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We study a Cr nearly integrable Hamiltonian system Hε(q, p) = 1
2
〈p, p〉 + εH1(q, p)

defined on T3 × R3. Let Σ = {(q, p) : Hε(q, p) = 1
2
} and µΣ1

be the restriction
of Lebesgue measure on T3 × R3 to Σ. We prove there is a perturbation H1(q, p) ∈
Cr , ‖H1‖Cr ≤ 1 and an orbit (q(t), p(t)) : R → T3 × R3 of the Hamiltonian equation
{q̇ = ∂pHε, ṗ = −∂qHε} such that µΣ(

S

t∈R
(q(t), p(t))) ≥ 1

2
.

1. Introduction

The famous question called the ergodic hypothesis suggested that for a typical
Hamiltonian on a typical energy surface all, but a set of zero measure of initial
conditions, have trajectories covering densely this energy surface itself. However,
KAM theory showed that for nearly integrable systems there is a set of initial
conditions of positive measure of quasi periodic trajectories. This disproved the
ergodic hypothesis and forced to reconsider the problem.

A quasi ergodic hypothesis asks if a typical Hamiltonian on a typical energy
surface has a dense orbit. A definite answer whether this statement is true or not
is still far out of reach of modern dynamics. There was an attempt to prove this
statement by E. Fermi,5 which failed (see6 for more detailed account).

To simplify the quasi ergodic hypothesis, M. Herman7 formulated the following
question: Can one find an example of a C∞ Hamiltonian H in a Cr small neighbor-
hood of H0(p) = 〈p,p〉

2 such that on the unit energy surface {H−1(1
2 )} there is a dense

trajectory? Many people believe that such examples do exist and are C∞–generic
(see,4,31).

In this paper we make a step in the direction of answering Herman’s question.
For any r we construct a Hamiltonian, which is Cr close to H0(p) = 〈p,p〉

2 and has
a trajectory dense in a set of Lebesgue measure 1/2 on the energy surface. Here
is the exact statement. Let q ∈ T3, p ∈ R3 and H0(p) = 〈p,p〉

2 be the unperturbed
Hamiltonian, where 〈p, p〉 is the dot product in R3.

Theorem 1.1. For any r ≥ 2 there is a Cr small perturbation Hε(q, p) = H0(p) +
εH1(q, p, ε) and an orbit (q(t), p(t)) : R → T3 × R3 of

q̇ = ∂pHε, ṗ = −∂qHε (1)
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such that µΣ(
⋃

t∈R
(q(t), p(t))) ≥ 1

2 .a

Let Σ = {(q, p) : Hε(q, p) = 1
2}, we fix a subset F ⊂ Σ with µΣ(F) ≥ 1

2 . It
suffices to prove that for any δ > 0 there exists Tδ such that the δ neighborhood of⋃

t∈[0,Tδ ](q(t), p(t)) contains F .
We will construct Hε in two steps. In step one we build H′

ε = H0 + εH′
1 so that

has a variety of good local normal forms and nice invariant sets. Then Hε = H′
ε+εH′′

1

is designed to have diffusing orbits shadowing these invariant sets.

2. Choice of F

We will describe the choice of the positive measure set F , as well as an approximate
path of diffusion. We begin with a informal discussion of the diffusion path and
what kind of perturbation we need. Usually diffusing orbits travel along resonant
segments. To be able to saturate a set of positive measure one has to be able to
move along infinitely many resonant segments. If size of a perturbation is fixed,
the analysis of motions near resonances of larger and larger orders in the original
coordinate system becomes increasingly complicated as explained in section 4 . To
be able to control dynamics along some arbitrary high order resonant we define a
convenient symplectic coordinate system Φ : (θ, I) → (q, p) on a neighborhood of
{‖p‖ = 1, p1 ≥ 1

2}, such that H′
ε ◦ Φ(θ, I) = H0(I) + H1(θ, I), where ‖H1(θ, I)‖Cr

gets the smaller as the order of a corresponding resonance increases.
We consider the following set of Diophantine numbers:

