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Abstract

The main model studied in this paper is a lattice of pendula with a nearest-
neighbor coupling. If the coupling is weak, then the system is near-integrable
and KAM tori fill most of the phase space. For all KAM trajectories the energy
of each pendulum stays within a narrow band for all time. Still, we show that for
an arbitrarily weak coupling of a certain localized type, the neighboring pendula
can exchange energy. In fact, the energy can be transferred between the pendula
in any prescribed way. © 2013 Wiley Periodicals, Inc.

1 Description of the Motion
We consider a system of pendula with a nearest-neighbor coupling:
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where the interaction potential ˇ is localized and will be defined later. This system
can be written in the Hamiltonian form with x D fx
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where V.x/ D � cos x � 1 is the pendulum potential. For " D 0 and each integer i
the .x

i

; y
i

/-component forms a pendulum, whose phase portrait is on Figure 1.1.
The system is near-integrable for small ", and most (in the sense of measure)

of the system’s phase space is taken up by invariant KAM tori. In particular, for
most initial data the energy of each pendulum will stay close to its initial value

Communications on Pure and Applied Mathematics, 0001–0028 (PREPRINT)
© 2013 Wiley Periodicals, Inc.



2 V. KALOSHIN, M. LEVI, AND M. SAPRYKINA

0 1

W

u

W

s

FIGURE 1.1. The “running” and the near-heteroclinic motion are the
building blocks of the dynamics.

for all time. Nevertheless, we will show that for some motions the energy can
slowly “seep" from one pendulum to another. We will in fact prove that for an
arbitrarily small " and for any sequence of integers � D .: : : ; ��1

; �
0

; �
1

; : : : /
such that �

0

D 0, j�
j

� �
j C1

j D 1, for all j 2 Z, there exists a sequence of times
.: : : ; t�1

; t
0

; t
1

; : : : / (depending on ") such that at time t
j

the �
j

th pendulum has
most of the system’s energy. In particular, one can make the energy wander along
the chain of the pendula in any prescribed fashion, advancing to the right by any
number of steps, retreating to the left by any number of steps, and so on.

From now on we fix the energy of the system to be 1.1 Below we shall concen-
trate on the case of a periodic collection of four pendula, i.e., of the index i (mod
4). In our notation, the indices will be denoted i D 1; 2; 3; 4, and 5 ⌘ 1 .mod 4/.
The proof in the general periodic case i 2 Z=pZ is quite similar, and necessary
remarks are made along the proof.

We note as a side remark that the space discretization of the sine-Gordon equa-
tion u

t t

�u
ss

D sin u results in a system of pendula with elastic coupling [6,24,25]:
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this corresponds to an elastic torsional coupling between the neighbors. In partic-
ular, as the angle x

j C1

� x
j

! 1 we have a ! 1. By contrast, the coupling
we consider in this paper can be interpreted as coming from a spring connecting
points on a circle with angular coordinates x

j

, as shown in Figure 1.2.
The coupling in our system is, however, localized, as described below. The

class of coupling functions ˇ for which our results hold is defined as follows:
Let ⌘ W RC ! R be a C 1 bump function: ⌘.x/ > 0 for jxj < 1 and ⌘.x/ D 0 for
jxj � 1.

1 Energy 0 corresponds to all pendula “hanging upside down” and at rest. Indeed, the maximum
of the potential energy V.x/ D � cos x � 1 of an individual pendulum is 0 and is achieved at x D ⇡ ,
an upside-down position.
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FIGURE 1.2. A mechanical interpretation of (1.3) with the coupling
ˇ.x
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The exact form of ⌘ is not important, and in particular, no monotonicity proper-
ties are assumed. We can allow ⌘ to have many local maxima and minima, as long
as the above conditions hold. From now on, fix r � 3. We define
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This is a C 1-smooth 2⇡-periodic function in each t
j

; j D 1; 2; 3; or, equivalently,
a function on 2⇡.R3=Z3/. Note that the C r -norm of "ˇ. � ; "/ tends to 0 as " ! 0,
while the norms of order r C 2 and higher are unbounded for " ! 0.

Please note that ˇ is a function of three variables, though the configuration space
in the subsequent proofs will be R4. The independent variables will always be
explicitly written, e.g., ˇ.x

j �1

; x
j

; x
j C1

/.
We will sometimes speak about the “connected components of the support of

ˇ.x
j �1

; x
j

; x
j C1

/ in the configuration space R4,” with a little abuse of notation.
These connected components will be referred to as lenses. They have a form of
cylinders given by the product of a three-dimensional ball and a line. The name
reflects the fact that, dynamically, the supports of ˇ act by defocusing geodesics in
the Jacobi metric, as explained later (see also [19]).

According to the main theorem, stated next, the energy
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at the j th site can pass from one site to another in an arbitrarily prescribed sequence
of steps, as illustrated in Figure 1.3.

A path in the graph Z means that we have a solution which along a strictly mono-
tone subsequence of times T

j

has most energy concentrated in a single pendulum
whose index �

j

is the corresponding vertex of the graph. In between consecutive
times ŒT

j

; T
j C1

ç most of the energy gradually passes from �
j

to �
j C1

. Here is a
precise statement.
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FIGURE 1.3. Any path in the graph Z can be shadowed by a solution of (1.1).

THEOREM 1.1. Let us fix the total energy2 E D 1 of system (1.1) with ˇ satis-
fying (1.4). There exists "

0

> 0 such that for any 0 < " < "
0

and for any path
: : : ��1

�
0

�
1

: : : in the graph Z there exists a solution of (1.1) and a sequence of
times : : : t�1

t
0

t
1

: : : such that the energies (1.5) of individual pendula satisfy

jE
�j
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j
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where C is independent of ". The times t
j

can be chosen so that

(1.6) 0 < t
j C1

� t
j

 C "�4r�8:

This theorem shows that, although system (1.1) is near-integrable, so that for
most (in the sense of Liouville measure) solutions the action stays close to its ini-
tial value for all time, there exist solutions for which the action changes by O.1/
no matter how small " is. In other words, the system exhibits Arnol0d diffusion.
According to (1.6), the rate of this diffusion is polynomial. The bound in (1.6) is
not sharp, but it can be improved by a more careful tracing of the estimates in our
example. In the general case, polynomial upper bounds for the speed of diffusion
for finitely differentiable systems have been obtained in [8].

The first example of Arnol0d diffusion was outlined in the well-known paper
of Arnol0d [1]. Bessi [4] (see also [3]) proved diffusion in Arnol0d’s example
by a variational method, by considering the gradient flow of the Lagrangian ac-
tion functional. John Mather [23] used a somewhat similar approach to con-
struct accelerating orbits for time-periodic mechanical systems on a 2-torus (see
also [7, 12, 15, 17]). References concerning the progress on Arnol0d diffusion go
beyond the scope of this paper and can be found, e.g., in [18]. The most recent
progress can be found in [10, 20], where Arnol0d diffusion for convex Hamiltoni-
ans of three degrees of freedom is discussed. In the present paper we use a slightly
different version of this approach, based on using the Maupertuis principle. We
construct the “diffusing” solutions as geodesics in a Jacobi metric so that all these
solutions have a fixed prescribed energy. These geodesics are constructed by con-
catenating geodesic segments that follow a prescribed itinerary. The construction
is fairly similar to [18, 19].

2 In fact, any value strictly larger than the potential energy of an upside-down equilibrium works.
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FIGURE 1.4. One full step in the propagation of the “kink”.

Anderson localization is an important example of energy (non)transfer (see [21]
for a survey), which is still not very well understood. The role of Arnol0d dif-
fusion for destruction of Anderson localization is discussed in [2]. Probably the
most popularized lattice model is the one introduced by Fermi, Pasta, and Ulam
(FPU) in their seminal paper [13]. Although most small-amplitude solutions in the
FPU model do not exhibit energy transfer (see, e.g., [16]), proving the existence
of solutions with energy transfer is an interesting open problem. Other physically
significant lattice models are discussed in [14].

