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Abstract

In the present paper we consider a generic perturbation of a nearly integrable
system of n and a half degrees of freedom

Hε(θ, p, t) = H0(p) + εH1(θ, p, t), θ ∈ Tn, p ∈ Bn, t ∈ T = R/Z, (1)

with a strictly convex H0. For n = 2 we show that at a strong double resonance
there exist 3-dimensional normally hyperbolic invariant cylinders going across.
This is somewhat unexpected, because at a strong double resonance dynamics
can be split into one dimensional fast motion and two dimensional slow motion.
Slow motions are described by a mechanical system on a two-torus, which are
generically chaotic.

The construction of invariant cylinders involves finitely smooth normal forms,
analysis of local transition maps near singular points by means of Shilnikov’s
boundary value problem, and Conley–McGehee’s isolating block.
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1 Introduction

Consider the near integrable system from the abstract with Bn ⊂ Rn — the unit
ball around 0, Tn — being the n-torus, and T — the unit circle, respectively. Notice
that for ε = 0 action component p stays constant. For completely integrable systems
coordinates of this form exist and called action-angle. The famous question, called
Arnold diffusion, is the following

Conjecture [2, 3] For any two points p′, p′′ ∈ B2 on the connected level hyper-
surface of H0 in the action space there exist orbits connecting an arbitrary small
neighborhood of the torus p = p′ with an arbitrary small neighborhood of the torus
p = p′′, provided that ε 6= 0 is sufficiently small and that H1 is generic.

A proof of this conjecture for n = 2 is announced by Mather [18].
The classical way to approach this problem is to consider a finite collection of

resonances Γ1, Γ2, . . . ,ΓN+1 ⊂ B2 so that Γ1 intersects a neighborhood of p′, ΓN+1

intersects a neighborhood of p′′, and Γj+1 intersects Γj for j = 1, . . . , N and diffuse
along them. This naive idea faces difficulties at various levels.

Fix an integer relations ~k1 · ∂pH0 + k0 = 0 with ~k = (~k1, k0) ∈ (Z2 \ 0)× Z and ·
being the inner product define one-dimensional resonances. Under the condition that
the Hessian of H0 is non-degenerate, each resonance defines a smooth curve embedded
into the action space Γ~k = {p ∈ B2 : ~k1 · ∂pH0 + k0 = 0}3. Such a curve is called a

resonance. If one intersects resonances corresponding to two linearly independent ~k
and ~k′ we get isolated points. In the case when both ~k and ~k′ are relatively small,
i.e. |~k|, |~k′| < K for some K > 1. We call such an intersection a K-strong double
resonance or simply a strong double resonance (if using K is redundant); see Figure 2.
So far only examples of strong double resonances have been studied (see [7, 13, 14, 15]).

1.1 Diffusion along single resonances by means of crumpled
normally hyperbolic cylinders

Fix one resonance Γ. In [6] we prove that depending on a generic H1 (but not on ε!)
there are a finite number of punctures of Γ. In other words, there is K = K(H1) > 0

3such a curve might be empty
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Figure 1: Crumpled Cylinders

such that way from ε1/6-neighborhood of any K-strong double resonance there are
diffusing orbits along Γ. Moreover, these diffusing orbits are constructed in two steps:

• Construct invariant normally hyperbolic invariant cylinders (NHIC) “connect-
ing” a ε1/6-neighborhood of oneK-strong double resonance with a ε1/6-neighbor-
hood of the next one on Γ.

• Construct orbits diffusing along these cylinders, which is done using Mather
variational method [5, 9, 10].

It turns out that these cylinders are crumpled in the sense that its regularity blows
up as ε −→ 0. See Figure 1. Existence of crumpled NHICs is the new phenomenon,
discovered in [6]. In spite of this irregularity, one can use them for diffusion.

The main topic of the present paper is how to diffuse across a strong double
resonance. We propose a heuristic description and prove existence of underlying
normally hyperbolic invariant manifolds (NHIMs) for it.

1.2 Strong double resonances and slow mechanical systems

We fix two independent resonant lines Γ, Γ′ and a strong double resonance p0 ∈ Γ ∩
Γ′ ⊂ B2. Then the standard averaging along the one-dimensional fast direction gives
rise to a slow mechanical system Hs = K(Is)−U(θs) of two degrees of freedom, where
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Figure 2: Resonant net

θs ∈ Ts and Is is a rescaled conjugate variable. Namely, in O(
√
ε)-neighborhood of

p0, after a canonical coordinate change and rescaling the action variables, the flow of
the Hamiltonian Hε is conjugate to that of

c0/
√
ε+
√
ε(K(Is)− U(θs)) +O(ε).

Precise definitions of c0, θ
s, Is are in Section 6.2. The slow kinetic energy K and the

slow potential energy U are defined in (10–11), respectively.
From now on we analyze the slow mechanical system Hs = K(Is)−U(θs). Denote

by
SE = {(θs, Is) : Hs = E}

an energy surface. Without loss of generality assume that the minimum minθs U(θs) =
0, it is unique, and occurs at θs = 0. According to the Mapertuis principle for a
positive energy E > 0 orbits of Hs restricted to SE are reparametrized geodesics of
the Jacobi metric

ρE(θ) = 2(E + U(θ)) K. (2)

Notice that the resonance Γ ⊂ B2 (resp. Γ′ ⊂ B2) induces an integer homology
class h (resp. h′) on Ts, i.e. h (resp. h′) ∈ H1(Ts,Z). Denote by γEh (resp. γEh′) a
minimal geodesic of ρE in the homology class h (resp. h′). For example, if Hε(θ, p, t) =
1

2
p2 + εH1(θ, p, t), Γ = {p : ∂p2H0 = p2 = 0} (resp. Γ′ = {p : ∂p1H0 = p1 = 0}).
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Then on the slow torus Ts 3 (p1, p2) we have h = (1, 0) (resp. h′ = (0, 1)). On the
unit energy surface S1 the strong resonance occurs at p0 = (0, 0, 1) ∈ Γ ∩ Γ′.

1.3 Two types of NHIMs at a strong double resonance

Notice that diffusing along Γ for the Hamiltonian H corresponds to changing slow
energy E of Hs along the homology class h. In particular, we need to get across zero
energy. However, S0 = {(θs, Is) : Hs = 0} is the critical energy surface, namely, the
Jacobi metric is degenerate at the origin.

There are at least two special 4 integer homology classes h1, h2 ∈ H1(Ts,Z) such
that minimal geodesics of g0 are non-self-intersecting. For i = 1, 2, we denote by γ−hiE

the curve obtained by the time reversal Is −→ −Is and t −→ −t. Then

the union of γ±hiE over 0 ≤ E ≤ E0 is contained in a

C1 smooth two-dimensional NHIM Mhi .
(3)

This imply that the original Hamiltonian systemHε also has two three-dimensional
NHIM C1-close toMh1 andMh2 . By the reason to be clear later we call such cylinders
simple loop cylinders.

Moreover, for small E0 > 0 and all energies E0 < E < E−10 except finitely many
{Ej}Nj=1 ⊂ [E0, E

−1
0 ], Ej < Ej+1, j = 1, . . . , N − 1 we show that for each 1 ≤ j ≤ N

a proper union Mh
j of γhE over Ej < E < Ej+1 form C1 smooth NHIC. This imply

that the original Hamiltonian system Hε also has a NHIC C1-close to Mh. See the
Appendix for more details.