Dγ = {ω = (ω1,ω2,ω3); ‖ω‖ = 1, |k · ω| ≥ γ|ω||k|−2−τ , ∀k ∈ Z
3;

|k1ω1 + k2ω2| ≥ γδ(1+δ)|(k1, k2)|−1−δ, ∀(k1, k2) ∈ Z
2;

|k1ω1 + k3ω3| ≥ γδ(1+δ)|(k1, k3)|−1−δ, ∀(k1, k3) ∈ Z
2},

(2)

where δ > 0 is a small number. The set Dγ has positive measure on the surface
{‖ω‖ = 1}. Let B = {‖ω‖ = 1;ω1 ≥ 1

2} and we will choose a subset D∞
γ ⊂ Dγ ∩ B

with positive measure. The family of Diophantine number corresponds to a family
of KAM tori which has measure on the energy surface {Hε = 1

2}. Denote it F .
The construction will be done in infinitely many stages, each stage we will define

a set of paths in the set B, such that if the Hamiltonian H satisfies a list of prop-
erties, there exists an orbit such that ϕ̇ shadows the chosen path. The path gets
denser in each stage and in the limit ϕ̇ accumulates to a set of positive measure.

For any integer vector k ∈ Z3 \ {0}, we can relate to it a resonant plane {ω ∈
R3 : k · ω = 0}. If the plane intersects B, the intersection is a curve on the unit
sphere, which we will refer to as Γk.

At stage 1 the construction consists of the following components:

aIn8 there is a construction of Hε and an orbit of Hε whose closure has maximal Hausdorff
dimension
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(1) Let γ1 = γ4. We will choose a discrete set DN 1 ⊂ Dγ ∩ B, and disjoint neigh-
borhoods U(ωi) of ωi ∈ DN 1, such that each U(ωi) contains a ball of radius γ1,
and is contained in a ball of radius 3γ1, both centered at ωi.

(2) Let D1
γ = Dγ ∩

⋃
ωi∈DN1 U(ωi), we have the sets U(ωi) is chosen in such that a

way that the measure of Dγ \ D1
γ is small.

(3) There exists a collection F1 of integer vectors, such that for any ωi ∈ DN 1 there
exists some k ∈ F1 such that Γk enters γ1/2 neighborhood of ωi. Furthermore,
the union F1 :=

⋃
k∈F1 Γk is connected.

In stage 2, let γ2 = γ1+α
1 for some α > 0. For each neighborhood U(ωi) of stage

1, we similarly define the following:

(1) A discrete set DN 2
i ⊂ D1

γ ∩ U(ωi), and for each ωij ∈ DN 2
i , we have neighbor-

hoods U(ωij), whose radius is between γ2 and 3γ2.
(2) D2

i = D1
γ ∩

⋃
ωij∈DN2

i
U(ωij). The measure of D1

γ ∩ U(ωi) \ D2
i is small.

(3) For the neighborhood U(ωi), there exists k′ ∈ F1, such that the resonant line Γk′

enters the neighborhood. We further define a collection F2
i of integer vectors,

such that for any ωij ∈ DN 2
i , there exists some k ∈ F2

i such that Γk enters
γ2/2 neighborhood of ωij . Write F2

i =
⋃

k∈F1
i
Γk, we assume that F2

i ∪ Γk′ is

connected. Denote also Fn = ∪n
i=1F i.

We do this for every neighborhood U(ωi) and let DN 2 =
⋃
DN 1

i , D2
γ =

⋃
D2

i ,
F2 =

⋃
F2

i , F2 =
⋃
F2

i . We then continue this construction inductively: for each
multi-index (i1 · · · in), assume that we have the neighborhood U(ωi1···in), we can
define DN n+1

i1···in
, Dn+1

i1···in
and F

n+1
i1···in

in a similar fashion. Union over all multi-indices
of same order is denoted by DN n+1, Dn+1

γ and Fn+1. Then D∞
γ is the intersection

of Dn
γ and has almost full measure in Dγ ∩B. Finally, using ideas from,15,16 we have

the following

Theorem 2.1. The Hamiltonian H(θ, I) = H0(I) + H1(θ, I) has the following
property: Consider the resonant lines Fn of stage n, there exists an open cover Uj

of Fn, such that for each Uj, there exists a neighborhood Uj × T3 ⊃ (∂IH)−1(Uj),
on which H is in one of the two normal forms:

