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Abstract. The purpose of this paper is twofold. First we show that the dynamics of
a Sun-Jupiter-Comet system and under some simplifying assumptions has a semi-infinite

region of instability. This is done by reducing the dynamics to the study of a certain exact

area preserving (EAP) map and showing applicability of Aubry–Mather theory. Second,
we give a sufficient “cumulative twist” condition to verify that an EAP map is an EAP

twist (EAPT) map in a certain coordinate system. We construct such a coordinate system

by “spreading the cumulative twist” which arises from the long term dynamics of system.
These results along with the prequel paper [GK1] show that the aforementioned EAPT

map admits an application of Aubry–Mather theory and has no invariant curves in a

certain semi-infinite region. This, in particular, leads to existence of orbits of the Comet
with initial eccentricity 0.66 and “visible in the Solar system” (see figure1) which get

ejected to infinity. Alternatively certain orbits of the Comet can come from infinity and be
captured so that they approach orbits of eccentricity 0.66 in the future. More generally,

Aubry–Mather theory implies that in the instability region above eccentricity 0.66 there

are all possible Chazy instabilities (see Section 1.1 for details).

1. Introduction

Poincaré return maps of Hamiltonian systems of 1.5 or 2 degrees of freedom are exact area
preserving (EAP) maps of a cylinder A = T × R. For exact area preserving twist (EAPT)
maps there is Aubry-Mather theory which describes much of the dynamics. The EAP prop-
erty is invariant under canonical coordinate changes. Twist however is not. For a concrete
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Figure 1. Ellipse of Eccentricity e = 0.66
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Hamiltonian system it is often a problem to determine a coordinate system with the twist
property. In this paper simple sufficient conditions are given to guarantee that an EAP map
is actually an EAPT map. We use the method of spreading cumulative twist to prove this
result. The main application is construction of instabilities for the restricted circular planar
three body problem (RCP3BP). See Theorem 1.2 and Corollary 1.3.

Let us now consider the restricted circular planar three body problem (RCP3BP) with two
massive primaries, which we call the Sun and Jupiter, that perform uniform circular motion
about their center of mass (see fig. 2). The system is normalized to mass one so the Sun has
mass 1−µ and Jupiter has mass µ. We further normalize so that Jupiter rotates with period
2π, and the distance from the Sun to Jupiter is constant and also normalized to one. Our goal
is to understand the behavior of the massless comet whose position in polar coordinates is
denoted (r, ψ). It is convenient to consider the system in a rotating frame of reference which
rotates with unit speed in the same direction as Jupiter. In this system, the Sun and Jupiter
are fixed points on the x-axis corresponding to ψ = 0. We let (r, ϕ) = (r, ψ − t) denote the
motion of the comet in the rotating frame of reference.

Figure 2. The Sun-Jupiter-Comet system

The RCP3BP has a conserved quantity known as the Jacobi constant.

J(r, ϕ, ṙ, ϕ̇) =
r2

2
+

µ

dJ
+

1− µ
dS

− ṙ2 + r2ϕ̇2

2
=: U(r, ϕ)− ṙ2 + r2ϕ̇2

2
,

where dJ and dS are distances to Jupiter and the Sun respectively.

(1)
dJ(r, ϕ) :=

(
r2 − 2(1− µ)r cos(ϕ) + (1− µ)2

) 1
2

dS(r, ϕ) :=
(
r2 + 2µr cos(ϕ) + µ2

) 1
2

Denote by
H(J0) := {(r, ϕ) : U ≥ J0}

a set of points in the plane of motion (configuration space). Points in this set are called the
Hill regions associated to the Jacobi constant J0. These regions are the set of the admissible
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Figure 3. Disjoint Hill Regions

locations of the comet in the (r, ϕ) plane (e.g. shaded regions in Figure 3).

Fixing the Jacobi constant restricts dynamics to an invariant energy surface, denoted

S(J0) := {(r, ϕ, ṙ, ϕ̇) : J(r, ϕ, ṙ, ϕ̇) = J0}
Most of these surfaces are smooth 3-dimensional manifolds. Denote by RCP3BP (µ, J0) the
RCP3BP with Sun-Jupiter mass ratio µ and dynamics restricted to the surface S(J0).

It turns out that for µ ≤ 10−3 and J0 ≥ 1.52 the set H(J0) consists of three disjoint
connected components (see fig. 3): a region around the Sun called the inner Hill region, a
region around Jupiter called the lunar Hill region, and non-compact region called the outer
Hill region. The boundary of these regions can be found by considering the “zero velocity”
curves which are on the boundary of the Hill regions [AKN]. In this paper we consider
only orbits contained in the outer Hill region, denoted by Hout(J0). For convenience, denote
Sout(J0) = Hout(J0)∩S(J0) and when dynamics in Sout(J0) is considered, we refer exclusively
to the case when the outer Hill region is disjoint from the other two.

Lemma 1.1. If an orbit (r, ψ)(t) in Hout(J0) makes more than one complete rotation about
the origin, e.g. |ψ(T )− ψ(0)| > 4π for some T > 0, then J2

0
2 − 8µ ≤ r(t) for all 0 ≤ t ≤ T .

This lemma is proven in [GK1]. If an orbit makes less than one rotation, then one can
show that it escapes to infinity and we are not interested in these orbits.

As the position of Jupiter is at radius 1 − µ, then this lemma implies that for µ ≤ 10−3

and J0 ≥ 1.52 that if the comet is in an elliptic or parabolic orbit in the outer Hill region,
then it remains bounded away from collisions with the Sun and Jupiter by a distance at least
14.5% of the Sun-Jupiter distance.

For small µ and away from collisions, the RCP3BP is nearly integrable and can be approx-
imated with the Sun-Comet two body problem (2BP(SC)) corresponding to µ = 0. Elliptic
motions of a 2BP have two special points where the radial velocity ṙ of the comet is zero. The
perihelion is the closest point to the Sun1, denoted rperih, and the apohelion is the farthest
point from the Sun, denoted rapoh. Define the osculating (or instantaneous) eccentricity e(t)

1To be pedantic, the perihelion is technically defined to be a point in the orbit when r ≤ J2
0 and ṙ = 0.

It is not necessarily the closest point to the Sun. Rather it is when the comet is at the closest point to

the center of mass of the system. The Sun is within µ of the center of mass. It turns out that in our Solar
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for the RCP3BP to be the eccentricity of the comet in the unperturbed 2BP(SC) system with
initial conditions taken to be those of comet in the RCP3BP at time t.

Theorem 1.2. Consider the RCP3BP(µ, J0) with dynamics in Sout(J0). There exists a
function e∗ = e∗(µ, J0) and there exist trajectories of a comet with initial eccentricity e0 ≥
e∗(µ, J0) that increase in eccentricity to beyond one in a manner so that the comet escapes
the solar system to infinity. For example e∗(10−3, 1.8) ≤ 0.66.

An informal way to rephrase this Theorem is as follows: We show that the RCP3BP(µ, J0)
admits application of Aubry–Mather theory and has no invariant 2-dimensional tori of eccen-
tricity above e∗(µ, J0). Thus, there is a semi-infinite region of instability. There is a nice set
of conclusions from this theorem.

1.1. Chazy Motions. In 1922, Chazy gave a complete classification of the final motions
of the spatial 3BP, i.e. a description of all possible states that a three body problem can
approach as time goes to infinity. It turns out that there are seven types of final motions (see
section 2.4 [AKN]). For the RCP3BP there are only four possible types of motion that the
comet can exhibit. The four types of final motions can be defined as follows.

• H± (hyperbolic): r →∞, ṙ → c > 0 as t→ ±∞
• P± (parabolic): r →∞, ṙ → 0 as t→ ±∞
• B± (bounded): lim supt→±∞ r = RB <∞
• OS± (bounded): lim supt→±∞ r =∞, lim inft→±∞ r = ROS <∞

We say that the RCP3BP has a full set of Chazy motions if H− ∩H+, H± ∩ P∓, H± ∩B∓,
H±∩OS∓, P+∩P−, P±∩B∓, P±∩OS∓, B+∩B−, B±∩OS∓, OS+∩OS− are all nonempty
intersections, i.e. if any possible past and future of the comet’s motion can be realized by a
trajectory in the RCP3BP. A corollary to our main theorem states that this is possible for
comets in the outer Hill region on an energy surface with J0 ≥ 1.52. Additionally it possible
to spend arbitrarily long amounts of time in between approach of the final motions.

Corollary 1.3. There is a full set of Chazy instabilities in the region e ≥ e∗(µ, J0)

This paper is the second in the sequence of three papers on instabilities for the restricted
circular planar three body problem. In the prequel [GK1], we proved Theorem 1.2 under
the artificial constraint that e0 ≤ emax(µ, J0). For example emax(10−3, 1.8) = 0.96. In the
present work this constraint is removed.

The primary tools for this result are Aubry-Mather theory and rigorous numerical integra-
tion. It is not trivial to apply Aubry-Mather theory to the restricted circular planar three
body problem since the typical usage requires regions of instability to be invariant domains
and this does not hold in our case as there are orbits escaping to infinity. We stress that
trajectories are not constructed by means of numerical integration. After a mathematical
framework is developed, we derive a list of inequalities. To have an explicit value of e∗, we
use a computer to verify the range of validity of the inequalities, which are of two types:
analytic and dynamic. Analytic inequalities do not make use to integration of the equations
of motion. Dynamical inequalities do involve integration, but only over short periods of

System, the radius of the Sun is approximately 0.00089 the Sun-Jupiter distance, so we allow this slight abuse
in terminology for small µ [NASA].
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time. We use software which can handle both types of inequalities in a mathematically rigor-
ous way (see appendix 14).

Relying on Mather’s variational method ([Ma1],[X]) we show that there is a full set of
Chazy instabilities [AKN]. We would like to point out that existence of ejection orbits and
Chazy instabilities for RCP3BP was established by Llibre and Simo [LS] and later by [X2].
We estimate their e∗(0.001, 1.8) ≈ 0.995, however their motions belong to a horseshoe, while
ours have a fairly different nature: our orbits are local action minimizers and shadow closely
a collection of Aubry-Mather sets. The idea of constructing Chazy instabilities originated in
the famous paper by Sitnikov [Si] (see also [Mo2] for conceptual and transparent exposition
of Sitnikov’s work). Alekseyev constructed oscillatory motions for the full spatial three body
problem [Al].

2. Plan of the proof

Recall that motions of the comet in rotating polar coordinates (r, ϕ) can be viewed as the
solutions to Hamilton’s equations with a Hamiltonian of the form

(2) HPolar = H2BP (SC) + ∆H(r, ϕ) :=
P 2
r

2
+
P 2
ϕ

2r2
− Pϕ −

1
r

+ ∆H(r, ϕ;µ),

where Pr and Pϕ are the momenta variables conjugate to r and ϕ respectively (see e.g.
[AKN]) and ∆H is the µ-small perturbation of the associated Sun-Comet two body problem
(2BP(SC)). This system arises by initially considering the planar 3BP where the comet has
mass m, and letting m→ 0. With the notations in (1), ∆H can be written

∆H(r, ϕ;µ) :=
1
r
− µ

dJ
− 1− µ

dS
=
µ(µ− 1)(1 + 3 cos(2ϕ))

4r3
+O(

µ

r4
)

The proof starts with expressing equations of motion of RCP3BP in so called Delaunay
variables (formally defined in section 3). These are action-angle variables of the 2BP (SC)
or, equivalently, of RCP3BP with µ = 0, and have two angular variables ` and g in T, and
two action variables 0 ≤ G ≤ L. There is a canonical transformation

D : (`, L, g,G)→ (r, ϕ, Pr, Pϕ)

which converts Delaunay coordinates into symplectic polar coordinates. The image consists
of all bounded motions of the 2BP (SC). The map D is described in section 3.

It turns out that there is a good 2-dimensional Poincaré section Γ ⊂ Sout(J0) = {H = −J0}
of the dynamics of RCP3BP (µ, J0) in the outer Hill region. In other words, a Poincaré map
Fµ : U → Γ is well-defined on an open set U ⊂ Γ homeomorphic to an annulus (see section
4, formula (5)). For µ = 0 there are natural coordinates on Γ ' T × R+ 3 (`, L) with ` ∈ T
and L ≥ 0. It turns out that for µ = 0 and J0 > 1.52 the quantities

L = L(e, J0) and e = e(L, J0)

are monotone implicit functions of each other. On the energy surface Sout(J0) they satisfy
the implicit relation J0 = 1/(2L2) + L

√
1− e2. Moreover, L → ∞ as e → 1 and vise versa
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on Sout(J0). Below we shall use either e or L-parametrization of the vertical (i.e. action)
coordinate. When µ = 0, the Poincaré map Fµ has the form

F0 : (`, L)→ (`+ 2πL−3, L).

This map is clearly a twist map. (See [MF], [Ban], [Mo1] for discussion of twist maps). For
small µ, the corresponding Poincaré map Fµ is a small perturbation of F0 only for e separated
away from 1.

In order to prove all the results stated above, it is sufficient to perform a detailed analysis
of Fµ. Analysis of Fµ naturally divides into the following stages. ([GK2] refers to the present
work in fig 4.)

Figure 4. Roadmap of Results

Stage 1. Determine a twist region, denoted TwDel = {e−twist ≤ e ≤ e+
twist}, where Fµ is a

twist map.

This is done by derivation of sufficient condition to check an infinitesimal twist condition
holds locally uniformly. This condition says that a function of certain first and second partial
derivatives of H has to be strictly negative. See section 4 for details. The values e−twist and
e+
twist are computed by numerical extremization of value of this function. It is important

to notice that TwDel is not invariant, but is however compact. Even though Fµ twists in
TwDel, a priori there may be no invariant sets in TwDel at all.

Stage 2. Show that for each n ≥ N0 and each rotation number ω ∈ [ 1
n+1 ,

1
n ] ⊂ R the

corresponding Aubry-Mather set Σω of Fµ has small vertical L-deviations on the cylinder,
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i.e. Σω ⊂ {(`, L) : L−n < L < L+
n }.

This stage is done in [GK3] using the ordering condition from Aubry-Mather theory. This
implies that in a region slightly smaller than TwDel there are Aubry-Mather sets.

Stage 3. Rule out invariant curves to show the existence of a region of instability
{e∗ ≤ e ≤ emax} ⊂ TwDel. This step is done in [GK1] through the method of comparison of
actions.

Combining steps 1, 2 and 3 with Mather’s variational techniques, we obtain a proof of The-
orem 1.2 only in the region TwDel. It might not be surprising that the twist region TwDel

is compact. Action-angle (Delaunay) variables are designed to describe the compact part of
the dynamics and as motions approach unbounded (parabolic) motions, usage of these coor-
dinates becomes less and less reliable. For example, they are not defined for Aubry-Mather
sets Σ̃ω with very small rotation numbers ω (see [GK1]). Thus, in order to prove existence of
ejection/capture orbits we need to prove the existence of a semi-infinite region of instability
in the L direction for the map Fµ. This leads to analysis of the non-compact part “above”
TwDel, denoted Tw∞.

Stage 4. Construction of symplectic deformation of Delaunay variables so that Fµ is a
twist map for nearly parabolic motions.2

This is done through analysis of the dynamics of the RCP3BP in symplectic polar coordi-
nates where the coordinate system is well-defined for all non-collision motions. It turns out
that the arguments of Stage 3 apply to Aubry-Mather sets in Tw∞ (near the “top” boundary
of TwDel) and exclude the possibility of invariant curves of any small rotation number. This
shows that a region of instability which contains {e ≥ e∗} is semi-infinite (in L).

Delaunay coordinates are action-angle coordinates for the 2BP. The reason Stage 4 is
needed is that these action-angle coordinates are only well defined for a compact region of the
phase space. As e→ 1 motions tend to unbounded ones and Delaunay coordinates degenerate.

