1)±m2l0(h2).

We obtain d+
0 (h)− d−0 (h) = 0 by definition.

We check directly that
l0(h)− 〈c∗, h〉 = 0.

Since l0(h)h∗+ d−0 (h)h⊥ = l0(h)h∗+ d+
0 (h)h⊥ is the unique c with this property. The

second claim follows.
(b) We note that any connected component of the complement to γ0

h1
∪ γ0

h2
is

contractible. If AHs(c) has other components, the only possibility is a contractible
orbit bi-asymp to {0}. However, such an orbit can never be minimal, as the fixed
point {0} has smaller action.

(c) The statement d+
0 (h1) − d−0 (h1) > 0 follows from part 1(a). for the second

claim, we compute

d+
0 (h1) = inf

n
l0(nh1 + h2)− l0(nh2) = l0(h2)

and the claim follows.
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D Transition between single and double resonance

Key Theorems 8 and 9 proved forcing equivalence for particularly chosen cohomology
classes at single and double resonances. Given a single resonance Γk, the cohomology
classes at single resonance is chosen to be a passage segment, namely, connected
components of

Γk \
⋃

p0∈ΣK

UĒ√ε(p0),

where ΣK is the collection of strong double resonances. Let p0 ⊂ Γk∩Γk′ (k = (k1, k0),
k′ = (k′1, k0)) be a strong double resonance, on the neighborhood U2Ē

√
ε(p0), the

cohomology class is chosen to be a curve

ch(E) = p0 + (BT )−1c̄h(E)
√
ε,

where

B =

[
k1

k′1

]
, c̄h(E) ∈ intLFβ(λEh h),

see sections B and C. The cohomology c̄h corresponds to the cohomology of the slow
mechanical system Hs. In order to prove the forcing equivalence of all cohomology
class, we will modify the single resonance cohomology class on the set

U2Ē
√
ε(p0) \ UĒ√ε(p0)

so that the choice of cohomology classes coincides with that of double resonance.
We first choose a particular parametrization for the curve Γk ∩ U2Ē

√
ε(p0).

Lemma D.1. For sufficiently small ε0, there exists a function p∗ : R× [0, ε0] −→ R2,
such that

Γk ∩ U2Ē
√
ε(p0) = p0 + p∗(λ, ε),

p∗(0, ε) = 0, and

p∗(λ, ε) = (B∂2
ppH0(p0))−1

[
0

λ
√
ε

]
+O(ε).

Proof. Γk is defined by the relation k · (∂pH0(p), 1) = 0. Using k · (∂pH0(p0), 1) = 0,
we have k1 · (∂pH0(p)− ∂pH0(p0)) = 0. We have

k1 · ∂2
ppH0(p0)(p− p0) +O(p− p0)2 = 0, and[

0 1
]
B∂2

ppH0(p0)(p− p0) +O(p− p0)2 = 0.

using p− p0 = O(
√
ε), we have

p− p0 = (B∂2
ppH0(p0))−1

[
0

λ
√
ε

]
+O(ε).
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We now describe the modification of the cohomology class:

• On the set
Γk ∩ U2Ē

√
ε(p0) \ UĒ√ε(p0),

we replace p∗(λ, ε) by p∗(λ, 0).

Remark D.1. Both Key Theorem 4 and 5 applies with small perturbations to the
cohomolgy class. For sufficiently small ε0 = ε0(Γ∗, H0, λ) and 0 < ε ≤ ε0, the theorems
still apply for the modified cohomolgy.

Denote I∗(p) = (BT )−1p∗(λ, 0)/
√
ε, we have the following statement.

Proposition D.2. There exists M > 0 such that for λ > M , there exists λ′ > 0 such
that

I∗(λ) ∈ intLFβ(λ′h).

Remark D.2. We have the freedom to choose c̄h(E) as long as it is contained in the
channel. Proposition D.2 implies that for sufficiently large E, we can choose ch(E)
to be on the curve I∗(λ).

Proof. The system Hε can be analyzed from two aspects, single resonance and double
resonance. We first attempt to unify notations in both regimes.

When treated as single resonance, the system admits a single resonance normal
form

NSR
ε = Hε ◦ ΦSR

ε = H0 + εZSR(θs, p) +O(εδ),

where θs = k · (θ, t) is the slow variable defined by the resonance Γk. The O(·) term
is in terms of the rescaled C2 norm C2

I .
When treated as double resonance, we have two slow variables θs and θsf =

k′ · (θ, t). The θsf is considered fast in single resonance regime and is called θf in Key
Theorem 5. The system admits a double resonance normal form

NDR
ε = Hε ◦ ΦDR

ε = H0 + εZDR(θs, θsf , p) +O(ε
3
2 ).