1.3.1 Non-simple figure 8 loops

If minimal geodesics of ρ0 are self-intersecting the situation was described by Mather
[21]. Generically γEh accumulates onto the union of two simple loops, possibly with
multiplicities. More precisely, given h ∈ H1(Ts,Z) generically there are homology
classes h1, h2 ∈ H1(Ts,Z) and integers n1, n2 ∈ Z+ such that the corresponding
minimal geodesics γh10 and γh20 are simple and h = n1h1 + n2h2. Denote n = n1 + n2.

4in order to find these two homology classes one needs to find minimal geodesics γh0 in each integer
homology class and minimize its length over all h ∈ H1(Ts,Z). Then pick two Jacobi-shortest ones.
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For E > 0, γhE has no self intersection. As a consequence, there is a unique way to
represent γ0h as a concatenation of γh10 and γh20 . More precisely, we have the following
lemma.

Lemma 1.1. There exists a sequence σ = (σ1, · · · , σn) ∈ {1, 2}n, unique up to cyclical
translation, such that

γh0 = γ
hσ1
0 ∗ · · · ∗ γhσn0 .

Lemma 1.1 will be proved in Appendix B. In this case for small energies this cylin-
der resembles the figure 8 and we call it two leaf cylinder and call the corresponding
γh0 non-simple.

We would like to point out that Jean-Pierre Marco [16, 17] is studying similar
ideas.

1.3.2 Kissing cylinders

If the loop γh0 is non-simple, then the union M8
h =

⋃
0≤E≤E0

γhE is not a manifold
at γ0h! However, Mh1 ,Mh2 , and M8

h all have a tangency at the origin (see Remark
1.1). Moreover, expanding and contracting directions at the origin of all the three
normally hyperbolic invariant manifolds are parallel to strong unstable and strong sta-
ble directions. Simple dimension consideration makes us believe that for the original
Hamiltonian Hε has NHIMsMε

h1
,Mε

h2
,M8

h with transversal intersections of invariant
manifolds.

1.4 An heuristic diffusion through strong double resonances

We hope the following mechanism of diffusion through double resonance takes place.
As we mentioned above in [6] we show that away from ε1/6-neighborhood of strong
double resonances there are crumpled NHIC and orbits diffusing along them. It turns
out that in the region where distance to the center of a strong double resonance is
between [εa, ε1/6] for some 1/6 < a < 1/2 we can slightly modify argument from [6]
and show that the system Hε(θ, p, t) has a NHIC. Moreover, this cylinder is smoothly
attached to the crumpled NHICs build in [6].
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Figure 3: Kissing Cylinders

1.4.1 First intermediate zone

Fix C = C(H0, H1) � 1, but independent of ε. In the region where distance to
the center of a strong double resonance is between [C

√
ε, εa] we define a slow-fast

mechanical system and show that it approximates dynamics of our system Hε(θ, p, t)
well enough to establish existence of a NHIC. Moreover, this cylinder is smoothly
attached to the one from the region [εa, ε1/6].

1.4.2 Second intermediate zone

Let C = E−10 . Consider the region where distance to the center of a strong double
resonance is between [E0

√
ε, E−10

√
ε]. In this regime dynamics is well approximable by

a slow mechanical system. Thus, we need to study a mechanical system of two degrees
of freedom on an interval of energy surfaces and its family of minimal geodesics {γhE}E
in a given homology class h ∈ H1(Ts,Z). The left boundary E0

√
ε means that we
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Figure 4: Heuristic description

need to study a mechanical system for slow energies E > E0.
Simple analysis, carried out in Appendix A, shows that and all energies E0 <

E < E−10 except finitely many {Ej}Nj=1 ⊂ [E0, E
−1
0 ], Ej < Ej+1, j = 1, . . . , N − 1 a

proper union Mh
j of γhE over Ej < E < Ej+1 form C1 smooth NHIC. Application of

Conley–McGehee’s isolating block implies that the original Hamiltonian system Hε

also has a NHIC C1-close toMh
j . Moreover, one can construct diffusing orbits along

{Mh
j }N−1j=1 . This part is very much analogous to the one done in [6].
Now we arrive to slow energy E0

√
ε near a strong double resonance and need to

consider several cases. Heuristic description of our mechanism is on Figure 4. First,
we cross a strong double resonance along Γ.

1.4.3 Crossing through along a simple loop Γ

If γh0 is simple or does not pass through the origin at all, then an orbit enters along
a NHIC Mh

1 and can diffuse along NHIM Mh across the center of a strong double
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resonance p0 to “the other side”.

1.4.4 Crossing through along a non-simple Γ

If γh0 is non-simple, i.e the union of two simple loops, then an orbit enters along
a NHIC Mh

1 . As it diffuses toward the center of a strong double resonance p0 the
cylinder M8

h becomes a two leaf cylinder and its boundary approaches the figure 8.
For a small enough energy δ > 0 of the mechanical system Hs the two leaf cylinder

M8
h is almost tangent to a certain simple loop NHICMhi . Moreover, near the origin

both of normally hyperbolic invariant manifolds have almost parallel most contract
and expanding directions. As a result there should be orbits jumping from the two
leaf cylinder M8

h to a simple loop one Mhi from (3). Then such orbits can cross the
double resonance alongMhi . After that it jumps back on the opposite branch ofM8

h

and diffuse away along Γ as before.

1.4.5 Turning a corner from Γ to Γ′

Now we cross a strong double resonance by entering along Γ and exiting along Γ′.
As before an orbit enters along a NHIC Mh

1 constructed in the second intermediate
zone. As it diffused toward the center of a strong double resonance p0 the cylinder
M8

h becomes a two leaf cylinder.
As in the previous case if we diffuse along M8

h to a small enough energy.

• If h′ has a simple loop γh
′

0 , then we jump to Mh′ directly from M8
h and cross

the strong double resonance along Mh′ .

• If h′ is non-simple, then M8
h′ also becomes a double leaf cylinder. In this case

we first jump onto a simple loop cylinderMhi , cross the double resonance, and
only afterward jump onto M8

h′ .

To summarize we expect that crumpled NHICs from [6] can be continued from a
ε1/6-neighborhood of p0 to C

√
ε-neighborhood and can be used for diffusion. Thus, we

distinguish two essentially different regions: (C
√
ε-)near a strong double resonance

and (C
√
ε-)away from it. The main focus of this paper is the first case.
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1.5 Formulation of the main results (small energy)

The case of finite non-small energies is treated in Appendix A. We will formulate our
main results in terms of the slow mechanical system

Hs(Is, θs) = K(Is)− U(θs). (4)

We make the following assumptions:

A1. The potential U has a unique non-degenerate minimum at 0 and U(0) = 0.

A2. The linearization of the Hamiltonian flow at (0, 0) has distinct eigenvalues
−λ2 < −λ1 < 0 < λ1 < λ2

In a neighborhood of (0, 0), there exists a local coordinate system (u1, u2, s1, s2) =
(u, s) such that the ui−axes correspond to the eigendirections of λi and the si− axes
correspond to the eigendirections of −λi for i = 1, 2. Let γ+ and γ− be two homoclinic
orbits of (0, 0) under the Hamiltonian flow of Hs. This setting applies to the case of a
simple loop cylinder, with γ+ = γh,+0 and γ− being the time reversal of γh,+0 , denoted
γh,−0 , (which is the image of γh,+0 under the involution Is 7→ −Is and t 7→ −t). We
call γ+ (resp. γ−) simple loop.

