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Abstract

The classical principle of least action says that orbits of mechanical systems extremize
action; an important subclass are those orbits that minimize action. In this paper we
utilize this principle along with Aubry-Mather theory to construct (Birkhoff) regions
of instability for a certain three-body problem, given by a Hamiltonian system of
2 degrees of freedom. We believe that these methods can be applied to construct
instability regions for a variety of Hamiltonian systems with 2 degrees of freedom. The
Hamiltonian model we consider describes dynamics of a Sun-Jupiter-comet system,
and under some simplifying assumptions, we show the existence of instabilities for the
orbit of the comet. In particular, we show that a comet which starts close to an orbit
in the shape of an ellipse of eccentricity e = 0.66 can increase in eccentricity up to
e = 0.96. In the sequels to this paper, we extend the result to beyond e = 1 and show
the existence of ejection orbits. Such orbits are initially well within the range of our
solar system. This might give an indication of why most objects rotating around the
Sun in our solar system have relatively low eccentricity.

1. Introduction

We consider the restricted circular planar three-body problem (RCP3BP) with two
massive primaries, which we call the Sun and Jupiter, that perform uniform circular
motion about their center of mass (see Figure 1). The system is normalized to mass 1
so that the Sun has mass 1 − μ and Jupiter has mass μ. We further normalize so that
Jupiter rotates with period 2π , and the distance from the Sun to Jupiter is constant and
also normalized to 1. Our goal is to understand the behavior of the massless comet
whose position in polar coordinates is denoted (r, ψ). It is convenient to consider the
system in a rotating frame of reference which rotates with unit speed in the same
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Figure 1. Sun-Jupiter-comet system

direction as Jupiter. In this system, the Sun and Jupiter are fixed points on the x-axis
corresponding to ψ = 0. We let (r, ϕ) = (r, ψ − t) denote the motion of the comet in
the rotating frame of reference.

The RCP3BP has a conserved quantity known as the Jacobi constant:

J (r, ϕ, ṙ, ϕ̇) = r2

2
+ μ

dJ

+ 1 − μ

dS

− ṙ2 + r2ϕ̇2

2
=: U (r, ϕ) − ṙ2 + r2ϕ̇2

2
,

where dJ and dS are distances to Jupiter and the Sun, respectively,

dJ (r, ϕ) := (
r2 − 2(1 − μ)r cos(ϕ) + (1 − μ)2

)1/2

dS(r, ϕ) := (
r2 + 2μr cos(ϕ) + μ2

)1/2
.

(1)

Denote by

H (J0) := {
(r, ϕ) : U ≥ J0

}
a set of points on the plane of motion (configuration space). Points in this set are called
the Hill regions associated to the Jacobi constant J0. These regions are the locations
in the (r, ϕ)-plane (shaded regions in Figure 2) where the comet is allowed to move.

Fixing the Jacobi constant restricts dynamics to an invariant energy surface de-
noted

S(J0) := {
(r, ϕ, ṙ, ϕ̇) : J (r, ϕ, ṙ, ϕ̇) = J0

}
.

Most of these surfaces are smooth 3-dimensional manifolds. Denote by
RCP3BP (μ, J0) the RCP3BP with Sun-Jupiter mass ratio μ and dynamics restricted
to the surface S(J0).
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It turns out that for μ ≤ 10−3 and J0 ≥ 1.52 the set H (J0) consists of three
disjoint connected components: a region around the Sun called the inner Hill region,
a region around Jupiter called the lunar Hill region, and a noncompact region called
the outer Hill region. The boundary of these regions can be found by considering the
zero velocity curves which are on the boundary of the Hill regions (see [AKN]). In this
paper we consider only orbits contained in the outer Hill region, denoted by H out(J0).
For convenience, denote Sout(J0) = H out(J0) ∩ S(J0), and when dynamics Sout(J0)
is considered, we refer exclusively to the case when the outer Hill region is disjoint
from the other two.

LEMMA 1.1
If an orbit (r, ψ)(t) in H out(J0) makes more than one complete rotation about the
origin, for example, |ψ(T ) − ψ(0)| > 3π for some T > 0, then J 2

0 /2 − 8μ ≤ r(t)
for all 0 ≤ t ≤ T .

This lemma is proven in Appendix B. If an orbit makes less than one rotation, then
one can show that it escapes to infinity, and we are not interested in these orbits.

As the position of Jupiter is at radius 1−μ, then this lemma implies, for μ ≤ 10−3

and J0 ≥ 1.52, that if the comet is in an elliptic or parabolic orbit in the outer Hill
region, then it remains bounded away from collisions with the Sun and Jupiter by a
distance at least 8% of the Sun-Jupiter distance.

For small μ and away from collisions, the RCP3BP is nearly integrable and can
be approximated with the Sun-comet two-body problem (2BP(SC)) corresponding to
μ = 0. Elliptic motions of a 2BP have two special points where the radial velocity ṙ

of the comet is zero. The perihelion is the closest point to the Sun,† denoted rperih, and
the apohelion is the farthest point from the Sun, denoted rapoh. Define the osculating
(or instantaneous) eccentricity e(t) for the RCP3BP to be the eccentricity of the comet
in the unperturbed 2BP(SC) system with initial conditions taken to be those of the
comet in the RCP3BP at time t .

THEOREM 1.2
Consider the RCP3BP(μ, J0) with dynamics in Sout. There exist functions e∗ =
e∗(μ, J0) and emax(μ, J0), and there exist trajectories of a comet with initial ec-
centricity e∗ = e∗(μ, J0) that increase to eccentricity emax(μ, J0). For example
e∗(10−3, 1.8) ≤ 0.66 and emax(10−3, 1.8) ≥ 0.96 (see Figure 3).

†To be pedantic, the perihelion is technically defined to be a point in the orbit when r ≤ J 2
0 and ṙ = 0. It is not

necessarily the closest point to the Sun. Rather it is when the comet is at the closest point to the center of mass
of the system. The Sun is within μ of the center of mass. It turns out that in our solar system, the radius of the
Sun is approximately 0.00089 the Sun-Jupiter distance, so we allow this slight abuse in terminology for small μ

(see [NASA]).
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Figure 2. Hill regions

Figure 3. Ellipse of eccentricity e = 0.66

Suppose that T 2 ⊂ S(J0) is an invariant set of the RCP3BP(μ, J0) that is diffeomor-
phic to a 2-dimensional torus. Call T 2 rotational if it cannot be continuously deformed
inside S(J0) to a closed curve or a single point. When μ = 0 (i.e., when there is no
perturbation), the problem reduces to the 2BP(SC) system, and every such rotational
2-torus is defined by {e = e0 ≥ 0}. Bounded motions correspond to e0 ∈ [0, 1). In
general, for e bounded away from 1 and μ sufficiently small, many of these rotational
2-tori survive due to KAM (see [SM]). Celletti and Chierchia [CC] gave a computer-
assisted proof using μ ≈ 10−3 and J0 ≈ 1.76 in the inner Hill region to show that near
e = 0.3 there is a rotational 2-torus T 2 separating S(J0) into a compact Below T 2

component and a noncompact “Above T 2” component. Their proof may be adapted
to the outer Hill region (see [CC1]). We present our method for the specific value of
J0 = 1.8; however, our method works for any μ ≤ 10−3 and J0 ≥ 1.52.∗

∗Values
√

2 ≤ J0 ≤ 1.52 require substantial additional work as the lunar Hill region and outer Hill region are no
longer disjoint. For J0 near or less than

√
2, collisions with Jupiter are hard to exclude.
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Figure 4. Various eccentricity orbits of the 2BP in the plane and on the cylinder T
2 × I

Define a region of instability (RI) for the RCP3BP(μ, J0) as an open set in S(J0)
which has no rotational 2-dimensional tori inside.† If there is a rotational 2-torus, then
it separates S(J0) into an above and a below (see Section 7 for precise definitions).
This provides a topological obstruction to instability. As a matter of fact, we prove the
following.

THEOREM 1.3
In the setting of Theorem 1.2, the RCP3BP(μ, J0) has a region of instability which
contains the region {e∗(μ, J0) ≤ e ≤ emax(μ, J0)}.

This paper is the first in the sequence of three papers on instabilities for the RCP3BP.
In the sequels [GK1] and [GK2] we extend this theorem and prove that the RI contains
the region {e∗ ≤ e}.

The primary tools for this result are Aubry-Mather theory and rigorous numerical
integration. It is not trivial to apply Aubry-Mather theory to the RCP3BP since the
typical usage requires the RI to be an invariant domain, and we do not have such
invariance in our case. We stress that trajectories are not constructed by means of
numerical integration. After a mathematical framework is developed, we derive a
list of inequalities. To have an explicit value of e∗, we use a computer to verify the
range of validity of the inequalities, which are of two types: analytic and dynamic.
Analytic inequalities do not make use of integration of the equations of motion.
Dynamical inequalities do involve integration but only over short periods of time. We

†Birkhoff considered invariant regions of instability known as Birkhoff regions of instability. We study motions
in noninvariant RIs, and special care is taken to handle issues of noninvariance.
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use software which can handle both types of inequalities in a mathematically rigorous
way (see Appendix A).

In the sequel [GK1], relying on Mather’s variational method (see [M1], [M2],
[X1], [BK]) we show that in an RI there is a full set of Chazy instabilities (see [AKN],
also see [X2]). We would like to point out that existence of ejection orbits and Chazy
instabilities for RCP3BP was established by Llibre and Simo [LS]. We estimate their
e∗(0.001, 1.8) ≈ 0.995; however, their motions belong to a horseshoe, while ours
have a fairly different nature. Our orbits are local action minimizers and shadow
closely a collection of Aubry-Mather sets. The idea of constructing Chazy instabilities
originated in the famous paper by Sitnikov [Si] (see also [Mo3] for conceptual and
transparent exposition of Sitnikov’s work). Alekseyev [Al] constructed oscillatory
motions for the full spatial three-body problem (3BP).

2. Roadmap to the results

Recall that motions of the comet in rotating polar coordinates (r, ϕ) can be viewed as
the solutions to Hamilton’s equations with a Hamiltonian of the form

HPolar = H2BP (SC) + �H (r, ϕ) := P 2
r

2
+ P 2

ϕ

2r2
− Pϕ − 1

r
+ �H (r, ϕ; μ), (2)

where Pr and Pϕ are the momenta variables conjugate to r and ϕ, respectively (see,
e.g., [AKN]), and �H is the μ-small perturbation of the associated 2BP(SC). This
system arises by initially considering the planar 3BP, where the comet has mass m,
and letting m → 0. With the notation in (1), �H can be written

�H := 1

r
− μ

dJ

− 1 − μ

dS

= μ(μ − 1)(1 + 3 cos(2ϕ))

4r3
+ O

( μ

r4

)
.

The proof starts with expressing equations of motion of RCP3BP in so-called Delaunay
variables (formally defined in Section 5). These are action angle variables of the
2BP(SC) or, equivalently, of RCP3BP with μ = 0, and have two angular variables �

and g in T and two action variables 0 ≤ G ≤ L. There is a canonical transformation

D : (�, L, g, G) → (r, ϕ, Pr, Pϕ)

which converts Delaunay coordinates into symplectic polar coordinates. The im-
age consists of all bounded motions of the 2BP (SC). The map D is described in
Section 5.

It turns out that there is a good 2-dimensional Poincaré section � ⊂ S(J0) =
{H = −J0} of the dynamics of RCP3BP(μ, J0) in the outer Hill region. In other words,
a Poincaré map Fμ : U → � is well defined on an open set U ⊂ � homeomorphic
to an annulus (see Section 6, (10)). For μ = 0 there are natural coordinates on
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� � T × R+ � (�, L) with � ∈ T and L ≥ 0. It turns out that for μ = 0 and
J0 > 1.52, quantities

L = L(e, J0) and e = e(L, J0)

are monotone implicit functions of each other. On the energy surface S(J0) they
satisfy the implicit relation J0 = −1/(2L2) − L

√
1 − e2. Moreover, L → ∞ as

e → 1, and vice versa on Sout(J0). Below we use either e or L-parameterization of
the vertical (i.e., action) coordinate. When μ = 0, the Poincaré map Fμ has the form
(cf. Figure 4)

F0 : (�, L) → (� + 2πL−3, L).

This map is clearly a twist map (see [MF], [B], [Mo1] for discussion of twist maps).
For small μ, the corresponding Poincaré map Fμ is a small perturbation of F0 only
for e separated away from 1.

To prove all the results stated above it is sufficient to perform a detailed analysis
of Fμ. Analysis of Fμ naturally divides into the following stages.

Stage 1. Determine a twist region, denoted TwDel = {e−
twist ≤ e ≤ e+

twist}, where
Fμ is a twist map.

This is done by derivation of a sufficient condition to check that an infinitesimal
twist holds locally uniformly. This condition says that a function of certain first and
second partial derivatives of H has to be strictly negative. See Section 6 for details.
The values e−

twist and e+
twist are computed by numerical extremization of value of this

function. It is important to notice that TwDel is not invariant, but is, however, compact.
Even though Fμ twists in TwDel, a priori there might be no invariant sets in TwDel at
all.

Stage 2. Show that for each n ≥ N0 and each rotation number ω ∈
[1/(n + 1), 1/n] ⊂ R the corresponding Aubry-Mather set 	ω of Fμ has small
vertical L-deviations on the cylinder; that is, 	ω ⊂ {(�, L) : L−

n < L < L+
n }.

This stage is done in [GK2] by using the ordering condition from Aubry-Mather
theory. This implies that in a region slightly smaller than TwDel there are Aubry-Mather
sets.

Stage 3. Rule out invariant curves to show the existence of an RI {e∗ ≤ e ≤
emax} ⊂ TwDel.