(1) Single and ghostb resonances: There exist local coordinates Ψ : (θ̂, Î) → (θ, I)
such that

H ◦Ψ(θ̂, Î) = Ĥ0(Î) + ak cos(πk · θ̂) + R, (3)

where k ∈ Fn and ‖R‖ / |ak|.
(2) Double resonance:

H(θ, I)|Uj × T
3 = H0(I) + ak cos(πk · θ) + ak′ cos(πk′ · θ) + R, (4)

where k ∈ Fn, k′ is in Fn−1, Fn or Fn+1, ‖R‖C3 / max{|ak|, |ak′ |}.

bthere are certain k′′ *∈ Fn−1 ∪ Fn ∪ Fn+1 such that Γk intersects Γk′′ inside Uj . We call such an
intersection a ghost double resonance
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3. A proof of existence of a δ−dense orbit using a variational

problem with constrains

In this section we reformulate a problem of existence of an orbit following a Cantor
set of lines as a variational problem with constrains (following Mather). Recall
that under the convenient coordinate system we have the Hamiltonian H(θ, I) =
H0(I) + H1(θ, I).

Due to the convexity with respect to I, the Hamiltonian system (1) is equivalent
to the dynamics of the E-L equation with Lagrangian L as L(θ, θ̇) = l0(θ̇)+L1(θ, θ̇),
which is positive definite with respect to θ̇ for any θ ∈ T3.

Select {ωk
n}

Nn

k=1 be a set of points in Fn such that |ωk
n − ωk+1

n | is sufficiently
small.

Denote by Aω a special invariant set of orbits (to be defined later) with rotation
vector ω. In our case velocity of these orbits will stay close to ω. Our goal is to
construct a transition chain from these sets {Aωk

n}Nn

k=1 and an orbit shadowing

these sets. Such an orbit will stay close to the union of the stable set W s(Aωk
n)

and the unstable set W s(Aωk
n) for all time. We find these orbits by constructing a

variational problem with constrains. This construction is fairly involved and relies
heavily on Mather’s ideas. We describe its construction into several steps.

Let θ ∈ T3, denote θ̂ ∈ R3 a lift to R3. Let η be a closed one form, denote η̂ a
lift of it to a periodic close one form on R3. Fix a lift. One can proof existence of
the following set of objects:

collections of numbers αi, periodic functions B±
i and closed one forms ηi on

the 3-torus T3, errors (negligibly small numbers) δi, smooth manifolds Si with a
boundary diffeomorphic to a 2–disk inside the 3-torus T3 such that the following
variational problem with constrains has an interior solution: Given T ∗ 0 1 and
T 0 NT ∗, consider

M(θ0, . . . , θN ) = min
θi∈Si, Ti+1−Ti≥T∗

T0=0,TN =T

N∑
i=0

hi(θi, θi+1, Ti+1 − Ti), (5)

where

hi(θi, θi+1, T ) = min

∫ T

0
(L − ηc)(γ(s), γ̇(s)) dt, (6)

and the minimum is taken over all absolutely continuous curves γ : [0, T ] → T3

such that γ(0) = θ̂i = θi(mod1), and γ(T ) = θ̂i+1 = θi+1(mod1). In addition, we
need some constraints on the homology class of the minimizing orbit, which can be
achieved by going to a proper covering of T3. We clarify this later in the section. It
turns out that for each i = 0, . . . , N we have

|hi(θi, θi+1,∆Ti) − αi(Ti+1 − Ti) + B−
i (θi) + B+

i (θi+1)| ≤ δi.

Thus, to have an interior minimum it suffices to have a sufficiently deep interior
minimum of B−

i (θi) + B+
i (θi+1). It also turns out that ηi and ηi+1 can be chosen

so that they coincide near the disk Si+1.
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Having this as the motivating goal, we shall define related objects from the
Mather theory(13,14). Here is the correspondence:

B±
i (θ) are one-sided barrier functions, defined by Mather.9 These functions form

a 3-parameter family, naturally parametrized by c ∈ H1(T3, R). It turns out that
cohomology class of the one form ηi is given by [ηi]H1(T3,R) = ci. To determine
position of Si ⊂ T3 we need to determine a location of certain invariant sets, usually
called Aubry sets Aci also naturally parametrized by c.