We assume the following of the homoclinics γ+ and γ−.

A3. The homoclinics γ+ and γ− are not tangent to u2−axis or s2−axis at (0, 0). This,
in particular, imply that the curves are tangent to the u1 and s1 directions.
We assume that γ+ approaches (0, 0) along s1 > 0 in the forward time, and
approaches (0, 0) along u1 > 0 in the backward time; γ− approaches (0, 0) along
s1 < 0 in the forward time, and approaches (0, 0) along u1 < 0 in the backward
time.

For the case of the double leaf cylinder, we consider two homoclinics γ1 and γ2 that
are in the same direction instead of being in the opposite direction. More precisely,
the following is assumed.

A3′. The homoclinics γ1 and γ2 are not tangent to u2−axis or s2−axis at (0, 0). Both
γ1 and γ2 approaches (0, 0) along s1 > 0 in the forward time, and approaches
(0, 0) along u1 > 0 in the backward time.
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Given r > 0 and 0 < δ < r, let Br be the r−neighborhood of (0, 0) and let

Σs
± = {s1 = ±δ} ∩Br, Σu

± = {u1 = ±δ} ∩Br

be four local sections contained in Br. We have four local maps

Φ++
loc : U++(⊂ Σs

+) −→ Σu
+, Φ−+loc : U−+(⊂ Σs

−) −→ Σu
+,

Φ+−
loc : U+−(⊂ Σs

+) −→ Σu
−, Φ−−loc : U−−(⊂ Σs

−) −→ Σu
−.

The local maps are defined in the following way. Let (u, s) be in the domain of one
of the local maps. If the orbit of (u, s) escapes Br before reaching the destination
section, then the map is considered undefined there. Otherwise, the local map maps
(u, s) to the first intersection of the orbit with the destination section. The local map
is not defined on the whole section and its domain will be made precise later.

For the case of simple loop cylinder, i.e. assume A3, we can define two global maps
corresponding to the homoclinics γ+ and γ−. By assumption A3, for a sufficiently
small δ, the homoclinic γ+ intersects the sections Σu,s

+ and γ− intersects Σu,s
− . Let

p+ and q+ (resp. p− and q−) be the intersection of γ+ (resp. γ−) with Σu
+ and Σs

+

(resp. Σu
− and Σs

−) . Smooth dependence on initial conditions implies that for the
neighborhoods V ± 3 q± there are a well defined Poincaré return maps

Φ+
glob : V + −→ Σs

+, Φ−glob : V − −→ Σs
−.

When A3′ is assumed, for i = 1, 2, γi intersect Σu
+ at qi and intersect Σs

+ at pi. The
global maps are denoted

Φ1
glob : V 1 −→ Σs

+, Φ2
glob : V 1 −→ Σs

+.

The composition of local and global maps for the periodic orbits shadowing γ+ is
illustrated in Figure 5.

We will assume that the global maps are “in general position”. We will only phrase
our assumptions A4a and A4b for the homoclinic γ+ and γ−. The assumptions for
γ1 and γ2 are identical, only requiring different notations and will be called A4a′

and A4b′. Let W s and W u denote the local stable and unstable manifolds of (0, 0).
Note that W u ∩ Σu

± is one-dimensional and contains q±. Let T uu(q±) be the tangent
direction to this one dimensional curve at q±. Similarly, we define T ss(p±) to be the
tangent direction to W s ∩ Σs

± at p±.

11



s2

s1

u1

u2

γ

Σs
+

Σu
+

Φ++
loc

Φ+
glob

Figure 5: Global and local maps for γ+

A4a. Image of strong stable and unstable directions under DΦ±glob(q±) is transverse to
strong stable and unstable directions at p± on the energy surface S0 = {Hs = 0}.
For the restriction to S0 we have

DΦ+
glob(q+)|TS0T

uu(q+) t T ss(p+), DΦ−glob(q−)|TS0T
uu(q−) t T ss(p−).

A4b. Under the global map, the image of the plane {s2 = u1 = 0} intersects {s1 =
u2 = 0} at a one dimensional manifold, and the intersection transversal to the
strong stable and unstable direction. More precisely, let

L(p±) = DΦ±glob(q±){s2 = u1 = 0} ∩ {s1 = u2 = 0},

we have that dimL(p±) = 1, L(p±) 6= T ss(p±) and D(Φ±glob)−1L(p±) 6= T uu(q±).

A4′. Suppose conditions A4a and A4b hold for both γ1 and γ2.

We show that under our assumptions, for small energy, there exists “shadowing”
periodic orbits close to the homoclinics. These orbits were studied by Shil’nikov [23],
Shil’nikov-Turaev [25], and Bolotin-Rabinowitz [8].
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Theorem 1.1. 1. In the simple loop case, we assume that the assumptions A1 -
A4 hold for γ+ and γ−. Then there exists E0 > 0 such that for each 0 < E ≤
E0, there exists a periodic orbit γ+E corresponding to a fixed point of the map
Φ+

glob ◦ Φ++
loc restricted to the energy surface SE.

For each −E0 ≤ E < 0, there exists a periodic orbit γcE corresponding to a fixed
point of the map Φ−glob ◦ Φ+−

loc ◦ Φ+
glob ◦ Φ−+loc restricted to the energy surface SE.

For each 0 < E ≤ E0, there exists a periodic orbit γ−E corresponding to a fixed
point of the map Φ−glob ◦ Φ−−loc restricted to the energy surface SE.

2. In the non-simple case, assume that the assumptions A1, A2, A3 ′ and A4′ hold
for γ1 and γ2. Then there exists E0 > 0 such that for 0 < E ≤ E0, the following
hold. For any σ = (σ1, · · · , σn), there is a periodic orbit γσE corresponding to a
fixed point of the map

1∏
i=n

(
Φσi

glob ◦ Φ++
loc

)
restricted to the energy surface SE. (Product stands for composition of maps).

The the periodic orbits γ+E are depicted in Figure 6.

Theorem 1.2. In the case of simple loop, assume that A1-A4 are satisfied with
γ+ = γh,+0 and γ− = γh,−0 . For this choice of γ+ and γ−, let γ+E , γcE and γ−E be the
periodic orbits obtained from part 1 of Theorem 1.1 .

ME0
h =

⋃
0<E≤E0

γ+E ∪ γ ∪
⋃

−E0≤E<0

γcE ∪ γ− ∪
⋃

0<E≤E0

γ−E

is a C1 smooth normally hyperbolic invariant manifold with boundaries γ+E0
, γcE0

and
γ−E0

.
In the case of non-simple loop, assume that A1, A2, A3 ′ and A4′ are satisfied

with γ1 = γh10 and γ2 = γh20 . Let γσE denote the periodic orbits obtained from applying
part 2 of Theorem 1.1 to the sequence σ determined by Lemma 1.1. We have that for
any e > 0, the set

Me,E0

h = ∪e≤E≤E0γ
σ
E

is a C1 smooth normally hyperbolic invariant manifold.
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Figure 6: Periodic orbits shadowing γ+

Remark 1.1. Due to hyperbolicity the cylinder ME0
h is Cα for any 0 < α < λ2/λ1.

If h1 and h2 corresponds to simple loops, then the corresponding invariant man-
ifolds ME0

h1
and ME0

h2
have a tangency along a two dimensional plane at the origin.