This is done in the present paper. The idea is the following. Suppose that 	ω is
an invariant curve (an example of an Aubry-Mather set) for the exact area-preserving
twist (EAPT) Fμ, and denote by 	̃ω a lift of 	ω to S(J0). We prove that D−1(	̃ω)
consists of action minimizers of the RCP3BP Lagrangian in polar coordinates. For
ω relatively small, we show that action minimizers cannot visit a certain �-strip on
the cylinder T

2 � (�, L). This implies that there are no invariant curves for small
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Figure 5. Roadmap of results

ω or, equivalently, for highly eccentric motions. In Section 3 we outline a heuristic
method for destroying invariant curves in polar coordinates; then in Section 4 and the
appendices the results are made rigorous.

Combining steps 1, 2, and 3 with Mather’s variational techniques, we obtain a
proof of Theorem 1.2. It might not be surprising that the twist region TwDel is compact.
Action-angle (Delaunay) variables are designed to describe the compact part of the
dynamics, and as motions approach unbounded (parabolic) motions, usage of these
coordinates becomes less and less reliable. For example, they are not defined for
Aubry-Mather sets 	̃ω with very small rotation numbers ω (see [GK1]). Thus, to prove
existence of ejection/capture orbits we need to prove the existence of a semiinfinite
RI in the L-direction for the map Fμ. This leads to analysis of the noncompact part
above TwDel, denoted Tw∞.

Stage 4. Construct symplectic deformation of Delaunay variables so that Fμ is a
twist map for nearly parabolic motions.

This is done through analysis of the dynamics of the RCP3BP in symplectic polar
coordinates, where all bounded motions are well defined. It turns out that arguments
of Stage 3 apply to Aubry-Mather sets in Tw∞ or near the top boundary of TwDel

and exclude the possibility of invariant curves of any small rotation number. This
shows that the RI which contains {e∗ ≤ e ≤ 1 + ε} is semiinfinite in the L-direction.
Construction of the deformed coordinate system is the primary focus of [GK1]. ([GK1]
refers to the present work). The plan of the paper is the following.
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(1) In Section 3 a heuristic method for destruction of rotational tori is presented.
(2) In Section 4 the heuristics of Section 3 are formalized via interval arithmetic,

and the bounds needed to be checked via computer are laid out.
(3) In Section 5 Delaunay variables are defined, and in Section 6 they are used to

formulate the twist condition for the map Fμ.
(4) The applicability of Aubry-Mather theory to the RCP3BP is found in Section

7.
(5) The remainder of the paper is composed of lengthy technical appendices.

3. The action comparison method

“Nature is thrifty in all its actions.”
Maupertuis
In this section we outline a method for destroying invariant curves based on the
method of comparing actions. We illustrate the core of this method by making several
simplifying assumptions which are removed in later sections.

3.1. Action minimization
The motions of the comet at position q = (r, ϕ) and velocity v also satisfy the
Euler-Lagrange equations with Lagrangian

L(r, ϕ, ṙ, ϕ̇) = 〈v, v〉
2

+ 1

r
− �H := ṙ2

2
+ r2(ϕ̇ + 1)2

2
+ 1

r
− �H (r, ϕ; μ) (3)

and locally minimize action.
Notice that L maps R

2 × R
2 → R and is a real analytic positive defi-

nite Lagrangian away from Jupiter and the Sun, for example, in H out(J0). Let
(q0, t0), (q1, t1) ∈ R

2 ×R. Action along an absolutely continuous curve γ : [t0, t1] →
R

2 is defined to be

A(γ ) =
∫ t1

t0

L
(
γ (t), γ̇ (t)

)
dt.

We say that a curve γ : [t0, t1] → R
2 is action minimizing if

A(γ ) = min
γ :[t0,t1]→R2:γ (t0)=q0,γ (t1)=q1

A(γ ),

where the minimum is taken over all absolutely continuous curves connecting q0 to
q1. We also say that a curve γ : R → R

2 is globally action minimizing if it is action
minimizing on every time interval [t0, t1].
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Figure 6. An R-solar passage

LEMMA 3.1
If T 2 is a rotational 2-torus of RCP3BP, then every trajectory inside of T 2 is globally
action minimizing.

This result is proved in Section 7. However, let us consider the utility of the result now.
Our goal is to show that certain high-eccentricity trajectories are not globally action
minimizing. If this is so, then they are not contained in rotational 2-tori, and analysis
of the location of these trajectories eliminates possible rotational 2-tori. (Recall that
2-tori are obstructions to diffusion.) The main idea is that passing by Jupiter is cheaper
at some times than at others. We exploit this difference and outline the method for
producing instabilities by using some simplifying assumptions; then in a later section
we develop the formalism to make the method rigorous.

3.2. Solar passages and perihelion angles
Consider a trajectory (r(t), ϕ(t)) ∈ S(J0) ∩ H out(J0) such that
(1) r(t1) = R for some time t1;
(2) the trajectory passes through a perihelion rperih = r(tperih) < J 2

0 at some time
tperih > t1. Recall Pr = ṙ = 0 at the perihelion: physically it is the closest
point to Sun;

(3) r(t2) = R for some time t2 > tperih.
Call such a segment of trajectory (r(t), ϕ(t))t∈[t1,t2] an R-solar passage (see

Figure 6). The perihelion angle, denoted ϕperih, is the angle the comet makes relative
to the position of Jupiter when the comet is at the perihelion. Let SP (J0, R) be the set
of all R-solar passages. The following lemma guarantees existence of solar passages.
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LEMMA 3.2
Consider RCP3BP(μ, J0) with μ ≤ 10−3 and J0 ≥ 1.52. Suppose that γ (t) =
(r(t), ϕ(t)) ∈ Sout(J0) is a trajectory such that for some sufficiently long interval of
time it holds that e(t) ≥ e0 for some e0 ∈ (0, 1). Then there exists an Rmax(e0) such
that γ (t) has R-solar passages for all rperih < R ≤ Rmax. Furthermore, J 2

0 /2−8μ ≤
rperih ≤ J 2

0 .

We present a heuristic proof of this lemma for J0 = 1.8. Recall that for the 2BP(SC),
μ = 0 and ė(t) ≡ 0. For e ≥ 0.45 on H out(1.8), trajectories are ellipses with apohelion
distance to the origin rapoh ≥ 5. This indicates that there are times t1 < t2 such that
r(t1) = r(t2) = R ≤ rapoh(e), and hence for some t∗ ∈ [t1, t2] we have ṙ(t) < 0
(resp., > 0) for each t ∈ (t1, t∗) (resp., (t∗, t2)). This implies that r(t∗) is a minimum
of r(t) on the interval [t1, t2]. Simple analysis of �H shows that |�H | ≤ 2.7μ/r3 for
r ≥ 1.59. This implies that ė(t) � O(μ/r3), which is small since μ = 10−3, so the
shape of the orbit is almost unchanged and hence the minimum, that is, the perihelion,
still exists under perturbation. Furthermore, since e0 ≈ e(t) holds for a sufficiently
long time, there exists an Rmax � rapoh(e0) such that there are R-solar passages for
all rapoh < R ≤ Rmax. The lower bound on the radius follows from properties of
H out(1.8) and is approached with nearly parabolic motions, while the upper bound
follows from considering nearly circular motions of the comet.

This argument is made rigorous in Section 4 when we exhaustively construct a
large class of 5-solar passages with computer assistance and estimate changes in e(t).

3.3. Bad perihelion angles
We now prove that certain R-solar passages are not action minimizing. It turns out
that this depends heavily on the perihelion angle during the passage.

THEOREM 3.3 (Bad angles theorem)
Consider RCP3BP(μ, J0), and restrict dynamics to Sout(J0). There is a function
e∗(μ, J0) such that for all initial eccentricities e0 > e∗(μ, J0), there exists an interval
[ϕ−, ϕ+] with ϕ± = ϕ±(μ, J0, e0) such that if (r(t), ϕ(t))t∈[t1,t2] is an R-solar passage
and perihelion angle ϕperih ∈ [ϕ−, ϕ+], then (r(t), ϕ(t))t∈[t1,t2] is not action minimizing.

A heuristic proof of the bad angles theorem is presented later in this section, and
a rigorous proof is presented in Section 4. By combining Lemmas 3.2 and 3.1 and
Theorem 3.3 we now show there is an e∗(μ, J0) such that there are no rotational 2-tori
crossing the region {e ≥ e∗(μ, J0)}.
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Figure 7. Decomposition of γ into smaller arcs

Proof of Theorem 1.2
The proof is by contradiction. Suppose that there is a rotational 2-torus T 2 of
RCP3BP(μ, J0). Consider the intersection of T 2 with perihelion/apohelion surface
{ṙ = 0}. In polar coordinates ϕ̇ < 0, so trajectories intersect {ṙ = 0} transversally,
and thus {ṙ = 0} ∩ T 2 is diffeomorphic to a compact 1-dimensional manifold, that
is, the circle. This implies that for every perihelion angle ϕperih = ϕ(tperih) there is a
trajectory (r(t), ϕ(t)) inside T 2 with this perihelion angle. By Lemma 3.2, there is an
R-solar passage (r(t), ϕ(t))t∈[t1,t2] with tperih ∈ [t1, t2] for this trajectory. By Theorem
3.3, this R-solar passage is not action minimizing, which contradicts Lemma 3.1. Thus
there are no rotational 2-tori for RCP3BP(μ, J0) crossing {e ≥ e∗(μ, J0)}. �

3.4. Action decomposition
In this section we stick to μ = 10−3 and J0 = 1.8 for concreteness. Suppose that
γ ∈ SP (1.8, R) is an R-solar passage. We define an (R1, R2) segment as a piece of the
trajectory of the RCP3BP, where the radius is monotonically increasing or decreasing
from R1 to R2. We decompose γ into (see Figure 7):
� γ − – an (R, 5)-segment,
� γ in – a 5-solar passage,
� γ + – a (5, R)-segment.

Remark. For r ≥ 5 and μ = 10−3, one can show that |�H | ≤ 10−5. Call the
region {r ≥ 5} the outside region since the comet is practically outside the range of
influence of Jupiter. Call the region {r ≤ 5} the kick region because the comet’s orbital
parameters are perturbed (or kicked) more in this region.
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Figure 8. Potential capture (left) and escape (right) motion of the system
at times t1 < t2 < t3 < t4

We denote the action on each of the segments A−
out, Ain, and A+

out, respectively,

A(γ ) = A−
out + Ain + A+

out.

3.5. Action comparison in the kick region
It turns out that Ain has fairly sensitive dependence on the perihelion angle. The
difference in actions can be explained physically by considering two scenarios. One
possibility is that the comet is pulled along behind Jupiter and gains velocity. This is
a so-called gravity assist, and when the comet leaves the perihelion, it is flung further
out than before. This case turns out to be action minimizing since the comet is getting a
free ride from Jupiter. The other possibility is exactly the reverse. The comet is slowed
down by Jupiter and is pulled more inward, as Jupiter attempts to capture it. Note that
Jupiter can never actually capture the comet as a moon since the lunar Hill region
around Jupiter is separated from the outer region by our choice of Jacobi constant.

According to standard formulas (see [AKN]), it turns out that the eccentricity

e =
√

1 − 2P 2
ϕ (J0 − Pϕ), where J0 = −H , is the energy of the associated Hamil-

tonian. Thus one can also parameterize the 3-dimensional energy surface S(J0) with
coordinates (r, ϕ, Pϕ). Denote by SP (J0, R, Pϕ) the set of all R-solar passages be-
longing to S(J0) that have initial angular momentum Pϕ . Define ϕ

perih
max and ϕ

perih
min as

the angles such that

Ain(Pϕ, ϕ
perih
max ) := max

γ∈SP (J0,R,Pϕ )
A(γ in), Ain(Pϕ, ϕ

perih
min ) := min

γ∈SP (J0,R,Pϕ )
A(γ in).

(4)

Remark. It turns out that ϕ
perih
min and ϕ

perih
min depend slightly on Pϕ . Ignore this for now

to keep the argument simple.
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Figure 9. Action difference for nearly parabolic motions

Let us compute the differences in action and angle:

�Amin
in := min

Pϕ

(
Ain(Pϕ, ϕ

perih
max ) − Ain(Pϕ, ϕ

perih
min )

)
, �ϕ := ϕperih

max − ϕperih
min .

(5)

To get a feel for these quantities, let us consider R = 26-solar passages corresponding
to nearly parabolic motions (Pϕ ≈ J0). A computer can then compute �Amin

in ≈
0.0163237 and �ϕ ≈ 1.076. A detailed algorithm for rigorously computing these
quantities is given in Section 4.

Figure 9 plots the perihelion angle ϕperih versus Ain, the action for the particular
set of 26-solar passages corresponding to parabolic motion in the kick region.

3.6. Heuristic outside region action comparsion
Suppose there is a rotational 2-torus T 2. Then it has base T

2 which can be param-
eterized by (t, ϕ). Specifying a perihelion fixes a time tperih which leaves one free
variable, ϕperih. Hence it is possible to make an R-solar passage with any perihelion
angle, including the bad angle ϕ

perih
max or some angle near it in the interval of bad

angles. Suppose that γmax is a 26-solar passage with perihelion angle ϕ
perih
max (or near

it) and initial angular momentum Pϕ ≈ J0 (i.e., nearly parabolic motion). We now
describe a procedure to construct γtest, a new curve with smaller action than γmax;
that is, A(γtest) < A(γmax). Doing this completes the proof of the bad angles theorem
(Theorem 3.3) since we can take a neighborhood of ϕ

perih
max for the interval of angles

specified in the theorem. We may then obtain the necessary contradiction to Lemma
3.1 and rule out the existence of the rotational 2-torus which contains γmax.
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For r ≥ 5, �H and its derivatives with respect to r and ϕ are quite small (see
Lemma 4.1), so it is not too bad to approximate the RCP3BP by the 2BP(SC) for the
(R, 5)-segment and the (5, R)-segments which are contained in the outside region.
Doing so allows us to be explicit and compute the action without computer assistance.
These approximations are made rigorous in Section 4.