Via a linear coordinate ΦL change and a rescaling S, we have

NDR
ε ◦ ΦL ◦ S = H0(p0)/ε+Hs +O(ε

1
2 ).

Working backwards, we have

NDR
ε − (H0(p0)/ε+Hs) ◦ S−1 ◦ Φ−1

L = O(ε
3
2 ).

Define
H̃ε = (H0(p0)/ε+Hs) ◦ S−1 ◦ Φ−1

L ◦ (ΦDR
ε )−1 ◦ ΦSR

ε ,

195



we have
H̃ε −NSR

ε = O(ε
3
2 ).

We apply Key Theorem 5 to the system H̃ε with cohomology c = p0 + p∗(λ, 0), and
obtain that the Mañe set N (c) is a graph over the θsf component. Taking it back
via the coordinate change, we obtain that the Mañe set N (c̄) for c̄ = I∗(λ) is a
graph over the θsf component as well. In this case, the only possibility is that it is
a periodic orbit with homology h = (0, 1). In view of Proposition C.5, this means
c̄ ∈ intLFβ(λ′h) for some λ′ > 0.
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E Notations

Due to usage of a variety of techniques in this paper we feel it is useful to summarize
notations of objects used in this paper.

θ = (θ1, θ2) ∈ T2 global angle variables.
p = (p1, p2) ∈ B2 global action variables.
~k = (~k1, k0) an integer vector defining a resonance, it belongs to (Z2 \

0)× Z.

Γ = Γ~k a resonance segment with resonant relation given by ~k.
ps∗(p

f ) an implicit smooth function smoothly parametrizing Γ =
{(ps∗(pf ), pf )}, where pf varies in a certain interval.

p∗(p
f ) = ps∗(p

f ), pf ) H0(p∗(p
f )) ≡ const, where again pf varies in a certain in-

terval.
Sr the unit sphere of Cr functions.

θs ∈ T2 slow angle associated to a resonance Γ~k, θ
s = ~k · (θ, t).

Z(θs, p) a (single) averaged potential associated to a resonance Γ~k.
Γ∗ a connected diffusion path consisting of subsegments of Γj =

Γ~kj ’s.
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USR the set of perturbations satisfying single resonant non-
degeneracy conditions [G0]-[G2].

UλSR the set of perturbations satisfying single resonant non-
degeneracy conditions [G0]-[G2] with non-degeneracy pa-
rameter λ > 0.

UEDR the set of perturbations satisfying double resonant non-
degeneracy conditions [DR1]-[DR3], high energy.

U eDR the set of perturbations satisfying double resonant non-
degeneracy conditions [A0]-[A4], low energy.

c = c(H0, r,Γ
∗) additional constant for upper bounds.

K =
[
δ4/(r−3)

c(H0,r,~k

]
+ 1 integer parameter dividing integer vectors ~k into those ei-

ther producing or not strong double resonances and of non-
degeneracy. See introduction.

ΣK,~k the set of punctures of Γ~k by strong double resonances.

(θs, θf ) ∈ Ts ' T2 angle variable near a resonance segment, where θs = ~k1 ·θ+
k0 t and θf = ~k′1 · θ + k′0 t is transversal to it, i.e. (~k1, k0) 6‖
(~k′1, k

′
0).

λ > 0 quantitative non-degeneracy of global minima θi(p
f ) of the

averaged potential Z(θsi , p
s
∗(p

f ), pf ) of the perturbation H1

along the resonance Γ~k.
δ = δ(H0, H1, r,Γ

∗) parameter of extendability of maxima θi(p
f ) beyond bifur-

cation values.
b = b(H0, H1, r,Γ

∗) some times we need an additional parameter 0 < b < δ to
characterize extendability.

κ = κ(Hs) > 0 quantitative non-degeneracy for conditions [A1]-[A4] to
characterize persistence of normally hyperbolic invariant
cylinders near double resonance for low energy (see section
3.4).

[amin, amax] partition of resonant segment into bifurcation free inter-
vals with a unique global minimum of averaged potential
Z(θs, p), i.e. [amin, amax] = ∪Nj=1[aj, aj+1].

C(j)
i a crumpled normally hyperbolic cylinder associated to a res-

onance Γj and located “over” the i-th interval of partition
of [amin, amax].