One can say that we have “kissing manifolds”, see Figure 3.

Remark 1.2. In the simple loop case, we expect the shadowing orbits γ±E , for 0 ≤
E ≤ E0 to coincide with the minimal geodesics γ±hE . In the non-simple case, γσE should
coincide with γhE for 0 ≤ E ≤ E0 (by Lemma 1.1, σ is uniquely determined by h).
The proof is not included in this paper, as we only deal with the geometrical part of
the diffusion.

Corollary 1.2. The system Hε has a normally hyperbolic manifold ME0
h,ε (resp.

Me,E0

h,ε ) which is weakly invariant, i.e. the Hamiltonian vector field of Hε is tan-

gent to ME0
h,ε (resp. Me,E0

h,ε ). Moreover, the intersection of ME0
h,ε (resp. Me,E0

h,ε ) with
the regions {−E0 ≤ Hs ≤ E0} × T (resp. {e ≤ Hs ≤ E0} × T) is a C1-graph over
ME0

h (resp. Me,E0

h ).
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Proof of Corollary 1.2 is included in section 6.3.

2 Normal form near the hyperbolic fixed point

In a neighborhood of the origin, there exists a a symplectic linear change of coordi-
nates under which the system has the normal form

H(u1, u2, s1, s2) = λ1s1u1 + λ2s2u2 +O3(s, u).

Here s = (s1, s2), u = (u1, u2), and On(s, u) stands for a function bounded by
C|(s, u)|n. According to our assumptions, λ1 < λ2.

The main result of this section is the following normal form

Theorem 2.1. There exists k ∈ N depending only on λ2/λ1 such that if H is Ck+1,
the following hold. There exists neighborhood U of the origin and a C2 change of
coordinates Φ on U such that Nk = H ◦Φ has the form is a polynomial of degree k of
the form 

ṡ1
ṡ2
u̇1
u̇2

 =


−∂u1Nk

−∂u2Nk

∂s1Nk

∂s2Nk

 =


−λ1s1 + F1(s, u)
−λ2s2 + F2(s, u)
λu1 +G1(s, u)
λu2 +G2(s, u)

 (5)

where
F1 = s1O1(s, u) + s2O1(s, u), F2 = s21O(1) + s2O1(s, u),

G1 = u1O1(s, u) + u2O1(s, u), G2 = u21O(1) + u2O1(s, u).

The proof consists of two steps: first, we do some preliminary normal form and
then apply a theorem of Belitskii-Samovol (See, for example [12]).

Since (0, 0) is a hyperbolic fixed point, for sufficiently small r > 0, there exists
stable manifold W s = {(u = U(s), |s| ≤ r} and unstable manifold W u = {s =
S(u), |u| ≤ r} containing the origin. All points onW s converges to (0, 0) exponentially
in forward time, while all points on W u converges to (0, 0) exponentially in backward
time. These manifolds are Lagrangian; as a consequence, the change of coordinates
s′ = s − S(u), u′ = u − U(s′) = u − U(s − S(u)) is symplectic. Under the new
coordinates, we have that W s = {u′ = 0} and W u = {s′ = 0}. We abuse notation
and keep using (s, u) to denote the new coordinate system.
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Under the new coordinate system, the Hamiltonian has the form

H(s, u) = λ1s1u1 + λ2s2u2 +H1(s, u),

where H(s, u) = O3(s, u) and H1(s, u)|s=0 = H1(s, u)|u=0 = 0. Let us denote H0 =
λ1s1u1 + λ2s2u2. We now perform a further step of normalization.

We say an tuple (α, β) ∈ N2 × N2 is resonant if
∑2

i=1 λi(αi − βi) = 0. Note that

an (α, β) with αi = βi for i = 1, 2 is always resonant. A monomial uα1
1 u

α2
2 s

β1
1 s

β2
2 is

resonant if (α, β) is resonant. Otherwise, we call it nonresonant. It is well known
that a Hamiltonian can always be transformed, via a formal power series, to an
Hamiltonian with only resonant terms.

Proposition 2.2. If H is at least Ck+1, the there exists a C∞−symplectic change of
coordinates (s, u) = Φ(s′, u′) defined on a neighborhood of (0, 0) such that

H ◦ Φ′ = Nk(s
′, u′) +H2(s

′, u′),

where Nk is a polynomial of degree k consisting only of resonant terms and H2 =
Ok+1(s

′, u′).

Proof. Let Sk denote the set of all nonresonant indices (α, β) ∈ N2×N2 with |α|+|β| =
k. We define the change of coordinates by the generating function

Gk(s, u
′) = s1u

′
1 + s2u

′
2 +

∑
3≤i≤k+1

∑
(α,β)∈Si

gα,βs
α(u′)β.

The symplectic change of coordinates is defined by s′ = ∂u′Gk and u = ∂sGk. Assume
that

H ◦ Φ =
∑
i≥2

∑
|α|+|β|

hα,β(s′)α(u′)β.

We have that if (α, β) is nonresonant, there exists a unique gα,β such that hα,β = 0
(see [24], section 30, for example). By choosing gα,β appropriately, we obtain the
desired normal form.

We abuse notations by replacing (s′, u′) with (s, u). Using our assumption that
0 < λ1 < λ2, we have that all (α, β) with α 6= β, α1 = 1 and α2 = 0 are nonresonant,
and similarly, all (α, β) with α 6= β, β1 = 1 and β2 = 0 are nonresonant. Furthermore,
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by performing the straightening of stable/unstable manifolds again if necessary, we
may assume that Nk|s=0 = Nk|u=0 = 0. As a consequence, the normal form Nk must
take the following form:

Corollary 2.1. The normal form Nk satisfies

Nk = λ1s1u1 + λ2s2u2 + s2O1(u)O1(s, u) + s21O1(u) + u2O1(s)O1(s, u) + u21O1(s)

In particular, we have Nk = λ1s1u1 + λ2s2u2 +O3(s, u).

Under the normal form the equations of motion is{
ṡ = −∂uNk +Ok(s, u)

u̇ = ∂sNk +Ok(s, u)
. (6)

As the linearization of these equations is hyperbolic, for sufficiently large r it is
possible to kill the small remainder with a finitely smooth change of coordinates.

Theorem 2.1 is a direct consequence of the following theorem:

Theorem 2.3 (Belitskii-Samovol). (See [12], Chapter 6, Theorem 1.6) For any l ∈ N
and λ ∈ Cn with Reλi 6= 0, there exists an integer k = k(l, λ) such that the following
hold. Suppose two germs of vector fields at a hyperbolic fixed point with the spectrum
of linearization equal to λ, and their jets of order k coincide at the fixed point. Then
the two vector fields are C l−conjugate.

3 Behavior of a family of orbits passing near 0 and

Shil’nikov boundary value problem

The main result of this section is the following

Theorem 3.1. Let (sT , uT ) be a family of orbits satisfying sT (0) −→ sin as T −→∞
with sT1 = δ and uT (T ) −→ uout as T −→ ∞ with sT1 = δ with |sT |, |uT | ≤ 2δ, where
δ is small enough. Then there exists T0, C > 0 and α > 1 such that for each T > T0
and all 0 ≤ t ≤ T we have

|sT2 (t)| ≤ C|sT1 (t)|α, |uT2 (t)| ≤ C|uT1 (t)|α.
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In particular, the curve {(sT1 (T ), sT2 (T ))}T≥T0Σu
+ = {sT1 (0) = δ} is tangent to the s1–

axis at T =∞ and {(uT1 (0), uT2 (0))} ⊂ Σs
+ = {sT1 (0) = δ} is tangent to the u1–axis at

T =∞.