Heuristically, if the comet starts at R = 26 and has ϕperih = ϕ
perih
max , then by

modifying the velocity of the (26, 5) segment, the comet can slow down enough so
that Jupiter moves from a position where the action is maximized to a position where
action is minimized. The comet can then speed very slightly during the (5, 26)-segment
to arrive at R = 26 at the same time as in the original case.

Note that it takes a finite amount of time �T for the angle of Jupiter relative to
the comet to change by �ϕ. In nonrotating coordinates Jupiter moves with unit speed,
and for r ≥ 5 the comet’s angle remains nearly constant since ψ̇ = Pϕ/r

2. (In rotating
coordinates, Jupiter is fixed and the comet is moving with almost unit speed.) Hence
�T ≈ �ϕ. By Kepler’s second law, for r ≥ 5 the comet moves slower the further
away it is from the Sun (see [AKN]). We denote the amount of time the comet spends
in the (26, 5)-segment by Tout. To keep the argument simple, assume by symmetry;
this is also the time spent in the (5, 26)-segment.

A very small change in velocity changes considerably the amount of time to reach
the perihelion. Let

λ± = Tout

Tout ∓ �ϕ
≈ Tout

Tout ∓ �T
. (6)

Recall that γmax is a 26-solar passage such that the perihelion angle is ϕ
perih
max and γ in

max

maximizes action over all 5-solar passages. Consider a new curve γtest, where
� the velocity of the (26, 5)-segment is γ̇ −

test = λ− · γ̇ −
max;

� γ in
test is a 5-solar passage which minimizes action over all 5-solar passages; that

is, the perihelion angle of γtest is ϕ
perih
min ;

� the velocity of the (5, 26)-segment is γ̇ +
test = λ+ · γ̇ +

max.

Claim
Suppose that γ ∈ SP (1.8, 26) has initial angular momentum Pϕ ≈ J0 (i.e., it is
nearly parabolic) and has perihelion angle ϕperih ∈ [ϕperih

max − �, ϕ
perih
max + �] for �

small, for example, � = 0.000025. Let γtest be constructed as above. Then A(γmax) −
A(γtest) > 0 and γ is not a global action minimizer. Let us calculate the difference
in actions between γmax and γtest, starting with the action of the rescaled (26, 5)-
segment γ −

test. The Hamiltonian of the 2BP(SC) approximation for parabolic motion
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gives 〈v, v〉/2 = P 2
r /2 + P 2

ϕ /(2r2) = 1/r , where v = γ̇max is the velocity of γmax:

A(γ −
test) =

∫ t(26)·λ−

t(5)·λ−

(λ2
− 〈v, v〉

2
+ 1

r

)( t

λ−

)
dt

=
∫ t(26)

t(5)
λ− ·

(
λ2

−
( 1

r(u)

)
+ 1

r(u)

)
du

=
∫ 26

5

λ3
− + λ−

rṙ
dr

=
∫ 26

5

λ3
− + λ−√

2r − 1.82
dr.

Remark. The second line comes from a linear change of variables, and the last line
comes from solving H2BP (r, ϕ, ṙ, 1.8) = −1.8 for ṙ , as this corresponds to parabolic
motion on S(1.8) The limits of integration change since the comet must start and end
at the same place with respect to (r, ϕ) in the scaled and unscaled cases. By symmetry
from the 2BP(SC) approximation, the (5, R)-segment γ +

test is the same computation,
only using λ+. The unscaled trajectories γ +

max and γ −
max have the same computation,

only using λ = 1.
Consider the following formulas relating time and radius for 2BP parabolic mo-

tions.

LEMMA 3.4
For parabolic motions in the 2BP,

r(t) = 1

2
(3t +

√
J 6

0 + 9t2)2/3 + J 4
0

2(3t +
√

J 6
0 + 9t2)2/3

− J 2
0

2
,

t(r) = 1

3

√
2r3 + 3J 2

0 r2 − J 6
0 .

Proof
These can be derived from formulas in [AKN, Section 2.1]. �

Using the formulas in Lemma 3.4 yields Tout ≈ 60.918 and

λ− ≈ 0.9844, λ+ ≈ 1.0161,

A(γ −
max) ≈ 8.7657, A(γ +

max) ≈ 8.7657,

A(γ −
test) ≈ 8.4956, A(γ +

test) ≈ 9.0507.
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Now let us compute the difference in action between the curves γmax and γtest:

A(γmax) − A(γtest) ≥ �Amin
in + (

A(γ −
max) − A(γ −

test)
) + (

A(γ +
max) − A(γ +

test)
)

≈ 0.000978235 > 0.

Further analysis indicates that picking any other radius larger than R = 26 also
produces a strictly positive result. The reason is that spending more time in the outside
region increases Tout, which pushes the λ’s closer to 1, which makes the differences in
action on the (5, 26)- and (26, 5)-segments smaller and hence increases the difference
in actions between γmax and γtest. Hence we conclude that there are no rotational 2-tori
corresponding to R ≥ 26; that is, e ≥ 0.88.

The next section is dedicated to making the action comparison method mathe-
matically rigorous.

4. Rigorous action comparison

In this section we develop mathematically rigorous estimates to use in place of the
heuristics in Section 3. It turns out that by modifying R-solar passages to incorporate
elliptic motions, the value of e∗(0.001, 1.8) can be lowered down to e∗ ≤ 0.66 at
the cost of increasing complexity of the estimates. This section relies on technical
appendices and computer-assisted methods for some of the estimates.

4.1. The intervalization of the RCP3BP
The following formula nicely changes between time and radius:∫ t1

t0

dt =
∫ r1

r0

dr

ṙ
.

Away from parabolic motions,† this integral can be rearranged into the form

t1 − t0 =
∫ r1

r0

r dr√
2C(r+ − r)(r − r−)

, (7)

r+ :=
1 +

√
1 − 2CP 2

ϕ

2C
, r− := P 2

ϕ

1 +
√

1 − 2CP 2
ϕ

,

C := J0 − Pϕ + �H.

In the case when μ = 0, the integral can be evaluated explicitly since �H = 0
and Pϕ ≡ Pϕ(0). In the RCP3BP with μ > 0, there are no longer these luxuries, as

†Nearly parabolic motions are addressed in Appendix D.
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r+ and r− are no longer constant; rather, they depend on time. However, away from
parabolic motions in the outside region these quantities do not change much since the
perturbative effects of Jupiter are too faint to make much of a difference. Our goal
is to intervalize the problem, that is, to use a computer to generate rigorous bounds
on the above terms and to use interval arithmetic (see Appendix A) to manipulate the
bounds.

The first step to carrying out this procedure is to get precise estimates on the
perturbation terms. Some simple analysis shows the following.

LEMMA 4.1
For r ≥ 1.6 and μ = 10−3, |�H | ≤ 2.7μ

r3 , | ∂�H

∂r
| ≤ 12.4μ

r4 , and | ∂�H

∂ϕ
| ≤ 28.6μ

r3 .

While these bounds are adequate for exposition, they are not quite accurate enough for
our purposes. In Appendix B we define a function (|�H |)+(r) so that for all ϕ ∈ T

and r > 1 + μ it holds that (|�H |)+(r) ≥ |�H (r, ϕ)|. Functions (| ∂�H

∂r
|)+(r) and

(| ∂�H

∂ϕ
|)+(r) are defined similarly.

We also require very accurate estimates on how Pϕ changes dynamically with
time (or radius). Appendix C contains the construction of a function ρ(r) such that
Pϕ(t) ∈ Pϕ(0) + [−ρ(r(t)), ρ(r(t))] for t the time between an apohelion and the
following perihelion. Using ρ(r) and some data from rigorous integration (see Section
4.7), one can prove the following lemma.

LEMMA 4.2 (Bounds on change in angular momentum)
Assume μ = 10−3, J0 = 1.8, and Pϕ(t) ∈ [1.66, 1.81] (i.e., e(t) ∈ [0.48, 1.04]) for
a sufficiently long time interval. Then
(1) when approaching a perihelion from the previous apohelion (or from infinity),

angular momentum does not change by more than 0.0215298μ over the entire
outside region;

(2) when approaching a perihelion from the previous apohelion (or from infinity),
angular momentum does not change by more than 4.44885μ;

(3) angular momentum does not change by more than 1.444μ after an R-solar
passage.

Moreover, by time reversal the same bounds hold when leaving the Sun and are
valid until the next apohelion.

Furthermore, one can also prove the following (see Appendix C).

LEMMA 4.3
For μ = 10−3 and J0 = 1.8, then ρ(r) ≤ 18.2μ/r3 for r ≥ 1.6. Moreover, ρ(r) ≤
2.7μ/r3 for r ≥ 5.
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This should not come as a great surprise since Pϕ(t) −Pϕ(0) = ∫ t

0 −(∂�H )/(∂ϕ) dt ,
so angular momentum changes solely due to the perturbation term, which is of order
O(μ/r3).

4.2. Elongated solar passages
In Section 3.6, we assumed that the (5, R)- and (R, 5)-segments of an R-solar passage
were pieces of the 2BP(SC) corresponding to parabolic motion. This is unnatural for
low eccentricity orbits, where the comet does not make large R-solar passages. It is
more accurate to use pieces of elliptic orbits. From (6), observe that it is in our favor
for the comet to spend as much time as possible in the outside region since λ± → 1 as
Tout → ∞. By Kepler’s second law, the comet moves the slowest, and hence spends
the most time near an apohelion (see [AKN]). When constructing the test curve γtest,
we exploit this, and instead of using (5, R)- and (R, 5)-segments, we use elliptic pieces
of trajectory which have apohelions. Specifically, start the comet at r = 5, advance
to an apohelion r = R, and move back to r = 5. Call this a (5, R, 5)-segment. Now
consider curves γ that decompose into the following (see Figure 10):
� γ −, a (5, R1, 5)-segment, defined for t1 ≤ t5;
� γ in, a 5-solar passage, defined for t5 ≤ t ′

5;
� γ +, a (5, R2, 5)-segment, defined for t ′

5 ≤ t2.
Call these curves elongated solar passages. Such curves exist by an argument

similar to Lemma 3.2, under the additional assumption that e(t) ≤ 1 − ε for some
ε > 0 for a sufficiently long time interval. This additional condition simply says that to
have an elongated solar passage, the comet’s eccentricity must stay strictly below e = 1
for a long time—enough time—to allow for the existence of the two apohelions. This
is a sufficient but not necessary condition, and it can be relaxed slightly; however, it is
unnecessary to do so, as the statement Theorem 1.2 only requires e ≤ 0.96. Existence
of elongated solar passages is guaranteed for our purposes by the initial assumptions
in Theorem 1.2.

4.3. Asymmetry in the outside region
When approximating the RCP3BP with parabolic motions in Section 3.6 we made use
of the fact that the 2BP(SC) approximation of γ − and γ + before and after a 5-solar
passage were the same. This is not true in general (see Figure 10). When the comet
passes through the kick region, Jupiter changes the angular momentum of the comet.
This changes the orbit of the comet in the outside region. In fact, this is the mechanism
which allows capture and escape to occur. The change in angular momentum after
a 5-solar passage means that the apohelions before and after the 5-solar passage are
different; that is, in general, R1 �= R2 in an elongated solar passage. This means that
γ − and γ + spend different amounts of time in the outside region, and hence λ− and
λ+ are not directly related.
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Figure 10. An example of a elongated solar passage

Previously, the case of parabolic motion for the 2BP could be worked out by hand
in a short amount of time. The elliptic case involves more complex integrals, and it
becomes necessary to use a computer to handle them. The rigorous numerics we use
work by integrating intervals of initial conditions (see Appendix A). The integrator
only works for shorter intervals of time and is only programmed to handle 5-solar
passages. It is enough to handle the estimates in the kick region. The behavior in the
outside regions must be accounted for by using a different procedure. We will develop
the machinery to overcome both technical difficulties at once.

Consider an elongated solar passage γ , and suppose that the angular momentum
satisfies Pϕ(t) ∈ I− for all t ∈ [t1, t5], that is, where γ − is defined. Let Pϕ(t5)
denote the angular momentum at the start of the 5-solar passage γ in, and suppose
that Pϕ(t5) ∈ I. The size of the interval I is ultimately chosen to make the rigorous
numerics work efficiently on a computer. Suppose that the angular momentum satisfies
Pϕ(t) ∈ I+ for all t ∈ [t ′

5, t2], that is, where γ + is defined.
Given I, its possible to derive enclosures for I± by using Lemma 4.2. For ex-

ample, to reach the interval I at time t5, initial conditions must be contained in
I + [−2ρ(5), 2ρ(5)] = I− since this accounts for a change in angular momentum
in the outside region. The bound of 2ρ(5) is used because the comet passes between
r = 5 and the apohelion twice, once leaving the Sun, and once approaching it.

Let (�Pϕ)kick(I) denote the enclosure of possible changes in angular momentum
after passing through the kick region when entering with angular momentum Pϕ ∈ I.
(This quantity is rigorously estimated in a later subsection.) This means that when
leaving the kick region, Pϕ ∈ I + (�Pϕ)kick(I). Then when the comet is leaving the
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Sun and is in the outside region, Pϕ ∈ I + (�Pϕ)kick(I) + 2[−ρ(5), ρ(5)] = I+. We
remark that for (nonelongated) R-solar passages, the factor of 2 can be removed.

4.4. Bounds on time and radius
We are tasked with estimating all of (7) in detail. Suppose I = P ∗

ϕ + [−w, w] and
|(�Pϕ)kick(I)| ≤ M . We call [−w, w] the window around P ∗

ϕ . It is an artifact of the
rigorous numerics. We use ()± to denote upper and lower bounds (see Appendices A,
B). Lowercase letters denote values before the 5-solar passage and uppercase letters
denote values after the 5-solar passage, respectively. Let

c± := J0 − P ∗
ϕ ± (

2ρ(5) + w + (|�H |)+(5)
)
,

C± := J0 − P ∗
ϕ ± (

2ρ(5) + w + M + (|�H |)+(5)
)
.