V
(j)
i a tube neighborhood of a crumpled normally hyperbolic

cylinder C(j)
i .

A 2 maxp∈B2,v∈R2, |v|=1〈∂2
ppH0(p)v, v〉.

p0 ∈ Γ~k ∩ Γ~k′ denotes a strong double resonance.
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Dρ Dρ = T2×Uρ(p0)×T×R — the domain of validity of normal
form at a double resonance, where ρ = Ē

√
ε.

d denotes radius of the ball Bd of the origin of the slow two
torus Ts × R2 that decomposes dynamics into local and
global.

ϕs = (ϕss, ϕsf ) angle coordinates near a strong double resonance defined for
action p being in a O(

√
ε)-neighborhood of p0.

Is = (Iss, Isf ) conjugate to angles near a strong double resonance defined
for action p being in a O(

√
ε)-neighborhood of p0.

K(Is)− U(ϕs) slow mechanical system obtained by averaging near p0 and
given by a kinetic energy K(Is) and potential U(ϕs), see
(54).

E0 = E0(H0, H1) small energy of this mechanical system with the saddle at
the origin dominating behavior of homoclinics (see Key The-
orem 3 item two).

Ē(H0, H1) large energy of this mechanical system with potential being
small perturbation of kinetic energy.

M = Ē/2 parameter of size of neighborhoods in section 7.1.
0 < e < E0 very small energy of this mechanical system with hyper-

bolicity of the saddle at the origin dominating most con-
stracting/expanding directions of NHIMs and certain non-
degeneracies of the geodesic flow ρ0 hold.

h ∈ H1(Ts,Z) integer homology class of Ts = T2.

gE the Jacobi metric given by gE =
√

2(E + U(ϕs)).
γEh minimal geodesic of Mapertuis metric in homology class h.
E0 > e small energy of the mechanical system so that dynamics of

the origin start to dominate. In particular, there are no
bifurcations of minimal geodesics γEh in E.

[E0, Ē] partition of slow energies [E0, Ē] = ∪Nj=1[Ej, Ej+1] into in-
tervals with a unique globally minimizing geodesic (except
the points).

MEj ,Ej+1

h Normally hyperbolic invariant manifold with boundary for
mechanical system, given by the union of minimal geodesics
∪E∈[Ej−δ,Ej+1+δ]γ

E
h .

MEj ,Ej+1

h,ε Normally hyperbolic weakly invariant manifold with bound-
ary for the original Hamiltonian, where weakly invariant
mean that the vector field of the original Hamiltonian is
tangent to MEj ,Ej+1

h,ε . This does not exclude possibility of
“leak” through the boundary.
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ME0,s
h Normally hyperbolic invariant manifold containing a critical

simple loop for the mechanical system.

ME0,s
h,ε Normally hyperbolic weakly invariant manifold containing

a critical simple loop for the original system.
oε perturbed saddle periodic orbit near the double resonance.
I Involution for the mechanical system (ϕs, Is) 7→ (ϕs,−Is).
α(c) Mather’s α-function. Sometimes subindex H indicates de-

pendence on the underlying Hamiltonian.
β(h) Mather’s β-function. Sometimes subindex H indicates de-

pendence on the underlying Hamiltonian.
LFβ the Legendre-Fenichel transform. It maps H1(M,R) into

nonempty, compact, subsets of H1(M,R).
L the Legendre diffeomophism conjugating the Hamiltonian

flow with the corresponding Euler-Lagrange flow.
LH the dual Lagrangian associated to a Tonelli Hamiltonian.
γEh a shortest geodesic in homology class h and energy E, where

gE is the Jacobi metric associated to the mechanical system
Hs = K − U .

T (γEh ) period of γEh under this parametrization.
λEh inverse of period λEh = 1/(T (γEh )).
a±E(h) functions characterizing width of the channel of cohomolo-

gies (see Theorem 28).
d±E(h) width of the channel along h⊥ direction, defined in (??). We

also show d±E(h) = a±E(h).⋃
E>0 LFβ(λEh h) the channel of cohomologies associated to an integer homol-

ogy class h ∈ H1(T2,Z). For types of channels see Fig-
ures 13 and 14).