We will use the local normal form to study the local maps. Our main technical tool
to prove the above Theorem is the following boundary value problem due to Shil’nikov
(see [23]):

Proposition 3.2. There exists ε0 > 0 such that for any 0 < ε ≤ ε0, there exist
δ > 0 such that the following hold. For any sin = (sin1 , s

in
2 ), uout = (uout1 , uout2 ) with

|s|, |u| ≤ δ and any large T > 0, there exists a unique solution (sT , uT ) : [0, T ] −→ Bδ

of the system (5) with the property sT (0) = sin and uT (T ) = uout. Let

(s(1), u(1))(t) = (e−λ1tsin1 , e
−λ2tsin2 , e

−λ1(T−t)uout1 , e−λ2(T−t)uout2 ), (7)

we have

|sT1 (t)− s(1)1 (t)| ≤ δe−(λ1−ε)t, |sT2 (t)− s(1)2 (t)| ≤ δe−(λ
′
2−2ε)t,

|uT1 (t)− u(1)1 (t)| ≤ δe−(λ1−ε)(T−t), |uT2 (t)− u(1)2 (t)| ≤ δe−(λ
′
2−2ε)(T−t),

where λ′2 = min{λ2, 2λ1}. Furthermore, for s1 and u1, we have an additional lower
bound estimate:

|sT1 (t)| ≥ 1

2
|sin1 | e−(λ1+ε)t, |uT1 (t)| ≥ 1

2
|uout1 | e−(λ1+ε)(T−t). (8)

Note that for (8) to hold, the choice of δ needs to depend on a lower bound for |sin1 |
and |uout1 |.
Proof. Let Γ denote the set of all smooth curves (s, u) : [0, T ] −→ B(0, δ) such that
the s(0) = (sin1 , s

in
2 ) and u(T ) = (uout1 , uout2 ). We define a map F : Γ −→ Γ by

F(s, u) = (s̃, ũ), where

s̃1 = e−λ1tsin1 +

∫ t

0

eλ1(ξ−t)F1(s(ξ), u(ξ))dξ,

s̃2 = e−λ2tsin2 +

∫ t

0

eλ2(ξ−t)F2(s(ξ), u(ξ))dξ,

ũ1 = e−λ1(T−t)uout1 −
∫ T

t

e−λ1(ξ−t)G1(s(ξ), u(ξ))dξ,

ũ2 = e−λ2(T−t)uout2 −
∫ T

t

e−λ2(ξ−t)G2(s(ξ), u(ξ))dξ.
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It is proved in [23] that for sufficiently small δ, the map F is a contraction in the
uniform norm. Let s(1), u(1) be as defined in (7) and (s(k+1), u(k+1)) = F(s(k), u(k)),
then (s(k), u(k)) converges to the solution of the boundary value problem. Using the
normal form (5), we will provide precise estimates on the sequence (s(k), u(k)). The
upper bound estimates are consequences of the following:

|s(k+1)
1 (t)− s(k)1 (t)| ≤ 2−kδe−(λ1−ε)t, |s(k+1)

2 (t)− s(k)2 (t)| ≤ 2−kδe−(λ
′
2−ε)t,

|u(k+1)
1 (t)− u(k)1 (t)| ≤ 2−kδe−(λ1−ε)(T−t), |u(k+1)

2 (t)− u(k)2 (t)| ≤ 2−kδe−(λ
′
2−ε)(T−t).

We have

|s(2)1 (t)− s(1)1 (t)| =
∫ t

0

eλ1(ξ−t)
∣∣∣s(1)1 (ξ)O1(s, u) + s

(1)
2 (ξ)O1(s, u)

∣∣∣ dξ
≤
∫ T

0

eλ1(ξ−t)(O(δ2)e−λ1ξ +O(δ2)e−λ2ξ)dξ

≤ O(δ2)te−λ1t ≤ C
teε t

εt
δ2e−(λ1−ε)t ≤ Cε−1δ2e−(λ1−ε)t ≤ 1

2
δe−(λ1−ε)t.

Note that the last inequality can be guaranteed by choosing δ ≤ C−1ε. Similarly

|s(2)2 (t)− s(1)2 (t)| =
∫ t

0

eλ2(ξ−t)
∣∣∣(s(1)1 (ξ))2O(1) + s

(1)
2 (ξ)O1(s, u)

∣∣∣ dξ
≤
∫ t

0

eλ2(ξ−t)(O(δ2)e−2λ1ξ +O(δ2)e−λ2ξ)dξ

≤ O(δ2)

∫ t

0

eλ
′
2(ξ−t)e−λ

′
2ξdξ ≤ Cδ2 te−λ

′
2t ≤ Cδ2

e2ε t

2ε
e−λ

′
2t

≤ Cε−1δ2e−(λ
′
2−ε)t ≤ 1

2
δe−(λ

′
2−2ε)t.

Observe that the calculations for u1 and u2 are identical if we replace t with T − t.
We obtain

|u(2)1 (t)− u(1)1 (t)| ≤ 1

2
δe−(λ1−ε)(T−t), |u(2)2 (t)− u(1)2 (t)| ≤ 1

2
δe−(λ

′
2−2ε)(T−t).

According to the normal form (5), we have there exists C ′ > 0 such that

‖∂sF1‖ ≤ C ′‖(s, u)‖, ‖∂uF1‖ ≤ C ′‖s‖.
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Using the inductive hypothesis for step k, we have ‖s(k)(t)‖ ≤ 2δe−(λ1−ε)t. It follows
that

|s(k+2)
1 (t)− s(k+1)

1 (t)|

≤
∫ t

0

eλ1(ξ−t)
(
‖∂sF1‖ ‖s(k+1) − s(k)‖+ ‖∂uF1‖ ‖u(k+1) − u(k)‖

)
dξ

≤ C ′
∫ t

0

eλ1(ξ−t)
(
δ2−kδe−(λ1−ε)ξ + δe−(λ1−ε)ξ2−kδ

)
dξ

≤ 2−kδe−(λ1−ε)t
∫ t

0

2C ′e−εξδdξ ≤ 2−(k+1)δe−(λ1−ε)t.

Note that the last inequality can be guaranteed by choosing δ sufficiently small de-
pending on C ′ and ε. The estimates for s2 needs more detailed analysis. We write

|s(k+2)
2 (t)− s(k+1)

2 (t)| ≤
∫ t

0

eλ2(ξ−t)·(
‖∂s1F2‖|s(k+1)

1 − s(k)1 |+ ‖∂s2F2‖|s(k+1)
2 − s(k)2 |+ ‖∂uF2‖‖u(k+1)

2 − u(k+1)
2 ‖

)
dξ

=

∫ t

0

eλ2(ξ−t)(I + II + III)dξ.

We have ‖∂s1F2‖ = O1(s1)O(1) +O1(s2)O(1), hence

I ≤ C ′(δe−(λ1−ε)ξ + δe−(λ
′
2−2ε)ξ)2−kδe−(λ1−ε)ξ ≤ C ′2−kδ2e−2(λ

′
1−ε)ξ.