Let I = [a, b] be an interval of time and c ∈ H1(T3, R) = R3. A curve γ ∈
C1(I, T3) is called c−minimizer if

Ac(γ) :=

∫ b

a

(L − ηc)(γ(s), γ̇(s))dt = min
ξ(a)=γ(a),ξ(b)=γ(b)

ξ∈C1(I,T3)

∫ b

a

(L − ηc)(γ(s), γ̇(s))dt,

where ηc is a closed 1−form on T3 such that [ηc] = c. Let ML be the set of
Borel probability measures on T3 × R3, invariant for the E-L flow ϕt

l . For any
ν ∈ ML, the action Ac(ν) is defined as Ac(ν) =

∫
(L−ηc)dν. A probability measure

µ is called c−minimal invariant measure if Ac(µ) = minν∈ML Ac(ν). Denote M(c)
the supports of c−minimal invariant measures and call it Mather set. A function
α(c) := −Ac(µ) : H1(T3, R) → R is called α−function, where µ is a c−minimal
invariant measure. Define

hc(θ, θ
′; t) = min

γ∈C1([0,t],T3)
γ(0)=θ,γ(t)=θ′

∫ t

0
(L − ηc + α(c))(γ(s), γ̇(s))ds,

Fc(θ, θ
′) = inf

t≥0
hc(θ, θ

′; t), h∞
c (θ, θ′) = lim

t≥0 t→+∞
hc(θ, θ

′; t).

Let γ : R → T3 be a C1 curve

• It is called c-semi-static if Ac(γ|[a,b]) + α(c)(b − a) = Fc(γ(a), γ(b), b −
a) for any a < b.

• It is called c−static if it is c-semi-static and Ac(γ|[a,b]) + α(c)(b − a) =
−Fc(γ(b), γ(a), b − a).

Denote the set of c–semi-static and c–static orbits as N (c) and A(c) respectively.
Usually N (c) is called a Mañé set and A(c) is called an Aubry set.

At the n-th stage of the induction we construct a collection {ck
n}Nn

k=1 such that
orbits in the corresponding Aubry sets Ack

n
have velocity θ̇ close to ωk

n. Then we
find orbits following the stable set W s(Ack

n
) and the unstable set Wu(Ack

n
) as local

minimizer of Euler-Lagrange equation. There are two drastically different cases in
our problem: single resonance and double resonance.

3.1. Single resonance case

In Theorem 2.1 near a single resonance k ∈ Z3 \ {0} we obtain a normal form
(3). In order to construct a variational problem whose solutions diffuses along this
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resonance. Associate to k ∈ Z3 \ {0} an integer linear transformation A ∈ SL3(Z)
such that A induces a new coordinate system on T3, denote T3 = T2

f × Ts 2 θ =
(θ1, θ2, θs) so that θs is parallel to k. After an associated linear transformation we
can consider the following Lagrangian system

L(θ, θ̇) = l0(θ̇) + a cos2
πθs
2

+ δL1(θ, θ̇), (7)

where l0(θ̇) is close to 〈θ̇, θ̇〉/2, θ ∈ T3 and δ is sufficiently small compare to a. The
form of the Lagrangian implies that there is a co-dimensional 2 normally hyperbolic
cylinder Λk = {θ̇s = θs = 0}. Rotation vectors associated to the single resonant
are of form ω = (ω1,ω2, 0) in this new coordinates system. Restricted to an energy
surface the normally hyperbolic is a 3 dimensional invariant manifold which is dif-
feomorphic to TT× T. View the second T component as time, the dynamics of the
Poincare return map on the invariant cylinder is an exact area-preserving twist map.
For exact area-preserving twist maps structure of Mather and Aubry sets is well
understood (see e.g.10,14) For example, minimal invariant measures have rotation
number ω1/ω2. If ω1/ω2 is irrational, then there is unique c′ = (c1, c2) corresponds
to (ω1,ω2). After we add the hyperbolic part into the dynamics, then there is an
open interval Iω ⊂ R such that A(c) = N (c) for any c = {(c1, c2, c3) : c3 ∈ Iω}.
Moreover, A(c) is on the invariant cylinder. If ω1/ω2 is rational, the situation is a
little bit complicated, because there is an open set of c = (c1, c2, c3)’s with the same
A(c). It is still true that A(c) belongs to the invariant cylinder Λk.