Understanding the transfer of energy for Hamiltonian PDEs is one of emerging
directions of research (see [9]; recent progress for the cubic defocusing nonlinear
Schrödinger equation has been made in [11]).

1.1 Heuristic Description of Energy Propagation
In this section we give a purely heuristic picture of the physical motions ex-

hibiting Arnol0d diffusion. As mentioned earlier, we consider the periodic case
x

iC4

D x
i

as a representative example.

STAGE 1: TRANSFER OF ENERGY. At this stage only three pendula, 1, 2, and 3,
governed by (1.1) with k D 1; 2; 3 are “active,” while 4 “sleeps” upside down (see
Figure 1.4, left). By the reasons to be seen in a moment we refer to 1 as the “giver”
and to 2 as the “taker.” Pendulum 3 is the “facilitator” of the transfer, while its own
energy stays small during the whole stage.

This stage consists of many substages illustrated by Figure 1.5, left. At each of
these substages, a small amount of energy is transferred from 1 to 2. This transfer
is somewhat similar to the one described in [19] for a metric on the 3-torus. At
the last of these substages, 1 is left with just enough energy to climb upside down
and to fall asleep there, while 2 rotates with speed O.1/, as shown in the middle
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FIGURE 1.5. Energy transfer and sections in the configuration space R4.

of Figure 1.4. Figure 1.5 illustrates the same motion, viewed in the configuration
space R4.

The motion just described is similar to the one studied in [18, 19] for a slightly
simpler example.

STAGE 2: ADVANCE. This stage is sketched in Figure 1.4, from middle to the
right, and Figure 1.5, middle. At t D t

1

three neighbors, say 1, 2, and 3, are
in the bottom position. The middle pendulum 2 is running: Px

2

D O.1/, while
its two neighbors 1 and 3 have near-heteroclinic speeds close to the heteroclinic
speeds

p
�2V.x

i

/; i D 1; 3, respectively, at t D t
1

. The remaining pendulum 4 is
upside-down (see Figure 1.4, middle). As the time goes on, while 2 is spinning with
speed O.1/, 1 rises to the top equilibrium, where it will sleep until further notice,
while the sleeper 4 “wakes up,” i.e., falls from its perch, turning ⇡ at the exact
moment when 2 finishes a large integer number of full spins. By that moment,
x

3

makes a “gentle” turn by 2⇡ , returning to the bottom position. In short, the
accomplishment of this stage is the falling asleep of 1 and the awakening of 4.
The result is illustrated in Figure 1.4, right. We will call this stage the “advance”
because of its similarity with the advancing caterpillar: a rear foot 1 is placed on
the ground, while the front foot 4 is lifted, ready to move.

The ending moment of the second stage is the beginning moment of the first
stage described above modulo the shift of the index by 1. We have, in other words,
a “traveling wave”—a (very) discrete analogue of the kink in the sine-Gordon equa-
tion. However, in contrast to the standard traveling kink, ours can change the di-
rection of its propagation arbitrarily, according to a prescribed itinerary.

2 Proof of Theorem 1.1
The full complexity of the problem is already seen in the case of four pendula,

and we limit our consideration to this case. Now we restate the theorem in geo-
metrical terms. The following is motivated by the heuristic outline of the energy
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transfer between the pendula: as mentioned above (see Figures 1.4 and 1.5), we
want the energy to pass from one pendulum (e.g., 1), which is called the “giver,”
to another (e.g., 2), the “taker,” in small increments over many steps. At this stage
3 is the “facilitator” of the transfer; its own energy stays small during this stage.
Pendulum 4 at this stage is the “sleeper”—its trajectory stays close to the saddle
fixed point (which corresponds to the pendulum hanging upside down). At the end
of this stage almost the whole total energy is concentrated at 2, and the energy of 1
is very small.

During the “advance” stage, the pendula change roles: 1 becomes the next
“sleeper,” 2 becomes the next “giver,” 3 becomes the new “taker,” and 4 becomes
the new “facilitator.”

This is reflected in the following geometrical construction. Consider the lift R4

of T4. In Section 2.1 we construct an itinerary for the desired orbit. This means
that we choose a sequence of small three-dimensional sections (for the first stage,
described above, they are called †

j

12;3

), centered at the points of a certain lattice.
The sections are defined in (2.2). The desired orbit of the system, providing the
energy transfer, will be constructed to pass through these sections in the given
order.

Moreover, the sections related to the deformation ˇ are as follows: Recall that
each connected component of the support of ˇ is a (thin) cylinder in the configura-
tion space. Each section intersects only one such cylinder. More about the form of
the sections is in Section 2.1; see (2.2).

Recall that the system is integrable outside the support of ˇ. Hence the velocity
vector of a trajectory, connecting a pair of neighboring sections, is rather precisely
defined by the angle between the centers of the sections. This velocity is related to
the energy contained in different pendula.

The sections corresponding to the first stage, described above, will have centers
with the same fourth component (this reflects the fact that pendulum 4 has veloc-
ity almost 0). The same holds for the component corresponding to the “sleeper”
at each stage. Moreover, the angle between the centers of each pair of neighbor-
ing sections changes very slowly. This will be used in order to find a trajectory
that passes through all the sections. These ideas are very close to those contained
in [19].

The main contents of this paper deal with the “advance” part, when the pendula
change their roles. This is analogous to passing a strong double resonance.

Later in this section we reformulate the problem of existence of an orbit passing
through all the sections as a variational problem. Finally, we prove existence of a
solution to this problem in Section 2.2. We use Lemmas 4.1 and 5.1, stated and
proved in Sections 4 and 5, respectively.

2.1 Constructing an Itinerary
Without loss of generality, let us prove Theorem 1.1 in the case of monotone

energy transfer (i.e., to the right neighbor): �
j C1

D �
j

C 1 D j C 1 for all j 2 Z.
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FIGURE 2.1. An itinerary.

Transferring the energy between the pendula in any other prescribed order poses
no new difficulties. We thus consider an infinite sequence of codimension 1 sec-
tions in R4, grouped into finite strings, Figures 1.5 and 2.1:

(2.1) � � � .†1

12;3

; †2

12;3

; : : : ; †N1

12;3

/
„ ƒ‚ …

1!2

.†1

23;4

; †2

23;4

; : : : ; †N2

23;4

/
„ ƒ‚ …

2!3

� � � ;

where the sections and their spacings are defined according to the following rules.

(1) Section †1

12;3

, for example, is seen in Figure 1.5, left. The subscripts 12
indicate that 1 and 2 exchange energy, and 3 is the “facilitator”:

(2.2) †1

12;3

WD fx
3

D 0; x2

1

C x2

2

 "; jx
4

� ⇡j 
p

"g:
We refer to the point .0; 0; 0; ⇡/ as the Center of this section. Notice that the only
connected component of the support of ˇ that intersects †1

12;3

is contained in the
cylinder fx2

1

C x2

2

C x2

3

 1g.
(2) All sections within each string in (2.1) are translates of each other by inte-

ger multiples of 2⇡ . For example, in the first string 1 ! 2:

†kC1

12;3

D †k

12;3

C 2⇡.mk

12;3

; nk

12;3

; 1; 0/ DW †k

12;3

C Enk

12;3

; k D 1; : : : ; N
1

:

The centers of the sections satisfy

Center.†kC1

12;3

/ D Center.†k

12;3

/ C Enk

12;3

; k D 1; : : : ; N
1

:

Note that the fourth coordinate of the centers of the sections is kept constant for all
the sections in this string.