Since ‖∂s2F2‖ = O2(s1)+O1(s, u) = O1(s, u), we have II ≤ C ′δ22−ke−(λ
′
2−2ε)ξ. Finally,

as ‖∂uF2‖ = O2(s1) +O1(s2)O(1), we have

III ≤ C ′2−kδ(δ2e−2(λ1−ε)ξ + δe−(λ
′
2−2ε)ξ) ≤ C ′2−kδ2e−(λ

′
2−2ε)ξ.

Note that in the last line, we used λ′2 ≤ 2λ1. Combine the estimates obtained, we
have

|s(k+2)
2 (t)− s(k+1)

2 (t)| ≤ δ2−k
∫ t

0

3C ′δeλ2(ξ−t)e−(λ
′
2−2ε)ξdξ

≤ δ2−ke−(λ
′
2−2ε)t

∫ t

0

3C ′δe−2εξdξ ≤ 2−(k+1)δe−(λ
′
2−2ε)t.
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The estimates for u1 and u2 follow from symmetry.
We now prove the lower bound estimates (8). We will first prove the estimates

for s1 in the case of sin1 > 0. We have the following differential inequality

ṡ1 ≥ −(λ1 + C ′δ)s1 + s2O1(s, u).

Note that |s2(t)| ≤ 2δe−λ
′
2t due to the already established upper bound estimates.

Choose δ such that C ′δ ≤ ε, we have

s1(t) ≥ sin1 e
−(λ1+ε)t −

∫ t

0

e−(λ1+ε)(ξ−t)2δe−(λ
′
2−2ε)ξ · C ′δdξ

≥ sin1 e
−(λ1+ε)t − 2C ′δ2(λ′2 − λ1 − 3ε)−1e−(λ1+ε)t ≥ 1

2
sin1 e

−(λ1+ε)t.

For the last inequality to hold, we choose ε0 small enough such that λ′2−λ1− 3ε > 0,
and choose δ such that 2C ′δ2(λ′2 − λ1 − 3ε)−1 ≤ 1

2
sin1 .

The case when sin1 < 0 follows from applying the above analysis to −s1. The
estimates for u1 can be obtained by replacing si with ui and t with T − t in the above
analysis.

Proof of Theorem 3.1. It follows from Proposition 3.2 that |sT1 (t)| ≥ 1
2
|sin1 |e−(λ1+ε)t

and |sT2 (t)| ≤ 2δe−(λ
′
2−2ε)t. We obtain the estimates for s1 and s2 by choosing α = λ2−2ε

λ1+ε

and C = 4δ/|sin1 |. The case of u1 and u2 can be proved similarly.

4 Properties of the local maps

Denote p± = (s±, 0) = γ±∩Σs
± and q± = (0, u±) = γ±∩Σu

±. Although the local map
Φ++

loc is not defined at p+ (and its inverse is not defined at q+), the map is well defined
from a neighborhood close to p+ to a neighborhood close to q+. In particular, for any
T > 0, by Proposition 3.2, there exists a trajectory (s, u)++

T of the Hamiltonian flow
such that

s++
T (0) = s+, u++

T (T ) = u+.

Denote x++
T = (s, u)++

T (0) and y++
T = (s, u)++

T (T ), we have Φ++
loc (x++

T ) = y++
T , and

x++
T −→ p+, y++

T −→ q+ as T −→ ∞. We apply the same procedure to other local
maps and extend the notations by changing the superscripts accordingly.
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s2 s2

u2

Φ++
loc

p+

q+

γ+s

γ+u

R++

Φ++
loc (R++)

xT

yT

Figure 7: Local map Φ++
loc

Let N = Nk(s, u) be the Hamiltonian from Theorem 2.1, E(T ) = N((s, u)++
T )

be the energy of the orbit, and SE(T ) = {N = E(T )} be the corresponding energy
surface. We will show that the domain of Φ++

loc |SE(T )
can be extended to a larger subset

of Σ
s,E(T )
+ containing x++

T . We call R ⊂ Σs
+∩SE(T ) a rectangle if it is bounded by four

vertices x1, · · · , x4 and C1 curves γij connecting xi and xj, where ij ∈ {12, 34, 13, 24}.
The curves does not intersect except at the vertices. Denote Bδ(x) the δ-ball around
x and the local parts of invariant manifolds

T+
s = W s(0) ∩ Σs

+ ∩Bδ(p
+), T+

u = W u(0) ∩ Σu
+ ∩Bδ(q

+)

and the Σ-sections restricted to an energy surface SE by

Σs,E
+ = Σs

+ ∩ SE and Σu,E
+ = Σu

+ ∩ SE.

The main result of this section is the following

Theorem 4.1. There exists δ0 > 0 and T0 > 0 such that for any T > T0 and
0 < δ < δ0, there exists a rectangle R++(T ) ⊂ Σ

s,E(T )
+ , with vertices xi(T ) and C1-

smooth sides γij(T ), such that the following hold:

1. Φ++
loc is well defined on R++(T ). Φ++

loc (R++(T )) is also a rectangle with vertices
x′i(T ) and sides γ′ij(T ).
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2. As T −→ 0, γ12(T ) and γ34(T ) both converge in Hausdorff metric to a single
curve containing T+

s ; γ′13(T ) and γ′24(T ) converges to a single curve containing
T+
u .

The same conclusions, after substituting the superscripts according to the signatures
of the map, hold for other local maps.

To get a picture of Theorem 4.1, note that for a given energy E > 0, the restricted
sections Σs,E

+ and Σu,E
+ are both transversal to the s1 and u1 axes, and hence these

sections can be parametrized by the s2 and u2 components. An illustration of the
local maps and the rectangles is contained in Figure 7.

We will only prove Theorem 4.1 for the local map Φ++
loc . The proof for the other

local maps are identical with proper changes of notations.
Let (vs1 , vs2 , vu1 , vu2) denote the coordinates for the tangent space induced by

(s1, s2, u1, u2). As before Br denotes the r−neighborhood of the origin. For c > 0
and x ∈ Br, we define the strong unstable cone by

Cu, c(x) = {c|vu2|2 > |vu1 |2 + |vs1|2 + |vs2|2}

and the strong stable cone to be

Cs, c(x) = {c|vs2|2 > |vs1|2 + |vu1 |2 + |vu2|2}.

The following properties follows from the fact that the linearization of the flow at 0 is
hyperbolic. We will drop the superscript c when the dependence in c is not stressed.

Lemma 4.1. For any 0 < ε < λ2−λ1, there exists r = r(ε, c) such that the following
holds:

• If ϕt(x) ∈ Br for 0 ≤ t ≤ t0, then Dϕt(C
u(x)) ⊂ Cu(ϕt(x)) for all 0 ≤ t ≤ t0.

Furthermore, for any v ∈ Cu(x),

|Dϕt(x)v| ≥ e(λ2−ε)t, 0 ≤ t ≤ t0.

• If ϕ−t(x) ∈ Br for 0 ≤ t ≤ t0, then Dϕ−t(C
s(x)) ⊂ Cs(ϕ−t(x)) for all 0 ≤ t ≤

t0. Furthermore, for any v ∈ Cs(x),

|Dϕ−t(x)v| ≥ e(λ2−ε)t, 0 ≤ t ≤ t0.
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For each energy surface E, we define the restricted cones Cu
E(x) = Cu(x) ∩ TxSE

and Cs
E(x) = Cs(x) ∩ TxSE.

Warning: Recall that the Hamiltonian N under consideration by Theorem 2.1
has the form Nk = λ1s1u1 + λ2s2u2 + O3(s, u). It is easy to see that the restricted
cones Cu

E(x) and Cs
E(x) might be empty. Excluding this case requires a special care!