Construction of a modified coordinate system to correct these degeneracies is
the primary focus of this paper.

The construction is of a fairly general nature and can be applied to other Hamiltonian
systems. Throughout we make specific comments on the applicability of the construction to
RCP3BP. Stage 4 is broken up as follows.

Stage 4.1: Algebraic deformations of action-angle variables

2For an EAP map to be twisting in some symplectic coordinate system is far from granted. Pick an EAP
with two elliptic islands which twist in different directions; such a map has no such symplectic coordinates.



8 JOSEPH GALANTE AND VADIM KALOSHIN

Given a set of action-angle variables, there may be degeneracies which spoil the reduction
of dynamics to an EAPT. We exhibit a method to produce a set of action-angle variables
where a Poincaré return map is well defined. The method amounts to an algebraic deforma-
tion of existing action-angle variables. For the RCP3BP, the deformed action-angle variables
are similar to Delaunay without the singularities arising for e ≈ 1 and they allow for a rep-
resentation of nearly parabolic motions. While the algebraically deformed variables allow a
return map to be defined, a priori it is not true that the map is twisting. For RCP3BP, the
twisting fails in the algebraically deformed Delaunay variables for exactly the same reason as
for Delaunay variables.

Stage 4.2: Sufficient conditions for twist

Sufficient conditions for twisting are stated. The key condition may be described as the
property that long term, i.e. after several iterates, the map Fµ is twisting. We call this
cumulative twist. In polar coordinates for RCP3BP, the condition says transition times from
the apohelion to the perihelion increase as the apohelion distance increases. The plan is to
use the long term information about cumulative twist to create a coordinate system which
has an EAPT map.

Stage 4.3: Construction of a dynamically defined direction field

We build a new direction field dynamically. The main idea is to ‘spread the cumulative
twist’ along trajectories which comes from the sufficient condition in stage 4.2. This proce-
dure works in a fairly general setting and is applicable to other Hamiltonian systems.

Stage 4.4: Construction of dynamically deformed coordinates

The vector field in stage 4.3 is used to construct a dynamic deformation of action-angle
variables. The new coordinates are used to define a return map which is an EAPT. Once the
property of twist is ensured, we are in a position to apply Aubry-Mather theory.

2.1. Organization of Paper.
• In section 3, Delaunay variables and their singularities are introduced as well as a

method of algebraically deforming them.
• In section 4 we discuss twisting in Delaunay variables.
• In section 5, the method of spreading of cumulative twist is introduced for general

systems. It is applied to the RCP3BP in section 12.
• In section 5.1 the so called dynamically deformed variables are constructed. Using

these coordinates we establish that an EAP map for the RCP3BP is twisting.
• In section 6 details how Aubry-Mather theory may be applied to the RCP3BP to

produce Chazy instabilities.

3. An Algebraic Deformation of Action-Angle Variables

In this section, we introduce a method to produce an algebraic deformation of action-
angle variables. First we introduce the class of systems considered and offer a formulation of
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action-angle variables for this class. Consider an integrable Cr Hamiltonian (r ≥ 3)

H0(q1, q2, p1, p2) =
p2

1

2
+ Veff(q1, p2)

with 2 degrees of freedom, where Veff is a Cr (r ≥ 3) function with a unique minimum in the
variable q1 for a fixed p2, and suppose the minimum is strictly negative. (If it is not strictly
negative, it suffices to add a constant to Veff to ensure this property). The function Veff is
typically known as the effective potential.

Suppose q∗1 = q∗1(p2) is the unique point minimum point of Veff, i.e. where ∂Veff
∂q1

(q∗1(p2), p2) =
0. Let Emin = Veff(q∗1(p2), p2) be the minimum value for Veff. Fixing an energy surface H0 = E
implicitly defines one of the variables, say p2. Let SE = {(q1, p1) : H0(q1, q2, p1, p2) = E} be
the level sets of the Hamiltonian (see fig. 5). For E = Emin the curve SE is degenerate and
consists of a single point. For sufficiently small E ≥ Emin, the set SE is compact and there
exists points q−1 (E) ≤ q∗1(p2(E)) ≤ q+

1 (E) where SE intersects the axis p1 = 0. Such points
exist since H0 is convex in p1. Denote the area under the curve SE by

A(E) =
∫ q+1 (E)

q−1 (E)

√
2(E − Veff(q, p2))dq

Let L(E) = A(E)
2π . This formula can be inverted to solve for E. Define the inversion h so

Figure 5. Level sets for the 2BP(SC) system in (r, Pr) variables

that h(L; p2) = E. By Arnold-Liouville, this to produces a generating function

S(q1, q2, L,G) = q2G+
∫ q1

q−1 (L,G)

√
2(h(L,G)− Veff(q,G))dq

and the generating function defines a symplectic change of coordinates from (q1, q2, p1, p2) to
action-angle coordinates (L, `,G, g). Call the change of coordinates Ψ. Notice that Ψ is only
well defined when the area A(E) is finite. If the effective potential is such that A(E) = ∞
for some E = E∞, then action-angle variables are not well defined; namely L → ∞ in some
spots near E = E∞. Suppose there exists such an E∞ <∞. Then action-angle variables are
only defined in the region Ω0 =

⋃
E∈[Emin,E∞] SE .



10 JOSEPH GALANTE AND VADIM KALOSHIN

Now if H = H0 +∆H, where ∆H is a small perturbation of the integrable Hamiltonian H0,
then the generating function still allows us to convert to action-angle variables in the region
Ω0. However, this region is not invariant under the Hamiltonian flow and it is possible for
solutions to enter into a region where action-angle coordinates are not well defined. Later in
this section, we develop a method to deform the action-angle variables so that they are well
defined for a region larger than Ω0.

3.1. Delaunay Variables. As a model for this type of system, we introduce the action-angle
variables for the 2BP which are classically known as Delaunay variables. These variables were
originally used to describe bounded motions( i.e. e ∈ [0, 1)) of the 2BP and hence when applied
to RCP3BP, Delaunay variables have singularities for motions near e = 1, the so called nearly
parabolic motions. However this is precisely the region we are interested in proving that there
is diffusion in. We remark that in the rotating frame of coordinates, the Hamiltonian has an
additional term from the gyroscopic force. This causes the degeneracies at e = 1 to appear
when H2BP (SC) + Pϕ = 0, i.e when Pϕ = −H2BP (SC) = J0. We typically think of fixing an
energy surface, then consider degeneracies near Pϕ = J0. A derivation of Delaunay variables
can be found in [GPS], [SS] (also see [AKN] and [CC] for some nice exposition). In short,
they arise by considering the generating function

S(r, ϕ, L,G) = ϕG+
∫ r

rperih(L,G)

(√−1
L2
− G2

r2
+

2
r

)
dr

This gives the canonical transformation D(`, g, L,G) = (r, ϕ, Pr, Pϕ) from Delaunay vari-

ables to symplectic polar variables where rperih = L2(1 −
√

1− G2

L2 ) is the perihelion of the
2BP(SC) expressed in terms of L,G. The image of D is only defined for bounded motions of
the 2BP(SC) with (`, g) ∈ T2 and 0 ≤ G ≤ L.

For the 2BP, L2 is the semi-major axis of the ellipse of the orbit, so by Kepler’s Third
Law, the period T = 2πL3. Upon examination of the generating function observe G = Pϕ
is angular momentum, or alternatively LG is the semi-minor axis of the ellipse of the orbit.
The variable ` ∈ T is the mean anomaly which is ` = π mod 2π at the apohelion, ` = 0 mod
2π at the perihelion, and in general (` − `0) = 2π

T t. The quantity (g + t) can be interpreted
as the perihelion angle (in non-rotating coordinates g itself plays this role). The radius r
can be expressed in Delaunay coordinates by r = L2(1 − e cos(u)) where the eccentricity

e =
√

1− G2

L2 , and u, called the mean anomaly, is given implicitly by the Kepler equation

u− e sin(u) = `.

More description of Delaunay variables can be found in [AKN] or [CC]. Applying the canonical
transformation D to the Hamiltonian for the 2BP(SC) in rotating polar coordinates gives

H2BP (SC) ◦ D−1 = − 1
2L2
−G

Note that S satisfies det( ∂2S
∂(r,φ)∂(L,G) ) = L3

Pr
6= 0. Hence in general there exists a canonical

transformation from polar to Delaunay. It is provided by the above generating function and
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is well defined inside of the homoclinic loop (see Figure 6). Hence where it is well defined,
one gets Delaunay variables for RCP3BP using the generating function S. This yields

HDel = HPolar ◦ D−1 = − 1
2L2
−G+ ∆H(L,G, `, g),

where the perturbation term is converted to Delaunay. As the “where it makes sense” in-
dicates, Delaunay variables are not defined for the RCP3BP for nearly parabolic motions.
More specifically Delaunay variables are not defined very close to separatrices corresponding
to nearly parabolic motions in RCP3BP. It is possible that the perturbation can push a highly
elliptic orbit into a hyperbolic orbit with e > 1 (in fact we desire this in Theorem 1.2). In
Delaunay variables, this corresponds to L→∞ and occurs near places where the separatrices
leave the homoclinic loop of the 2BP(SC) in which Delaunay variables are defined (see Figure
6).

Figure 6. Deviation of RCP3BP Separatrices (colored) from 2BP(SC) Ho-
moclinic loop (blue) in ( 1√

r
, Pr) variables

3.2. An Algebraic Deformation. We overcome the technical issue that action-angle vari-
ables are not well defined near separatrices. Geometrically the approach corresponds to
encapsulating the separatrices in a larger domain (see Figure 7). Mathematically, the trick
reduces to applying the Arnold-Liouville theorem with a different integrable Hamiltonian on
a nearby energy surface to produce a different domain where action-angle-variables are well
defined. The energy should be chosen so that the size of the new domain is large enough to
capture behaviors of trajectories which are close to the separatrices. We illustrate the trick
with RCP3BP and postpone the technical estimates until the appendices.

Consider action-angle variables for the Hamiltonian

(3) Hν(r, Pr, Pϕ) :=
P 2
r

2
+

(Pϕ − ν)2

2r2
− 1
r

Action-angle variables are defined inside of bounded level sets corresponding to Hν < 0.
We shall prove that these sets contains a large enough part of nearly parabolic motions for
RCP3BP(µ, J0).

The parabolic separatrices for the RCP3BP, denoted by P+
µ (resp. P−µ ), are defined to be

the set of points (r, ϕ, Pr) such that (r, ϕ, Pr)(0) = (r0, ϕ0, 0), Pr(t) > 0 for all t > 0 (resp.
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Pr(t) < 0 for all t < 0 ), and limt→∞ Pr(t) = 0 (resp. limt→−∞ Pr(t) = 0). In the case of
2BP(SC), then separatrices on the energy surface Sout(J0) are given for all ϕ0 ∈ T by

(4) (r, Pr)± =

(
r,±

√
2
r
− J2

0

r2

)

A theorem of McGehee [McG] guarantees these objects exist and are one dimensional C∞

smooth manifolds for all µ. In the case of µ small, we can say more.

Theorem 3.1. There exists ν = ν(µ, J0) such that the forward and backward separatrices
(r, Pr)±(ϕ0) of RCP3BP(µ, J0) are contained inside the homoclinic loop given by Hν(r, Pr, J0) =
0 for all ϕ0 ∈ T1. In particular, when J0 = 1.8 and µ = 0.001, then ν ≤ 2.8µ.

Figure 7. Containment of RCP3BP separatrices inside the larger homo-
clinic loop of Hν in ( 1√

r
, Pr) variables

Proof of this theorem is contains in appendix 9. Theorem 3.1 encloses the nearly parabolic
solutions of the RCP3BP on the energy surface Sout(J0) inside of the homoclinic loop defined
by Hν(r, Pr, J0) = 0. We can make a canonical change of variables to action-angle coordinates
inside of this loop via the Arnold-Liouville theorem. Call the coordinates given by the map
Dν(Lν , Gν , `ν , gν) = (r, ϕ, Pr, Pϕ) algebraically deformed Delaunay variables (ADDV). Note
that Dν = D ◦ (Pϕ 7→ Pϕ − ν) so Dν is clearly a canonical change of coordinates. Specifically
dr ∧ dPr + dϕ ∧ dPϕ = dLν ∧ d`ν + dGν ∧ dgν .

Remark: It is important to note that we are not using any dynamics from the formal
Hamiltonian Hν . It is only used to define the domain of definition Dν .

The new homoclinic loop defined by Hν(r, Pr, J0) = 0 inside of which ADDV are well
defined contains the homoclinic loop H2BP (SC)(r, Pr, J0) = −J0 (see formula ?? for defintion
of H2BP (SC)) in which the original Delaunay variables were defined (see fig. 7). Because
the new loop is larger, some solutions whose positions in polar coordinates that could not be
expressed in Delaunay now have representations in ADDV. Note that ADDV also becomes
undefined, however, it does so away from the separatrices of HPolar on the energy surface
Sout(J0).
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3.2.1. The relation between Delaunay and ADDV. One might wonder how Algebraically De-
formed Delaunay Variables (ADDVs) are related to the usual Delaunay variables. By def-
inition, the ADDVs (Lν , Gν , `ν , gν) are the action-angle variables for the Hamiltonian Hν

which are ‘close’ to those of the 2BP Hamiltonian. By construction one can see that imme-
diately that Gν = G − ν. From examination of the Hamiltonians, it can also be shown that
1
L2
ν

= 1
L2 + 2ν. Geometrically, for a fixed energy, the lobe in ADDV has more area than

the lobe in Delaunay and the variables L,Lν measure the area of such lobes. This has the
effect that Lν is finite in regions where L has become infinity. The relations to convert from
symplectic polar to Delaunay can be derived by noting D−1 ◦ Dν = (Pϕ 7→ Pϕ − ν). For

example, r = L2
ν(1− eν cos(uν)), where uν − eν sin(uν) = `ν and eν =

√
1− G2

ν

L2
ν

.

4. Twist in Delaunay Variables and ADDV

Having constructed a suitable action-angle coordinate system for RCP3BP, we now focus
on the issue of reducing the dynamics to that of an exact area preserving twist map (EAPT)
(see [MF], [Ban], [Mo1] for exposition on EAPTs). We illustrate the difficulties using Delau-
nay variables, then comment on algebraically deformed Delaunay variables.

Consider the Poincaré section P = {g = 0 mod 2π} ⊂ S(J0). In [GK1], Lemma 10.1 we
show that −1.025 ≤ ġ ≤ −0.9975 for J0 = 1.8 and µ ≤ 10−3. Hence, P is a well defined
section. Consider the Poincaré return map F : Sout(J0) ∩ P 7→ Sout(J0) ∩ P defined by

(5) F = Fµ,J0 : (`0, L0) 7→ (`1, L1) =
(
`(tP , `0, L0), L(tP , `0, L0)

)
where tP > 0 is the first return time to P . The map F is called twisting or satisfies the twist
property in a domain Ω ⊂ A if for all (`0, L0) ∈ Ω,

sign
(
∂`1
∂L0

)
= const 6= 0

The twist property can be interpreted geometrically to say that the image of a vertical line
(i.e. in the L direction) under F is twisted to left (or right).

In the case µ = 0, we have ∂`1
∂L0

= − 3
L4

0
· 2π < 0. In terms of the motions of the comet,

this says that higher eccentricity comets revolve around the sun more slowly than their low
eccentricity counterparts. This is roughly Kepler’s third law.

For small µ > 0, Jupiter’s effects on the comet are negligible far away from the Sun and we
still expect increasing eccentricity to slow down the motion of the comet. The twist property
in Delaunay variables for the RCP3BP is then

∂`1
∂L0

= − 3
L4

0

· 2π +O(µ) < 0

It is possible for large L0 that the O(µ) perturbation terms overwhelm the − 3
L4

0
term from

the 2BP(SC) and change the sign. This is why twisting can fail.
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In [GK1], section 6.1, an explicit twisting condition is developed that allows a computer
to look for sign changes in the twist term. This condition boiled down to checking the sign
of a complicated expression (the so called twist term in [GK1]) over a domain. A computer
is used to find sign changes of the twist term, and produce the following lemma.