To define the second string, we change the subindices in formula (2.2) in the
following way: replace each subindex i by i C 1 modulo 4 (e.g., †1

12;3

becomes
†1

23;4

). This gives

(2.3) †1

23;4

WD fx
4

D 0; x2

2

C x2

3

 "; jx
1

� ⇡j 
p

"g:

We then define †k

23;4

as a translate of †1

23;4

by an integer multiple of 2⇡ in coor-
dinates .x

2

; x
3

; x
4

/. Namely, †kC1

23;4

D †k

23;4

C Enk

23;4

, where

Enk

23;4

WD 2⇡.0; mk

23;4

; nk

23;4

; 1/:
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This corresponds to the fact that 1 is the “sleeper” at this stage, its velocity staying
close to 0, so the first component of all the sections of this string is the same.
Pendulum 4 is the “facilitator” at this stage, and pendula 2 and 3 exchange energy.

(3) The neighboring strings .1 ! 2/ and .2 ! 3/ (see Figure 2.1) are related
via

Center.†1

23;4

/ D Center.†N1

12;3

/ C 2⇡

✓
1

2
; m0

23;4

; 1;
1

2

◆

WD Center.†N1

12;3

/ C En0

23;4

for a suitable integer m0

23;4

.
(4) For solving the variational problem below, it will be important that the

angle between the intervals connecting each pair of neighboring sections changes
very slowly (this corresponds to the slow transfer of energy between the pendula).
Since these centers are integers times 2⇡ , we need to choose the vectors Enk

��;� very
long: each

(2.4) jEnk

��;�j � "�2r�4:

(5) The turns are gradual in the sense that the unit vectors ek

��;� D Enk

��;�=jEnk

��;�j
satisfy

(2.5) jekC1

��;� � ek

��;�j  "2rC4; je1

��;�C1

� eNj��;� j  "2rC4:

2.2 A Variational Problem and Its Solution
We note that energy one solutions of (1.1) are geodesics in the Jacobi metric3

(2.6) d⇢.x/ D

p

1 �
4X

iD1

�
V.x

i

/ C "ˇ.x
i�1

; x
i

; x
iC1

; "/
�

ds;

where x D .x
1

; x
2

; x
3

; x
4

/; V .x/ D � cos x � 1  0, ds is the euclidean metric,
and indices of the x

i

are taken mod 4 (thus, in our notation i D 1; 2; 3; 4).
With the sections defined in items 1–5 above, we now sketch the main steps of

the proof of Theorem 1.1 and fill in the details in the following sections.

Step 1. Defining geodesic segments. Let †
0

; †
1

be two consecutive sections in
the chain of sections (2.1) and let p

i

2 †
i

, i D 0; 1. Centers of these sections
differ by 2⇡ En with En being either .m; n; 1; 0/ or .1

2

; s; 1; 1

2

/ with m; n; s 2 Z and
satisfying (2.4). According to Lemma 5.1 from Section 5, there exists a connecting
geodesic �.p

0

; p
1

/ of (2.6) that depends smoothly on its ends p
0

; p
1

. At this stage
the integer parameters, either m and n or s, are still free.

3 Up to the factor
p

2, the square root above is the speed of the energy one solution in the config-
uration space.
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Step 2. Constructing a long shadowing geodesic. Consider a finite segment of
N C2 sections from sequence (2.1). To simplify the notation, we denote these sec-
tions by †

i

, 0  i  N C 1 (N here is arbitrarily large). We also choose arbitrary
points p

i

2 †
i

. Later we will treat p
0

; p
N C1

as fixed and p
1

; : : : ; p
N

as variable.
According to the preceding item, there exists a broken geodesic �.p

0

; : : : ; p
N C1

/,
a concatenation of energy one orbits �.p

i

; p
iC1

/ of (1.1). The length (in the Jacobi
metric) of this broken geodesic,

(2.7) L.p
1

; : : : ; p
N

/ D L.p
0

; p
1

/ C � � � C L.p
N

; p
N C1

/;

is a function of the “break points” p
j

, j D 1; : : : ; N ; we omit p
0

and p
N C1

from
the left-hand side since they will be considered as fixed.

We will show that L has a minimum in the interior of its domain †
1

⇥ � � � ⇥ †
N

.
Such an interior minimum corresponds to a true geodesic. We will thus establish
the existence of a geodesic with a prescribed itinerary.

Step 3. Existence of an interior minimum for (2.7). In this key step, let us fix
a j , 1  j  N , and consider the two consecutive terms from the sum (2.7) that
contain p

j

:

(2.8) S.p
j

/ D L.p
j �1

; p
j

/ C L.p
j

; p
j C1

/; p
k

2 †
k

; k D j � 1; j; j C 1:

where p
j ˙1

2 †
j ˙1

are fixed and p 2 †
i

is variable. To prove the existence of an
interior minimum of (2.7) it suffices to show that for each j , the minimum of S.p

j

/
is achieved in the interior of †

j

. Without loss of generality we take †
j

D †1

12;3

,
given by (2.2).4

To simplify the notation, in the argument below we denote p
j

by p, p
j ˙1

by
p˙, †

j

by †, and †
j ˙1

by †˙. Hence, we shall minimize S.p/ D L.p�; p/ C
L.p; pC/.

In the remaining part of Section 2 we prove existence of the interior minimum
for this problem (modulo certain technical lemmas). To begin with, we alter the
Jacobi metric (2.6) by setting ˇ D 0 only in the cylinder fx2

1

C x2

2

C x2

3

< "2g that
passes through the center of † (we do not alter ˇ anywhere else). The new Jacobi
metric is defined by formula (2.6) with ˇ D 0. Denote the corresponding geodesic
distance between points p

0

and p
1

by L0.p
0

; p
1

/.
Before restoring ˇ to its original form, we study the associated length

S0.p/ WD L0.p�; p/ C L0.p; pC/; p 2 †:(2.9)

Once the properties of S0.p/ are established (see (2.10) and (2.11) below), we
will show that restoring ˇ to its original form creates a minimum for S.p/ in the
interior of †.

We have assumed above that † D †1

12;3

as in (2.2), so S0.p/ does not depend
on the third component of p, which is 0. With a slight abuse of notation, we write
S0.p/ D S0.x

1

; x
2

; x
4

/. This choice of the section does not produce any loss of

4 For future reference, we note that the triple may or may not be entirely in one string in the
sequence (2.1) of sections.
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generality, since all the other sections have the same structure, up to a permutation
of indices.

An important step in the proof is to show that S0.x
1

; x
2

; x
4

/ is nearly constant
as a function of the first two variables, and has a minimum near the “equator”
x

4

D ⇡ :

jS0.x
1

; x
2

; x
4

/ � S0.0; 0; x
4

/j  c"rC2:5;(2.10)

S0.x
1

; x
2

; ⇡ ˙
p

"/ > S0.x
1

; x
2

; ⇡/ C "

2
;(2.11)

for any .x
1

; x
2

; ⇡/ 2 †.

PROOF OF (2.10) AND (2.11). By lemma 1 from [19], for p D .x
1

; x
2

; x
3

; x
4

/
we get

@L0.p�; p/

@x
i

D Px�
i

;
@L0.p; pC/

@x
i

D � PxC
i

;

where x�.t/ D .x�
1

; x�
2

; x�
3

; x�
4

/ is the energy one solution with the modified ˇ,
connecting p� to p, and where the differentiation is taken at the moment the solu-
tion passes through p. This solution exists by Lemma 5.1 below. We use a similar
notation xC for the energy one solution connecting p with pC. We thus conclude
that

(2.12)
@S0

@x
i

.p/ D Px�
i

� PxC
i

; i D 1; 2; 4I

this identity5 will allow us to analyze S0. Now, due to the fact that the perturba-
tion ˇ near p is removed, the pendula are decoupled and the velocity is explicitly
given in terms of energy distribution (1.5)

j Px
i

j D
p

2.E
i

� V.x
i

//;

where E
i

is the energy of the i th pendulum near p. Estimation of (2.12) is now
reduced to studying the difference of velocities. We have to consider two cases:
in one, †�, †, and †C belong to the same string in (2.1) (the case of “energy
transfer”), and in the other they do not (the “advance”).