Since the energy surface is invariant under the flow, its tangent space is also
invariant. We have the following observation:

Lemma 4.2. If ϕt(x) ∈ Br for 0 ≤ t ≤ t0, then Cu
E is invariant under the map Dϕt

for 0 ≤ t ≤ t0. In particular, if Cu
E(x) 6= ∅, then Cu

E(ϕt(x)) 6= ∅. Similar conclusions
hold for Cs

E with ϕ−t.

Let x be such that ϕt(x) ∈ Br ∩ SE for 0 ≤ t ≤ t0. A Lipschitz curve γsE(x) is
called stable if its forward image stays in Br for 0 ≤ t ≤ t0, and that the curve and
all its forward images are tangent to the restricted stable cone field {Cs

E}. For y such
that ϕ−t(y) ∈ Br ∩ SE for 0 ≤ t ≤ t0, we may define the unstable curve γuE(y) in
the same way with t replaced by −t and Cs

E replaced by Cu
E. Notice that stable and

unstable curves are not in the tangent space, but in the phase space.

Proposition 4.2. In notations of Lemma 4.1 assume that x, y ∈ SE satisfies the
following conditions.

• ϕt(x) ∈ Br ∩ SE and ϕ−t(y) ∈ Br ∩ SE for 0 ≤ t ≤ t0.

• The restricted cone fields are not empty. Moreover, there exists a > 0 such
that Cs, c

E (ϕt0(z)) 6= ∅ for z ∈ Ua(ϕt0(x)) ∩ SE, and Cu, c
E (ϕ−t0(z

′)) 6= ∅ for each
z′ ∈ Ua(ϕ−t0(y)) ∩ SE.

Then there exists at least one stable curve γsE(x) and one unstable curve γuE(y).
If a ≥

√
c2 + 1 re−(λ2−ε)t0, then the stable curve γsE(x) and the unstable one γuE(y)

can be extended to the boundary of Br(x) and of Br(y) respectively. Furthermore,

‖ϕt(x)− ϕt(x1)‖ ≤ e−(λ2−ε)t, x1 ∈ γsE(x), 0 ≤ t ≤ t0

and
‖ϕ−t(y)− ϕ−t(y1)‖ ≤ e−(λ2−ε)t, y1 ∈ γuE(y), 0 ≤ t ≤ t0.

It is possible to choose the curves to be C1.
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Remark 4.1. The stable and unstable curves are not unique. Locally, there exists a
cone family such that any curve tangent to this cone family is a stable/unstable curve.

Proof. Let us denote x′ = ϕt0(x). From the smoothness of the flow, we have that
there exist neighborhoods U of x and U ′ of x′ such that ϕt0(U) = U ′ and ϕt(U) ∈ Br

for all 0 ≤ t ≤ t0. By intersecting U ′ with Ua(x
′) if necessary, we may assume that

U ′ ⊂ Ua(x
′). We have that Cs, c

E (z) 6= ∅ for all z ∈ U ′. It then follows that there
exists a curve γsE(x′) ⊂ U ′ that is tangent to Cs, c

E . As Cs, c
E is backward invariant with

respect to the flow, we have that ϕ−t(γ
s
E(x′)) is also tangent to Cs, c

E for 0 ≤ t ≤ t0.
Let dist(γsE) denote the length of the curve γsE and let γsE(x) = ϕ−t0(γ

s(x′)). It follows
from the properties of the cone field that

dist(γsE(x)) ≥ e(λ2−ε)t0 dist(γsE(x′)).

We also remark that from the fact that γsE(x) is tangent to the cone field Cs, c
E (x), the

Euclidean diameter (the largest Euclidean distance between two points) of γsE(x) is
bounded by 1√

c2+1
dist(γsE(x)) from below and by l(γsE(x)) from above.

Let x1 be one of the end points of γsE(x) and x′1 = ϕt0(x1). We may apply the
same arguments to x1 and x′1, and extend the curves γsE(x) and γsE(x′) beyond x1 and
x′1, unless either x1 ∈ ∂Br or x′1 ∈ ∂Ua(x′). This extension can be made keeping the
C1 smoothness of γ. Denote γsE(x)|[x, x1] the segment on γsE(x) from x to x1. We
have that

‖x′1 − x′‖ ≤ dist(γsE(x′)|[x′, x′1]) ≤

≤ e−(λ2−ε)t0 dist(γsE(x)|[x, x1]) ≤ e−(λ2−ε)t0‖x− x1‖
√
c2 + 1.

It follows that if a ≥ r
√
c2 + 1 e−(λ2−ε)t0 , x1 will always reach boundary of Br before

x′1 reaches the boundary of Ua(x
′). This proves that the stable curve can be extended

to the boundary of Br.
The estimate ‖ϕt(x)−ϕt(x1)‖ ≤ e−(λ2−ε)t follows directly from the earlier estimate

of the arc-length. This concludes our proof of the proposition for stable curves. The
proof for unstable curves follows from the same argument, but with Cs, c

E replaced by
Cu, c
E and t by −t.

In order to apply Proposition 4.2 to the local map, we need to show that the
restricted cone fields are not empty. (see also the warning after Lemma 4.1)
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Lemma 4.3. There exists 0 < a ≤ δ and c > 0 such that for any x = (s, u) ∈ Σs,E
+

with ‖u‖ ≤ a, and |s2| ≤ 2δ, we have Cu, c
E (x) 6= ∅. Similarly, for any y ∈ Σu,E

+ with
|s| ≤ a and |u2| ≤ 2δ, we have Cs, c

E (y) 6= ∅.

Proof. We note that

∇N = (λ1u1 + uO1, λ2u2 + uO1, λ1s1 + sO1, λ2s2 + sO1),

and hence for small ‖u‖, ∇N ∼ (0, 0, λ1s1, λ2s2). Since |s2| ≤ 2δ = 2|s1| on Σs
+, we

have the angle between ∇N and u1 axis is bounded from below. As a consequence,
there exists c > 0, such that Cu, c has nonempty intersection with the tangent direction
of SE (which is orthogonal to ∇N). The lemma follows.

Proof of Theorem 4.1. We will apply Proposition 4.2 to the pair x++
T and y++

T which
we will denote by xT and yT for short. Since the curve γ+ is tangent to the s1–axis,
for δ sufficiently small, we have p+ = (δ, s+2 , 0, 0) satisfies |s2| ≤ δ. As xT −→ p+, for
sufficiently large T , we have xT = (s1, s2, u1, u2) satisfy |u| ≤ a/2 and |s2| ≤ 3δ/2,
where a is as in Lemma 4.3. As a consequence, for each x′ ∈ Ua/2(xT )∩Σs,E

+ , we have

Cu, c
E (x′) 6= ∅. Similarly, we conclude that for each y′ ∈ Ua/2(yT ) ∩ Σu,E

+ , Cs, c
E (y′) 6= ∅.

We may choose T0 such that a/2 ≥
√
c2 + 1re−(λ2−ε)T0 .