Lemma 4.1. In Delaunay variables for RCP3BP(0.001, 1.8), the map Fµ is twisting for
e−twist(0.001, 1.8) ≤ 0.07 ≤ e ≤ 0.994 ≤ e+

twist(0.001, 1.8) and is not twisting for some values
corresponding to e > 0.994.

Denote by Fν = Fνµ(J0) an EAP map arising from RCP3BP(µ, J0) in ADDV coordinates
on the section {gν = 0 mod 2π}. It is possible to derive an expression to check for twisting
in ADDV. This is done in exactly the same manner as in [GK1]. A similar lemma holds.

Lemma 4.2. In ADDV for RCP3BP(0.001, 1.8) let ν = 2.8µ. Then the map Fνµ is twisting
for 0 ≤ e ≤ 0.984 and is not twisting for some values corresponding to e > 0.984.

While it is true that Fν is defined for nearly parabolic motions, without the property
of twist, it is useless for the purposes of applying Aubry-Mather theory. The next several
sections are devoted to developing a coordinate system in which the twist property holds for
Fν .

5. The Method of Spreading Cumulative Twist

In this section, we study a time-periodic Hamiltonian H(`, L, t) and its convexity with
respect to L. Presence of such convexity implies that the natural time 2π-map Poincaré map
F : (`, L)→ (`′, L′) is twisting. Twisting enable us to apply Aubry-Mather theory.

We state sufficient conditions on H for existence of a time-periodic canonical change of
coordinates Ψ such that H ◦ Ψ(`, L, t) is convex in L. For the RCP3BP, these conditions
essentially reduce to ∂T

∂rapoh
> 0, i.e. increasing the apohelion radius increases the period of

revolution. For the duration of this section we work in a general framework as we believe
there are further applications of the result of this section. Comments considering applicability
to RCP3BP are scattered throughout and the actual application to the RCP3BP is carried
out in Appendix 12 after a certain set of estimates are established in earlier appendices.

Notice that existence of twisting coordinate system is not granted 3. One can also work
out the construction below for exact area-preserving maps, i.e. for the discrete time.

Consider a Cr Hamiltonian H(`, L, s) periodic in ` and s with period 2π and well defined
in a region U ⊂ A×T = T×R×T with r ≥ 3. Let Φt(`, L, s) be the flow of H. In particular,
the time–component of π3 ◦Φs satisfies π3 ◦Φt(`, L, s) = s+ t. This implies that the equations
of variation of H(`, L, s) preserve 2-dimensional subspaces tangent to the cylinder component.
Namely,

dΦt : T(`,L,s)A→ TΦt(`,L,s)A.
Thus, the tangent space to the cylinder A at (`, L, s) is mapped into the tangent space to A at
Φt(`, L, s). Denote the restriction of dΦt to T(`,L,s)A by dΦ∗t . It can also be defined using the

3See footnote on page 6 for an easy example.
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following commutative diagram. Let π : T(`,L,t)(A×T)→ T(`,L,t)A be the natural projection.
Then

T(·,·,t)(A× T) dΦt−→ T(·,·,t+s)(A× T)
↓ π ↓ π

T(·,·,s)A
dΦ∗t−→ T(·,·,t+s)A.

Here we study evolution of the tangent space to the cylinder T(·,·,·)A naturally embedded into
the ambient tangent space T(·,·,t)(A× T).

A time-periodic Hamiltonian H(`, L, t) can arise from an autonomous two degree of free-
dom Hamiltonian H. When one restricts H to an energy surface and reduces order (see e.g
[A] sect. 45), it leads to a time-periodic Hamiltonian. For example this can be done to Hamil-
tonians from section 3.

Fix a section Σ, e.g. {` = 0 mod 2π}, and define the return times of (0, L, t) ∈ Σ to be

T+(L, t) = min{t∗ > t such that `t∗ = 0}
T−(L, t) = max{t∗ < t such that `t∗ = 0}

Definition 5.1. Let W be the set of (`, L, t) ∈ T× R+ × T such that
(1) the return time to the section Σ is finite: T±(L, t) <∞ for any (0,  L, t) ∈ Σ.
(2) every point inside (`, L, t) ∈ W arises by flowing from a point in the section Σ: ∃t±

such that `t± = 0 mod 2π for t− ≤ t ≤ t+
(3) the angle of twisting is uniformly bounded away by π

2 for all time between T−(L, t)
and T+(L, t). More exactly, there exists κ > 0 such that for any (0, L, s) ∈ W,

dΦ∗t (0, L, s)(0, 1) · (0, 1) ≥ κ ‖dΦ∗t (0, L, s)(0, 1)‖ for any 0 ≤ t ≤ T+(L, s)

dΦ∗−t(0, L, s)(0, 1) · (0, 1) ≥ κ ‖dΦ∗−t(0, L, s)(0, 1)‖ for any 0 ≤ t ≤ T−(L, s).

(4) moving in the action L direction on the section Σ ∩W decreases the return time T :
∂T±
∂L (Lt± , t±)|L=Lt±

< 0.

Notice that the region W can be non–invariant and non–compact4. The first 2 conditions
are nothing more than an abstract definition of a non–invariant region to be investigated.
For the RCP3BP it corresponds to “inside parabolic” initial conditions (see Appendix 12).
The third condition prohibits the dynamics from twisting a vertical vector by more than π

2
5.

The fourth condition is the “sufficient condition” needed to ensure twist. It says that there
is cumulative twist.

Theorem 5.2. Suppose W, defined above, is non-empty for the flow of a Cr (r ≥ 3) Hamil-
tonian H. Then there is a Cr−1 smooth periodic family {Ψs}s∈T of canonical coordinate
changes Ψ : (`, L; s)→ (`dyns , Ldyns ; s) such that ∀s ∈ T the composition H ◦Ψ−1(`dyns , Ldyns ; s)
is convex with respect to Ldyns in Ψ(W); specifically ∂2

Ldyns Ldyns
(H ◦Ψ−1)|Ψ(W) > 0.

4We remark that in the caseW is known to be compact, then the first two conditions can be replaced with

that condition that angular ` component moves with positive velocity: ˙̀ = ∂LH > 0.
5We believe that this condition can be removed, but did not pursue this seriously
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On one side having a possibly non–invariant regionW gives more flexibility for applications
of Aubry–Mather theory, on the other side this causes more concerns in proving existence of
Aubry-Mather sets. Usually Aubry-Mather theory is done inside of an invariant region. We
handle the issue of non-invariance for the RCP3BP in section 6.

Up to non-invariance conditions (1–2) and no overtwisting (3), Theorem 5.2 says that

If there is a cumulative twist, then after a canonical coordinate change there is a twist.

Consider a Cr−2 (r ≥ 3) smooth direction field in TA× T, i.e. a family of directions
v(`,L,s) ∈ T(`,L,s)A with (`, L, s) ∈ W which is Cr−2 smooth in (`, L, s). Since dΦ∗t preserves
the tangent spaces to the cylinder TWA, both dΦ∗t (`, L, s)v(`,L,s) and vΦt(`,L,s) belong to the
2-dimensional space with induced orientation. Therefore, the sign of the wedge product is
well defined. Define the function

δ(`, L, s) := lim
t→0

dΦ∗t (`, L, s)v(`,L,s) ∧ vΦt(`,L,s)

t
.

Definition 5.3. A vector field is called twisted (or a twisting direction field) if the sign of
δ(`, L, s) is constant and nonzero ∀(`, L, s) ∈ W.

Geometrically twist means a vector makes an angle with its image under the flow of the
equations of variation. δ(`, L, s) measures the rate of twisting at the point (`, L, s). Notice
that for convex Hamiltonians, the vertical direction field v(`,L,s) ≡ (0, 1) is twisted. For ex-
ample, for the 2BP(SC) we have δ(`, L, s) = − 3

L4 . The failure of twist for the RCP3BP
geometrically indicates that there are spots where the vertical vector is pointing in the incor-
rect direction. See figure 8.

The proof of Theorem 5.2 consists of two steps. The first step is to construct Γ, a twisting
direction field. This is done by via “spreading twist” to produce a direction field along a single
orbit. This construction extends smoothly to the whole set W. The second step is to use the
direction field Γ to construct a smooth canonical coordinate change. This is accomplished by
straightening the direction field Γ.

Figure 8. A twisted direction field (left) and the failure of twist (right) at
the point x and its forward images

Lemma 5.4. There exists a Cr−2 smooth twisting direction field Γ on TWA.
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Proof: First, let us show how to spread twist along a single trajectory and construct a
twisting direction field. Let us first start by introducing some notation.

Consider a trajectory with initial conditions (0, L0, t0) ∈ Σ ∩W. Let pt := Φt(0, L0, t0) be
a parametrization of points along the trajectory. Such a parameterization exists by conditions
(1) and (2). By condition (1) we have T = T+(L0, t0) < +∞. Define the tangent vectors
v∗0 := (0, 1) ∈ T(0,L0,t0)A and v∗T := (0, 1) ∈ T(`T ,LT ,t0+T )A. Introduce also a C∞ function
λ : [0, 1]→ R+ such that λ|[0,1/3] ≡ 1/T+(L0, t0) and λ|[2/3,1] ≡ 1/T−(L0, t0).

Let us construct a Cr−2 smooth family {vt}0≤t≤T where vt’s are non-vanishing tangent
vectors at pt’s. Suppose w : [0, 1] → [0, 1] is a Cr−2 smooth monotone strictly increasing
function with w(0) = 0, w(1) = 1, w(k)(0) = w(k)(1) = 0 for any 1 ≤ k ≤ r − 2. Define for
0 ≤ α ≤ 1

(6) vαT := λ(α)
((

1− w(α)
)
dΦ∗αT

(
v∗0
)

+ w(α) dΦ∗−(1−α)T

(
v∗T
))
.

Notice the vector field {vt}0≤t≤T has non-vanishing vertical component due to no over twist-
ing condition 3.

To see smoothness of the direction field along an orbit away from Σ, note that dΦ∗ and
T = T (L0, t0) are Cr−2–smooth by smooth dependence in initial conditions. Since w is Cr−2

smooth, then dependence on α is Cr−2-smooth and hence {vt}t∈[0,T ] is a Cr−2-smooth family
along the trajectory away from Σ. At the section Σ, note that v0 and vT are parallel to (0, 1)
so the direction field is continuous.

To prove Cr−2 smoothness on Σ recall that λ′(α) ≡ 0 for α ∈ [0, 1/3] ∪ [2/3, 1] and for
these α’s consider

∂

∂α

(
vαT

)
= λ(α)

(
dΦ∗αT

(
v0

)
· (−w′(α)) +

(
1− α

) ∂
∂α

(
dΦ∗αT

(
v0

))
· T

+dΦ∗−(1−α)T

(
vT
)
· w′(α) + w(α)

∂

∂α

(
dΦ∗−(1−α)T

(
vT
))
· T
)
.

and hence(
∂

∂α

(
vαT

))
|α=0 =

∂

∂t

(
dΦ∗t

(
v0

))
|t=0 and

(
∂

∂α

(
vαT

))
|α=1 =

∂

∂t

(
dΦ∗t

(
vT
))
|t=0.

To have C1 smoothness on Σ we need to have ∂
∂tvt|Σ match for t > 0 and t < 0 at every

point in Σ ∩ W. The above procedure views every point on Σ ∩ W as either (0, L0, t0) or
as the image ΦT ′(0, L′0, t

′
0) of a different point (0, L′0, t

′
0) ∈ Σ ∩W, where T ′ = T+(0, L′0, t

′
0).

Thus, C1 smoothness of {vt}t∈[0,T ] follows from the above formula. Similarly one can prove
smoothness of higher order.

It turns out that on the section Σ the vector field {vt}t∈[0,T ] is not twisting. To rectify it
we introduce its modification. Fix ε� T , and suppose u : R→ R is a Cr−2 smooth function
such that u(±ε) = u(0) = 0, u′(0) > 0, u(k)(±ε) = 0 for any 1 ≤ k ≤ r − 2, u is nonzero
everywhere else inside of (−ε, ε), and u is identically zero outside of (−ε, ε). Consider the
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following perturbation of {vt}t∈[0,T ]:

v′t =
(
1− u(t)

)
vt + u(t)v⊥t

where v⊥t denotes a unit vector orthogonal to vt so that vt∧v⊥t > 0. Clearly the new direction
field {v′t} is a smooth perturbation of {vt} since u is smooth and v⊥t is smooth since vt is
smooth.

To prove twist, consider

dΦ∗t (`, L, s)v
′
(`,L,s) ∧ v′Φt(`,L,s)

= dΦ∗t (`, L, s)

„`
1− u(s)

´
v(`,L,s) + u(s)v⊥(`,L,s)

«
∧
„`

1− u(t+ s)
´
vΦt(`,L,s) + u(t+ s)v⊥Φt(`,L,s)

«
=
`
1− u(s)

´`
1− u(s+ t)

´
dΦ∗t (`, L, s)v(`,L,s) ∧ vΦt(`,L,s)

+ u(s)
`
1− u(t+ s)

´
dΦ∗t (`, L, s)v

⊥
(`,L,s) ∧ vΦt(`,L,s)

+
`
1− u(s)

´
u(t+ s)dΦ∗t (`, L, s)v(`,L,s) ∧ v⊥Φt(`,L,s)

+ u(s)u(t+ s)dΦ∗t (`, L, s)v
⊥
(`,L,s) ∧ v⊥Φt(`,L,s),

then divide the above quantities by t and take the limit as t → 0 to compute the function
δ for {v′t}. Denote this quantity by δv′ and the twist term for {vt}t∈[0,T ] as δv. Notice that
dΦ∗t (`, L, s)v

⊥
(`,L,s) ∧ v

⊥
Φt(`,L,s)

and dΦ∗t (`, L, s)v(`,L,s) ∧ vΦt(`,L,s) are the same. This produces

δv′(`, L, s) =
(
1− u(s)

)2
δv(`, L, s) + u(s)2δv(`, L, s)

+
(

lim
t→0

u(s)
(
1− u(t+ s)

)
−
(
1− u(s)

)
u(t+ s)

t

)
v⊥(`,L,s) ∧ v(`,L,s)

=
((

1− u(s)
)2 + u(s)2

)
δv(`, L, s) + u′(s).

Notice that condition (4) implies that dΦ∗T v0∧vT > 0. Moreover, for any 0 < α < 1 we have
dΦ∗αT v0 ∧ dΦ∗−(1−α)T vT > 0 uniformly in α, because dΦ∗−(1−α)T is a orientation preserving
and non-degenerate. Replace v by λ(α) dΦ∗αT v0, v⊥ by λ(α) dΦ∗−(1−α)T vT , t by αT , and u by
w in the calculation above. Then

δv(ΦαT (0, L, s)) = w′(α)λ2(α) dΦ∗αT v0 ∧ dΦ∗−(1−α)T vT .

Note that on the section Σ we have u′(0) > 0 by choice of u, so {v′t} is twisting on Σ.
Furthermore, since the vector field {vt} is twisting away from Σ, i.e. δv(`, L, s) > 0 off of Σ,
then we may choose u on the compact interval [−ε, ε] so that δv′(`, L, s) is strictly positive.