Clearly the above quantities bound C = J0 −Pϕ +�H before and after a 5-solar
passage. (The formal definitions of (|�H |)+(r) and ρ(r) are found in Appendices B,
C, respectively.)

The 2BP(SC) is an integrable system, and specifying Jacobi constant J0 and
Pϕ specifies the shape of the ellipse of orbit. Let 2BP(r0, ϕ0; J0, Pϕ(0)) denote the
2BP(SC) with initial conditions (r0, ϕ0), H2BP (SC) = −J0, and Pϕ = Pϕ(0). Since
μ = 10−3, then the RCP3BP(μ, J0) with the same initial conditions behaves like
2BP(r0, ϕ0; J0, Pϕ(0)) if r0 is sufficiently large. For J0 = 1.8 and a given (r0, ϕ0, P

∗
ϕ ),

we consider the four special Sun-comet 2BPs with initial conditions Pϕ(0) ≡ P ∗
ϕ ±

(2ρ(5) + w), Pϕ(0) ≡ P ∗
ϕ ± (2ρ(5) + w + M). Call the 2BPs with these angular

momenta the extreme 2BPs with respect to P ∗
ϕ . We use them to approximate the

RCP3BP far from the Sun.
Consider an elongated solar passage γ of the RCP3BP with angular momentum

Pϕ(t5) ∈ I = P ∗
ϕ +[−w, w] at the start of a 5-solar passage. Then for t ∈ [t1, t5], γ has

Pϕ(t) ∈ P ∗
ϕ ± (2ρ(5) + w). This is to say that the angular momentum in the RCP3BP

is bounded in between that of the extreme 2BPs with Pϕ(0) ≡ P ∗
ϕ ± (2ρ(5) + w) in

the outside region. A similar statement can be made about times t ∈ [t ′
5, t2].

Examination of (7) indicates that by bounding Pϕ , a bound on the time spent in
the outside region may also be obtained. Moreover, once bounds on time are obtained,
these can be used to obtain bounds on the action in the outside region. Hence to carry
out the action comparison rigorously using the elongated solar passages for RCP3BP,
it suffices to do it by using extreme 2BP approximations in the outside region. The
values of action for RCP3BP are contained within the range of values obtained by
performing the action comparison using extreme 2BPs.
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For small w it follows from Lemma 4.2 that the range of angular momenta is not
more than 3μ between the extreme 2BPs, so in the outside region away from parabolic
motions (e ≤ 0.96), there is no qualitative difference from using the extreme 2BP
approximations. We select w large enough to be amenable to our rigorous numerics, but
not so large as to introduce qualitatively different phenomenon. For nearly parabolic
motions e > 0.96, then a similar analysis holds if we use extreme 2BP approximations
of R-solar passages.

In light of the integrals in Appendix D, note that for the 2BP(SC), the time from
the apohelion to r = 5 is given by

Tout = I1(r−, r+, 5, r+)√
2(J0 − Pϕ)

,

where r− and r+ are given in (7). For the RCP3BP, these quantities can be estimated
as

r±
− := (P ∗

ϕ ± 2ρ(5) ± w)2

1 +
√

1 − 2(c±)(P ∗
ϕ ± 2ρ(5) ± w)2

,

r±
+ :=

1 +
√

1 − 2(c∓)(P ∗
ϕ ∓ 2ρ(5) ∓ w)2

2(c∓)
,

R±
− := (P ∗

ϕ ± 2ρ(5) ± w ± M)2

1 +
√

1 − 2(C±)(P ∗
ϕ ± 2ρ(5) ± w)2

,

R±
+ :=

1 +
√

1 − 2(C∓)(P ∗
ϕ ∓ 2ρ(5) ∓ w ∓ M)2

2(C∓)
.

Remarks on notation
All of these quantities are functions of P ∗

ϕ , w, M , and J0; however, we adopt the
above notation for brevity. Note that lower bounds are denoted ()−, upper bounds
are denoted ()+, and the subscripts ()± indicate different extreme 2BPs. Furthermore,
when reading the expressions, note that x± = a ±b± c means x± = a ± (b+ c); that
is, specifying a sign choice on the left-hand side specifies all choices on the right-hand
side. This notation avoids overuse of parentheses. Conceptually, one should think of
such expressions as intervals. For example, to understand (P ∗

ϕ ± 2ρ(5) ± w ± M), it
is easier to think of it as some bound on Pϕ(t) over some range of time.

For RCP3BP, we let tout = t5 − t1 be the time γ − spends in the outside region,
that is, the time spent from initial conditions until the start of 5-solar passage. Let
Tout = t2 − t ′

5 be the time γ + spends in the outside region, that is, the time spent from
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the end of 5-solar passage until the final conditions. These times will be estimated
shortly.

Let us use the estimates on Pϕ , �H , rperih, and rapoh to estimate quantities in the
action comparison. Define

b±
out(k) := Ik(r±

− , r∓
+ , 5, r∓

+ )√
2(c∓)

, B±
out(k) := Ik(R±

−, R∓
+, 5, R∓

+)√
2(C∓)

,

where the Ik are integrals defined in Appendix D. The signs of ()±± are chosen
so that they are all consistent with using a single extreme 2BP for each of the
four possible bounds b±

out, B±
out. It follows that tout ∈ 2[b−

out(1), b+
out(1)] and Tout

∈ 2[B−
out(1), B+

out(1)]. The factor of 2 comes from the fact that the distance from
r = 5 to an apohelion is traversed twice in an elongated solar passage. The other
values of k are used later. In the case of an R-solar passage, the factor of 2 can be
removed.

4.5. λ-estimates
If (r(t), ϕ(t), ṙ(t), ϕ̇(t)) is a solution to the Euler-Lagrange equations, then the rescaled
trajectory

(
r
( t

λ

)
, ϕ

( t

λ

)
, λṙ

( t

λ

)
, λϕ̇

( t

λ

))
= (

rλ(t), ϕλ(t), ṙλ(t), ϕ̇λ(t)
)

is also a solution to the Euler-Lagrange equations. The equations of motion give

ϕ̇ = − 1 + Pϕ

r2
, ϕ̇λ =

(
− 1 + Pϕ

r2

)
λ.

Hence

ϕ(t) =ϕ(0) − t +
∫ t

0

Pϕ(s)

r(s)2
ds, ϕλ(t) =ϕ(0) − λt + λ

∫ t

0

Pϕ(s)

r(s)2
ds.

Now compute the differences in angle over time, and solve for λ to get

λ(t) = 1 − ϕλ(t) − ϕ(t)

t − ∫ t

0 (Pϕ(s))/(r2(s)) ds
. (8)

We need to use this formula as opposed to (6) since it explicitly uses the motion of
the comet in the rotating frame, whereas (6) made the approximation that the comet
rotates with speed 2π (equivalently not at all in the fixed frame). This is not necessarily
a big difference in the outside region but nonetheless must be justified. Formula (8)
can be interpreted as telling us how much of a rescaling λ is needed if we specify the
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difference �ϕ = (ϕλ(t) − ϕ(t)) of angles from the rescaled and original trajectories
at time t . Note that when using (8), it is more convenient to calculate the difference
in angles at the start of the 5-solar passage γ in since then estimates of λ require only
data about the outside region. Define the angles ϕt5

max(Pϕ) and ϕt5
min(Pϕ) such that

Ain

(
Pϕ, ϕ

t5
max(Pϕ)

)
:= max

γ
A(γ in), Ain

(
Pϕ, ϕ

t5
min(Pϕ)

)
:= min

γ
A(γ in),

where the minimum and maximum are taken over all elongated solar passages on the
energy surface S(J0) with angular momentum Pϕ(t5) = Pϕ at the start of the 5-solar
passage (cf. (4)). Now let us compute the difference in action and angle with respect
to an interval of initial conditions (cf. (5)):

�Amin
in (I) := min

Pϕ∈I

(
Ain(Pϕ, ϕ

t5
max(Pϕ)) − Ain(Pϕ, ϕ

t5
min(Pϕ))

)
,

�ϕt5 (I) := ϕt5
max(I) − ϕt5

min(I).

As defined, �ϕ(I) is an interval, and methods to enclose it are developed shortly. Using
�ϕt5 is acceptable since this new difference in angles with the newly defined minimal
and maximal angles flows into solutions with perihelion angles which minimize or
maximize action. Hence the bad angles theorem still applies. Our test curve γtest is
constructed as in Section 3.6 by means of slowing down on γ −

test, making a cheaper
5-solar passage on γ in

test, and speeding up on γ +
test.

Now let us estimate λ± by using each of the extreme 2BPs listed in Section 4.4.
First estimate∫ t

0

Pϕ(s)

r2(s)
ds =

∫ r(t)

r(0)

dr

ṙr2
=

∫ r1

r0

Pϕ dr√
2(J0 − Pϕ + �H )r(rapoh − r)(r − rperih)

,

which for motions away from e = 1 looks like the integral I−1 from Appendix D
multiplied by Pϕ . Let

d := [(P ∗
ϕ − 2ρ(5) − w) · b−

out(−1), (P ∗
ϕ + 2ρ(5) + w) · b+

out(−1)],

D := [(P ∗
ϕ − 2ρ(5) − w − M) · B−

out(−1), (P ∗
ϕ + 2ρ(5) + w + M) · B+

out(−1)].

Let λ± (I) denote the interval of scalings λ± needed to construct the test curves γtest

corresponding to γmax, an elongated solar passage with perihelion angle ϕ
perih
max and

Pϕ(t5) ∈ I. Then let

λ±
−(I) := 1 − (�ϕ(t5))(I)

2
(
[b−

out(1), b+
out(1)] − d

) ,

λ±
+(I) := 1 + (�ϕ(t5))(I)

2
(
[B−

out(1), B+
out(1)] − D

) .
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The signs in λ±
± come about by examining the action comparison in the kick region

and noting that the angle corresponding to maximal action comes after the angle
corresponding to the minimal action; that is, it is less than π to the right of ϕ

perih
min and

more than π to the left on the circle (see Figure 9). Then starting at the maximal action,
we need a slower moving comet; that is, we need λ− < 1. Thinking of this another
way, since ϕ̇ < 0, slowing down means spending more time in the outside region,
which means that ϕ decreases. We remark that the factor of 2 in the denominator can
be removed when considering R-solar passages.

4.6. Action decomposition
Using H = −J0, it follows that for elliptic motions, 〈v, v〉/2 = P 2

r /2 + P 2
ϕ /(2r2) =

1/r − �H − J0 + Pϕ , where v = γ̇max. The rescaled action for the elliptic case is

A(λ, t0, t1) =
∫ t1λ

t0λ

(λ2 〈v, v〉
2

+ 1

r
− �H

)( t

λ

)
dt

=λ

∫ t1

t0

(
λ2

(1

r
− �H − J0 + Pϕ

)
+ 1

r
− �H

)
(u) du

=
∫ t1

t0

λ3 + λ

r
dt +

∫ t1

t0

λ3(−J0 + Pϕ) dt +
∫ t1

t0

(λ3 + λ)(−�H ) dt.

Define

AP (λ, t0, t1) :=
∫ t1

t0

λ3 + λ

r
dt,

AK (λ, t0, t1) :=
∫ t1

t0

λ3(−J0 + Pϕ) dt,

A�H (λ, t0, t1) :=
∫ t1

t0

(λ3 + λ)(−�H ) dt,

so that A = AP + AK + A�H . To do the action comparison one must estimate

A(1, tout) − A(λ−, tout) + A(1, Tout) − A(λ+, Tout)

=AP (1, tout) − AP (λ−, tout) + AP (1, Tout) − AP (λ+, Tout)

+ AK (1, tout) − AK (λ−, tout) + AK (1, Tout) − AK (λ+, Tout)

+ A�H (1, tout) − A�H (λ−, tout) + A�H (1, Tout) − A�H (λ+, Tout).

To estimate each of these terms, our strategy is to get lower and upper bounds by using
the extreme 2BPs.
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4.6.1. -A�H estimates

A�H (1, tout) − A�H (λ−, tout) + A�H (1, Tout) − A�H (λ+, Tout)

=
∫

tout

(2 − λ3
− − λ−)(−�H ) dt +

∫
Tout

(2 − λ3
+ − λ+)(−�H ) dt

∈ 2[b−
out(1), b+

out(1)](2 − [λ−
−, λ+

−]3 − [λ−
−, λ+

−]) · (|�H |)+(5)[−1, 1]

+ 2[B−
out(1), B+

out(1)](2 − [λ−
+, λ+

+]3 − [λ−
+, λ+

+]) · (|�H |)+(5)[−1, 1].

This term is small, usually of the order 10μ2, and no additional refinements need to
be made to this estimate.

4.6.2. -AK estimates
Let us estimate

AK (1, tout)−AK (λ−, tout) + AK (1, Tout) − AK (λ+, Tout)

=
∫

tout

(
1 − λ3

−
)

(−J0 + Pϕ) dt +
∫

Tout

(
1 − λ3

+
)

(−J0 + Pϕ) dt

using the extreme 2BPs. To keep notation simple, let min(I−) = m−, let max(I−) =
m+, let min(I−) = M−, and let max(I+) = M+:∫

tout

(1 − λ3
−)(−J0 + Pϕ) dt +

∫
Tout

(1 − λ3
+)(−J0 + Pϕ) dt

⊂ 2
[
(b−

out(1)) · (1 − (λ−
−)3) · (−J0 + m−), (b+

out(1)) · (1 − (λ+
−)3) · (−J0 + m+)

]
+ 2

[
(B−

out(1)) · (1−(λ+
+)3) · (−J0+M−), (B+

out(1)) · (1−(λ−
+)3) · (−J0+ M+)

]
.