Case 1. Energy Transfer. In this case all sections lie in the same string in
(2.1)—say, in .1 ! 2/. The displacements 2⇡ En� and 2⇡ EnC are then of the form
2⇡.m˙; n˙; 1; 0/ with integer m˙ and n˙. Assuming the integers to be positive
(we can always assume them to be of the same sign), we have

(2.13) Px�
i

> 0; PxC
i

> 0; i D 1; 2; 3;

at the moment when † is crossed.

5 We do not differentiate by x
3

since we only need to define S and S0 on † ⇢ fx
3

D 0g.
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The fact that the signs are the same for xC and x� is of key importance because
it provides a near cancellation in (2.12) for i D 1; 2; 4. Thus, we have

(2.14)
@S0

@x
i

D
q

2.E�
i

� V.x
i

// �
q

2.EC
i

� V.x
i

//; i D 1; 2:

Note that if 0  A  B then
p

B �
p

A 
p

B � A; this, used in (2.14), gives

(2.15)
ˇ̌
ˇ̌@S0

@x
i

ˇ̌
ˇ̌

q
2jEC

i

� E�
i

j; i D 1; 2:

Now, according to Lemma 4.1 and assumptions (2.4) and (2.5) we have

(2.16) jEC
i

� E�
i

j  c"2rC4; i D 1; 2; 3; 4;

and by (2.15), we get

(2.17)
ˇ̌
ˇ̌@S0

@x
i

ˇ̌
ˇ̌  c"rC2; i D 1; 2:

By integrating this with respect to x
i

(recall that jx
i

j  p
"), we obtain (2.10),

which shows that S0 is “flat” in the first two variables.
To estimate @S0=@x

4

, note that .x�
4

; Px�
4

/ and .xC
4

; PxC
4

/ stay at the
p

"-neighbor-
hood of the saddle .x

4

; Px
4

/ D .⇡; 0/. Since the distance between the sections is
large (see (2.4)), and the velocity is bounded (by the choice of fixed energy), the
duration of each stage is at least "�2r�4. This implies that, at the moment when the
solution crosses †, the distance between .x�

4

; Px�
4

/ and the unstable manifold of the
saddle is at most O.exp.�"�1// (if " is sufficiently small). The unstable manifold
has the form

y
4

D U.x
4

/ D .x
4

� ⇡/ C O..x
4

� ⇡/2/:

At the same time, the distance between .xC
4

; PxC
4

/ and the stable manifold, y
4

D
�U.x

4

/, is at most O.exp.�"�1// for sufficiently small ". That is,

Px�
4

D U.x
4

/ C O.exp."�1//(2.18)

and

PxC
4

D �U.x
4

/ C O.exp."�1//;(2.19)

so that

(2.20)
@S0

@x
4

D 2U.x
4

/ D 2.x
4

� ⇡/ C O..x
4

� ⇡/2/ C O.exp."�1//:

Integration with respect to x
4

gives (2.11).

Case 2. Advance. In this case not all sections lie in the same string in (2.1);
without loss of generality, assume that †� and † are the last two sections in the
string .1 ! 2/, while †C is the first section in the following string, .2 ! 3/.
The corresponding displacement vectors are of the form En� D 2⇡.m; n; 1; 0/,
EnC D 2⇡.1

2

; s; 1; 1

2

/. In this case we still have (2.13), and following (2.14) and
(2.15) we obtain (2.10). Since the sign of Px

4

is unknown, we treat it separately,
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observing, as before, that (2.18) and (2.19) hold. This implies (2.20) and thus
(2.11).

This completes the proof of (2.10) and (2.11) in both cases. ⇤

PROOF OF THE INTERIOR MINIMIUM FOR S . Using the properties of S0 and
the positivity of ˇ we now show that S has a minimum inside †. We do so for
Case 1; the remaining case is treated almost verbatim.

The boundary @† D @
v

† [ @
h

† consists of the “vertical” and the “horizontal”
parts (after possible reindexing of the coordinates):

@
v

† D fx2

1

C x2

2

D "; jx
4

� ⇡j 
p

"g;
@

h

† D fx2

1

C x2

2

 "; jx
4

� ⇡j D
p

"g:
(2.21)

A key observation we will use shortly is this:

(2.22) S.p/ D S0.p/ for all p 2 @
v

†:

PROOF. We wish to show that the energy one solution �.p
j �1

; p/ with p lying
on fx2

1

C x2

2

D "; x
3

D 0g does not intersect the cylinder fx2

1

C x2

2

C x2

3

 "2g
(and hence it does not intersect the connected component of the support of the
deformation ˇ, contained in this cylinder). To that end assume the contrary: the
solution travels from one set to the other, taking some time t D t⇤ > 0. Since
the distance between the above sets is � 1

2

p
", while the speed is  2, the time

of travel is t⇤ > 1

4

p
". But Px

3

� 1, at least as long as jx
3

j  p
". Thus, during

time t⇤, x
3

changes by an amount of Åx
3

> 1

4

p
", which means that the solution

lies outside of the cylinder fx2

1

Cx2

2

Cx2

3

 "2g, contradicting the definition of t⇤.
This proves (2.22). ⇤

We now show that the restriction of S to each horizontal disk in †,

D
h

WD fx2

1

C x2

2

 "; x
4

D ⇡ C hg; jhj 
p

";

has a minimum in the interior of D
h

. To that end, we first note a crucial fact
that ˇ decreases S (as compared to S0) near the center C

h

D .0; 0; ⇡ C h/ of
each D

h

. Note that by the definition (1.4) the infimum of ˇ. � ; "/ taken over the set
x2

1

C x2

2

C x2

3

 "2=2 is bounded from below by b"r for some b > 0 independent
of ". Therefore, comparing the geodesic length in the original Jacobi metric with
the truncated one, we obtain

(2.23) S.C
h

/  S0.C
h

/ � " inf ˇ. � ; "/  S0.C / � b"rC1:

See the proof of lemma 4 in [19] for more details on this argument.
On the other hand, by (2.10) we have, for any p 2 @D

h

, jhj  p
":

S0.C
h

/  S0.p/ C 2c"rC2:5:

Combining this with (2.23) and (2.22) we obtain

S.C
h

/  S.p/ C 2c"rC2:5 � b"rC1 < S.p/ 8p 2 @D
h

;
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provided that " is sufficiently small (since b and c are independent of "). We
showed that the minimum of S cannot be achieved on @

v

†, and it remains to show
that it cannot be achieved on @

h

† either. Estimate (2.11) shows that S0 has a
pronounced minimum near the equator x

4

D ⇡ .
By the same estimate as we used for (2.23), we have a two-sided result: jS0.x/�

S.x/j  b"rC1, which together with (2.11) gives

S.x
1

; x
2

; ⇡ ˙
p

"/ > S.x
1

; x
2

; ⇡/:

This proves that the minimum is achieved inside †.
To complete the proof of the main theorem, it remains to observe that the exis-

tence of the internal minimum for S implies the existence of the internal minimum
for L.p

1

; : : : ; p
N

/, as well as the existence of an internal minimum for an infin-
itely long sequence (2.1). The details can be found in [22]. ⇤

3 The Pendulum Lemma
In this section we state and prove an auxiliary lemma that is used in the proofs

of the main two lemmas in the following two sections. This lemma asserts that
there exists a unique trajectory of the pendulum along which the angle changes in
a certain prescribed way between two prescribed values in a prescribed amount of
time.