Hence {v′t}t∈[0,T ] is a twisting vector field along the trajectory pt. Note that vt, and as a
result v′t, are not continuous across Σ. While the length of vt experiences jump, the direction
does not. Indeed, size λ is identically constant on each side of Σ separately. The magnitude
of λ is selected to match time derivatives on both sides so the vector field defines a smooth
direction field across Σ. Note the construction of the vector field for a single trajectory pt
extends smoothly to all of W; we use this to induce the direction field that is Γ. �
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5.1. Dynamically Deformed Variables. In this section, we create a new canonical coor-
dinate system which respects the property of twist. We denote the new variables (Ldyn, `dyn)
and call them dynamically deformed variables. One way to think of dynamically deformed
variables is to think that at each point in the flow, the coordinate system is dynamically
changed to one in which the twist property holds infinitesimally. The new action direction
arises from a straightening of the direction field Γ. Stated as a lemma:

Lemma 5.5. Suppose Γ is the smooth direction field as constructed in Lemma 5.4. Then there
exists a Cr−2-smooth time-periodic family of symplectic maps Ψs : (`, L, s) → (`dyn, Ldyn, s)
which straightens the direction field Γ.

Proof: Note that the direction field Γ is defined only on W. Moreover, angle with the
horizontal component is strictly positive (see formula (6) and comments below it). We extend
Γ smoothly to whole cylinder in the following manner. Let Uε be an ε neighborhood, ε > 0
of the set W. On Uε ∩ ∂W, leave the direction field Γ as defined on ∂W. On A−U intε , define
the direction field Γ to be the vertical direction field which is identically (0, 1) everywhere.
On Uε − W define the vector field Γ to be a smooth interpolation between vectors on the
boundaries, i.e. smoothly interpolate between Γ|∂W and (0, 1).

Suppose C0 = {(L∗, `)|` ∈ T} is a horizontal circle which intersects the section Σ at height
L∗. Consider the images of C0 after integration along Γ for time t, where we use unit velocity
along Γ. Denote them Ct. Clearly the Ct are diffeomorphic to circles. Additionally, since
Γ|W = (0, 1), then for all L0 there exists t0 such that Ct0 ∩W = L0. Hence one can introduce
the parameterization y(L0) = Ct0 . Furthermore condition (3) along with the exact form of
construction (6) implies that {y(L0)}L0≥L∗ is a foliation of the annulus [L∗,∞]×T and that
curves y(L0) always intersect the direction field Γ transversally. Define

Ldyn(L0) := the area between y(L0) and C0.
Since there is already a symplectic form d` ∧ dL on the cylinder, formally we can define the
dual angular variable `dyn so that

d` ∧ dL = d`dyn ∧ dLdyn.
This is well defined since vectors in Γ always make a nonzero angle with the curves y(L0).

Figure 9. Γ(left) and its straightening (right) under canonical change of coordinates

To see this geometrically, consider curves y(L0) and y(L0 + ε) with ε sufficiently small.
At the point (`, L, s) ∈ y(L0), the direction field Γ defines a unique direction v = v(`,L,s)
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pointing from the circle y(L0) to the circle y(L0 + ε). Suppose we take a vector w of length
ε tangent to y(L0) at the point (`, L, s). Then since Γ makes a nonzero angle with y(L0) we
have v ∧ w = O(ε2) is a nonzero area element.

At the point (`, L, s), we think of straightening the direction field Γ so that the vector v is
pointing vertically, i.e. think of v as the a new action direction, denoted Ldyn, and think of
the `dyn direction as being specified by straightening the vector w to point horizontally. We
may scale length of the vector in the `dyn direction to preserve the area v ∧ w up to order
O(ε2). As ε→ 0, this produces a smooth area form which induces a smooth canonical change
of coordinates Ψs : (`, L, s)→ (`dyn, Ldyn, s). �

By construction, the dynamically defined coordinate system (`dyn, Ldyn, s) has the property
of twist along trajectories of H. Hence convexity of H in dynamically deformed variables
follows.

6. Application of Aubry-Mather Theory to RCP3BP

Definition: A compact invariant region C bounded by the rotationally invariant curves
C− and C+ is called a Birkhoff Region of Instability (BRI).

In such BRIs, Birkhoff showed the existence of orbits passing arbitrarily close to C− and
then to C+ and vise versa [MF], §17. We need a similar, but stronger result given by Mather
[Ma1].

Theorem 6.1. (Mather Connecting Theorem) Suppose ω1 < α1, α2 < ω2 and suppose there
are no rotationally invariant curves with rotation number ω ∈ (ω1, ω2) in a BRI. Then there is
a trajectory in the phase space whose α-limit set lies in the Aubry-Mather set Σα1 and whose
ω-limit sets lies in Σα2 . Moreover, for a sequence of rotation numbers {αi}i∈Z, αi ∈ (ω1, ω2)
and a sequence of positive numbers {εi}, there exists an orbit in the phase space {pj} and an
increasing bi-infinite sequence of integers j(i) such that the dist(Σαi , pj(i)) < εi for all i ∈ Z.

Recall that by construction both algebraically deformed Delaunay variables (ADDV) are
defined for nearly parabolic motions, and we use the results of appendix 12 to produce dy-
namically deformed Delaunay variables on a setW contains a large subset of nearly parabolic
motions. Using these variables, the dynamics may be reduced to that of an EAPT map Fdyn
defined in a semi-infinite domain, denoted Tw∞. It follows from the results in [GK1] that
while Tw∞ is not invariant, it is free of invariant curves. It turns out that the hypothesis of a
BRI in Mather Connecting Theorem can be relaxed slightly without affecting the conclusion.
We shall do so using the EAPT Fdyn and the domain Tw∞. The key is to specify the location
of local and global minimizers. This is the aim of the next several lemmas.

Lemma 6.2. For any c > 0 there is a c-neighborhood N(ω, c) of the Aubry Mather set Σω
for ω > 0 which has well defined action-angle (ADDV) coordinates.

Proof: After passing through a perihelion, a solution either has an apohelion in its future,
or it does not. If it does not have an apohelion in the future, the comet must exit parabolically
or hyperbolically. Solutions which exit the Solar System hyperbolically do not have well de-
fined rotation numbers since they must eventually leave the neighborhood of the separatrices
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where algebraically deformed Delaunay variables (ADDV) are defined. Parabolic solutions
have rotation number ω = 0 since they correspond to separatrices which are converging to
the fixed point at infinity in ( 1√

r
, Pr) variables (see fig. 6).

The separatrices are contained in the domain of definition of ADDV by construction (see
fig 14). Furthermore, all other trajectories in the domain of definition contain an apohelion
in their futures and trajectories remain inside the domain of definition until that apohelion is
reached. Hence these solutions have well defined algebraically deformed variables.

Solutions with apohelions stay some bounded distance way from the separatrices and the
boundary of the domain of definition. When expressed in ADDV, then these points in the
domain of definition have a finite Lν value (recall Lν → ∞ at the boundary of the domain
of definition). See figures 14 and 7. But then these solutions are in neighborhoods of Aubry-
Mather sets which have rotation numbers ω > 0. Since Lν is bounded, then we can take as
large of a neighborhood in the Lν direction as we please around the Aubry-Mather set Σω for
ω > 0. �

The following lemma follows from results in [GK3].

Lemma 6.3. Let ωmax = sup{ω : Σω ⊂ TwDel} be the maximal rotation number for Aubry-
Mather sets which are contained in the twist region TwDel ∪ Tw∞. There is a continuous
function c(ω) > 0 such that for all ω ∈ (0, ωmax), there is a c(ω)–neighborhood N(ω, c) of Σω
contained in TwDel ∪ Tw∞.

Consider the collection of neighborhoods for ω, ω′ ∈ (0, ωmax):

N(ω, ω′, c) :=
⋃

ρ∈(ω,ω′)

N(ρ, c).

Lemma 6.4. There exists c > 0 such that an orbit of Fdyn connecting Σω and Σω′ belongs
N(ω, ω′, c).

The lemma follows from careful study of Mather’s original proofs. [X] contains a simpler
approach to these results. Simply follow Xia’s exposition and note that almost connecting
orbits stay in a 2c neighborhood of Σω and Σω′ . Such a c is guaranteed to exist by Lemma 6.2
and the Mather Connecting Theorem may be applied in the non-invariant region N(ω, ω′, c).
We are in position to prove the main theorem.

Proof of Theorem 1.2: It is known that every rotation number ω ≥ 0 has a non-empty
Aubry-Mather set Σω associated to it. Furthermore it is known that Aubry-Mather sets are
ordered by rotation number ω with Σω and Σω′ close in the sense of Hausdorff distance for
ω and ω′ close [Ban],[MF]. Smaller rotation numbers correspond to slower rotation around
the base T in the ` direction, but this is to say that smaller rotation numbers correspond to
higher eccentricities.

To get a diffusing orbit in polar coordinates, we use the Mather Connecting Theorem
to provide the existence of an orbit of Fdyn with specified properties. Specifically, let us
choose the rotation numbers {ωi}i<0 corresponding to eccentricities near e = e∗(µ, J0) � 1
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Figure 10. Neighborhoods of Aubry-Mather Sets

and pick the {εi}i<0 to come arbitrarily close to the desired rotation numbers. This is to say
that in negative time we limit on to a bounded Aubry-Mather set of positive rotation number.

To diffuse upwards, we may pick a finite sequence of ωi’s sufficiently close and by Lemma
6.4, connecting orbits remain in a neighborhood N(ω, ω′, c) of the Aubry-Mather sets for some
c, where c exists by Lemma 6.4.

We claim there exists a ω∗ such that solutions in a neighborhood of Σω∗ escape to infinity
after a final passage by the Sun-Jupiter system. Provided such an ω∗ exists, select the ωi’s in
Mather’s Connecting theorem to approach this ω∗ in order to escape. We remark that Lemma
6.4 holds for almost connecting orbits between ω = ω∗ and ω = 0. Simply pick neighborhoods
for ω, ω′ → 0 with c→ 0. It remains to show such a ω∗ exists.

Consider solutions that have e(t) < 1 for t ≤ 0, but eventually leave the homoclinic loop
where action-angle variables are well defined. Such solutions have well defined action-angle
variables as long as they remain inside the homoclinic loop in figure 7. Escape is possible if
e(t) ≥ 1 for all sufficiently large t. In order to produce such solutions, note that if a comet is
exiting the solar system, then at some point, it must make a last passage by the Sun-Jupiter
system. During this passage, Jupiter perturbs the eccentricity by some quantity ∆e. If the
comet has initial eccentricity eexit sufficiently close to one before a close passage, and after
this passage e = eexit + ∆e > 1 is large enough, then the comet exits the Solar system hyper-
bolically.

To verify this magnitude of jump is possible, we phrase the jump in eccentricity in terms of
angular momentum to apply the results in appendix 8. It turns out that to exit after a passage
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by the Sun on Sout(1.8) then Pϕ > 1.8 + 0.04µ when r = 5. When passing by the Sun-Jupiter
system, the jump in angular momentum can be as large as µ (this follows from the rigorous
numerics in [GK1]). It follows that ∆e can be as large as 0.07µ for nearly parabolic motions.
Hence for eexit = 1−0.07µ escape is possible after a single passage by the Sun-Jupiter system.

Since eexit < 1, then a solutions with eexit have a finite Lν value, denoted Lexitν , since
Lν = Lν(J0, e). Since Lexitν < ∞ there is an Aubry-Mather set Σω∗ with rotation number
ω∗ > 0 and a neighborhood N(ω∗, c) ⊂ [Lexitν ,∞]. �

One could visualize the Aubry-Mather sets as the remainders of tori after a perturbation
has been filled them with infinitely many small holes. To envision a diffusing orbit, first imag-
ine unrolling the cylinder on the real plane. A diffusing orbit will be one which “climbs a set
of stairs”, i.e. increases in the holes of the Aubry-Mather set, and then follows the remnants
of a torus of higher rotation number for a while. The largest increase (“taking a step”) occurs
primarily at times when the comet is at the perihelion.

Figure 11. A Diffusing Orbit (` vs. e)

We remark that while elements of the proof explicitly used constants derived from J0 = 1.8
and µ = 10−3, the software is robust enough to handle other constants.

Proof of Corollary 1.3: Realization of Chazy Motions is an easily consequence of the
application of Mather’s variational methods. It suffices to describe how to get the desired
behavior in one direction, since achieving different behaviors in forward and backward time
is obtained by concatenation of two one-sided sequences of rotation numbers.

In order to achieve bounded motions, pick diffusing orbits to limit to an Aubry-Mather
set Σω with ω > ω∗ > 0 where ω∗ is defined in the proof of Theorem 1.2. More specifically
pick sequences ωi → ω and εi → 0 in Mather’s Connecting Theorem. For example, ω could
correspond to the rotation number for some rotationally invariant curve of low eccentricity,
say a KAM curve.

In order to get unbounded hyperbolic motions, use the method described in the proof of
Theorem 1.2. Namely, approach the rotation number ω∗ before a perihelion, and after a
perihelion, a neighborhood of these solutions is carried to infinity hyperbolically.
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Since U = N(ω∗, c(ω∗)) ∩ {Pr = 0} contains solutions with |ṙ| → c > 0 as t→∞, then in
some larger neighborhood Û there are points which escapes with |ṙ| → 0, i.e. parabolically,
by smooth dependence on initial conditions. In the unperturbed case F0 has a fixed point at
infinity and the homoclinic loop at infinity corresponding to parabolic motion. In the per-
turbed case µ > 0, the separatrices no longer overlap, and some of points on the separatrices
have eccentricities less than one. While the separatrices themselves have rotation number
ω = 0, they lay in the neighborhood of Σω∗ . To limit to parabolic motions, it is possible
to pick a finite sequence of ωi → ω∗ and εi sufficiently small solutions to constrain solutions
into a neighborhood where escape is possible. Then select as the tail of the sequence rotation
numbers ωi → 0 and εi → 0. The diffusing trajectory has a parabolic tail.

To get oscillatory orbits, pick a sequence of rotation numbers ωi with a subsequence ωik → 0
and every other term in the sequence bounded away from rotation number ω = 0. Pick the
εi so that the neighborhood of ωik is so small that the neighborhood never intersects the
separatrices when leaving the sun. Since the time between an apohelion and perihelion is
finite, this is possible. Physically this constrains the comet to always have an apohelion and
turn around to make another pass by the Sun-Jupiter system. �

The remainder of the paper is dedicated to careful analysis of the RCP3BP to show the
applicability of Theorem 5.2. Specifically our goal is to show applicability in the case of µ =
10−3 and J0 = 1.8.