Note the logic of the interval bounds. For example, b−
out(1) is paired with λ−

− and m−
since smaller angular momentum means a smaller apohelion, meaning less time is
spent in the outer region; that is, a smaller tout and less time in the outside region
means a worse λ-value, that is, farther from one, that is, a smaller λ− < 1. The logic
for the other pairings is similar.

4.6.3. -AP estimates
Now estimate

AP (1, tout) − AP (λ−, tout) + AP (1, Tout) − AP (λ+, Tout)

=
∫

tout

2 − (λ3
− + λ−)

r
dt +

∫
Tout

2 − (λ3
+ + λ+)

r
dt
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by using the extreme 2BPs. Note that these integrals look like I0 from Appendix D
after appropriate change of variables. To keep notation simple, let min(I−) = m−, let
max(I−) = m+, let min(I−) = M−, and let max(I+) = M+:∫

tout

2 − (λ3
− + λ−)

r
dt +

∫
Tout

2 − (λ3
+ + λ+)

r
dt

⊂ 2
[
(b−

out(0)) · (2 − (λ−
−)3 − λ−

−), (b+
out(0)) · (2 − (λ+

−)3 − λ+
−)

]
+ 2

[
(B+

out(0)) · (2 − (λ−
+)3 − λ−

+), (B−
out(0)) · (2 − (λ+

+)3 − λ+
+)

]
.

Remark. The bounds for AP , AK , and A�H are readily computable on a computer. It
is fairly easy to develop formulas to handle the action comparison for nearly parabolic
motions by using standard R-solar passages. After some initial setup, the formulas
from this section remain almost unchanged (see Appendix D.1 for details).

4.7. Rigorous computation of action in the kick region
In this subsection we consider μ = 10−3 and J0 = 1.8 and develop precise estimates
on how action varies in the kick region. We program the computer-aided process
design (CAPD) package to rigorously integrate trajectories over 5-solar passages and
record �Amin

in (I), �ϕt5 (I), (�Pϕ)kick(I), and the time to cross the kick region.

THEOREM 4.4
For RCP3BP(0.001, 1.8) and Pϕ ∈ [1.6875, 1.81], that is, for e ∈ [0.6, 1.03],

�Amin
in ([1.6875, 1.81]) ≥ 15.9748μ,

�ϕt5 ([1.6875, 1.81]) ≤ 1.2495,

|(�Pϕ)kick([1.6875, 1.81])| ≤ 1.40093μ.

Furthermore, for Pϕ ∈ [1.71, 1.81], the maximum time to cross the kick region is less
than 19.5256 time units, that is, approximately three revolutions of Jupiter.

Proof
We program the CAPD package to rigorously integrate trajectories over a 5-solar
passage. The CAPD package makes use of interval arithmetic to enclosure numerical
solutions of ODEs over short periods of time in rigorously verified ε-tubes. It is
also capable of moving small boxes of initial conditions under the flow. By covering a
domain with many small intervals, CAPD can move the entire domain (see Appendices
A, F for more details on CAPD and interval arithmetic).
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We note that action can also be simultaneously solved when computing the solu-
tion to an ODE by noting that since action is the integral of the Lagrangian (3) that is,
A(t) = ∫ t

0 L(s) ds, then Ȧ = L(t), and L(t) depends only on the polar variables at
time t , which are known after one step of the integrator.

For each 5-solar passage, use initial conditions A(0) = 0, r = 5, Pϕ ∈
[1.6875, 1.81], ϕ ∈ T. Subdivide [1.6875, 1.81] into 4901 boxes of size 0.000025,
and subdivide [−π, π] into 12567 boxes of size 0.000025. Use the implicit definition

of Pr =
√

2(1.8 − (P 2
ϕ )/(2r2) + 2/r − �H (r, ϕ)) on the energy surface S(1.8).

Use CAPD with a 5th-order Taylor method and adaptive time-step sizes of h ≤ 0.1
to rigorously integrate trajectories until they cross {r = 5} again. Record the action
before and after the box of trajectories crosses {r = 5}. Then make an interval out
of the lower and upper bounds on action while crossing. Since the box is small,
with the use of adaptive step size, the width of the action interval is small, and it
accurately measures action for the box of initial conditions being integrated over the
5-solar passage. We do this for each trajectory with a fixed box of Pϕ’s, that is, for
Pϕ(t5) ∈ P ∗

ϕ + [−w, w] = I with w = 0.0000125 and P ∗
ϕ = 1.6875 + 0.000025k,

k = 0, . . . , 4901. In this fashion the interval Pϕ ∈ [1.6875, 1.81] is covered. The
action difference for each k is bounded using the largest lower bound of all the
action intervals and the smallest upper bound. Actual differences could be larger. Also
recorded is the angle of the initial conditions, which produces each extremal box, the
maximum change in angular momentum for each window of initial condition I, and
the exit times.

This all gives the data in the statement of the theorem. Note that this method
actually produces an extensive list of boxes and bounds. For each Pϕ , there is a picture
like Figure 9. The differences in action are plotted in Figure 11. �

Remark. This setup is expensive and took 15 computers 2 weeks to complete the
comparison. Fortunately the integration of each box of initial conditions is independent
of the others, and the problem naturally lends itself to parallel computation. The
programs and data for this procedure are available upon request (see Appendix F).
We also remark that choice of parameters can affect bounds obtained and running
time. For our choice of parameters, the integration time needed to cross the kick
region is small, less than 19.5256 time units. For the μ = 0.001 and J0 ≥ 1.52, the
CAPD integrator works well for the RCP3BP over short time intervals, say, for less
than 50 time units. However, for more lengthy integrations, additional work is needed
to validate the behavior of a solution. In [GK2] we present a method for long time
integration.

Using the above estimates for the outside region, as well as the rigorous integration
data for the kick region, a program was written to compare action. The result is the
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Figure 11. Lower bounds on �Amin
in (Pϕ) versus Pϕ

estimate in the main theorem that e∗(0.001, 1.8) ≤ 0.66. The software is general
enough to handle other values of μ and J0.

The next several sections of the paper are dedicated to analysis of the map Fμ.

5. Delaunay variables

For the 2BP there is a natural well-defined action angle coordinate system known
as Delaunay variables. A derivation of Delaunay variables is found in [GPS] (see
also [AKN], [CC] for some nice exposition). In short, they arise by considering the
generating function

S(r, ϕ, L, G) = ϕG +
∫ r

rperih(L,G)

(√
−1

L2
− G2

r2
+ 2

r

)
dr.

This gives the canonical transformation D(�, g, L, G) = (r, ϕ, Pr, Pϕ) from Delau-
nay variables to symplectic polar variables, where rperih = L2(1 − √

1 − G2/L2) is
the perihelion of the 2BP(SC) expressed in terms of L, G. The image of D is only
defined for bounded motions of the 2BP(SC) with (�, g) ∈ T

2 and 0 ≤ G ≤ L.
For the 2BP, L2 is the semimajor axis of the ellipse of the orbit, so by Kepler’s

third law, the period T = 2πL3. Upon examination of the generating function, observe
that G = Pϕ is angular momentum, or alternatively LG is the semiminor axis of the
ellipse of the orbit. The variable � ∈ T is the mean anomaly which is � = π mod 2π at
the apohelion, � = 0 mod 2π at the perihelion, and in general (�− �0) = 2π/T t . The
quantity (g + t) can be interpreted as the perihelion angle. (In nonrotating coordinates
g itself plays this role.) It is possible to recover radius from Delaunay coordinates by
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noting that r = L2(1 − e cos(u)), where the eccentricity e = √
1 − G2/L2, and u,

the mean anomaly, is given implicitly by the Kepler equation u − e sin(u) = �.
Applying the canonical transformation D to the Hamiltonian for the 2BP(SC) in

rotating polar coordinates gives

H2BP (SC) ◦ D−1 = − 1

2L2
− G.

Note that S satisfies det( ∂2S

∂(r,φ)∂(L,G) ) = L3

Pr
�= 0. Hence in general there exists a

canonical transformation from polar to Delaunay, provided the generating function is
well defined (see [AKN]). Hence where it makes sense, one gets Delaunay variables
for RCP3BP by using the generating function S. This yields

HDel = HPolar ◦ D−1 = − 1

2L2
− G + �H (L, G, �, g), (9)

where the perturbation term is converted to Delaunay. As the “where it makes sense”
indicates, Delaunay variables are not defined for the RCP3BP for nearly parabolic
motions. In [GK1] we develop techniques to overcome this limitation.

6. Twisting in Delaunay coordinates

Consider the Poincaré section � = {g = 0 mod 2π} ⊂ S(J0). In Section B.2 we
show that −1.025 ≤ ġ ≤ −0.9975 for J0 = 1.8 and μ ≤ 10−3, and hence � is well
defined. Consider the Poincaré return map F : Sout(J0) ∩ � �→ Sout(J0) ∩ � defined
by

F = Fμ,J0 : (�0, L0) �→ (�1, L1) = (
�(t�, �0, L0), L(t�, �0, L0)

)
, (10)

where t� > 0 is the first return time to �. In this section, we show that in Delaunay
coordinates, the return map F is an EAPT map for L ∈ [L−

twist(μ, J0), L+
twist(μ, J0)]

(see [MF], [B], [G], [Mo1], [S] for exposition on EAPT maps). Numerically a computer
can find [1.611, 15.94] ⊂ [L−

twist(0.001, 1.8), L+
twist(0.001, 1.8)]. This translates into

[0.07, 0.994] ⊂ [e−
twist(0.001, 1.8), e+

twist(0.001, 1.8)] and gives the twist region TwDel.

6.1. Twisting conditions
Our goal is to develop an explicit condition which can be numerically checked to
verify twist. The energy reduction formulas found in Appendix E.2 allow us to write
an autonomous Hamiltonian system as a time-dependent Hamiltonian. Following the
construction for 2 degrees of freedom, fix μ and J0 so that H = −J0 (i.e., restrict
dynamics to S(J0)), and write G = G(L, �, g, J0) implicitly in terms of the others
variables. The construction in Appendix E.2 produces a time-dependent Hamiltonian
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H̃J0 (L, �, t̃), where t̃ = g is now the time variable. The construction is well defined
since ġ = −1 + ∂�H

∂G
= −1 + O( μ

L6 ) < 0 for μ small. Furthermore, from the
construction, one can compute

∂

∂L
H̃J0 (L, �, t̃) =

(
∂H (L,�,g,G(L,�,g,J0))

∂L

)(
∂H (L,�,g,G(L,�,g,J0))

∂G

) .

Now look at the second derivative with respect to L:

∂

∂L

(∂H̃J0 (L, �, t̃)

∂L

)
= ∂

∂L

((
∂H (L,�,g,G(L,�,g,J0))

∂L

)(
∂H (L,�,g,G(L,�,g,J0))

∂G

))
= 1

∂H

∂G

∂

∂L

(∂H

∂L

(
L, �, g,G(L, �, g, J0)

))
−

(∂H

∂L

)( 1

( ∂H

∂G
)2

) ∂

∂L

(
∂H

∂G
(L, �, g, G(L, �, g, J0))

)

=
(

∂H

∂G

) (
∂2H

∂L2 + ∂2H

∂L∂G

∂G

∂L

)
− (

∂H

∂L

) (
∂2H

∂L∂G
+ ∂2H

∂G2
∂G

∂L

)
( ∂H

∂G
)2

.

There is a ∂G

∂L
to be dealt with. From the Hamiltonian (9), G is implicitly defined

by

G = J0 − 1

2L2
+ �H

(
L, �, g, G(J0, L, �, g)

)
.

Differentiate this expression to obtain

∂G

∂L
= L−3 +

(∂�H

∂L

)
+

(∂�H

∂G

)(∂G

∂L

)
,

and solve to find

∂G

∂L
= L−3 + (

∂�H

∂L

)
1 − (

∂�H

∂G

) .

One can now compute the partial derivatives of H and plug everything into the above

expression for ∂

∂L

( ∂H̃J0 (L,�,t̃)
∂L

)
. With the aid of a computer it is possible to estimate this

term, which we call the twist term. Let us examine why this derivative is so important
now.

6.2. Proof of EAPT for the return map F

Since F arises as the Poincaré return map of an autonomous 2 degrees of freedom
Hamiltonian, it is exact and area preserving. The twist condition for F is equivalent
to ∂�1

∂L0
= ∂�(t�,�0,L0)

∂L0
< 0 (see [B], [MF]).
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Claim
Note that ∂

∂L

( ∂H̃J0 (L,�,t̃)
∂L

)
is of constant sign in a domain � if and only if Fμ is an EAPT

in �.

Proof
Let us consider the equations of first variation

d

dt̃

( ∂�

∂�0

∂�

∂L0

∂L

∂�0

∂L

∂L0

)
=

( ∂2H̃J0

∂�∂L

∂2H̃J0

∂L2

− ∂2H̃J0

∂�2 − ∂2H̃J0

∂�∂L

)( ∂�

∂�0

∂�

∂L0

∂L

∂�0

∂L

∂L0

)
.

In particular, at time t̃ = 0 it holds that

d

dt̃

( ∂�

∂L0

)∣∣∣
t̃=0

= ∂2H̃J0

∂L2

∣∣∣
t̃=0

.