LEMMA 3.1. For any T > 0 and for any ˛; ˇ satisfying

(3.1) j˛j  1; jˇ � ⇡j < 1;

there exists a unique solution x.t/ D x.t I T; ˛; ˇ/ of Rx C sin x D 0 satisfying
x.0/ D ˛, x.T / D ˇ, and

(3.2) ˛  x.t/  maxfˇ; ⇡g for 0  t  T:

This solution depends smoothly on T , ˛, and ˇ.
All these conclusions also hold if conditions (3.1) are replaced by one of the

following conditions:

(3.3) j˛j  1; jˇ C ⇡j  1; ˛  x.t/  max.ˇ; ⇡/; t 2 Œ0; T ç;

or

(3.4) j˛ C ⇡j  1; jˇj  1; min.˛; ⇡/  x.t/  ˇ; t 2 Œ0; T ç;

or

(3.5) j˛j  1; jˇ � 2⇡j  1; ˛  x.t/  ˇ; t 2 Œ0; T ç;

or finally

(3.6) ˇ � ˛ � 2⇡; ˛  x.t/  ˇ; t 2 Œ0; T ç:

The solution’s energy E.T / D Px2=2�.1Ccos x/ (with ˛ and ˇ fixed) is continuous
in T , with lim

T !0

E.T / D 1 and lim
T !1 E.T / D Esaddle D 0. If jˇ�˛j > 2⇡ ,
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(A) (B)

T
1

T
2

T
2

T
1

< T
2

T
1

< T
2

⇡
⇡

0 0
˛ ˛ˇ ˇ

FIGURE 3.1. Potential energy for one degree of freedom systems. If
ˇ < ⇡ , the solution “turns around” for T large, as illustrated in (A).

then E.T / is monotone decreasing. If jˇ � ˛j  2⇡ then E depends exponentially
weakly on T for large T :

(3.7)
ˇ̌
ˇ̌@E

@T

ˇ̌
ˇ̌ < c

1

e�c2T ;

where c
1

; c
2

are positive constants independent of T . Finally, for any constant
c

3

> 0 there exists c
4

> 0 independent of T such that if c
4

T � jˇ � ˛j � c
3

T ,
then

(3.8)
@E

@T
 �c

5

T
:

Remark 3.2. If ˛ and ˇ are not separated by a saddle, as in Figure 3.1(A), then
E.T / approaches Esaddle D 0 (as T increases) as follows. Define T

ˇ

by the relation
Px.T

ˇ

I ˛; ˇ; T
ˇ

/ D 0; that is, we consider the solution that reaches the line x D ˇ
at the point .ˇ; 0/, Figure 3.1. Then E.T / decreases on the interval .0; T

ˇ

/ and
increases on the interval .T

ˇ

; 1/, approaching Esaddle D 0. The minimal value
E.T

ˇ

/ D �1 � cos ˇ.

COROLLARY 3.3. Consider the uncoupled system6

(3.9) Rx
i

C sin x
i

D 0; i D 1; : : : ; 4:

For any pair of points q; p 2 R4 with jp � qj � c with ˛ D q
i

; ˇ D p
i

satisfying
conditions of Lemma 3.1 for each i D 1; : : : ; 4, and for any T > 0 there exists
a unique solution X.t; q; p; T / of the system (3.9) that satisfies X.0/ D q and
X.T / D p, and each of whose coordinates x.t/ D X

i

.t/ satisfies one of the
bounds of Lemma 3.1. Moreover, there exists a constant D > 0 such that if, in
addition to the above, jp � qj � D, then there is a unique T > 0 such that energy
of this solution is 1.

PROOF. Since q
i

D ˛, p
i

D ˇ satisfy the conditions of Lemma 3.1 by assump-
tion, the lemma applies to each equation in (3.9). Consequently, for any T > 0
there exists a unique solution x

i

.t/ D x
i

.t I T; q
i

; p
i

/ of Rx
i

C sin x
i

D 0 with the

6 Since we chose to concentrate on n D 4 pendula, we formulate the lemma for this case, although
the proof carries over verbatim for an arbitrary n.
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desired boundary conditions and lying in one of the ranges stated in the lemma,
(3.2)–(3.6). This proves the existence of the solution with the prescribed boundary
conditions.

It remains to prove the uniqueness of the solution with energy one for jp � qj �
D with D sufficiently large. To that end, note that the velocity of the energy one
solution X.t I q; p; T / has an upper bound

j PX j D
p

2.1 � V.X//  3
p

2;

since V.X/ D � P
i

.1 C cos x
i

/ � 8. With the upper bound on the speed, we get
the lower bound on the time:

T � jp � qj
3
p

2
� D

3
p

2
:

Let us now choose D, and hence T , so large that the right-hand side of (3.8)
dominates the right-hand side of (3.7):

c
1

e�c2T <
c

5

T
:

Consider now the energy E.T / D P
E

i

.T / of the solution in question. Each
E

i

.T / satisfies either (3.7) or (3.8). Since jp � qj > D, at least one E
i

satisfies
(3.8). This shows that E 0.T / < 0 whenever E.T / D 1, and thus such T is unique.
This completes the proof of the corollary. ⇤

PROOF OF LEMMA 3.1. We concentrate on the first case; the proofs of the re-
maining ones are the same.

We are seeking a solution of

(3.10)

(
Px D y;

Py D � sin x;

which starts on the line x D ˛ and ends at time t D T on the line x D ˇ. The
desired solution is obtained by finding the point of intersection of the image of this
line at time T and the line x D ˇ, Figure 3.2. We have to show that the solution
with the properties stated in the lemma exists and is unique.

Let O 2 fx D ˛g be the point whose orbit crosses the x-axis at x D ⇡ � 1.
None of the solutions starting below O on the line x D ˛ can satisfy x.T / D ˇ for
T > 0, so that we can concentrate on seeking the initial condition on the ray OM .

Let 't be the flow of (3.10), let S be the strip S D f.x; y/ W x 2 Œ⇡ �1; ⇡ C1çg,
and let ⇡

x

denote the projection onto the x-axis. Referring to Figure 3.2, we fix
any T > 0 and define the set

(3.11) I
T

D f´ W ´ 2 OM; 'T ´ 2 S; ⇡
x

.'t´/ 2 Œ˛; ⇡ C 1ç 8t 2 Œ0; T çg:
We claim the following: for any T > 0, the set I

T

is an interval, and 'T .I
T

/
is a curve with a positive slope connecting the two boundaries of the strip S , Fig-
ure 3.2. This claim amounts to the existence and uniqueness of the desired solution.
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˛

˛

ˇ

ˇ

x.t I T; ˛; ˇ/

⇡

⇡
t

D
0

t
D

T

O

M

S

S

I
T I

T1

T
1

� T

FIGURE 3.2. The slope of the image of the vertical interval is positive.

If T is small, the solutions are fast and thus lie above the separatrix, and the re-
sult is obvious. However, for larger T , some solutions starting on I

T

“turn around,”
as in Figure 3.2 (right), and the proof requires a little care.7

Our goal is thus to prove that I
T

is an interval, and that its image is a curve with
positive slope. To that end it suffices to show that for any ´

0

D .˛; y
0

/ 2 I
T

we
have

(3.12)
@

@y
0

.⇡
x

't .˛; y
0

// > 0 for any 0 < t  T:

To that end, consider the linearization of (3.10):

(3.13)

( P⇠ D ⌘;

P⌘ D �.cos x/⇠;

where x is the solution of (3.10) with the chosen initial condition. Note that the
solution ⇣ D .⇠; ⌘/ of (3.13) with ⇣.0/ D .0; ⌘

0

/, ⌘
0

> 0, is a tangent vector to
the image curve 'T .OM/ at the point 'T ´

0

. To prove (3.12) it suffices, therefore,
to prove that ⇣.T / lies in the first quadrant. (More formally, we note that the left-
hand side in (3.12) is simply ⇠.t/, so that the goal is to show that ⇠.t/ > 0). The
idea of proof is to compare ⇣.t/ with 't´

0

.
To that end, let ⌧ 2 .0; T ç be the time of entrance into S :

x.t/ 2 Œ˛; ⇡ � 1ç for t 2 Œ0; ⌧ç

and
x.t/ 2 Œ⇡ � 1; ⇡ C 1ç for t 2 Œ⌧; T ç:

We will first show that ⌘

⇠

> 0 at t D ⌧ .