7. Appendix: Estimates on Perturbation Terms

It turns out that the perturbation term can be written

∆H(r, ϕ;µ) =
∞∑
i=1

(−1)i
µ(1− µ)

(
µi − (µ− 1)i

)
ri+2

Pi+1(cos(ϕ))

where Pi is the ith Legendre polynomial. The bounds on the Legendre polynomials can be
used to produce upper bounds on the perturbation terms which are independent of ϕ. See
[GK1]. It turns out that

max
ϕ
|∆H(r, ϕ;µ)| ≤ (|∆H|)+(r) :=

µ(1− µ)

r(r − 1 + µ)(r + µ)

max
ϕ
|∂ϕ∆H(r, ϕ;µ)| ≤ (|∂∆H

∂ϕ
|)+(r) :=

µ(1− µ)r
`
1 + 3r(r − 1) + µ(6r − 3) + 3µ2

´
(r − 1 + µ)3(r + µ)3

max
ϕ
|∂r∆H(r, ϕ;µ)| ≤ (|∂∆H

∂r
|)+(r) := − 1

r2
+

µ

(r − 1 + µ)2
+

1− µ
(r + µ)2

max
ϕ
|∂2
rϕ∆H(r, ϕ;µ)| ≤ (|∂

2∆H

∂r∂ϕ
|)+ := µ(1− µ)

„
3(1− µ)

(r − 1 + µ)4
+

2

(r − 1 + µ)3
+

3µ

(µ+ r)4
− 2

(µ+ r)3

«
max
ϕ
|∂2
ϕϕ∆H(r, ϕ;µ)| ≤ (|∂

2∆H

∂ϕ2
|)+ := 3µ(1− µ)

„
(1− µ)3

(r − 1 + µ)5
+

µ3

(µ+ r)5

«
max
ϕ
|∂2
rr∆H(r, ϕ;µ)| ≤ (|∂

2∆H

∂r2
|)+ := − 2

r3
+

2µ

(r − 1 + µ)3
+

2(1− µ)

(µ+ r)3
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Remark: All of these estimates are independent of the Jacobi constant and are O( µr3 ) or
better. For r ≥ 1.5 and µ = 0.001, we can be even more explicit.

max
ϕ
|∆H(r, ϕ;µ)| ≤ 3µ

r3
max
ϕ
|∂ϕ∆H(r, ϕ;µ)| ≤ 39µ

r3

max
ϕ
|∂r∆H(r, ϕ;µ)| ≤ 15µ

r4
max
ϕ
|∂2
rϕ∆H(r, ϕ;µ)| ≤ 319µ

r4

max
ϕ
|∂2
ϕϕ∆H(r, ϕ;µ)| ≤ 719µ

r5
max
ϕ
|∂2
rr∆H(r, ϕ;µ)| ≤ 108µ

r5

7.1. Estimates on terms involving Delaunay. In this subsection, we collect estimates
involving perturbation terms and Delaunay variables. Estimates throughout this section use
µ = 10−3 and the above estimates on perturbation terms in polar. Additionally we require
J0 = 1.8 and G ∈ [1.67, 1.81] which all solutions of interest satisfy. For these parameters, one
can show that eccentricity e ∈ [0.52, 1.04]. In [GK1] we established that for these parameters
that r ≥ 1.6.

We remark that some estimates are carried in Delaunay and others in algebraically de-
formed Delaunay (ADDV). If an estimate is done using Delaunay, it is not hard to convert it
to ADDV by simply attaching subscript ν’s to all Delaunay variables. For the definition of
ADDV and since ν = 2.8µ is small, then it is not hard to show that Gν ∈ [1.67− ν, 1.81− ν]
and eν ∈ [0.5, 1.03]. Furthermore if e ≤ 1, then eν ≤ 0.998 < 1.

Lemma 7.1. If J0 = 1.8, µ = 10−3, and G ∈ [1.67, 1.81], then |∂∆H
∂Lν
| ≤ 0.105512. Further-

more |∂∆H
∂Lν
| ≤ 433µ

r3 for r ≥ 1.6.

Proof:
∂∆H
∂Lν

=
(∂∆H
∂r

)( ∂r
∂Lν

)
+
(∂∆H
∂ϕ

)( ∂ϕ
∂Lν

)
We can use the quantities in the above subsection to produce upper bounds on the dervia-

tives of the perturbation terms. Use of a computer algebra system6 allows us to write

∂r

∂Lν
=
G2
νr + 2e2

νr
2 −G4

ν

Lνe2
νr

∂ϕ

∂Lν
= −Gν(G2

ν + r) sin(uν)
r2eν

For µ = 0.001, J0 = 1.8, and G ∈ [1.67, 1.81], then Gν = G − 2.8µ ≤ 1.81 and eν ∈
[0.5, 1.03]. Furthermore, Lν ≥ 1.6 everywhere on the energy surface. These estimates let us
write

| ∂r
∂Lν
| =|G

2
νr + 2e2

νr
2 −G4

ν

Lνe2
νr

| ≤ 1.812r + 2 · 1.032r2 + 1.814

1.6 · 0.52r

| ∂ϕ
∂Lν
| =| − Gν(G2

ν + r) sin(uν)
r2eν

| ≤ 1.81(1.812 + r)
r20.5

Note the upper bounds are at most O(r). Hence

6Actually the computer algebra system is used to generate these quantities in Delaunay variables. Since
Dν = D ◦ (Pϕ 7→ Pϕ − ν), then as algebraic expressions they are the same as in Delaunay. However the

variables themselves have different values.
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|∂∆H
∂Lν

| ≤ (|∂∆H
∂r
|)+|

( ∂r
∂Lν

)
|+ (|∂∆H

∂ϕ
|)+|

( ∂ϕ
∂Lν

)
| = O(

µ

r3
)

Using a computer algebra system, it is not hard to show the upper bound is in fact strictly
decreasing in r and the upper bound of r > 1.6 yields that |∂∆H

∂Lν
| ≤ 0.105512. Additionally

the CAS can explicitly show the upper bound is less than 433µ
r3 for r ≥ 1.6 �

Lemma 7.2. If J0 = 1.8, µ = 10−3, and G ∈ [1.67, 1.81] then |∂∆H
∂Gν
| ≤ 0.025.

Proof: In [GK1], we showed |∂∆H
∂G | ≤ 0.025. This bound still holds since ∂∆H

∂Gν
=

∂∆H
∂G

∂G
∂Gν

= ∂∆H
∂G and ∂Gν

∂G = 1 since Gν = G− ν. �

Lemma 7.3. If J0 = 1.8, µ = 10−3, and G ∈ [1.66, 1.81], then ( ∂Lν∂Gν
) ≥ 2.85283.

For the 2BP(SC), L = (2J0 − 2G)−
1
2 , so ( ∂L∂G ) = 2(2J0 − 2G)−

3
2 ≥ 6.74937 for J0 = 1.8

and G ≥ 1.66.

Proof of Lemma 7.3: Write the RCP3BP Hamiltonian in ADDV and use Lν as implicit
function of the other variables.

(J0 + ν) =
1

2
(
Lν(J0, `ν , Gν , gν)

)2 +Gν + ∆H
(
Lν
(
J0, `ν , Gν , gν

)
, `ν , Gν , gν

)
.

Take the derivative and solve for ∂Lν
∂Gν

to get

(7)
∂Lν
∂Gν

=
1− ∂∆H

∂Gν

L−3
ν + ∂∆H

∂Lν

From Lemmas 7.1 and 7.2 and the fact that Lν ≥ 1.6, it follows that

(
∂Lν
∂Gν

)−1 ≤ L−3
ν + 0.0802431

1− 0.025
≤ 0.350529

Hence the claim follows. �

Lemma 7.4. For µ = 0.001, r ≥ 1.5, G ∈ [1.6, 1.81],

|
(
∂2∆H
∂`∂G

)
| ≤ 21

r7/2(1− e)3/2
+

35|Pr|
r5/2(1− e)5/2

Proof: Starting with
∂∆H
∂`

=
(
∂∆H
∂r

)(
∂r

∂`

)
+
(
∂∆H
∂ϕ

)(
∂ϕ

∂`

)
compute (

∂2∆H
∂`∂G

)
=
(
∂∆H
∂r

)(
∂2r

∂`∂G

)
+
(
∂r

∂`

)(
∂2∆H
∂r2

∂r

∂G
+
∂2∆H
∂r∂ϕ

∂ϕ

∂G

)
+(

∂∆H
∂ϕ

)(
∂2ϕ

∂`∂G

)
+
(
∂ϕ

∂`

)(
∂2∆H
∂r∂ϕ

∂r

∂G
+
∂2∆H
∂ϕ2

∂ϕ

∂G

)
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We shall estimate each term. It is helpful to know the following conversions between polar
and Delaunay. These formulas were found with the aid of a computer in some cases.

r = L2 (1− e cos(u)) Pr =
Le sin(u)

r
∂r

∂G
=
G(G2 − r)

re2

∂ϕ

∂G
=

(G2 + r)Pr
re2

∂r

∂`
= L3Pr

∂ϕ

∂`
= −GL

3

r2

∂2r

∂`∂G
=

(e2 − 1)GL5Pr
e2r2

∂2ϕ

∂`
= −L(2G4L2 + e2L2r2 +G2(4r2 − 6L2r))

e2r4

For each term, we seek only an upper bound in absolute value. In general we desire as
large a power of r in the denominator as possible, and as small a power of (1 − e) in the
denominator as possible.

|
(
∂∆H
∂r

)(
∂2r

∂`∂G

)
| ≤ 15µ

r4

(1− e2)GL5Pr
e2r2

≤ 1.81L5Pr
0.52r6

≤ 14Pr
(1− e)5/2r7/2

|
(
∂r

∂`

)(
∂2∆H
∂r2

)(
∂r

∂G

)
| ≤ L3Pr ≤

108µ
r5

Gr +G3

re2
≤ 108µL3(1.81r + 1.813)Pr

r60.52

≤ 2.5L3Pr
r5

≤ 2.5Pr
r7/2(1− e)3/2

|
(
∂r

∂`

)(
∂2∆H
∂r∂ϕ

)(
∂ϕ

∂G

)
| ≤ L3Pr

319µ
r4

(G2 + r)Pr
re2

≤ 319µL3(1.812 + r)Pr
0.52r5

≤ 4.1L3Pr
r4

≤ 4.1Pr
r5/2(1− e)3/2

|
(
∂ϕ

∂`

)(
∂2∆H
∂r∂ϕ

)(
∂r

∂G

)
| ≤ GL3

r2

319µ
r4

G(G2 + r)
re2

≤ 1.81L3319µ1.81(1.812 + r)
0.52r7

≤ 14L3

r6
≤ 14
r9/2(1− e)3/2

|
(
∂ϕ

∂`

)(
∂2∆H
∂ϕ2

)(
∂ϕ

∂G

)
| ≤ GL3

r2
≤ 719µ

r5

(G2 + r)Pr
re2

≤ 1.81L3Pr(1.812 + r)719µ
r80.52

≤ 17L3Pr
r7

≤ 17Pr
r11/2(1− e)3/2
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|
(
∂∆H
∂ϕ

)(
∂2ϕ

∂`∂G

)
| ≤ 39µ

r3

L(2G4L2 + e2L2r2 +G2(4r2 + 6L2r))
e2r4

≤ 39µL(2 · 1.814L2 + 1.012L2r2 + 1.812(4r2 + 6L2r))
0.52r7

≤ 4L3

r7
+

4L3

r6
+

3L
r5

+
L3

r5

≤ 4
r11/2(1− e)3/2

+
4

r9/2(1− e)3/2
+

3
r9/2(1− e)1/2

+
1

r7/2(1− e)3/2

Adding all the terms with Pr’s we find
14Pr

(1− e)5/2r7/2
+

2.5Pr
r7/2(1− e)3/2

+
17Pr

r11/2(1− e)3/2
+

4.1Pr
r5/2(1− e)3/2

≤ 17 + 17r2 + 5r3 + 1.01(17 + 3r2 + 5r3)
r11/2(1− e)5/2

≤ 35Pr
r5/2(1− e)5/2

Adding all the terms without Pr’s we find
4

r11/2(1− e)3/2
+

4
r9/2(1− e)3/2

+
3

r9/2(1− e)1/2
+

1
r7/2(1− e)3/2

+
14

r9/2(1− e)3/2

≤ 4 + 27r + r2

r11/2(1− e)3/2
≤ 21
r7/2(1− e)3/2

�

8. Appendix: Estimates on change in Angular Momentum

In [GK1], Appendix 11 we prove the following lemma on change in angular momentum.

Lemma 8.1. Assume µ = 10−3, J0 = 1.8, and Pϕ(t) ∈ [1.66, 1.81] (i.e. e(t) ∈ [0.48, 1.04])
for a sufficiently long time interval. Then

• When approaching a perihelion from the previous apohelion (or from infinity), angular
momentum does not change by more than 0.0215298µ provided r ≥ 5.
• When approaching a perihelion from the previous apohelion (or from infinity), angular

momentum does not change by more than 4.44885µ.
• Angular momentum won’t change by more than 1.444µ after a full revolution around

the sun.

The proof of the lemma is constructive and produces the function ρ(r) used in numerous
locations in this document. Define ρ to be

|∆Pϕ(t0, t1)| ≤ ρ(r) :=
1

1− M
r2

(
(|∆H|)+(r) +

∫ ∞
r

(|∂∆H
∂r
|)+dr

)
(8)

=
2µ(1− µ)r

(r2 −M)(r − 1 + µ)(r + µ)

provided that the radius is decreasing from r(t0) = r0 to r(t1) = r. In [GK1] we justified
using M = (maxPϕ) = 1.81 for RCP3BP(10−3, 1.8).
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9. Appendix: Proof of Theorem 3.1

Now using the bounds in appendices 7 and 8 we prove Theorem 3.1.

Proof of Theorem 3.1: On the energy surface Sout(J0), one can explicitly solve for Pr.

(9) Pr(J0, r, ϕ, Pϕ) = ±
√
−2J0 + 2Pϕ −

P 2
ϕ

r2
+

2
r
− 2∆H(r, ϕ)

It is desirable to bound this expression independently of ϕ. Furthermore for µ > 0, Pϕ
is no longer identically constant and it is desirable to bound this quantity independently of
fluctuations in Pϕ.

Suppose P+
µ is a forward separatrix for RCP3BP(µ, J0). (The proof in the backward case

is analogous.) Then P+
µ has a parameterization (r, ϕ, Pr, Pϕ)(t) for t > 0. Our goal is bound

the Pr component. By definition of parabolic escape, Pr(t) → 0 as t → ∞. It follows from
(9) that Pϕ(t) → J0 as t → ∞. It then follows from the definition of ρ in section 8 that
Pϕ(t) ≤ J0 + ρ(r(t)) for t ≥ 0.

Since we are on the energy surface Sout(J0), we can use (9) to compute

|Pr(J0, r, ϕ, Pϕ)| ≤
√
−2J0 + 2(J0 + ρ(r))− (J0 + ρ(r))2

r2
+

2
r

+ 2(|∆H|)+(r)

This follows from extremizing ∆H using the bounds in section 7, and the fact that as a func-
tion Pr(J0, r, ϕ, Pϕ) is increasing in the variable Pϕ in the outer Hill region, so it suffices to
replace Pϕ by J0 + ρ(r) to obtain an upper bound.

Claim: There exists ν > 0 such that for r > 1 + µ we have√
2ρ(r)− (J0 + ρ(r))2

r2
+

2
r

+ 2(|∆H|)+(r) ≤
√

2
r
− (J0 − ν)2

r2
.

Proof of Claim: The expressions ρ(r) and (|∆H|)+(r) are O( µr3 ) (see appendix 7 and

bound (8)). Since ρ(r) ≥ 0, then replacing − (J0+ρ(r))2

r2 by − (J0−c)2
r2 for some c > 0 has the

effect of increasing the terms under the radical by a factor of O( 1
r2 ) which dominates the

O( µr3 ) terms 2ρ(r) + 2(|∆H|)+. Hence there exists some smallest positive c, which we denote
ν for which the claimed the bound holds. �

By Lemma 1.1 we know that radius of perihelion is bounded from below by r = J2
0
2 − 8µ.

Due to monotonicity we have

ν = J0 −
√(

J0 + ρ(r)
)2 − 2r2

(
(|∆H|)+(r) + ρ(r)

)
|
r=

J2
0
2 −8µ

.