Hence the sign of
∂2H̃J0

∂L2 |t̃=0 determines whether ∂�

∂L0
is decreasing or increasing near

t̃ = 0. But ∂�

∂L0
|t̃=0 = 0, so the sign of

∂2H̃J0

∂L2 determines the sign of ∂�

∂L0

∣∣
t̃=0

in a
neighborhood of t̃ = 0; that is, it determines twist for the flow over a small increment

of time. So if sign
( ∂2H̃J0

∂L2

)
is constant for all t̃ ∈ [0, 2π], �0 ∈ T, and L0 in some

interval, then the map F is twisting in that region.
The above argument shows that the time-ε map for some small ε of the flow is

a twist map. In [GK2], we develop a method to prove that in fact the map Fμ is a
twist map as defined above, using � = {g = 0 mod 2π} (that is, for ε = 2π ).
The technique involves globally estimating and solving (with computer assistance)
the equations of first variation. The key to this method is a geometric formulation of
twisting in polar variables which allows one to deduce results from the much more
managable equations of first variation in polar coordinates. �

In the case μ = 0, the twist term satisfies ∂�1

∂L0
= − 3

L4
0
· 2π < 0. Then for μ > 0 it is

natural to require ∂�1

∂L0
= − 3

L4
0
·2π +O(μ) < 0 for the twist in RCP3BP.∗ It is possible

for large L0 that the O(μ)-perturbation terms overwhelm the − 3
L4

0
and change the sign

of twist term. This is why twisting can fail.
With an explicit twisting condition, a computer can be programmed to look for

sign changes in the twist term. For J0 = 1.8 and μ = 0.001, numerics indicate a sign
change somewhere after 16 ≤ L+

twist(0.001, 1.8); that is, for eccentricities larger than
0.994 the map Fμ may no longer be a twist map.

∗Calculation of the twist term indicates that this sign should be positive; however, one must account for the fact
that under the time rescaling in the energy reduction t̃ = g ≈ −t .
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LEMMA 6.1
In Delaunay variables for RCP3BP(0.001, 1.8), the map Fμ is twisting for
e−

twist(0.001, 1.8) ≤ 0.07 ≤ e ≤ 0.994 ≤ e+
twist(0.001, 1.8).

Proof
A computer can be programmed to compute the partial derivative symbolically,
then evaluate the twist term and verify that it remains of constant sign for L ∈
[1.611, 15.94]. Converting this into a statement about eccentricity gives the claimed
bounds. �

Remark. In [GK1], we establish a coordinate system that is twisting for nearly
parabolic motions and does not require this lemma.

7. The applicability of Aubry-Mather theory to the RCP3BP

In Section 6, we showed that the map Fμ is an EAPT on a certain domain, and hence
it is possible to apply the results of Aubry-Mather theory where the map is twisting.
Recall that the map Fμ is defined as follows. We start with the RCP3BP in Delaunay
coordinates. Then we reduce to the 3-dimensional energy surface S(J0). The restricted
dynamics has a naturally defined Poincaré map Fμ : {g = 0} → {g = 0}. However,
the action comparison was formulated in polar coordinates, and the comparison was
performed with the Lagrangian dual to the polar Hamiltonian which has 2 degrees
of freedom. Not only have coordinate systems changed, but the dimension has been
reduced.

Unfortunately and somewhat surprisingly, the Hamiltonian of RCP3BP in polar
is convex, while in Delaunay coordinates it has a concave component (in L) and a
degeneracy (in G). Thus, to connect polar and Delaunay dynamics requires additional
care. In this section, we justify the connection between the polar Lagrangian and the
map Fμ. What we are really after is the following lemma.

LEMMA 7.1
Suppose that Fμ has a rotational curve∗ T 1 ⊂ TwDel. Then there is an action-
minimizing rotational 2-torus T 2 for the flow of the Hamiltonian HPolar.

The plan is the following. We offer a proof of Lemma 7.1 which connects the dynamics
of three dynamical systems, namely, the systems with HPolar, HDel, and Fμ. The lemma
allows us to apply the action comparison method in polar coordinates to rule out
the existence of rotational curves for the map Fμ. (Recall that rotational curves are
obstructions to diffusion.) Next we work a bit to apply the so-called Mather connecting
theorem to the map Fμ in the region of instability. Special care must be taken since the

∗Rotational curves are invariant curves which are not homotopically equivalent to single points.
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instability region is not invariant. The Mather connecting theorem provides diffusing
orbits for the map Fμ, and instabilities for the map Fμ are mirrored by motions of the
comet in polar coordinates.

Remark. In [GK1], we show that Delaunay variables are not well defined for nearly
parabolic motions. Another coordinate system equipped with a symplectic change of
coordinates Ddyn allows us to formulate Fdyn, an EAPT for nearly parabolic motions.
The machinery developed can then be applied to the EAPT Fdyn to rule out invariant
curves.

7.1. Proof of Lemma 7.1

1: Rotating Polar Coordinates: H = HPolar(r, ϕ, Pr, Pϕ)

⇑

2: Delaunay Coordinates: H = HDel(�, L, g, G)

�

3: Reduced Energy Coordinates: F = Fμ(�, L)

First let us formulate the three systems described in the diagram above. Equation (2)
formulates the RCP3BP in rotating polar coordinates with a Hamiltonian HPolar. Given
HPolar, the Delaunay map D from Section 5 can be applied to convert from polar to
Delaunay variables away from parabolic motions. The Hamiltonian becomes HDel

given by (9). It is not necessarily clear that HDel is convex or that action minimizers
exist. Consider the energy reduction procedure described in Appendix E.2 applied
to the Hamiltonian HDel. Call the energy-reduced Hamiltonian H̃J0 . By construction,
orbits of H̃J0 and orbits of HDel are equivalent on the energy surface S(J0) when G

is written implicitly in terms of energy and the other Delaunay variables. H̃J0 is the
time-periodic Hamiltonian with 1.5 degrees of freedom used in Section 6, and by the
results of that section, the Poincaré map Fμ formulated from H̃J0 is an EAPT on a
certain domain.

LEMMA 7.2
There are no rotational curves for the map Fμ if and only if there are no rotational
2-tori for the flow of the Hamiltonian HDel.
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Proof
This claim follows from the general results on Poincaré maps. �

From the claim it suffices to show that a rotational 2-torus for the flow of the Hamilto-
nian HDel maps under D to an action-minimizing rotational 2-torus for the flow of the
Hamiltonian HPolar. By action-minimizing, we mean action minimizing with respect
to the Lagrangian L, which is the Legendre transform of the polar Hamiltonian HPolar.
To go between 1 and 2, some additional machinery is required. A priori when making
a canonical change of coordinates, the image D(T 2) of a rotational 2-torus T 2 in
Delaunay is not necessarily a graph over the base anymore. All that we can say is
that D(T 2) is an invariant object under the flow since the change of variables D is
a smooth diffeomorphism away from parabolic motions.∗ Hence we must show that
D(T 2) is rotational and that it is action minimizing.

LEMMA 7.3
Suppose T 2 is a rotational 2-torus for the flow of the Hamiltonian HDel. Then D(T 2)
is a rotational 2-torus for the flow of the Hamiltonian HPolar.

Proof
Suppose T 2 is a rotational 2-torus for the flow of the Hamiltonian HDel, and D(T 2)
is its image. We must show that the Pr and Pϕ components of D(T 2) are graphs over
the base (r, ϕ). Since dynamics is restricted to the energy surface H = −J0 in both
coordinate systems, then it holds that

Pϕ = Pϕ(r, ϕ, Pr ; J0) = r2 −
√

r4 + 2r − r2
(
P 2

r + 2J0 + 2�H (r, ϕ)
)
.

Hence if we can show that Pr is a graph over the base, that is, Pr = Pr (r, ϕ), then it
follows that Pϕ is also a graph over the base.

A careful analysis of the map D tells us

r = L2
(
1 − e cos(u)

)
Pr = Le sin(u)

r

ϕ = g + 2 arctan
(√

1 + e

1 − e
tan

(u

2

))
Pϕ = G

� = u − e sin(u) e =
√

1 − G2

L2
.

∗We are bounded away from singularities in the mapping since e ≤ emax < 1. In [GK1] a different coordinate
change is considered to avoid singularities at e = 1.
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Figure 12. Integrable torus

For constant L and G (e.g., in the 2BP(SC)), then (r, Pr ) is a function of the variable
u only. It turns out that Pr is a double graph over r in an onion (see Figure 12). This
is because fixing r fixes u, which in turn fixes Pr up to sign. Rotation inside the onion
corresponds to rotation in the �-direction; the layer of the onion corresponds to the
L-direction. The G- and Pϕ-directions are the same, and rotation in the g direction
corresponds to rotation in the ϕ-direction. In this case, being rotational in Delaunay
translates to being rotational in polar, with the caveat that the Pr may be a double
graph.

The case when L, G are nonconstant is not that much worse. We seek to show
the double-graph property for Pr ; that is, we seek to show that D(T 2) ∩{Pr ≥ 0} and
D(T 2) ∩ {Pr ≤ 0} are graphs. Suppose not. Then there two points on D(T 2) which
have the same (r, ϕ)-coordinates but have two different Pr -coordinates, P 1

r > P 2
r > 0.

But when ṙ = Pr > 0, then r is a monotone strictly increasing function. Furthermore,
ϕ̇ < 0, so ϕ is a monotone strictly decreasing. Since D(T 2) is invariant under the
flow, there cannot be two distinct points (r, ϕ, P 1

r ) and (r, ϕ, P 2
r ) with P 1

r �= P 2
r

since this would contradict the monotonicity of r or ϕ. Hence the image of D(T 2) is
rotational. �

The reason we desire the rotational (graph) property is the following lemma.

LEMMA 7.4 (McDuff and Salamon [MS, Lemma 9.6])
Suppose that H : � × R

n → R, where � ⊂ R
n is a Hamiltonian which satisfies

the Legendre condition ∂2H

∂p2 > 0. Moreover, assume that for every q ∈ � the map
R

n → R
n given by p �→ ∂pH (q, p) has a global inverse so the inverse Legendre

transformation gives rise to a Lagrangian L : � × R
n → R. Let S : � → R

be a solution of the Hamilton-Jacobi equation H (q, ∂qS) = E. Suppose that γ :
[t0, t1] → � is invariant under the flow of H with γ̇ = ∂pH (q, ∂qS(p)), and suppose
that ξ : [t0, t1] → � is any absolutely continuous function such that ξ (t0) = γ (t0)
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and ξ (t1) = γ (t1). Then γ is action minimizing. Specifically,∫ t1

t0

L(γ, γ̇ ) dt ≤
∫ t1

t0

L(ξ, ξ̇ ) dt.

To complete the proof of Lemma 7.1, we appeal to Lemma 3.1, which states that
rotational 2-tori in polar are action minimizers. This turns out to be a corollary of
Lemma 7.4.

Proof of Lemma 3.1
The polar Hamiltonian for RCP3BP satisfies the requirements of Lemma 7.4; namely,
it is convex (see Lemma E.1). However, one must be a bit careful in its application.
Lemma 7.4 requires that if an invariant curve γ is contained inside of an invariant
torus T 2, then T 2 is a graph over the base. In polar, we must have that Pr = Pr (r, ϕ)
and Pϕ = Pϕ(r, ϕ) are graphs over (r, ϕ) on the invariant torus. In Lemma 7.3 we
argued that in fact there is a small ambiguity arising from the fact that ±Pr (r, ϕ) could
both be on an invariant torus (e.g., an invariant curve could pass through an apohelion
or perihelion which causes the sign of Pr to change). It is true that T 2 ∩ {Pr ≥ 0} and
T 2 ∩ {Pr ≤ 0} are graphs over (r, ϕ). To apply Lemma 7.4 for an invariant curve γ ,
note that it suffices to decompose γ into pieces, where Pr ≥ 0 and Pr ≤ 0, and apply
Lemma 7.4 to the respective pieces.

This completes the proof of Lemma 7.1. �

7.2. Connecting orbits
If C− and C+ are two rotationally invariant curves such that there are no invariant
curves in between C− and C+, we say that the invariant region C bounded by C−
and C+ is an RI. In invariant RIs, Birkhoff showed the existence of orbits coming
arbitrarily close to C− and C+ (see [MF]). We need a similar but stronger result given
by Mather [M1], [M2].

THEOREM 7.5 (Mather connecting theorem)
Suppose that ω1 < α1, α2 < ω2, and suppose that there are no rotationally invariant
curves with rotation number ω ∈ (ω1, ω2) in an invariant (Birkhoff) rotationally
invariant. Then there is a trajectory in the phase space whose α-limit set lies in the
Aubry-Mather set 	α1 and whose ω-limit sets lies in 	α2 . Moreover, for a sequence
of rotation numbers {αi}i∈Z, αi ∈ (ω1, ω2), and a sequence of positive numbers {εi},
there exists an orbit in the phase space {pj } and an increasing biinfinite sequence of
integers j (i) such that the dist(	αi

, pj (i)) < εi for all i ∈ Z.

The semiinfinite region we consider is not necessarily invariant due to the fact that
Delaunay variables are not defined for nearly parabolic motions. Furthermore, the
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region TwDel where Fμ is twisting is not invariant; however, it is free of invariant
curves. Hence, Theorem 7.5 does not directly apply.

Let ωmin = inf{ω : 	ω ⊂ T wDel}, and let ωmax = sup{ω : 	ω ⊂ TwDel} be the
minimal and maximal rotation numbers for Aubry-Mather sets which are contained
in the twist region, respectively.

LEMMA 7.6
There is a continuous function αω > 0 such that for all ω ∈ [ωmin, ωmax], there is an
αω–neighborhood of 	ω contained in TwDel.

Proof
This follows from results for localization of Aubry-Mather sets found in [GK2]. We
offer a coarse version of localization now.

Recall that estimates on change in angular momentum tell us that making one full
revolution about the Sun does not change angular momentum by more than 8.95μ (see
Lemma 4.2). Translating this into a statement about eccentricity, it says that starting
with initial eccentricity e0 ≤ emax = 0.96, the comet remains in the twist region
TwDelafter one revolution around the Sun. Hence, starting in {e ≤ 0.96 < e+

twist =
0.994} ensures that our Aubry-Mather sets remain bounded safely inside the twist
region. �

Let us consider the collection of all αω-neighborhoods

α(ωmin, ωmax) :=
⋃

ω∈(ωmin,ωmax)

αω(	ω).

Claim
The connecting orbits found in the Mather connecting theorem belong to
α(ωmin, ωmax).
The claim follows from careful study of Mather’s original proofs. Xia [X1] contains
a simpler approach to these results. The basic idea is that almost-connecting orbits
remain in a neighborhood of Aubry-Mather sets. We now focus on applying Mather’s
connecting theorem.