7 In fact, the last condition in (3.11) is crucial for uniqueness: without this condition, I
T

would be
a union of several intervals, giving rise to solutions that make extra “turns” around the focus. These
solutions, however, violate the condition x.t/ � ˛ in (3.2), so that their existence does not contradict
our claim of uniqueness.
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The key idea is to observe that the vector ´ D .x; Px/ D 't´
0

rotates clockwise
faster than the vector ⇣ D .⇠; ⌘/; this will be shown shortly. Since the slope of ´ is
positive at t D ⌧ , the same will then be true of ⇣.⌧/, which will prove (3.12). We
claim the following:

(3.14)
d

dt

✓
y

x

◆
<

d

dt

✓
⌘

⇠

◆
< 0 whenever

y

x
D ⌘

⇠
:

To prove (3.14) we carry out the differentiations and use the equality of the slopes
to reduce the inequality to an equivalent one:

Pyx � y Px
x2

<
P⌘⇠ � ⌘ P⇠

⇠2

< 0;

or, using (3.10) and (3.13),

�x sin x � y2

x2

<
� cos x ⇠2 � ⌘2

⇠2

< 0:

Using the equality of slopes, this reduces to
sin x

x
> cos x;

which holds true due to x 2 .0; ⇡/. We conclude: since y.⌧/=x.⌧/ � 0, then
⌘.⌧/=⇠.⌧/ > 0.

We now show that the slope of ⇣ remains positive for the remaining time Œ⌧; T ç.
During this time we have jx � ⇡j  1 and thus cos x < 0. Hence the linearized
vector field (3.13) crosses into the first quadrant, and since ⇣.⌧/ lies in that quad-
rant, it is still there at t D T . This completes the proof of (3.12), and thus of
the existence and uniqueness of the desired solution with the boundary conditions
(3.1). The treatment of the remaining cases involves no new ideas.

It remains to prove the monotonicity of E.T / for jˇ�˛j > 2⇡ , and the estimates
(3.7) and (3.8) on E 0.T /.

Since Px > 0 for all t 2 Œ0; T ç, due to the assumption ˇ � ˛ > 2⇡ ,8 we have

T D 1p
2

Z
ˇ

˛

dx
p

E.T / � 1 � cos x
:

Differentiation by T shows at once that E 0.T / < 0:

1 D � 1

2
p

2

Z
ˇ

˛

dx

.E.T / � 1 � cos x/3=2

E 0.T /:

Now if c
3

> 0 is fixed and ˇ �˛ > c
3

T , then there exists a constant k independent
of T such that Px D

p
2.E.T / � 1 � cos x/ � k > 0 for all t . The last integral is

then bounded from above by a constant multiple of ˇ � ˛, and hence by a constant
multiple of T , since ˇ � ˛  c

4

T . This amounts to the estimate (3.8).

8 The case ˇ � ˛ < �2⇡ is treated identically.
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It remains to prove (3.7). The above integral formula for E.T / does not apply
if and only if Px changes sign, which may happen in the case jˇ � ˛j  2⇡ under
consideration, as in Figure 3.1(A). In this case, a separate argument is needed. One
can use the modification of the above formula, but it is more illuminating to use
the hyperbolicity property rather than the integrable nature of the equation. Let
x.t; y

0

/ D ⇡
x

.'t .˛; y
0

//. We showed that for any T there exists y
0

D y
0

.T /
such that

x.T; y
0

.T // D ˇ:

Differentiating by T , we obtain

@x.T; y
0

/

@T„ ƒ‚ …
Px.T /

C @x.T; y
0

/

@y
0„ ƒ‚ …

⇠.T /

y0
0

.T / D 0;

where y
0

D y
0

.T /, so that

(3.15) y0
0

.T / D � Px.T /

⇠.T /
;

where ⇠ satisfies (3.13). For ˇ � ˛ < 2⇡ the solution spends time O.T / in a finite
neighborhood of the saddle; from our analysis of (3.13) it follows that ⇠.T / �
c0ec

00
T for some positive constants c0; c00 independent of T . From (3.15) we con-

clude that jy0
0

.T /j < c000e�c

00
T . Differentiating E.T / D y

0

.T /2=2 � 1 � cos ˛,
we conclude that (3.7) holds.

The proof of Lemma 3.1 is complete. ⇤

4 The Hyperbolic Lemma
By Corollary 3.3 of Lemma 3.1, given any points q; q0 2 R4 with their coordi-

nates x
i

and x0
i

lying in Œ�1; 1ç mod 2⇡ or in Œ⇡ � 1; ⇡ C 1ç mod 2⇡ , there exists
a solution X.t I q; q0; T / of (3.9) with " D 0 that travels from q to q0 in time T . By
the same corollary, there exists a unique T .q; q0/ for which the total energy of the
solution X.t I q; q0; T .q; q0// is 1:

4X

iD1

E
i

D 1 where E
i

D
PX2

i

2
C V.X

i

/:(4.1)

We thus associate with the energy one solution (of (1.1) with " D 0) connecting q
and q0, the energy vector

E.q; q0/ defD .E
1

; E
2

; E
3

; E
4

/I

according to Lemma 3.1, this vector is uniquely determined by the endpoints q; q0.
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LEMMA 4.1. If two pairs of points q
1

; q0
1

and q
2

; q0
2

in R4 satisfy conditions9

(4.2) jq0
k

� q
k

j � "�2r�4; k D 1; 2;

and

(4.3) je
2

� e
1

j < "2rC4 where e
k

D
q0

k

� q
k

jq0
k

� q
k

j ; k D 1; 2;

then the energy vector E of the connecting solution of (1.1) with ˇ D 0 satisfies

(4.4) jE.q
2

; q0
2

/ � E.q
1

; q0
1

/j < "2rC4:

Moreover, there exists a constant C such that for all q; q0 with jq0 �qj � 1 we have

(4.5)
ˇ̌
ˇ̌ d

dq
PX.0I q; q0; T .q; q0//

ˇ̌
ˇ̌< C I

here the notation d

dq

is used to emphasize that the q-dependence enters PX in two
places—one through the boundary condition, and the other through T .q; q0/.

PROOF. Statement (4.4) follows from the proof of Lemma 3.1; the main diffi-
culty is in proving (4.5).10 To prove (4.5), we expand its left-hand side:

(4.6)
d

dq
PX.0I q; q0; T .q; q0// D @

q

PX.0I q; q0; T /C@
T

PX.0I q; q0; T /�@
q

T .q; q0/;

where T D T .q; q0/ is to be substituted after the differentiations on the right-hand
side. We will now estimate each of the summands on the right-hand side separately.

ESTIMATE OF @
q

PX.0I q; q0; T /. The proof of Lemma 3.1 shows that each compo-
nent X

i

of X depends on the boundary conditions x
i

; x0
i

and T only,11 but not on
x

j

; x0
j

with j 6D i . This implies that the matrix @
q

PX.0I q; q0; T / is diagonal, with
the diagonal entries @ PX

i

.x
i

; x0
i

; T /=@x
i

. But this derivative is simply the slope of
the image of the line x D x0

i

under the map '�T , where 't is the phase flow of the
pendulum equation. The argument of Lemma 3.1 shows that, because of the shear
in the phase velocity field, this slope is always bounded once T exceeds a fixed
constant. It remains to prove the upper bound for the last summand in (4.6).