We note that right hand side of the inequality in the claim also arises by solving the equa-
tion Hν(r, Pr, J0) = 0 for Pr, where Hν is defined in (3). This quantity, also given in (4),
parameterizes the homoclinic loop for Hν . Hence the separatrices for RCP3BP(µ, J0) are
contained inside of this loop.
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To be explicit, let us use the parameters µ = 0.001 and J0 = 1.8. If Pr is radial velocity of
a separatrix parameterized by (r, ϕ, Pϕ)(t) on Sout(1.8), one can prove

|Pr(1.8, r, ϕ, Pϕ)(t)| ≤
√
−2 · 1.8 + 2 · Pϕ −

P 2
ϕ

r2
+

2
r
− 2∆H(r, ϕ)

≤
√

2
r
− (1.8− 2.8µ)2

r2

Hence we have successfully enclosed the RCP3BP(10−3, 1.8) separatrices inside the homoclinic
loop for Hν with ν ≤ 2.8µ. �

10. Appendix: An Analysis of the Variational Equations for the RCP3BP

In this section we analyze the equations of first variation for the RCP3BP. Consider the
following time dependent matrix A(t) which depends on the flow of the RCP3BP at time t:

A(t) =


0 0 1 0
−2Pϕ
r3 0 0 1

r2
−3P 2

ϕ

r4 + 2
r3 −

∂2∆H
∂r2 −∂

2∆H
∂r∂ϕ 0 2Pϕ

r3

−∂
2∆H
∂r∂ϕ −∂

2∆H
∂ϕ2 0 0


Let

X(t) =


∂r
∂r0

∂r
∂ϕ0

∂r
∂Pr0

∂r
∂Pϕ0

∂ϕ
∂r0

∂ϕ
∂ϕ0

∂ϕ
∂Pr0

∂ϕ
∂Pϕ0

∂Pr
∂r0

∂Pr
∂ϕ0

∂Pr
∂Pr0

∂Pr
∂Pϕ0

∂Pϕ
∂r0

∂Pϕ
∂ϕ0

∂Pϕ
∂Pr0

∂Pϕ
∂Pϕ0

 .

Then the equations of variation are given by a time-dependent linear ODE:

(10) Ẋ = A(t)X

The equations of variation tell us how a vector v = (v1, v2, v3, v4) is transported under the
flow in the tangent space. Since we are working on an energy surface S(J0), we must consider
vectors which are tangent to the energy surface. Differentiating H(r, ϕ, Pr, Pϕ) = −J0, we
see that vectors must satisfy the constraint:(∂H

∂r

)
v1 +

(∂H
∂ϕ

)
v2 +

( ∂H
∂Pr

)
v3 +

( ∂H
∂Pϕ

)
v4 = 0

Using this constraint on the initial conditions, we can solve a reduced linear system involving
only 3 of the 4 variables in each column of X. Additionally knowledge of solutions involving
3 of the column vectors may be used to obtain solutions to the fourth. It shall be made clear
in context which variable is being implicitly defined. In all cases, we call the equations of
variation with the flow on S(J0) and tangent vectors satisfying (10) the reduced equations of
variation. It is not hard to show if an initial tangent vector satisfies (10), then it satisfies (10)
for all time under the full flow. Hence when convenient, we shall use the full system with the
understanding the the initial conditions are taken tangent to the energy surface.
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Theorem 10.1. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions for the flow
of the are at the apohelion. If

(
∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

,
∂Pϕ
∂Pϕ0

)
(0) = (0, 0, 1) and the remaining initial

condition satisfies (10) then

(1) |
(
∂Pϕ
∂Pϕ0

)
(t) − 1| ≤ 0.000268671 for t ∈ [0, t5] where t5 is the first positive time such

that r(t5) = 5.
(2)

(
∂Pϕ
∂Pϕ0

)
(t) ∈ [0.12, 1.79] for t ∈ [0, T ] where T is the first positive time that the comet

is at the perihelion.

Note that for r large A(t) ≈ (0) so we expect the system to behave roughly like X(t) =
X(0). Hence Theorem 10.1 says that far enough from the sun, the variational equations don’t
vary too much.

Consider the decomposition of the configuration space into kick and outside regions. When
µ = 10−3, for r ≥ 5 one can show that |∆H| ≤ 10−5. Call the region {r ≥ 5} the outside
region since the comet is practically outside the range of influence of Jupiter. Call the region
{r ≤ 5} the kick region as the comet’s orbital parameters are perturbed (or kicked) more in
this region. In the outside region, the variational equations behave very much like those of
the 2BP(SC).

The theorem is broken down into a series of lemmas. First a series of rough estimates is
established in the outside region where the perturbation term is small. These estimates may
be done by hand. These rough estimates are then used to produce refined estimates of the
behavior in the outside region. This shall yield the first claim of theorem. The second claim is
proved with the assistance of a computer since the perturbation terms have a much stronger
influence in the kick region and by hand estimates are insufficient to obtain good estimates.

Lemma 10.2. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions for the flow
are at the apohelion. If

(
∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

,
∂Pϕ
∂Pϕ0

)
(0) = (0, 0, 1) and the remaining initial condition

satisfies (10), then

|
(

∂r

∂Pϕ0

,
∂ϕ

∂Pϕ0

,
∂Pϕ
∂Pϕ0

)
(t)− (0, 0, 1)| ≤ 1.31926

for t ∈ [0, t5] where t5 is the first positive time such that r(t5) = 5, and where the norm
considered is the p = 1 norm.

Proof of Lemma 10.2: First we shall reduce the 2-degree-of-freedom Hamiltonian for
the RCP3BP in polar to a 1.5-degree-of-freedom time periodic system. Then we analyze the
corresponding reduced equations of variation.

Let us begin by defining a time-rescaled Hamiltonian

HJ0 = −J0 + Pr

where H given by (2) is the Hamiltonian for RCP3BP in rotating polar coordinates. This
Hamiltonian arises by considering the energy reduction procedure e.g [A]. Examining the
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equations of motion,

∂HJ0

∂Pr
= 1

∂HJ0

∂Pϕ
=

∂H
∂Pϕ

Pr

∂HJ0

∂r
=

∂H
∂r

Pr

∂HJ0

∂ϕ
=

∂H
∂ϕ

Pr

we notice that flows of H on S(J0) = {H = −J0} and flows on HJ0 are the same up to
rescaling of time, except at apohelion/perihelion points where Pr = ṙ is zero. Furthermore
Pr = Pr(J0, r, ϕ, Pϕ) is explicitly given by (9) on S(J0). The time rescaling for HJ0 is given
by r(t) 7→ t. Notice that this map is monotonic except at apohelions/perihelions and this is
why the rescaling is not defined at those points.

We now consider the equations of variations for the rescaled system. Let
v =

(
∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

, ∂Pr∂Pϕ0
,
∂Pϕ
∂Pϕ0

)
(0). Notice that Pr is given implicitly by (9), v3 = ∂Pr

∂Pϕ0
is given

implicitly by (10), and r serves as the time variable. Hence it suffices to consider only the
2× 2 system

(11)
(
d

dr

)( ∂ϕ
∂Pϕ0
∂Pϕ
∂Pϕ0

)
=

1
Pr

(
0 1

r2

−∂
2∆H
∂ϕ2 0

)(
∂ϕ
∂Pϕ0
∂Pϕ
∂Pϕ0

)

Let Ã(r) denote the reduced coefficient matrix above, and let x =
(

∂ϕ
∂Pϕ0

,
∂Pϕ
∂Pϕ0

)
.

Suppose r1 ≤ r0 and Pr = Pr(J0, r, ϕ, Pϕ) is nonzero for r ∈ (r1, r0). It follows from the
standard theory of linear ODEs that for r ∈ [r1, r0], the solutions to the reduced variational
equations are of the form

x(r) = x(r0) +
∫ r

r0

Ã(s)x(s)ds.

We rewrite this as

x(r)− x(r0) =
∫ r

r0

Ã(s)x(r0)ds+
∫ r

r0

Ã(s)
(
x(s)− x(r0)

)
ds.

Letting | · | denote the p-norm for p = 1, we have

|x(r)− x(r0)| ≤
∫ r0

r1

|Ã(s)x(r0)|ds+
∫ r0

r

|Ã(s)||x(s)− x(r0)|ds.

Note we the first term on the right is independent of r (since we have used the upper bound∫ r0
r1
|Ã(s)x(r0)|ds ≥

∫ r0
r
|Ã(s)x(r0)|ds), hence we can apply Gronwall’s Inequality and obtain

|x(r)− x(r0)| ≤ |x(r0)| ·
∫ r0

r1

|Ã(s)|ds · exp
(∫ r0

r1

|Ã(s)|ds
)
.

Hence to obtain a concrete estimation, it suffices to estimate
∫ r0
r1
|Ã(s)|ds. This is done in

Lemma 10.5 (proved below) which provides a function a(r1) to uniformly bound
∫ r0
r1
|Ã(s)|ds

over all Pϕ ∈ [1.7, 1.81]. The estimates from the lemma yield
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Claim:
∫ r0
r1
|Ã(s)|ds ≤ a(5) = 0.673031

See Lemma 10.5 for an explicit form of a(r1). The claim is believable since far from the
Sun, the terms in the matrix Ã goto zero at a rate of at most O( 1

r2 ) so integration with
respect to r should produce a convergent quantity. The claim yields

|x(r)− x(r0)| ≤ 1.31926|x(r0)|
�

The following Lemma establishes claim (1) of Theorem 10.1.

Lemma 10.3. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions for the flow
are at the apohelion. If

(
∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

,
∂Pϕ
∂Pϕ0

)
(0) = (0, 0, 1) and the remaining initial condition

satisfies (10), then

|
(
∂Pϕ
∂Pϕ0

)
(t)− 1| ≤ 0.268671µ

for t ∈ [0, t5] where t5 is the first positive time such that r(t5) = 5.

It should be noted that in the 2BP(SC),
(
∂Pϕ
∂Pϕ0

)
(t) ≡ 1 for all t. Hence the above lemma is

in some sense a measure of nonintegrability in the outside region in a similiar vein to Lemma
8.1 which estimates the change in Pϕ in the outside region to be at most 0.0215298µ. The
order of magnitude larger change in the equations of variation is to be expected since these
equations are more sensitive to instabilities than the original equations of motion.

Proof of Lemma 10.3: Use the same reductions as in Lemma 10.2. The equations of
motion for

(
∂Pϕ
∂Pϕ0

)
(t) are(

d

dr

)(
∂Pϕ
∂Pϕ0

)
= −P−1

r

(
∂2∆H
∂ϕ2

)(
∂ϕ

∂Pϕ0

)
From Lemma 10.2 we have that |

(
∂ϕ
∂Pϕ0

)
| ≤ 1.31926. Using the bound a2(r1) from Lemma

10.5 then have that

|
(
∂Pϕ
∂Pϕ0

)
− 1| ≤

∫ r0

r1

|P−1
r

(
∂2∆H
∂ϕ2

)
1.31926|dr ≤ a2(5) · 1.31926 = 0.000268671

�
Now that we have generated bounds in the outside region for equations of variation, we

use computer assistance to obtain bounds in the kick region where the perturbation terms
are larger and the above analysis is insufficient to produce useful bounds. This lemma will
establish claim (2) in the theorem.

Lemma 10.4. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions for the flow
are at the apohelion and furthermore suppose

(
∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

,
∂Pϕ
∂Pϕ0

)
(0) = (0, 0, 1) and the re-

maining initial condition satisfies (10). Then(
∂Pϕ
∂Pϕ0

)
(t) ∈ [0.12, 1.79]
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where t ∈ [t5, T ] where t5 is the first positive time such that r(t5) = 5 and T first positive time
there is a perihelion.

Proof: Let (v1, v2, v4) =
(

∂r
∂Pϕ0

, ∂ϕ
∂Pϕ0

,
∂Pϕ
∂Pϕ0

)
(t5). We know from Lemmas 10.2 and 10.3

that v2 ∈ [−1.31927, 1.31927] and v4 ∈ 1+[−0.000268671, 0.000268671]; by assumption v1 = 0.
We may use (10) to solve for the remaining initial condition v3 as an interval. To do this, we
also use r = 5, ϕ ∈ [0, 2π], Pϕ ∈ Pϕ(0) + [−ρ(5), ρ(5)] and Pr implicitly defined by (9). This
produces a vector of intervals v := (v1, v2, v3, v4) which contain the solution in the tangent
space at the time t = t5.

We can use the CAPD rigorous numerical integrator to integrate the flow of the RCP3BP
and its associated variational equations. CAPD can transport intervals of initial conditions.
See appendix 14. We use it to transport the interval vector v in the tangent space from r = 5
to the perihelion for all initial conditions in the base space. To do this we use a 5th order
intervalized Taylor Method with step size ∆t = 0.1 with initial conditions ϕ direction divided
into box sizes of 0.1 and initial conditions in the Pϕ direction divided into box sizes of 0.0001.
CAPD flows the box of initial conditions until all points inside it has passed through the
perihelion. It records

(
∂Pϕ
∂Pϕ0

)
(t) ∈ [0.12, 1.79]. �

Remark: The bound produced is not nearly optimal. Non-rigorous numerics indicate that(
∂Pϕ
∂Pϕ0

)
(t) ∈ [0.9, 1.1].

We now justify the technical estimates found in the above lemmas.

Lemma 10.5. For µ = 10−3, J0 = 1.8, Pϕ ∈ [1.7, 1.81], r1 ≥ 5, r0 an apohelion radius
(possibly infinite), then there exists a function a(r1) so that

∫ r0
r1
|Ã(s)|ds ≤ a(r1).

Proof of Lemma 10.5: In [GK1] we introduced the idea of extreme 2BPs. By considering
the most angular momentum could change in the RCP3P over the whole outside region r > 5
for a specific set of initial conditions, we constructed two body problems whose behaviors
enclosed (in the sense of interval arithmetic) that of the RCP3BP which spawned it. See e.g,
Lemma 8 which estimates change in angular momentum for a single trajectory.

We use the machinery of extreme 2BPs now. Unlike [GK1], we do not need careful esti-
mates for each trajectory; instead we need uniform upper bounds on quantities for an entire
class of trajectories on S(1.8) with Pϕ ∈ [1.7, 1.81]. It suffices to compute uniform upper
bounds on all 2BP trajectories with Pϕ ∈ [1.7− ρ(5), 1.81 + ρ(5)].

Notice that every entry in the matrix Ã is of the form f(r,ϕ,Pϕ)
Pr

for some function f where
r enters with a power of at most −2. In appendix 13, a method of evaluating such integrals
in closed form is established. The fact that there is a closed form means that a computer
algebra system can obtain rigorous upper bounds on the integrals; no numerical integration
is required. We define the following quantities:
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a1(r1) = max

„
sup

Pϕ∈[1.7,1.8]

lim
x→r+

I−1(r−, r+, r1, x)p
2(1.8− Pϕ)

, sup
Pϕ∈[1.8,1.81]

lim
x→∞

Ihyp−1 (r−, N,M, x, r1)

«
a2(r1) = 2µmax

„
sup

Pϕ∈[1.7,1.8]

lim
x→r+

I−3(r−, r+, r1, x)p
2(1.8− Pϕ)

, sup
Pϕ∈[1.8,1.81]

lim
x→∞

Ihyp−3 (r−, N,M, x, r1)

«
where r+, r−, N,M are given in section 13; r± are formulas for the apohelion and perihelion

of a 2BP. The bounds ai are easily computable with a computer algebra system.

It follows from section 7 for r ≥ 5 that |∂
2∆H
∂ϕ2 | ≤ 2µ

r4 . Hence∫ r0

r1

| 1
r2Pr

|dr ≤ a1(r1)
∫ r0

r1

|P−1
r

∂2∆H
∂ϕ2

|dr ≤ a2(r1)

Since we have used the p = 1 norm to bound the matrix A, then the corresponding norm
induced on the matrix is taking maximum of the absolute value of the sum of columns. Hence
the function a(r1) = max

(
a1(r1), a2(r1)

)
.

�

11. A Sufficient Condition for Twist in the RCP3BP

In section 4 we argued that in terms of the motions of the comet, twisting says that high
eccentricity comets revolve around the sun more slowly than their low eccentricity counter-
parts. In this section, this idea is rephrased in a rigorous fashion to give a meaning to twisting
in polar coordinates. This done by noting that on a fixed energy surface when the comet is
at the apohelion, increasing eccentricity corresponds to increasing the semimajor axis of the
ellipse of motion. By Kepler’s Laws, increasing the semi-major axis corresponds to increasing
the period of revolution. Let us make this rigorous now.