It is known that every rotation number ω ≥ 0 has a nonempty Aubry-Mather
set associated to it. Furthermore, it is known that Aubry-Mather sets are ordered by
rotation number ω with 	ω and 	ω′ close in the sense of Hausdorff distance for ω

and ω′ close (see [B], [MF]). Smaller rotation numbers correspond to slower rotation
around the base T in the �-direction. But this is to say that smaller rotation numbers
correspond to higher eccentricities.

To get a diffusing orbit in polar coordinates, we use the Mather connecting theorem
to provide the existence of an orbit of Fμ with the desired properties. Specifically,
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Figure 13. A diffusing orbit (� vs. e)

let us choose the rotation numbers corresponding to eccentricities near e = e∗(μ, J0)
and e = emax(μ, J0) and pick the {εi} to come arbitrarily close to the desired rotation
numbers.

One could visualize the Aubry-Mather sets as the remainders of tori after a
perturbation has filled them with infinitely many small holes. To envision a diffusing
orbit, first imagine unrolling the cylinder on the real plane. A diffusing orbit is one
which “climbs a set of stairs,” that is, increases in the holes of the Aubry-Mather set
and then follows the remnants of a torus of higher rotation number for a while. The
largest increase (“taking a step”) occurs primarily at times when the comet is at the
perihelion.

In the sequel [GK1], we use the Mather connecting theorem, to construct oscil-
latory orbits, and Chazy motions (see [AKN] for a discussion of Chazy motions).
Mathematically this corresponds to picking a more complicated sequence of Aubry-
Mather sets for the connecting orbit to visit.

8. Conclusion and extension

What prevents us from extending the result to eccentricities beyond emax is the fact
that our coordinate system becomes undefined for nearly parabolic motions. This is
not an ideological issue, as we expect instabilities near the separatrices which arise
from parabolic motions. Delaunay variables can be modified near the separatrices to
deal with singularities which arise for nearly parabolic motions, and this is done in
[GK1]. When done, our claim becomes the following.

THEOREM 8.1
Consider the RCP3BP(μ, J0) with dynamics restricted to Sout(J0). There exists a
function e∗(μ, J0), and there exist trajectories of a comet with initial eccentricity
e0 > e∗(μ, J0) that increase in eccentricity beyond one in a manner such that the
comet escapes the solar system to infinity. For example, if μ = 10−3 and J0 = 1.8,
then e∗ ≤ 0.66.

The methods of Section 7 can be applied to show the following.
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COROLLARY 8.2
Under the hypothesis of Theorem 8.1, all possible Chazy motions are realized.

Appendices

A. Rigorous numerics

“Let anyone integrate them who can.”
Clairaut

We need a computer to provide mathematically verified bounds on flows of ODEs
to complete some of the estimates encountered in Theorem 4.4 as well as results in
[GK1] and [GK2]. Consider the initial value problem (IVP){

ẋ = f (x),
x(0) = x0.

(11)

Assume that solutions exist, are unique, and are defined for all time and that f is
sufficiently smooth (either C∞ or real analytic). We specify a fixed step size h in time.
If x(t) is a solution to the IVP, then from Taylor’s theorem

x(t + h) = x(t) + hx ′(t) + O(h2) ≈ x(t) + hf
(
x(t)

)
,

Euler’s method forgets the remainder and makes a linear approximation at each time
step to give {

ti = ti−1 + h,

xi = xi−1 + hf (xi−1).

Each step of the Euler method (which is an example of a first-order Taylor method)
makes an error of O(h2). Errors made truncating Taylor series methods are known
as the local truncation errors, which for h small are usually not too bad. However,
the small errors made by disregarding the O(h2)-term causes the method to track a
slightly different solution after each time step. After many steps these small errors can
accumulate and destroy the method’s usefulness by tracking to a solution which has
different behavior from the one desired. This is known as global truncation error. Even
higher-order Taylor methods as well as Runge-Kutta methods are still susceptible to
this. We utilize methods which avoid these difficulties.

A.1. Interval arithmetic
When working on a computer, there is another source of error which must be ac-
counted for—floating point error—which arises because a computer is incapable of
representing most real numbers.

Machine representable numbers are a subset of real numbers with which a com-
puter can perform computations. We define machine-ε as the smallest positive number
such that 1 �= (1+ε) on our machine. It gives a kind of spacing between machine rep-
resentable numbers. This is dependent on the computer’s architecture and software;
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however, most computers adopt the Institute of Electronical and Electronics Engi-
neers (IEEE) standards which specify such representable numbers, and use machine
ε ≈ 10−16. Assume that we have adopted a standard such as [IEEE].

One method to get around the difficulties of machine representability is by using
so-called interval arithmetic. If x ∈ R we say that [a, b] is an interval representation
for x with machine representable numbers a and b if x ∈ [a, b]. We denote intervals
in calligraphic capital letters, for example, I. If I = [a, b], then define max(I) = b

and min(I) = a.
If f : R

n ×R
m → R is a smooth function and I ×J is a product of intervals, we

say that the interval K encloses f on the domain I × J if f (I, J) ⊂ K . Computing
good enclosures is a principal difficulty in interval arithmetic. References [KM] and
[MZ] contain methods to make enclosures both rigorous and efficient. For a different
approach, see [BM].

When we say “bound f : R
d → R over the domain D using interval arithmetic”

we really mean to use the following algorithm:
(1) cover D with n intervals (or products of intervals) Id

i so that D ⊂ ⋃n

i Id
i ;

(2) find enclosures Ki such that f (Id
i ) ⊂ Ki ;

(3) compute m = min(Ki) and M = max(Ki).
This algorithm generates numbers so that f (x) ∈ [m, M] for all x ∈ D. The bounds
depend on D, d , n, and the regularity of f . Generally speaking, decreasing diam(Id

i )
improves the bounds.

Several of our computations are done on a computer algebra system (CAS). For our
purposes, a CAS is a program which rigorously manipulates algebraic and numerical
expressions. A CAS can be programmed to use exact arithmetic, which is arithmetic
that uses symbolic expressions to produce exact output without rounding. For example,
1/2 + 1/3 = 5/6 on a CAS. It is possible to perform exact interval arithmetic where
intervals contain symbolic expressions and the bounds are manipulated using exact
arithmetic. We require a CAS with the following capabilities. It must be able to
(1) manipulates algebraic expressions using exact arithmetic;
(2) take symbolic derivatives (where possible);
(3) take symbolic integrals (where possible);
(4) manipulate formal power series (where possible);
(5) perform interval arithmetic accounting for rounding error.
As our estimates require many lower and upper bounds, let us adopt the notation (·)±
to denote functions or numbers which are upper and lower bounds on the function (·).
For a function f (x, y) defined on the domain I × J, let “f (x, y) ≤ (f (x))+” mean
that (f (x))+ is a function of x ∈ I such that the bound holds for all y ∈ J in the
domain of f . As such a function is not necessarily well defined, explicit constructions
are given whenever this notation is used.
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Returning to the problem of rigorous numerics for ODEs, let us reformulate the
problem in terms of interval arithmetic. Now consider the interval value problem
(IvVP) {

ẋ = f (x),
x(0) ∈ I = [x0 − w, x0 + w],

(12)

where now I is some interval of initial conditions (a w-window around x0), x is now
a product of intervals in R

d , and all operations are performed via interval arithmetic.
From a dynamical systems perspective, we seek to transport a cube of initial conditions
under the flow of the ODE. The advantage of an IvVP solver is that by covering the
space of initial conditions with intervals, the solver tells us rigorously how the entire
space moves under flow. This is because the flow of the IVP given in (11) is rigorously
contained inside the flow of the IvVP given by (12).

A.1.1. CAPD
One might wonder how to construct a rigorous IvVP solver or even if they exist. Both
questions are answered in [Z] and [WZ]. The main idea is as follows.

Recall that the difficulty with nonrigorous methods is that they follow slightly
different solutions at each step. Gronwall’s inequality tells us that differing solutions
move apart at most exponentially based on the magnitude of a Lipschitz constant,
which is roughly ||Df (x)||. For example, the O(h2) local truncation error in Euler’s
method is from the remainder term in Taylor’s theorem which can be written in the
form x ′′(ξ )h2/2 = Df (ξ )f (ξ )h2/2 for some ξ . A naive way to produce a rigorous
integrator is to bound the truncation error at each step. Poor bounds on the remainder
require the integrator to use larger and larger interval bounds after each step, and
these bounds can potentially grow exponentially, rendering the output useless. This is
commonly known as the wrapping effect. It arises not only from Euler’s method, but
from higher-order methods as well.

To get tight estimates on the errors made after each step, accurate estimates of
||Df (x)|| are needed. In [Z], [WZ], and [MZ], efficient methods are outlined to do this.
They introduce efficient representations of interval sets that allow for better bounds
and introduce an alternative to Gronwall’s inequality which appropriately deals with
exponential decay. It is also noted that when solving equations of variation, the same
main idea can be applied to D2f (x) and higher derivatives so that one can get efficient
bounds for higher-order equations of variation. This is useful in the sequels to this
paper (see [GK1], [GK2]).

The theory developed in [Z] and [WZ] has been implemented in a package called
CAPD. It is our primary tool for rigorous integration of the equations of motion.
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B. Estimates on perturbation terms

We need tight estimates on the perturbation term �H and its derviatives to get good
numerics. The Taylor series expansion of �H in 1/r yields

�H (r, ϕ; μ) =
∞∑
i=1

(−1)i
μ(1 − μ)

(
μi − (μ − 1)i

)
ri+2

Pi+1

(
cos(ϕ)

)
,

where Pi is the ith Legendre polynomial and is given by the recursive formula

(i + 1)Pi+1(x) = (2i + 1)xPi(x) − iPi−1(x)

(see formula (1)).
Expansions of Newtonian potentials were one of the reasons Legendre considered

these polynomials. In fact,

1√
1 − 2xt + t2

=
∞∑

n=0

Pn(x)tn.

For x ∈ (1, 1), |Pi(x)| < 1 and |Pi(±1)| = 1. From this, one concludes that the series
expansion for �H converges provided μ is small and r > 1 + μ, for example, when
the comet is in the outside region. One can also show that |P ′

i (x)| ≤ (i(i + 1))/2
for x ∈ [−1, 1]. See, for example, [R] for formulas and derivation of Legendre
polynomials.

Bounding the Legendre polynomials produce bounds on the perturbation terms
which are independent of ϕ. Do this to define

(|�H |)+(r) := μ(1 − μ)

r(r + μ − 1)(r + μ)
,

(∣∣∣∂�H

∂r

∣∣∣)+
(r) := μ(1 − μ)(μ2 + μ(4r − 1) + r(3r − 2))

r2(r + μ − 1)2(r + μ)2
,

(∣∣∣∂�H

∂ϕ

∣∣∣)+
(r) := μ(1 − μ)r(1 + 3r(r − 1) + μ(6r − 3) + 3μ2)

(r + μ − 1)3(r + μ)3
.

Remark. All of these estimates are independent of the Jacobi constant and are O(μ/r3)
or better. They are used to produce bounds in Lemma 4.1.

B.1. Bounds on the perihelion
Consider the case μ = 10−3 and J0 = 1.8. It is useful to have some initial bounds
on angular momentum and minimal radius. The 2BP(SC) for elliptic and parabolic
motions are known to have minimum perihelion radius rperih ≥ J 2

0 /2.
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One can easily prove for a fixed angle ϕ that the radius of the perihelion is
decreasing as a function of Pϕ . It suffices to examine perihelions at the ϕ-critical
points of �H . The critical points are at ϕ = 0, π and cos(ϕ) = (1 − 2μ)/(2r). Since
�H is algebraic in r at those critical points, a CAS can solve and find the minimum
perihelion radius for elliptic and parabolic motions. This is how Lemma 1.1 is proved.
Doing so for J0 = 1.8 and μ = 10−3 yields the rperih ≥ 1.61839 ≥ (1.82)/(2) − 8μ.

The class of solutions we analyze has Pϕ ≤ 1.81; that is, e ≤ 1.0324. Computing
the minimum perihelion radius for this class yields

rperih ≥ 1.61048 = rperih
min |�H | ≤0.629509μ.

B.2. Estimation of ġ

LEMMA B.1
Fix μ = 10−3 and J0 = 1.8. Then

∣∣ ∂�H

∂G

∣∣ ≤ 0.025, and hence ġ = −1 + ∂�H

∂G
< 0.

Proof
Let us begin by computing

∂�H

∂G
= ∂�H

∂r

∂r

∂G
+ ∂�H

∂ϕ

∂ϕ

∂G
.

It is possible to bound
∣∣ ∂�H

∂r

∣∣ and
∣∣ ∂�H

∂ϕ

∣∣ with
(∣∣ ∂�H

∂r

∣∣)+
and

(∣∣ ∂�H

∂ϕ

∣∣)+
, respectively.

Using r ≥ r
perih
min = 1.61048, one finds

∣∣ ∂�H

∂r

∣∣ ≤ 1.81101μ and | ∂�H

∂ϕ
| ≤ 6.65233μ.