ESTIMATE OF @
T

PX.0I q; q0; T / � @
q

T .q; q0/. We will first show that this term is
expressible via the first factor alone, thus reducing the number of estimates needed.
Note that @

T

PX �@
q

T is a square matrix with entries @
T

PX
i

.0I x
i

; x0
i

; T /�@
xj

T .q; q0/.
To prove the lemma, it remains to show that each entry is bounded:

(4.7) j@
T

PX
i

.0I x
i

; x0
i

; T / � @
xj

T .q; q0/j < C for jq0 � qj � 1:

9 Since we chose to concentrate on n D 4 pendula, we formulate the lemma for this case, although
the proof carries over verbatim for an arbitrary n.

10 This estimate can be strengthened: C can be replaced by C=jq0 � qj, but we do not need this
in our proof.

11 We recall the notation q D .x
1

; x
2

; x
3

; x
4

/.
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SOME IDENTITIES. Let

(4.8) K
i

D
✓Z

x

0
i

xi

dx

.2.E
i

� V.x///3=2

◆�1

and K D
4X

sD1

K
s

:

We will show that

(4.9) @
xi

T .q; q0/ D K�1@
T

PX
i

.0I x
i

; x0
i

; T /;

thus reducing (4.7) to an equivalent inequality

(4.10) jK�1 @
T

PX
i

.0I x
i

; x0
i

; T / @
T

PX
j

.0I x
j

; x0
j

; T /j < C:

Heuristically, one expects that j@
T

PX
i

.0I x
i

; x0
i

; T /j  cT �1. Indeed, the y-co-
ordinate of the intersection in the .X; PX/-plane of the line fX D x

i

g and the curve
'�T fX D x0

i

g is PX
i

.0I x
i

; x0
i

; T /, where 't is the phase flow of the pendulum
equation. Now because of the shear in the phase flow, one expects the line `

T

D
'�T fX D x0

i

g to form an angle at most cT �1 with the trajectories. Thus the point
`

T

\ fX D x
i

g is expected to move with speed  cT �1, suggesting that indeed
j@

T

PX
i

.0I x
i

; x0
i

; T /j  cT �1.
We carry out a precise proof by an alternative, purely analytical method (which

ultimately reduces to the same estimates). Namely, we will use the following iden-
tity:

(4.11) @
T

PX
i

.0I x
i

; x0
i

; T / D � K
ip

2.E
i

� V.x
i

//
;

which, together with (4.9), is proven in a separate section below.

ESTIMATE OF K�1. Since †4

iD1

E
i

D 1, we have 1

4

 E
i

 1 for some i , and
thus for some C we have

K�1

i

D
Z

x

0
i

xi

dx

.2.E
i

� V.x///3=2

 C

Z
x

0
i

xi

dx
p

2.E
i

� V.x//
D C T;

so that

(4.12) K�1 D
⇣ 4X

j D1

K
j

⌘�1

< K�1

i

 C T:

ESTIMATE OF @
T

PX
i

.0I x
i

; x0
i

; T /. We consider two separate cases: (1) jx0
i

� x
i

j <
2⇡ and (2) jx0

i

� x
i

j � 2⇡ .

Case 1. In this case, an estimate of (4.11) is easier done geometrically, as fol-
lows: Consider the graph y D U

T

.x/ of the time T -preimage of the line x D x0
in the phase plane of the pendulum. Let y D U.x/ be the graph of the sta-
ble manifold of the saddle .⇡; 0/; by a standard hyperbolic argument, the flow
in the reverse direction takes the line exponentially close to the stable manifold:
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jU
T

.x/ � U.x/j < e�cT for jxj  ⇡ , and, moreover, the motion of the line be-
comes exponentially slow:

(4.13)
ˇ̌
ˇ̌ d

dT
U

T

.x/

ˇ̌
ˇ̌ < e�cT for jxj  ⇡ I

here T is greater than a fixed positive constant because of the assumption jq0�qj �
1. But U

T

.x
i

/ D PX
i

.0I q; q0; T / and (4.13) gives

(4.14) j@
T

PX
i

.0I q; q0; T /j  e�cT for jx0
i

� x
i

j < 2⇡:

This completes the proof of (4.10), and thus of the lemma in case Case 1.

Case 2. In this case we have x0
i

� x
i

D 2⇡n
i

C r , 0  r < 2⇡ , with integer
n 6D 0. We will use (4.11) to prove (4.10), to which end we need an upper bound
on K

i

. Recall that V.x/ D �.cos x C 1/ D �2 cos2

x

2

. From (4.8) we have

K�1

i

� n
i

Z
⇡

�⇡

dx

.E
i

� V.x//3=2

D 2n
i

Z
⇡

0

dx

.E
i

C 2 cos2 x=2/3=2

� n
i

cE
i

;

(4.15)

where c is a constant. To see this, note that cos2 x D sin2.⇡

2

� x/  .⇡

2

� x/2 and
use the table integral

Z
dx

.a C x2/2=3

D x

a2

p
x2 C a2

:

Now the number of revolutions n
i

is the integer part of T=T
Ei

, where T .E
i

/ is
the time of one full revolution:

T
Ei

D
Z

⇡

�⇡

dx
p

2.E
i

C V.x//
D 2

Z
⇡

0

dx
p

2.E
i

C 2 cos2 x=2/
 c.1 � ln E

i

/

for some constant c. To see this, note that for small E
i

the main contribution in
this integral comes from a neighborhood of x D ⇡ . Here we can estimate the
denominator to be larger than

p
2.E

i

C .⇡ � x/2=4/. Then one uses the table
integral Z

dxp
x2 C a2

D ln.x C
p

x2 C a2/:

Substituting this into (4.15) we get

K
i

 c
E

i

n
i

 c
1

E
i

T
Ei

T
 c

2

E
i

.1 � ln E
i

/

T
:

Finally, we substitute this estimate into (4.11):

j@
T

PX
i

.0I x
i

; x0
i

; T /j  c
2

E
i

.1 � ln E
i

/

T
p

E
i

 c
3

T
:

Together with (4.12) this proves (4.10). The proof of the lemma is thus complete.
⇤
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PROOF OF IDENTITIES (4.9) AND (4.11). Let us denote the energy of the solu-
tion X.t I x

i

; x0
i

; T / by E.x
i

; x0
i

; T /. Then E is a smooth function of .x
i

; x0
i

; T /,
and we can express

PX.0I x
i

; x0
i

; T / D
q

2.E.x
i

; x0
i

; T / � V.x
i

//:

Differentiating with respect to T we get

(4.16)
@

@T
PX.0I x

i

; x0
i

; T / D @E.x
i

; x0
i

; T /=@T
q

2.E.x
i

; x0
i

; T / � V.x
i

//
:

To estimate the numerator, we differentiate the identity

(4.17) T D
Z

x

0
i

xi

dx
q

2.E.x
i

; x0
i

; T / � V.x//

with respect to T and solve for @E=@T , obtaining

(4.18)
@E.x

i

; x0
i

; T /

@T
D �

✓Z
x

0
i

xi

dx

.2.E.x
i

; x0
i

; T / � V.x///3=2

◆�1

D �K
i

I

see (4.8). Substituting this into (4.16) proves (4.11). To prove the remaining iden-
tity (4.9), we recall that T .q; q0/ is the time that gives energy one to the solution

(4.19)
4X

kD1

E.x
k

; x0
k

; T .q; q0// D 1:

Differentiating this with respect to x
i

gives

(4.20)
@E.x

i

; x0
i

; T /

@x
i

ˇ̌
ˇ̌
T DT .q;q

0
/

C @T .q; q0/
@x

i

4X

kD1

@E.x
k

; x0
k

; T /

@T
D 0:

The above sum, according to (4.18), can be replaced by � P
4

kD1

K
k

defD �K;
solving for @T=@x

i

gives

(4.21)
@T .q; q0/

@x
i

D K�1

@E.x
i

; x0
i

; T /

@x
i

ˇ̌
ˇ̌
T DT .q;q

0
/

:

Here and below, we write E
i

instead of E.x
i

; x0
i

; T /. To estimate the last deriva-
tive, we differentiate the identity (4.17) by x

i

:

0 D � 1
p

2.E
i

� V.x
i

//
�

Z
x

0
i

xi

dx

.2.E
i

� V.x///3=2

„ ƒ‚ …
K

�1
i

@E.x
i

; x0
i

; T /

@x
i

or
@E.x

i

; x0
i

; T /

@x
i

D � K
ip

2.E
i

� V.x
i

//
:
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p
0

q
0

v
L

v
R

L
0 p

1

R4

S
0

†
0

FIGURE 5.1. Towards proof of Lemma 5.1.