Definition: For a given set of initial conditions (r, ϕ, Pr, Pϕ)(0) = (r0, ϕ0, 0, Pϕ0), with
r0 > J2

0 such that the comet is at the apohelion, consider the motion of the comet starting
at the apohelion and moving towards the perihelion. Define T (r0, ϕ0, Pϕ0) be the smallest
positive time such that Pr

(
T (r0, ϕ0, Pϕ0)

)
= 0, i.e. the time to the next perihelion. Call T

the one-half period of the comet. A formulation of twist in polar coordinates is given in the
following theorem.

Theorem 11.1. There exists an R > J2
0 such that for all r ≥ R, ∂T

∂r0
|r0=r > 0. In particular,

for µ = 10−3, Jacobi constant J0 = 1.8, and R = 15 (corresponding to e > 0.8) we have
∂T
∂r0

> 0.

Let us offer a heuristic proof of this result now. In the two body problem, Kepler’s Third
Law states that the one-half period T = πa

3
2 where the semi-major axis a = rapoh−rperih

2 ≈
rapoh

2 for large eccentricities. Taking initial conditions to be r0 = rapoh > J2
0 , then a ≈ 1

2r0.
Computing ∂T

∂r0
= 3

4πa
1/2 > 0 says that increasing the semi-major axis, i.e. increasing rapoh,

increases the half period of the comet. To prove this result for the RCP3BP, one must jus-
tify these approximations, as well as carefully account for the effects of the perturbation term.
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Figure 12. The Effect of Increasing r0

Proof of Theorem 11.1 : Formally compute ∂T
∂r0

.

∂

∂r0

(
Pr
(
T (r0, ϕ0, Pϕ0), (r0, ϕ0, Pϕ0)

))
= Ṗr(T ) · ∂T

∂r0
+
∂Pr
∂r0

(T ) = 0

Solving for ∂T
∂r0

yields

(12)
∂T

∂r0
= −

∂Pr
∂r0

(T )

Ṗr(T )
.

One must show for nearly parabolic comets that Ṗr(T ) > 0 so that equation (12) is well
defined.

Lemma 11.2. There exists an e0 = e0(µ, J0) such that if e(t) ≥ e0 for t ∈ [0, T ] then
Ṗr(T ) > 0 (where T is the half period). In particular e0(0.001, 1.8) ≤ 0.13.

Proof: Start by noting

Ṗr =
P 2
ϕ

r3
− 1
r2
− ∂∆H

∂r

and ∂∆H
∂r = O( µr4 ). Furthermore |∂∆H

∂r | ≤ (|∂∆H
∂r |)

+ and (|∂∆H
∂r |)

+ ≤ 3µ/(r2(r − 1)2) (see
appendix 7).

It suffices to show that at a perihelion we have

P 2
ϕ

r3
− 1
r2
− 3µ
r2(r − 1)2

=
1
r3

(
P 2
ϕ − r −

3µr
(r − 1)2

)
> 0.

Recall relation from section 3.1. We have eν =
√

1−G2
ν/L

2
ν , Pϕ = Gν + ν, and

r = L2
ν(1−eν(0) cosuν). Therefore, r ≥ L2

ν(1−eν(0)) = (Gν)2/(1+eν(0)). Plug the minimal
value of r = rperih = (Gν)2/(1 + eν(0)) in to get

P 2
ϕ − r −

3µr
(r − 1)2

=
eν(0)P 2

ϕ + ν(2Pϕ − ν)
1 + eν(0)

− 3µr
(r − 1)2

.
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By Lemma 1.1 we have L2
ν ≥ r ≥ J2

0
2 − 8µ. It is not hard to show that eν ≤ e and that the

difference is only ν-small. Since J0 + ν = 1/(2L2
ν) +Gν , these estimates show that if eν(0) is

not too small, then Ṗr > 0. Concrete numbers for µ = 0.001 and J0 = 1.8 are not difficult to
obtain. �

To complete the proof of Theorem 11.1 it remains to show that ∂Pr
∂r0

(T ) < 0.

Lemma 11.3. Consider RCP3BP(10−3, 1.8) and suppose the initial conditions for the flow
are at the apohelion. If

(
∂r
∂r0

, ∂ϕ∂r0 ,
∂Pr
∂r0

)
(0) = (1, 0, 0) and the remaining initial condition

satisfies (10). Then ∂Pr
∂r0

(T ) < 0 where T is the first positive time there is a perihelion.

Proof: Note that

∂Pr
∂r0

=
(
∂Pr
∂Pϕ

)(
∂Pϕ
∂Pϕ0

)(
∂Pϕ0

∂r0

)
We know from the claim in Theorem 10.1 that

(
∂Pϕ
∂Pϕ0

)
(T ) > 0. From differientating

formula (9), we obtain

∂Pr
∂Pϕ

=
1− Pϕ

r2

Pr
< 0

since the denominator is positive for r ≥ 1.5 and Pϕ ≤ 1.81 and Pr ≤ 0 for t ∈ [0, T ].

On the energy surface S(J0) we can solve to find

Pϕ = r2 −
√

2r − 2J0r2 − P 2
r r

2 + r4 − 2r2∆H(r, ϕ)

When t = 0, then Pr = 0, r = r+ (the apohelion radius) and the expression simplifies.
Compute the derivative of the simplified expression to find:

(13)
∂Pϕ0

∂r0
=
−1 + 2r+(J0 − Pϕ + ∆H) + r2

+
∂∆H
∂r

r2
+ − Pϕ

.

For r large, the denominator is positive. This certainly holds at the apohelion. Note that
formally, the apohelion satisfies

r+ =
1 +

√
1− P 2

ϕ(J0 − Pϕ + ∆H)

2(J0 − Pϕ + ∆H)

Hence at the apohelion, we have that numerator of (13) simplifies to become√
1− P 2

ϕ(J0 − Pϕ + ∆H)+ r2
+
∂∆H
∂r . It not hard to show that the first term in this expression

is at least 0.64 and second term is larger than −0.007 for J0 = 1.8, r ≥ 1.5, and Pϕ ≥ 1.7.
Hence the numerator, and (13) are positive. It follows that ∂Pr

∂r0
(T ) is negative. �
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12. Application of Theorem 5.2 to the RCP3BP

Here we show that Theorem 5.2 can be applied to the RCP3BP(10−3, 1.8). Let H(`ν , Lν , t)
be the energy-reduced Hamiltonian of the RCP3BP in algebraically deformed Delaunay vari-
ables. (See [A] sect 45 for a refresher on how to do energy reductions in our settings.) In the
context of the RCP3BP, we wish to prove the existence of a coordinate system with concavity,
i.e ∂2

Ldyns Ldyns
(H ◦Ψ−1)|Ψ(W) < 0. In the case of the 2BP(SC) this boils down to the statement

that ∂LLH = − 3
L4 .

We start by fixing a section Σ = {` = π mod 2π}, i.e. the apohelion surface. The main
result of section 11 says ∂T

∂r0
> 0 where T is the half period of comet and r0 is an apohelion

radius. This condition can be reformulated to say ∂T
∂L0

> 0 by noting that

∂T

∂L0
=
∂T

∂r0

∂r0

∂L0

∂r0

∂L0
=

2r0

L0
+

G2
0

L0e0
> 0.

The second identity follows from formulas for converting polar to Delaunay at the apohelion.
Hence condition 4 of Definition 5.1 is satisfied7.

12.1. Domain of Definition for RCP3BP. Let us construct a domain of relevant solutions
for the RCP3BP where condition 2 of definition 5.1 is satisfied. When enlarging the domain
of definition via the algebraic deformation, we increased the number of solutions which have
representations in action-angle variables. However not all of the points inside the homoclinic
loop generated from Hν are of interest. For example some of the points outside of the
separatrices make one passage by the Sun-Jupiter system then escape the solar system. By
the way ADDV are defined, it is possible solutions near the separatrix to flow out of the
homoclinic loop where the coordinate system is not well defined. This is because the area
inside of homoclinic loop for Hν is not an invariant set for the flow induced by HPolar, the
Hamiltonian for the RCP3BP.

Definition 12.1. An initial condition is inside parabolic if the following three conditions all
hold (fig. 13):

• If ṙ > 0, then there is t > 0 such that ṙ = 0, i.e. there is an apohelion in the future.
• If ṙ < 0, then there is t < 0 such that ṙ = 0, i.e. there is a perihelion in the past.
• For some finite times t− < 0 < t+ it holds that |ψ(t+)− ψ(t−)| = 4π.

Denote the class of inside parabolic initial conditions for Jacobi constant J0 by IP (J0).
Notice that hyperbolic or parabolic orbits satisfy |ψ(t+)−ψ(t−)| < 2π. If an orbit of RCP3BP
goes to directed infinity in the past and in the future makes one loop around the sun before
going to directed infinity, then |ψ(t+)− ψ(t−)| can be close to 2π.

Inside parabolic curves are considered since their representations in algebraically deformed
Delaunay variables have the action variable Lν finite for at least one revolution around the
sun. Unfortunately, not all of IP (J0) is contained inside the new homoclinic loop since it is

7Note that due to negative convexity, the sign of the derivative is reversed
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Figure 13. A trajectory with inside parabolic initial conditions

still possible for a separatrix to leave the new homoclinic loop. We ignore these points as they
have too high eccentricity to matter. The initial conditions we care about are those inside
parabolic motions which are inside of the homoclinic loop for Hν (see fig. 14). Let

Ω(J0, µ) = IP (J0) ∩ {Pϕ ≤ J0, ϕ ∈ S1, rperih∗ ≤ r, |Pr| ≤
√

2
r
− (Pϕ − ν)2

r2
+ 2(J0 − Pϕ) }

where rperih∗ is the smallest perihelion radius allowed in the deformed homoclinic loop. This
is implicitly defined by 0 = Hν(rperih∗ , 0, 0, J0). (See eqn. (3) for definition of Hν .)

Figure 14. Domain of Definition

We take W := Ω(J0, µ)∩ {e ≥ 0.46} so the apohelion’s radii are at least rapoh = 5 and the
results of [GK1] can be applied. Condition 2 of Definition 5.1 follows by construction since
points inW are in the class of inside parabolic motions (see section 12.1). We must still verify
conditions 1 and 3 of Definition 5.1 for trajectories in W.
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12.2. Verification of condition (1). To show condition (1) of Definition 5.1, note that for
every inside parabolic orbit starting at a perihelion there is an apohelion for some 0 < t∗.
Let (`∗ν , L

∗
ν , t
∗) be such an apohelion point. Let Pϕ(t) be angular momentum along the orbit.

Lemma 8.1 of appendix 8 tells us that

|Pϕ(t)− Pϕ(0)| ≤ 4.5µ for 0 ≤ t ≤ t∗

and by the relations in section 3.2.1 this implies that Lν(T )−Lν(0) is finite (since 2ν > 4.5µ),
where T is the return time to the section Σ = {` = π mod 2π}. Moreover the bound is
uniform in any compact region {Lν ≤ const}. This implies that return time T is finite and
condition (1) holds.

12.3. Bounds on angle of twist in the RCP3BP. In this section, condition (3) of Defini-
tion 5.1 is verified. We shall work with the reduced RCP3BP Hamiltonian in H = H(Lν , `ν , s)
where s = gν is the rescaled time and Gν is an implicit function of J0 and the other alge-
braically deformed Delaunay variables. Recall that the angle of twist η(t) = η(t;Lν(0), 0, s)
from the vertical is given by the formula

(14) tan(η(t)) =

( ∂`ν(t)
∂Lν(0)

)( ∂Lν(t)
∂Lν(0)

)
where the initial conditions are taken to be (0, Lν(0), s) ∈ Σ = {`ν = π mod 2π}. (See [MF]
for abstract statement about angle of twist.) We prove

Lemma 12.2. Consider RCP3BP(10−3, 1.8). For all (0, Lν(0), s) ∈ Σ = {`ν = π mod 2π}
for 0 ≤ t ≤ T (Lν(0), s) the angle of twist η(t) ∈ [−κ, κ] for some κ < π

2 where T is the return
time to Σ.

First we offer a heuristic explanation of why the angle of twist from the vertical is uniformly
bounded away from π

2 for the 2BP(SC). Note that the angle η of twist from the vertical in
Delaunay variables can be explicitly computed for the 2BP(SC). It is given by

tan(η) =

(
∂`
∂L0

)
(t)(

∂L
∂L0

)
(t)

= − 3t
L4

0

Hence η = arctan(− 3t
L4

0
) and this function is decreasing as a function of t for t ≥ 0. Recall the

period of the 2BP(SC) is T = 2πL3. Then for t ∈ [0, T ], the minimum is angle is arctan(− 6π
L0

).
For L0 ≥ 1.86 (i.e. when rapoh > 5 on S(1.8)) it follows that 0 ≥ η(t) ≥ −1.47244 > −π2 .
The case for t ≤ 0 is symmetric in the 2BP(SC).

Proof of Lemma 12.2: Upon examination of formula (14) we see that the angle of twist
rotates by more than an angle of π2 from the vertical if at some point in the flow | tan η| =∞.
This happens if and only if the numerator becomes infinite or the denominator becomes zero.
Hence it suffices to have a uniform lower bound on ∂Lν

∂Lν(0) and a uniform upper bound on
∂`ν

∂Lν(0) over one full period for all trajectories considered.

We remark that condition (3) requires bounds in both forward and backward time for an
individual trajectory. By condition (2) every point on the section Σ has a preimage and an
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image of Σ and bounding the angle of twist uniformly for all trajectories forward in time is
enough to also bound the angle of twist uniformly for trajectories in reverse time. Hence it
suffices to generate uniform bounds over all trajectories which are approaching the sun from
an apohelion in forward time.

The method of proof is to convert from algebraically deformed Delaunay variables into
polar, then use bounds on equations in polar coordinates. Bounds are computed with the
assistance of a computer in the kick region, and with some by-hand calculations in the outside
region.

It is easier to make calculations using G = Pϕ since this variable can be computed using
polar coordinates. For a fixed energy surface S(J0), we recall that Gν = Gν(J0, Lν , `ν , s) ≈
J0 − 1

2L2
ν

is implicitly defined. At the same we may also think of Lν = Lν(J0, `ν , Gν , s) ≈
1√

2(J0−Gν)
. It follows that the formula for angle of twist can be written as

(
∂`ν

∂Lν(0)

)(
∂Lν
∂Lν(0)

) =

(
∂`ν

∂Gν(0)

)(∂Gν(0)
∂Lν(0)

)(
∂Lν
∂Gν

)(
∂Gν
∂Gν(0)

)(∂Gν(0)
∂Lν(0)

) =

(
∂`ν

∂Gν(0)

)(
∂Gν
∂Gν(0)

)(
∂Lν
∂Gν

) =

(
∂`ν
∂G(0)

)( ∂G(0)
∂Gν(0)

)(
∂Lν
∂Gν

)(
∂Gν
∂G

)(
∂G
∂G(0)

)( ∂G(0)
∂Gν(0)

)
=

∂`ν
∂G(0)(

∂G
∂G(0)

)(
∂Gν
∂G

)(
∂Lν
∂Gν

) =

(
∂`ν

∂Gν(0)

)(∂Gν(0)
∂G(0)

)(
∂Gν
∂Lν

)(
∂G
∂G(0)

)(
∂Gν
∂G

)(15)

Since Gν = G − ν, then ∂Gν
∂G = ∂Gν(0)

∂G(0) = 1. By Lemma 7.3, |
(
∂Gν
∂Lν

)
| ≤ 0.350529. By

Theorem 10.1,
( ∂G(t)
∂G(0)

)
∈ [0.12, 1.79]. It follows that the denominator does not goto zero.