One can compute (via a CAS)

∂r

∂G
= G(G2 − r)

re2
,

∂ϕ

∂G
= L(G + r) sin(u)

r2e
;

∂r

∂G
has critical points at u = 0, π (recall r = L2(1 − e cos(u)). Evaluation at the

critical points gives the bound
∣∣ ∂r

∂G

∣∣ ≤ G

e
. Using e ∈ [0.5, 1.1] and G ∈ [1.6, 1.82]

gives us
∣∣ ∂r

∂G

∣∣ ∈ [1.45455, 3.64].
The story for ∂ϕ

∂G
is a bit more complicated. One can compute the critical points

in u and find two critical points u1 and u2 (these are found with a computer algebra
system). The critical point u2 is a complex root for e < 1, and for e > 1, ∂ϕ

∂G

∣∣
u=u2

is

complex. Hence u2 can be disregarded. It turns out that ∂ϕ

∂G

∣∣
u=u1

= f (e)
G

, where f (e)
is a function of e only. For e ∈ [0.5, 1.1], then f (e) ∈ [2.03336, 4.11667]. Using
G ∈ [1.6, 1.82] yields

∣∣ ∂ϕ

∂G

∣∣ ∈ [1.11723, 2.57292].
Hence

∣∣ ∂�H

∂G

∣∣ ≤ 1.81101μ · 3.64 + 6.65233μ · 2.57292 = 0.023708 < 0.025. �
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C. Estimates on change in angular momentum

In this appendix, we prove Lemma 4.2 on the change in angular momentum. Recall
that

Ṗϕ = −∂�H

∂ϕ
.

Hence

�Pϕ(t0, t1) = Pϕ(t1) − Pϕ(t0) =
∫ t1

t0

−∂�H

∂ϕ
dt.

Now

d

dt

(
�H (r(t), ϕ(t))

) =
(∂�H

∂r
(t)

)
ṙ(t) +

(∂�H

∂ϕ
(t)

)
ϕ̇(t),

and hence

∂�H

∂ϕ
(t) = 1

ϕ̇(t)

(∂�H

∂r
(t)ṙ(t) − d

dt
(�H (t))

)
.

Plugging in and using a change of variables gives

�Pϕ(t0, t1) =
∫ t1

t0

− 1

ϕ̇(t)

(∂�H

∂r
(t)ṙ(t) − d

dt
�H (t)

)
dt

=
∫ t1

t0

1

ϕ̇(t)

( d

dt
�H (t)

)
dt −

∫ r(t1)

r(t0)

1

ϕ̇(t(r))

(∂�H

∂r

)(
r, ϕ(t(r))

)
dr.

Let r0 = r(t0) and r1 = r(t1). Suppose that the comet is approaching the perihelion
from the preceding apohelion or from infinity. Then r1 ≤ r0. As t increases, r

decreases, and our estimate should account for more uncertainty in the value of Pϕ

given that the perturbation term grows larger in magnitude closer to the Sun:

|�Pϕ(t0, t1)| ≤ 1

minr∈[r0,r1] |ϕ̇(r)|
(∣∣∣ ∫ t1

t0

d

dt
�H (t) dt

∣∣∣ +
∫ r0

r1

∣∣∣∂�H

∂r

∣∣∣ dr
)
.

Note that

min
r∈[r0,r1]

|ϕ̇(r)| ≥ min
r∈[r0,r1]

(
1 − Pϕ

r2

)
≥ 1 − max Pϕ

r2
1

.

Hence

|�Pϕ(t0, t1)| ≤ 1

1 − max Pϕ

r2
1

(
|�H (t1) − �H (t0)| +

∫ r0

r1

∣∣∣∂�H

∂r

∣∣∣ dr
)
.

≤ 1

1 − max Pϕ

r2
1

(
(|�H |)+(r0) + (|�H |)+(r1) +

∫ r0

r1

(∣∣∣∂�H

∂r

∣∣∣)+
dr

)
.
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Claim
Note that

(
(|�H |)+(r0) + (|�H |)+(r1) + ∫ r0

r1

(∣∣ ∂�H

∂r

∣∣)+
dr

)
is nondecreasing as a

function of r0 for r0 ≥ r1 ≥ 1 + μ.

Proof
Differentiate with respect to r0, and note the derivative is identically zero. �

Since (|�H |)+ is decreasing as a function of r and limr0→∞(|�H |)+(r0) = 0, from
this claim it follows that

|�Pϕ(t0, t1)| ≤ ρ
(
r(t1)

) = ρ(r1)

:= 1

1 − max Pϕ

r2
1

(
(|�H |)+(r1) +

∫ ∞

r1

(∣∣∣∂�H

∂r

∣∣∣)+
dr

)
,

provided that the radius is decreasing from t0 to t1. Using (max Pϕ) = 1.81 to evaluate
ρ(5) gives an upper bound on the change of Pϕ over the whole outside region. Note
that this argument can be made symmetric by considering change from the final
conditions and reversing time. Hence, when approaching the perihelion from the
preceding apohelion or from infinity,
(1) angular momentum does not change by more than ρ(5) ≈ 0.0215298μ over

the entire outside region,
(2) angular momentum does not change by more than ρ(rperih

min ) ≈ 4.44885μ, and
(3) angular momentum does not change by more than 2ρ(5) + 2ρ(rperih

min ) ≈
8.94077μ during an R-solar passage.

Note that the construction allows for any type of R-solar passage, elliptic, parabolic,
or hyperbolic, provided that Pϕ ≤ 1.81 during the passage.

If we only care about change in angular momentum after an R-solar passage,
then (3) is not an optimal bound. We use CAPD to perform rigorous integration over
all 5-solar passages with Pϕ ∈ [1.68753, 1.81] and note that |�Pϕ| ≤ 1.4μ (see
Theorem 4.4). Thus a more tight estimate on total change in angular momentum after
an R-solar passage is 1.4μ + 2 · 0.0215298μ < 1.444μ.

This justifies the initial choice of Pϕ ≤ 1.81 in the analysis, since if the comet
starts with Pϕ(0) = 1.8 (i.e., e = 1) and approaches the Sun to make an R-solar
passage, then the most angular momentum could ever be is Pϕ = 1.80894077 < 1.81.
Comets with angular momentum slightly above Pϕ = J0, that is, slightly above e = 1
after a 5-solar passage, escape the solar system. Note that e ≤ 0.96 corresponds to
Pϕ ≤ 1.788, so after an R-solar passage, escape is not possible.

Remark. We have implicitly used J0 = 1.8 and μ = 10−3 to generate the estimate
on change in angular momentum since these constants are used in estimates on ρ,
(|�H |)+, and

(∣∣ ∂�H

∂r

∣∣)+
. The dependency on J0 is not so strong; it was only used to
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describe the domain of nearly parabolic motions, namely, to give (max Pϕ) ≤ 1.81.
The software to estimate this quantity can be adapted to other μ and J0.

D. Table of integrals

Let us investigate some properties of the following commonly occurring integrals. At
various times one encounters integrals of the form∫ t1

t0

rk(t) dt =
∫ r1

r0

rk

ṙ
dr.

Away from e = 1, this can be rewritten

F (J0, r0, r1, Pϕ, k) =
∫ r1

r0

rk+1dr√
2(J0 − Pϕ + �H )(r+ − r)(r − r−)

.

Suppose that it is possible to bound (J0 − Pϕ + �H ) as well as r± independently of
time, where r± are the apohelion and perihelion radii as given in (7). Then to evaluate
the integral (D) it suffices to know how to evaluate

I (a, b, c, d, k) :=
∫ d

c

rkdr√
(b − r)(r − a)

,

where in all cases, a, b, c, d ≥ 0 and a ≤ c ≤ r ≤ d ≤ b. Specific forms are known
for some k:

I (a, b, c, d,−1) :=
(

arctan((x(a + b) − 2ab)/(2
√

ab(b − x)(x − a)))√
ab

)
|x= d
x= c ,

I (a, b, c, d, 0) :=
(

arcsin
(2x − b − a

b − a

))
|x= d
x= c ,

I (a, b, c, d, 1) :=
(

a + b

2
arcsin(

2x − a − b

b − a
) − b − a

2

√
1 −

(
2x − a − b

b − a

)2)
|x= d
x= c .

D.1. Integrals for hyperbolic motions
Using elongated solar passages to model behavior of the comet is only effective
provided the comet is sufficiently elliptic; that is, eccentricity is sufficiently far from
one. In the case e ≈ 1, R-solar passages are used as defined in Section 3. However,
to perform the action comparison, rigorous justification of behavior in the outside
region is still needed. The method of using extreme 2BPs as in Section 4 can be
applied; however, when computing extreme 2BPs it is possible that one or more have
hyperbolic behavior. In this case, (7) is no longer valid. The hyperbolic analogue is∫ r1

r0

rk

drṙ =
∫ r1

r0

rk+1√(
(1 +

√
1 − 2P 2

ϕ (J0 − Pϕ − �H ) − 2(J0 − Pϕ − �H )r)
)(

r − r−
) dr.
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This formula comes about by carefully rearranging (7) to remove the apohelion
term.

Examination of the interval estimates in Section 4 indicates that if the appropriate
formulas for time, action, and difference in angle are given, then the estimates in
Section 4 still hold. Since the comet does not make an elongated Solar passage where
it moves from r = 5 to an apohelion to back to r = 5, then the multiplier of 2 is not
needed in the formulas for tout and Tout nor in similar formulas. Everywhere there is
a 2ρ, it may be replaced with a ρ. Everywhere is an integral bound 2Bout(i), or 2D,
replace it with a Bout(i), or D, respectively. These places are indicated in the text of
Section 4.

80-Solar passages are used to perform very high eccentricity action comparisons.
Use R±

+ = 80 wherever it appears in Section 4. If an extreme 2BP is elliptic, then it
suffices to use Bout(i)’s as defined in Section 4. Otherwise the b’s and B’s must be
modified to account for hyperbolic 2BPs.

The following are the analogues of the integrals from above for hyperbolic mo-
tions:

I hyp(a, b, e, c, d, −1) =
(2 arctan(

√
b(x − a)/

√
a(ex + b))√

ab

)
|x= d
x=c ,

I hyp(a, b, e, c, d, 0) =
(2 log(e

√
x − a + √

e(b + ex))√
e

)
|x= d
x=c ,

I hyp(a, b, e, c, d, 1) =
(√

(ex + b)(x − a)

e
+ ae − b

e3/2

× log
(
e
√

x − a +
√

e(b + ex)
))|x= d

x=c .

New bout’s and Bout’s (for 80-solar passages) are defined by

b±
out(k) =I hyp(r±

− , x±, y±, 80, k) − I hyp(r±
− , x±, y±, 5, k),

B±
out(k) =I hyp(R±

−, X±, Y±, 80, k) − I hyp(r±
− , x±, y±, 5, k),

x± =1 +
√

1 + 2(Pϕ ± ρ(5) ± w)2(Pϕ ± ρ(5) ± w − J0),

X± =1 +
√

1 + 2(Pϕ ± ρ(5) ± w ± M)2(Pϕ ± ρ(5) ± w ± M − J0),

y± = = 2(Pϕ ± ρ(5) ± w − J0),

Y± = = 2(Pϕ ± ρ(5) ± w ± M − J0),

where w, M , r±
− , and R±

− are defined as in Section 4. Such bounds are easily computable
on a computer.
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E. Lemmas on convexity and energy reduction

In this appendix, we prove some of the lemmas used in Section 7 supporting the
applicability of Aubry-Mather theory.

E.1. Polar convexity
LEMMA E.1
Let H = HPolar be the Hamiltonian associated to RCP3BP given by (2). Then H and
exp(H ) are convex.

Proof
Explicit computation reveals for q = (r, ϕ), p = (Pr, Pϕ) that

Det(∂ppH ) = 1

r2
> 0,

Tr(∂ppH ) = 1 + 1

r2
> 0.

Hence ∂ppH is positive definite, and the claim follows. �

E.2. Energy reduction
In this section, we outline a method to produce a time-periodic Hamiltonian with
(n − 1) degrees of freedom from an autonomous Hamiltonian with n degrees of
freedom with trajectories restricted to an energy surface. This method can be found in
[A] (see also [BK]).

Suppose that H = H (I1, . . . , In, θ1, . . . , θn) is a Hamiltonian with solutions 2π -
periodic in the θ1, . . . , θn variables and suppose ∂H

∂In
�= 0. Consider the Hamiltonian

H ′ defined by

dH ′ =
n∑
i

(
∂H

∂Ii

)(
∂H

∂In

) dIi +
(

∂H

∂θi

)(
∂H

∂In

) dθi.

Then trajectories of H and H ′ are identical up to rescaling of time by t̃ = θn(t).
Fix an energy surface H = E. This implicitly fixes one of the variables, say, In =
In(I1, . . . , In−1, θ1, . . . θn). Consider the Hamiltonian

H̃ (I1, . . . , In−1, θ1, . . . θn)

= H ′(I1, . . . , In−1, θ1, . . . θn, In(I1, . . . , In−1, θ1, . . . θn)
)

− In(I1, . . . , In−1, θ1, . . . θn).
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Then ∂H̃

∂In
= 0 and for i < n, ∂H̃

∂Ii
=

(
∂H
∂Ii

)(
∂H
∂In

) . Hence H̃ does not depend on In. We think

of H̃ as a time-periodic Hamiltonian with time t̃ = θn.

F. Appendix. Hardware and software

Mathematica was used for its symbolic manipulation abilities as well as its built-in
interval arithmetic. It was used to verify the claims in the above technical appendices.
It also is used to differentiate symbolically the perturbation term in Delaunay variables
and compute the twist term. Furthermore, Mathematica’s built-in numerical differen-
tial equation solver allowed us to model results quickly and get estimates on the
quantities involved in the action comparison. We made heavy use of the CAPD library
which is written in C++ to perform the rigorous numerical integration. CAPD∗ is a
library which provides objects for intervals, vectors, matrices, maps, and integrators
which can be included into C++ programs. The libraries were used to perform the
action comparison rigorously.

The programs Mathematica and CAPD are packaged with a guide which gives
explicit details on which programs carry out which parts of the proof, as well as
information on obtaining libraries, compiling, running, and modifying the code for
use on similar problems. Logs and outputs of some of the programs are also included
due to the length of time needed to generate the data.

Most of the software ran continuously for 2 weeks, distributed over a cluster of
15 machines, the fastest of which was a 3.4-GHz Pentium 4 with 2 GB RAM and a
120-GB HDD. It produced over 16 GB of data. Each machine was running a variant
of Linux with the latest available build of CAPD and Mathematica 5.0 or better.
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