Substituting this into (4.21) results in the proof of (4.9):
@T .q; q0/

@x
i

D �K�1

K
ip

2.E
i

� V.x
i

//

(4.11)D K�1@
T

PX
i

.0I x
i

; x0
i

; T /:

The proof of the two identities is now complete. ⇤

5 The Connection Lemma
The following lemma is a building block in the construction of shadowing geo-

desics. Since we chose to concentrate on n D 4 pendula, we formulate the lemma
for this case, although the proof carries over verbatim for an arbitrary n.

LEMMA 5.1 (Existence of Geodesic Segments). There exists "
0

> 0 such that
for all 0 < " < "

0

the following holds: Consider any two sections, which we
denote by †

0

and †
1

, in the itinerary (2.1) such that the vector 2⇡ En connecting
the centers of †

0

; †
1

satisfies jEnj > 1

"

. This vector is of the form 2⇡.m; n; 1; 0/ or
2⇡.1

2

; s; 1; 1

2

/ (with integers m, n, and s). Then for all p
0

2 †
0

, p
1

2 †
1

there
exists a geodesic �.p

0

; p
1

/ in the Jacobi metric (2.6) connecting p
0

with p
1

and
depending smoothly on p

0

and p
1

.

PROOF.
Step 1. First we define a section S

0

, which is shown in Figure 5.1, as follows:
By Lemma 3.3 there exists a (unique) solution X

0

.t/ of the unperturbed system
(3.9) having energy one and connecting c

0

D Center.†
0

/ with c
1

D Center.†
1

/.
Let e

0

D PX
0

.0/=j PX
0

.0/j be the “initial direction” of X
0

.t/. Section S
0

is defined
to be a codimension-1 disk in R4 of radius "1=3 centered at the point c

0

C e
0

"1=3

and perpendicular to e
0

:

S
0

D fq W .q � .c
0

C "
1
3 e

0

// � e
0

D 0; jq � .c
0

C "
1
3 e

0

/j < "
1
3 g;

where � denotes the usual dot product. Analogously, we define the section S
1

near c
1

.
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Step 2. For any pair of points q
0

2 S
0

, q
1

2 S
1

we consider three geodesic
segments (in the metric (2.6)): �.p

0

; q
0

/, �.q
0

; q
1

/, and �.q
1

; p
1

/, along with the
velocities of the associated solutions of (1.1) v

L

, v
R

, w
L

, and w
R

, as shown in
Figure 5.1. It should be noted that v

L

, v
R

, w
L

, and w
R

all depend on q
0

; q
1

.
The lemma will be proved once we show that there exists a pair q

0

; q
1

, smoothly
depending on p

0

; p
1

, for which

(5.1) v
L

D v
R

and w
L

D w
R

:

To that end we first list the properties of each of the three geodesic segments.
Step 3. Since the radius of †

0

is "1=2, we have jq
0

� p
0

j D O."1=3/, which
is small compared to the injectivity radius of the metric (2.6). By the standard
arguments from differential geometry (using the smoothness of solutions of the
ODEs and the implicit function theorem), we conclude that

(5.2) v
L

D v
0

q
0

� p
0

jq
0

� p
0

j C r
0L

.p
0

; q
0

; "/; jr
0L

j
C

1 D O."
1
3 /I

here v
0

> 0 is the speed of the solution at c
0

. A similar estimate holds for the right
end:

(5.3) w
R

D v
1

p
1

� q
1

jp
1

� q
1

j C r
1R

.q
1

; p
1

; "/; jr
1R

j
C

1 D O."
1
3 /:

Step 4. The intermediate segment �.q
0

; q
1

/ avoids the lenses, and thus Lemma
4.1 applies; in particular, the C 1-bound (4.5) holds, implying that

v
R

D PX
0

.t
0

/ C r
0R

.q
0

; q
1

; "/; jr
0R

j
C

1 < C "
1
3 ;(5.4)

and

w
L

D PX
0

.t
1

/ C r
1L

.q
1

; p
1

; "/; jr
1L

j
C

1 < C "
1
3 :(5.5)

Here t
i

(i D 0; 1) is the time when X
0

.t/ intersects the section S
i

.
Step 5. We will prove the existence of the pair q

0

; q
1

satisfying (5.1) by ap-
plying the implicit function theorem. To that end, let yv denote the orthogonal
projection of v 2 R4 onto R3 � S

i

(we shall use projections on either S
0

or S
1

,
the choice being clear from the context). We will also treat q

i

2 R4 as an element
of S

i

⇢ R3, denoting it by yq
i

2 R3.
To prove (5.1) it suffices to prove that the projected equations

(5.6) yv
L

D yv
R

and yw
L

D yw
R

hold. Indeed, if equalities (5.6) hold, then the remaining components, orthogonal
to S

i

, must match as well by the conservation of energy. Substituting estimates
(5.2), (5.3), (5.4), and (5.5) into (5.1) and projecting onto S

0

(respectively, S
1

for
the second equality) we obtain the new matching conditions, which are equivalent
to (5.1):

(5.7) v
0

yq
0

� p
0

jq
0

� p
0

j D yr
0

.p
0

; yq
0

; yq
1

; "/; v
1

yp
1

� q
1

jp
1

� q
1

j D yr
1

.yq
0

; yq
1

; p
1

; "/:
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Here the remainders are C 1:
jyr

i

j
C

1 < C "
1
3 :

In arriving at (5.7), we made use of the fact that yPX
0

.t
0

/ D O."1=3/, as follows
from the choice of S

0

to be orthogonal to PX
0

.0/ (so that yPX
0

.0/ D 0) and the fact
that t

0

D O."1=3/.
Step 6. To apply the implicit function theorem, instead of the variables yq

i

we
introduce

Q
0

D v
0

yq
0

� p
0

jq
0

� p
0

j ; Q
1

D v
1

yp
0

� q
1

jp
1

� q
1

j ;

Q
i

2 R3. Expressing

yq
0

D yp
0

C 1

v
0

jq
0

� p
0

jQ
0

; yq
1

D yp
1

C 1

v
1

jp
1

� q
1

jQ
1

;

and substituting into (5.6), we obtain

Q
0

D R
0

.p
0

; Q
0

; Q
1

; "/; Q
1

D R
1

.Q
0

; Q
1

; p
1

; "/:

Introducing Q D .Q
0

; Q
1

/ 2 R6 and R D .R
0

; R
1

/ we rewrite the matching
condition (5.1) in the final form

Q D R.Q; p
0

; p
1

; "/;

where jRj
C

1 < C "1=3. It is important to observe that R is defined (at least) on
the entire ball jQj  1

2

, independently of ". Thus for all sufficiently small " there
exists a unique solution Q depending differentiably on the parameters p

0

; p
1

.
This completes the proof of Lemma 5.1. ⇤
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