According to Bernard’s theorem2 Aubry and Mather sets are invariant under
symplectic transformation. Once we establish a structure of Aubry-Mather sets in
the normal form (3) we can construct a variational problem in the original coordi-
nate system.

To describe the variational problem for the original coordinate system, we con-
sider the covering space Nk = T2

f × R of T2
f × Ts by unfolding the θs direction.

Denote by πk : Nk → T2
f × Ts the natural projection.

Now we construct a variational problem to diffuse along Γk. Consider a suf-
ficiently dense set of c’s whose corresponding Aubry sets are on Λk, denoted
{cj}0≤j≤N . We will construct relative open sets Sj ⊂ {θss = j + 1

2}, a collec-
tion of closed one forms ηi on T3 such that [ηi]H1(T3,R) = ci and ηi coincides with
ηi+1 near πk(Si). We would like to show that for this choice of Sj and ηj there is
T ∗ 0 1 and T 0 NT the variational problem as in the notations (5) attains an
interior minimum. This can be done, if we add an additional perturbation to L(θ, θ̇).
This additional perturbation will give some necessary information on the minimizer
of variational problem which is related to the regularity of barrier function with
respect to c and its proof heavily depends on.11,12

3.2. Double resonance

In Theorem 2.1 near double resonances we obtain a normal form (4). We would like
to diffuse first along Γk, come to the intersection with Γk′ , and then diffuse along
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Γk′ . In order to construct a variational problem, whose solutions diffuse along these
resonances we distinguish three regimes: diffusing along Γk, switching from Γk to
Γk′ , and diffusing along Γk′ .

Associate to k, k′ ∈ Z3 \ {0} an integer linear transformation A ∈ SL3(Z) such
that A induces a new coordinate system on T3, denote T3

A = Tf × Ts × Tss 2
θ = (θf , θs, θss) so that θs is parallel to k′ and θss is parallel to k. After such a
transformation we have the following Lagrangian system

L(θ, θ̇) = l0(θ̇) + a1 cos2(
π

2
θs) + a2 cos2(

π

2
θss) + δL1(θ, θ̇), (8)

a1, a2 > 0 and sufficiently small and δ = min{a100
1 , a100

2 }. Denote by L0(θ, θ̇) =
L − δL1.

(θ̇s, θ̇ss)(t)

(θ̇s, θ̇ss)(0)

θ̇s

θ̇ss

−ε

0

Fig. 1. Velocity diffusing across a double resonance

Let K = a2τ
1 . Suppose

√
a1 l is (K, 1)-Diophantine, i.e. |p − q

√
a1 l | > K/|q|2

for any q, p ∈ Z, q 4= 0. Consider c such that the corresponding Aubry set Ac for
L0 has rotation vector ω = (1,

√
a1 l, 0) satisfying the above Diophantine condition.

Consider a sufficiently dense set of c’s with this property, denoted Rk = {cj}0≥j≥N .
To diffuse along Γk, similar to the single resonance case, we can define the

manifold Nk, Sj and ηj , and our goal is to prove existence of the interior minimum
for for the sum as in (5).