Let us consider
(
∂`ν
∂G(0)

)
. Since inside parabolic motions have well defined algebraically

deformed Delaunay variables, then along a trajectory the equations of variation are well de-
fined. Since we work over the class of inside parabolic motions, a finite return time to an
apohelion is guaranteed (see e.g. the previous section where we showed condition (1) ). Since
the segment of trajectory is finite, then there is a uniform bound on

(
∂`ν
∂G(0)

)
over the entire

revolution. For any compact subset of initial conditions, there is a uniform bound on
(
∂`ν
∂G(0)

)
for all trajectories with initial conditions in that subset. It follows that the angle of twist
cannot become π

2 by the numerator going to infinity.

We now seek a finite uniform upper bound for the numerator over all inside parabolic mo-
tions.

Claim: |
(

∂`ν
∂Gν(0)

)(
∂Gν
∂Lν

)
| ≤ C <∞ for all inside parabolic motions.

The rest of section is dedicated to proving this claim.

Proof of Claim:

First notice that
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∂`ν(t)
∂Gν(0)

=
∫ t

0

˙∂`ν
∂Gν(0)

ds =
∫ t

0

˙∂`ν
∂Gν

∂Gν
∂Gν(0)

ds

Since finite bounds on ∂Gν
∂Gν(0) = ∂G

∂G0
∈ [0.12, 1.79] are known over a full period by Theorem

10.1, then it suffices to come up with bounds on
∫ t

0
˙∂`ν

∂Gν
ds.

From the equations of motion,

˙̀
ν = L−3

ν + ∂`ν∆H(Lν , `ν , Gν , gν)

Notice on S(J0) that Lν = 1√
2(J0+ν−Gν+∆H)

, so

˙̀
ν = (2(J0 + ν −Gν + ∆H))3/2 + ∂`ν∆H

˙∂`ν
∂Gν

= −3(2(J0 + ν −Gν + ∆H))1/2 + ∂`νGν∆H

It follows that

∂`ν
∂Gν

(t) =
∫ t

0

(
− 3(2(J0 + ν −Gν + ∆H))1/2 + ∂`νGν∆H

)
ds

We analyze each term in the integral separately.

12.3.1. Analysis of the 2BP Part. We seek bounds on
(
∂Gν
∂Lν

) ∫ t
0
−3(2(J0 +ν−Gν+∆H))1/2dt

for t ∈ [0, T ] where T is the time to perihelion and where initial conditions are started
at the apohelion. This is the dominant term in the numerator of (15). For the 2BP,(
∂G
∂L

) ∫ T
0
−3(2(J0 − G))1/2dt = −6πL−1. For the RCP3BP analysis, bounds on ∆H as well

as the bounds on the change of G = Pϕ over the flow need to be included.

Let us being by first noticing that

Pr = Pr(J0, r, ϕ,G) =
1
r

√
2(J0 −G+ ∆H)(r − r−)(r+ − r)

where r± = r±(J0, r, ϕ,G) are the apohelion and perihelion respectively. Then∫ T

0

(2(J0 + ν −Gν + ∆H))1/2dt =
∫ T

0

rPr√
(r − r−)(r+ − r)

dt =
∫ r+

r−

r√
(r − r−)(r+ − r)

dr

where Pr = Pr(J0 + ν, r, ϕ,Gν) and r± = r±(J0 + ν, r, ϕ,Gν). Notice this is of the form I1 as
in appendix 13. Computing the integral I1(r−, r+, r−, r+) yields∫ T

0

(2(J0 + ν −Gν + ∆H))1/2dt =
π

2
(r+ + r−)

Note that for the RCP3BP, r± are difficult to compute exactly since the time to reach the
apohelion/perihelion is a dynamical quantity that depends on the flow. However in light of
formula (17) for r±, these quantities are easy to bound by bounding Gν = G − ν over the
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half-period. The quantity ν is known and formula (8) for ρ tells us how to bound G over the
half-period. From (17), it is not hard to show that

(r− + r+)(J0, r, ϕ, Pϕ) =

√
1− 2P 2

ϕ(J0 − Pϕ + ∆H)

2J0 − 2Pϕ + 2∆H

So

√
1− 2(Gν(0)− ρ(1.6))2(J0 + ν − (Gν(0)− ρ(1.6)) + (|∆H|)+(1.6))

2J0 + ν − 2Gν(0) + 2ρ(1.6) + 2(|∆H|)+(1.6)
≤
(
r− + r+

)
≤√

1− 2(Gν(0) + ρ(1.6))2(J0 + ν − (Gν(0) + ρ(1.6))− (|∆H|)+(1.6))
2J0 + ν − 2Gν(0)− 2ρ(1.6)− 2(|∆H|)+(1.6)

]

It is not hard to show that the numerators are bounded. In fact for J0 = 1.8,µ = 0.001, ν =
2.8µ, Pϕ ∈ [1.66, 1.81], r ≥ 1.6, the numerator is contained in the interval [0.239131, 1.04326].

Notice from formula (7) that

∂Gν
∂Lν

=
L−3
ν + ∂∆H

∂Lν

1− ∂∆H
∂Gν

From Lemma 7.2 we observe that 1− ∂∆H
∂Gν

∈ [1− 0.025, 1 + 0.025]. Hence it suffices to obtain
finite bounds for L−3

ν + ∂∆H
∂Lν

.

Notice that on S(1.8),

L−3
ν = (2(1.8 + ν −Gν + ∆H))3/2 ∈[(2(1.8 + ν −Gν(0)− ρ(1.6)− (|∆H|)+(1.6)))3/2,

(2(1.8 + ν −Gν(0) + ρ(1.6) + (|∆H|)+(1.6)))3/2]

From Lemma 7.1, we have

|∂∆H
∂Lν

| ≤ 433µ
r3
≤ 433µ
L6
ν(1− eν)3

Now on S(J0) that

eν =
√

1− (Gν)2(J0 + ν −Gν)

Hence for J0 = 1.8, µ = 0.001, ν = 2.8µ,G ≤ 1.8 + 2µ then eν = 0.997391 < 1. (For values
of G > 1.8 + 2µ comets do not have apohelions since even if angular momentum descreased
maximally, it would still remain above 1.8. See Lemma 8.1.) Hence it is possible to get a
uniform upper bound on (1− eν)−3 for inside parabolic motions.

Hence

|∂∆H
∂Lν

| ∈ 433µ
(1− eν)3

[(2(J0−Gν(0)−ρ(1.6)−(|∆H|)+(1.6)))3, (2(J0−Gν(0)+ρ(1.6)+(|∆H|)+(1.6)))3]
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It follows that inside parabolic motions with J0 = 1.8, µ = 0.001, G ∈ [1.7, 1.81], r ≥ 1.6 that

|
∫ T

0

(2(J0 + ν −Gν + ∆H))1/2dt · ∂Gν
∂Lν
| ≤ C1

(2(J0 + ν −Gν(0) + ρ(1.6) + (|∆H|)+(1.6)))3/2

2J0 + 2ν − 2Gν(0)− 2ρ(1.6)− 2(|∆H|)+(1.6)

≤ C2(2(J0 + ν −Gν(0) + ρ(1.6) + (|∆H|)+(1.6)))1/2

<∞

where C1, C2 <∞ are constants. We have used that

|1.8 + ν −Gν(0) + ρ(1.6) + (|∆H|)+(1.6)
1.8 + ν −Gν(0)− ρ(1.6)− (|∆H|)+(1.6)

| <∞

since for inside parabolic motions, 1.8 + ν −Gν(0)− ρ(1.6)− (|∆H|)+(1.6) > 0.5µ.

12.3.2. Analysis of the perturbation term. In this subsection, we analyze
(
∂Gν
∂Lν

) ∫ t
0

(
∂`νGν∆H

)
ds.

For the 2BP, this term is zero, and in general is O( µ
L3
ν

) small, so we don’t expect too it to
contribute much.

It follows8 from Lemma 7.4, we have for µ = 0.001, r > 1.5, G ∈ [1.7, 1.81],

|
(
∂2∆H
∂`∂G

)
| ≤ 21

r7/2(1− eν)3/2
+

35|Pr|
r5/2(1− eν)5/2

Now ∫ T

0

|
(
∂2∆H
∂`∂G

)
|dt ≤

∫ T

0

21
r7/2(1− eν)3/2

+
35|Pr|

r5/2(1− eν)5/2
dt

≤
∫ r+

r−

21
Prr3(1− eν)3/2

+
35

r2(1− eν)5/2
dr

The second term in the integral is easy to evaluate in closed form and is clearly bounded.

Now ∫ r+

r−

1
Prr3

dr =
∫ r+

r−

1
r2
√

2(J0 − Pϕ + ∆H)(r − r−)(r+ − r)
dr

This is of form I−2 from appendix 13. It not hard to show that for r± ≥ 1.6 that

I−2(r−, r+, r−, r+) =
π(r− + r+)

2(r− · r+)3/2
≤ 1.3

It follows that for inside parabolic motions,

∫ T

0

|
(
∂2∆H
∂`∂G

)
| ≤ 21 · 0.77

(1− eν)3/2
√

2
(
J0 + ν −Gν − ρ(1.6)− (|∆H|)+(1.6)

) +
35 · 1.6

(1− eν)5/2

8Lemma 7.4 is stated in terms of Delaunay, however exactly the same bounds hold for ADDV. Simply put
a ν on all the Delauany terms in the estimates.
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Now when we multiply the above upper bound by the upper bound for ∂Gν
∂Lν

, we get the re-
sult is of at most C(2

(
J0 +ν−Gν−ρ(1.6)−(|∆H|)+(1.6)

)
)5/2 (for some C) which is bounded.

This completes the proof of the claim. Since we have bounded both the dominant and
perturbation term from above, then

|∂`ν
∂G

∂Gν
∂Lν
| < C <∞

Since there is uniform upper bound on the numerator of (15) and a uniform lower bound
on the denominator over all inside parabolic motions, then it follows that there is a uniform
bound away from π

2 .
�

13. Appendix - Table of Integrals

Let us investigate some properties of the following commonly occurring integrals. At
various times one encounters integrals of the form∫ t1

t0

rk(t)dt =
∫ r1

r0

rk

ṙ
dr

For a 2BP with eccentricity less than one, this can be rewritten

(16) F (J0, r0, r1, Pϕ, k) =
∫ r1

r0

rk+1dr√
2(J0 − Pϕ)(r+ − r)(r − r−)

where r± are the apohelion and perihelion radii given by

r+ :=
1 +

√
1− 2(J0 − Pϕ)P 2

ϕ

2(J0 − Pϕ)
r− :=

P 2
ϕ

1 +
√

1− 2(J0 − Pϕ)P 2
ϕ

(17)

Then to evaluate the integral (16) it suffices to know how to evaluate

I(a, b, c, d, k) :=
∫ d

c

rkdr√
(b− r)(r − a)

where in all cases, a, b, c, d ≥ 0 and a ≤ c ≤ r ≤ d ≤ b. Specific forms are known for some k.

I−3(a, b, c, d) :=

„√ab(b− x)(x− a)(2ab + 3x(a + b)) + (3a2 + 2ab + 3b2)x2p(b− x)(x− a) arctan(

√
b(x−a)√
a(b−x)

)

4(ab)
5
2 x2

p
(b− x)(x− a)

«
|x=dx=c

I−2(a, b, c, d) :=

„√ab(b− x)(x− a) + (a + b)x
p

(b− x)(x− a) arctan(

√
b(x−a)√
a(b−x)

)

(ab)
3
2 x
p

(b− x)(x− a)

«
|x=dx=c

I−1(a, b, c, d) :=

„ arctan(
x(a+b)−2ab

2
√
ab(b−x)(x−a)

)

√
ab

«
|x=dx=c

I0(a, b, c, d) :=

„
arcsin(

2x− b− a
b− a

)

«
|x=dx=c

I1(a, b, c, d) :=

„
a + b

2
arcsin(

2x− a− b
b− a

)−
b− a

2

s
1−

„
2x− a− b
b− a

«2«
|x=dx=c
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For a 2BP with eccentricity greater than one the analogous formula is

(18)
∫ r1

r0

rk

ṙ
dr =

∫ r1

r0

rk+1√(
N +Mr

)(
r − r−

)dr
where N := 1 +

√
1− 2P 2

ϕ(J0 − Pϕ) and M = 2(Pϕ− J0). Then to evaluate the integral (18)
it suffices to know how to evaluate

I(a, b, c, d, k) :=
∫ d

c

rkdr√
(b+ er)(r − a)

where in all cases, a, b, c, d, e ≥ 0 and a ≤ c ≤ r. Specific forms are known for some k.
The following are the analogs of the integrals from above for hyperbolic motions.

I
hyp
−3 (a, b, e, c, d) =

„√ab(b + ex)(x− a)(2ab− 3x(ae− b))− (3b2 − 2abe + 3a2e2)x2p(b + ex)(x− a) arctan(

√
b(x−a)√
a(b+ex)

)

4(ab)
5
2 x2

p
(b + ex)(x− a)

«
|x=dx=c

I
hyp
−2 (a, b, e, c, d) =

„√ab(b + ex)(x− a)− (ae− b)x
p

(b + ex)(x− a) arctan(

√
b(x−a)√
a(b+ex)

)

(ab)
3
2 x
p

(b + ex)(x− a)

«
|x=dx=c

I
hyp
−1 (a, b, e, c, d) =

„ 2 arctan

„ √
b(x−a)√
a(ex+b)

«
√
ab

«
|x=dx=c

I
hyp
0 (a, b, e, c, d) =

„ 2 log
`
e
√
x− a +

p
e(b + ex)

«
√
e

´
|x=dx=c

I
hyp
1 (a, b, e, c, d) =

„p
(ex + b)(x− a)

e
+
ae− b

e
3
2

log
`
e
√
x− a +

q
e(b + ex)

´«
|x=dx=c

14. Appendix - Computer Assisted Proofs

In several key points of the proof, computers are used to bound perturbation terms or
integrate the equations of motion in a mathematically rigorous fashion. Powerful tools, both
theoretical and computational have been developed to handle these procedures. See [GK1]
for an overview of the methods used. In summary, a procedure known as interview arithmetic
is used to rigorously represent numbers on a computer and incorporate the rounding errors
a computer makes into operations. Numbers are stored and manipulated as intervals whose
endpoints are representable on a machine (see [KM] and [MZ] for an overview). With some
care, it is possible to use interval arithmetic to formulate a mathematically rigorous numerical
integrator. This done in [Z] and [WZ]. Mathematically, integrating with interval arithmetic
is the equivalent of asking a computer to produce a verified ε-tube around a desired solution
of an ODE.

We make heavy use of the CAPD (Computer Assisted Proofs in Dynamics) library to per-
form the rigorous numerical integration over short intervals of time, typically less than 50 time
units. The CAPD package makes use of interval arithmetic to enclose numerical solutions of
ODEs over short periods of time in rigorously verified ε-tubes. It is also capable of moving
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small boxes of initial conditions under the flow. By covering a domain with many small inter-
vals, CAPD can move the entire domain. CAPD can be obtained at capd.ii.uj.edu.pl . The
CAPD library provides objects for intervals, vectors, matrices, maps, and integrators which
can be included into C++ programs.

Mathematica was also used for its symbolic manipulation abilities, as well as its built in
interval arithmetic. It allowed us to quickly verify many of the claims of enclosure in a non-
rigorous fashion. Mathematica rigorously verified many of identities we used.

The programs written with CAPD and with Mathematica can be obtained online at
www.math.umd.edu/˜joepi. The programs are packaged with a guide which gives explicit
details on which programs carry out which parts of the proof, as well as information on ob-
taining libraries, compiling, running, and modifying the code for use on similar problems.
Logs and outputs of some of the programs are also included due to the length of time needed
to generate the data.

Most of the software ran continuously for two weeks, distributed over a cluster of 80
machines the fastest of which was a 3.4 GHz Pentium 4 with 2GB RAM and 120 GB HDD.
It produced over 2GB of data. Each machine was running a variant of Linux with latest
available build of CAPD and Mathematica 5.0 or better.
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