h, h̄ a basis of homology in H1(T2,Z), with the dual basis h∗, h̄∗

having property 〈h, h̄∗〉 = 0.
h⊥ denotes h̄∗ to emphasise the latter condition.
LH,c the shifted Lagrangian L = LH − c · v − αH(c).
AH,c(x, t; y, s) the action functional minimizing action among curves con-

necting (x, t), (y, s) ∈M×T. See section 10.1 for definitions.
c̄h(E) cohomology of the minimal geodesic for homology h and

energy E of the mechanical system.
ch(E) cohomology of the original system Hε corresponding to

c̄h(E).
cλh cohomology of the original system Hε corresponding to

c̄h(0).
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c∗h(h) a pinching point for a non-simple h (see Figure 14).
b̄h1(E) modification of the cohomology path c̄h1(E) with simple ho-

mology class h1 to satisfy certain conditions relative to non-
simple homology h (see Proposition 4.2).

c̄eh1(E) = b̄h1(E) a different notation for modification of the cohomology path
c̄h1(E).

ΦL linear rescaling near double resonance.
Γsri choice of cohomology classes near a single resonance.
Γdri choice of cohomology classes near a double resonance.

Γ
0,E0/Ē
h,s choice of cohomology along a simple cylinder.

Γ
e,E0/Ē
h,f choice of cohomology along a non-simple (flower) cylinder.

ϕts(θ, p) the time (t− s) map of the Hamiltonian vector field H with
the initial time s.

ϕt(θ, p) the time (t− s) map of the Hamiltonian vector field H with
the initial time 0.

c ∈ H1(M,R) cohomology class.

M̃(c) ⊂ TM the (discrete) Mather set with cohomology c.
M(c) ⊂M the (discrete) projected Mather set with cohomology c.

M̃H(c) ⊂ TM × T the (continuous) Mather set with cohomology c.
MH(c) ⊂M × T the (continuous) projected Mather set with cohomology c.

Ã(c) ⊂ TM the (discrete) Aubry set with cohomology c.
A(c) ⊂M the (discrete) projected Aubry set with cohomology c.

ÃH(c) ⊂ TM × T the (continuous) Aubry set with cohomology c.
AH(c) ⊂M × T the (continuous) projected Aubry set with cohomology c.

Ñ (c) ⊂ TM the (discrete) Mañe set with cohomology c.
N (c) ⊂ TM the (discrete) projected Mañe set with cohomology c.

ÑH(c) ⊂ TM × T the (continuous) Mañe set with cohomology c.
NH(c) ⊂ TM × T the (continuous) projected Mañe set with cohomology c.
Tη : C0(M,R) 	 the Lax-Oleinik mapping.
η a closed one form on T ∗M , usually with cohomology class

c.
u a semi-concave function.
dγ(τ) dγ(τ) = (γ(τ), γ̇(τ), τ) the one jet of a C1-curve γ(τ).
Gη,u an overlapping pseudograph given by {(x, ηx + dux) : x ∈

M such that dux exists}.
c(G) cohomology class of a pseudograph G = Gη,u for some closed

one-form η and a semi-concave function u, given by coho-
mology of η.
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S the set of semi-concave functions on M .
P = H1(M,R)× S/R the set of overlapping pseudographs.
Φ : P −→ P a unique mapping in the space of pseudographs.
hc(x, y) a barrier function with a given cohomology c ∈ H1(M,R),

two points x, y ∈ M and integer time increments. Some-
times subindex H indicates dependence on the underlying
Hamiltonian.

hc(x, t; y, s) a time-dependent barrier function with a given cohomology
c ∈ H1(M,R) and two points (x, t), (y, s) ∈ M × T. Some-
times subindex H indicates dependence on the underlying
Hamiltonian.

O(c) a family of open sets {O(c)}c outside of proper cylinders
M·
· supporting perturbations making barrier functions hc

generic (See section 11.4).
[f ]ω0 averaging of a function at a double resonance ω0 = ω0(p0) =

∂pH0(p0) with p0 = Γ~k ∩ Γ~k′ .
Nε := Hε ◦ Φε the perturbed Hamiltonian Hε = H0 + εH1 in the normal

form.
ΦL a linear symplectic change of coordinates at a double reso-

nance p0.
N s
ε = Nε ◦ ΦL the Hamiltonian Nε written in the slow angle coordinates

(ϕs, ps) after the symplectic change of coordinates ΦL.
Hs
ε = S2 ◦ S1(N s

ε ) the Hamiltonian N s
ε after further rescalings S2◦S1 in actions

and time. See section B.2 for details.
h, h1 ∈ H1(T2,R) are homology classes. Usually h is a non-simple homology

and h1 is simple (see definition 3.1).
L a uniform family of Tonelli Lagrangians.
H a uniform family of Tonelli Hamiltonians.
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