One can show that for each ci’s above the corresponding Aci for the La-
grangian system on T3 can be lifted to a countable collection {Aj

cj
}j∈Z so that

projection on to ss−component belongs to [j − 1
2 , j + 1

2 ]. Define B+
j,c(θ) =

infθ′∈Aj
c
h∞

c (θ, θ′) and B−
j,c(θ) = infθ′∈Aj

c
h∞

c (θ, θ′). Notice that θ and θ′ belong to
the lift Nk. We show that for T > T∗ there is αj such that we have

hj(θ, θ
′; T ) = αjT + B+

j,cj
(θ) + Bj+1,cj (θ

′) + δj,

where δj is sufficiently small. For c satisfying this condition we prove that

Theorem 3.1.

max
θss=1

B±
c (θ) − min

θss=1
B±

c (θ) = O(δaε−b).
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We add a localized potential perturbation close to (θf , θs, θss) = (1
2 , 1

2 , 1
2 ) such

that the Barrier function B±
j,c has an isolated local minimum. The diffusion for Nk′

is similar and we can glue the diffusion orbits together by using a common covering
of Nk and Nk′ .

4. Competition between order of resonance and distance to a

KAM torus

In this section we show why we need a careful selection of symplectic coordinates
near resonant segments. To illustrate the problem consider dynamics of Hε(q, p) =
H0(p)+εH1(q, p) near a double resonance given by two resonant segments Γk ∩Γk′ .
If k′′ := k × k′ is sufficiently large, then typically orbits of the unperturbed system
at the double resonance are periodic of length ∼ |k′′|. If |k′′| · ε is not small, then
standard averaging does not apply.

On the other side, consider a Diophantine number ω ∈ Dγ . Then for small ε
the Hamiltonian Hε has a KAM torus Tω. In a certain neighborhood of Tω one can
choose a Birkhoff normal form of some order m: Hε ◦Φω(θ, I) = Hω(I) + Hω

1 (θ, I).
Notice that in a ρ-neighborhood of Tω with small ρ perturbation ‖Hω

1 ‖Cr is bounded
by ρm. Notice now that if a double resonance Γk ∩Γk′ belongs to this neighborhood
and |k′′|3 × ρm is small then averaging does apply and there is a hope to control
dynamics. Selection of resonant segments in (2) is so that on one side resonant
segments stay close enough to Diophantine numbers and on the other they fill a set
of almost maximal measure.

Acknowledgement The first author thanks John Mather for numerous useful
conversations and many invaluable advises. The first author was partially supported
by NSF grants, DMS-0701271.

References

1. V. Arnold, A stability problem and ergodic properties of classical dynamical systems.
(Russian) 1968, Proc of ICM, (Moscow, 1966) 387–392;

2. P. Bernard, Symplectic aspects of Mather theory, Duke Math. J. 136 (2007), no. 3,
401–420.

3. G. D. Birkhoff, Collected Math Papers, vol. 2, p. 462–465.
4. P. & T. Ehrenfest, The Conceptual Foundations of the Stat Approach in Mechanics.

Cornell Univ Press, 1959;
5. E. Fermi, Dimonstrazione che in generale un sistema mecanico quasi ergodico,

Nuovo Cimento, 25,267–269, 1923;
6. G. Gallavotti, Fermi and Ergodic problem, preprint 2001;
7. M. Herman, Some open problems in dynamics, Proc of ICM, Vol. II (Berlin, 1998),

797–808;
8. V. Kaloshin, M. Levi, M. Saprykina, An example of a nearly integrable Hamiltonian

system with a trajectory dense in a set of maximal Hausdorff dimension, preprint,
2009, 26pp.

9. J. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier (Greno-
ble) 43 (1993), no. 5, 1349–1386.



November 18, 2009 15:34 WSPC - Proceedings Trim Size: 9.75in x 6.5in announcement

9

10. J. Mather, Order structure on action minimizing orbits, preprint, 2009, 90pp.
11. J. Mather, Modulus of continuity for Peierls’s barrier, Periodic solutions of Hamil-

tonian systems and related topics(II Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci 209 Reidel, Dordrecht (1987) pp.177-202.

12. J. Mather, Differentiability of the minimal average action as a function of the ro-

tation number, Bol.Soc.Bras.Mat 21(1990)pp.59-70.
13. J. Mather, Action minimizing invariant measures for positive definite Lagrangian

systems, Math.Z 207(1991)pp.169-207.
14. J. Mather & G. Forni, Action minimizing orbits in Hamiltonian systems, Transition

to chaos in classical and quantum mechnics, Lecture Notes in Math. 1589 (1994),
Springer, Berlin pp.92-186.
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