Let γ̄ be a stable curve containing xT extended to the boundary of Br/2. Denote
the intersection with the boundary x̄1 and x̄2 and let ȳ1 and ȳ2 be their images under
ϕT . Let γ′13 and γ′24 be unstable curves containing ȳ1 and ȳ2 extended to the boundary
of Br, and let γ13 and γ24 be their preimages under ϕT . Pick x1 and x3 on the curve
γ13 and let y1 and y3 be their images. It is possible to pick x1 and x3 such that the
segment y1y3 on γ′13 extends beyond Br/2. We now let γ12 and γ34 be stable curves
containing x1 and x3 that intersects γ24 at x2 and x4.

Note that by construction, γ̄ and γ′13 are extended to the boundary of Br/2. As the
parameter T −→∞, the limit of the corresponding curves still extends to the bound-
ary of Br/2, which contains γ+s and γ+u respectively. Moreover, by Proposition 4.2,
the Hausdorff distance between γ12, γ34 and γ̄ is exponentially small in T , hence they
have a common limit. The same can be said about γ′13 and γ′24.

There exists a Poincaré map taking γ12 and γ34 to curves on the section Σs
+; we

abuse notation and still call them γ12 and γ34. Similarly, γ′13 and γ′24 can also be
mapped to the section Σu

+ by a Poincaré map. These curves on the sections Σs
+ and

Σu
+ completely determines the rectangle R++(T ) ⊂ Σ

s,E(T )
+ . Note that the limiting
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properties described in the previous paragraph is unaffected by the Poincaré map.
This concludes the proof of Theorem 4.1.

By construction curves γ12 and γ34 can be selected as stable and γ14 and γ23 —
as unstable. It leads to the following

Corollary 4.4. There exists T0 > 0 such that the following hold.

1. For T ≥ T0, Φ+
glob ◦ Φ++

loc (R++(T )) intersects R++(T ) transversally. Moreover,
the images of γ13 and γ24 intersect γ12 and γ34 transversally, and the images of
γ12 and γ34 does not intersect R++(T ).

2. For T ≥ T0, Φ−glob ◦ Φ−−loc (R−−(T )) intersects R−−(T ) transversally.

3. For T, T ′ ≥ T0 such that R+−(T ) and R−+(T ′) are on the same energy surface:
Φ−glob ◦Φ+−

loc (R+−(T )) intersect R−+(T ′) transversally, and Φ+
glob ◦Φ−+loc (R−+(T ′))

intersect R+−(T ) transversally.

Remark 4.2. Later we show that, for fixed T , the value T ′ satisfying condition in
the third item is unique.

5 Existence of shadowing period orbits and the

proof of Theorem 1.1

5.1 Conley-McGehee isolation blocks

We will use Theorem 4.1 to prove Theorem 1.1. We apply the construction in the
previous section to all four local maps in the neighborhoods of the points p± and q±,
and obtain the corresponding rectangles.

For the map Φ+
glob ◦ Φ++

loc |SE(T ), the rectangle R++(T ) is an isolation block in the
sense of Conley and McGehee ([22]), defined as follows.

A rectangle R = I1 × I2 ⊂ Rd × Rk, I1 = {‖x1‖ ≤ 1}, I2 = {‖x2‖ ≤ 1} is called
an isolation block for the C1 diffeomorphism Φ, if the following hold:

1. The projection of Φ(R) to the first component covers I1.

2. Φ|I1×∂I2 is homotopically equivalent to identity restricted on I1×(Rk\ int I2).
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If R is an isolation block of Φ, then the set

W+ = {x ∈ R : Φk(x) ∈ R, k ≥ 0} (resp. W− = {x ∈ R : Φ−k(x) ∈ R, k ≥ 0})

projects onto I1 (resp. onto I2) (see [22]). If some additional cone conditions are
satisfied, then W+ and W− are in fact C1 graphs. Note that in this case, W+ ∩W−

is the unique fixed point of Φ on R.
As usual, we denote by Cu,c(x) = {c‖v1‖ ≤ ‖v2‖} the unstable cone at x. We

denote by πCu,c(x) the set x + Cu,c(x), which corresponds to the projection of the
cone Cu,c(x) from the tangent space to the base set. The stable cones are defined
similarly. Let U ⊂ Rd × Rk be an open set and Φ : U −→ Rd × Rk a C1 map.

C1. DΦ preserves the cone field Cu,c(x), and there exists Λ > 1 such that ‖DΦ(v)‖ ≥
Λ‖v‖ for any v ∈ Cu,c(x).

C2. Φ preserves the projected restricted cone field πCu,c, i.e., for any x ∈ U ,

Φ(U ∩ πCu,c(x)) ⊂ Cu,c(Φ(x)) ∩ Φ(U).

C3. If y ∈ πCu,c(x) ∩ U , then ‖Φ(y)− Φ(x)‖ ≥ Λ‖y − x‖.

The unstable cone condition guarantees that any forward invariant set is contained
in a Lipschitz graph.

Proposition 5.1 (See [22]). Assume that Φ and U satisfies C1-C3, then any forward
invariant set W ⊂ U is contained in a Lipschitz graph over Rk (the stable direction).

Proof. We claim that any x, y ∈ W must satisfy y /∈ πCu,c(x). Assume otherwise,
then we have Φk(y) ∈ πCu,c(Φk(x)) for all k ≥ 0, and hence

‖Φk(y)− Φk(x)‖ ≥ Λk‖y − x‖.

But this contradicts with Φk(x),Φk(y) ∈ U for all k ≥ 0. It follows that y ∈
πCs,1/c(x) ∩ U , which implies the Lipschitz condition.

Similarly, we can define the conditions C1-C3 for the inverse map and the stable
cone, and refer to them as “stable C1-C3” conditions. Note that if Φ and U satis-
fies both the isolation block condition and the stable/unstable cone conditions, then
W+ and W− are transversal Lipschitz graphs. In particular, there exists a unique
intersection, which is the unique fixed point of Φ on R. We summarize as follows.
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Corollary 5.1. Assume that Φ and U satisfies the isolation block condition, and that
Φ and U (resp. Φ−1 and U ∩ Φ(U)) satisfies the unstable (resp. stable) conditions
C1-C3. Then Φ has a unique fixed point in U .

5.2 Single leaf cylinder

We now apply the isolation block construction to the maps and rectangles obtained
in Corollary 4.4.

Proposition 5.2. There exists T0 > 0 such that the following hold.

• For T ≥ T0, Φ+
glob ◦ Φ++

loc has a unique fixed point p+(T ) on Σ+
s ∩R++(T );

• For T ≥ T0, Φ−glob ◦ Φ−−loc has a unique fixed point p−(T ) on Σ−s ∩R−−(T );

• For T, T ′ ≥ T0 such that R+−(T ) and R−+(T ′) are on the same energy surface:
Φ+

glob ◦ Φ−+loc ◦ Φ−glob ◦ Φ+−
loc has a unique fixed point pc(T ) on R+−(T ) ∩ (Φ−glob ◦

Φ+−
loc )−1(R−+(T ′)).

Note that in the third case of Proposition 5.2, it is possible to choose T ′ depending
on T such that the rectangles are on the same energy surface, if T is large enough.
Moreover, as in remark 4.2 we later show that such T ′ = T ′(T ) is unique. As a
consequence, the fixed point pc(T ) exists for all sufficiently large T .

Each of the fixed points p+(T ), p−(T ) and pc(T ) corresponds to a periodic orbit
of the Hamiltonian flow. In addition, the energy of the orbits are monotone in T , and
hence we can switch to E as a parameter.

Proposition 5.3. The curves (p+(T ))T≥T0, (p−(T ))T≥T0 and (p c(T ))T≥T0 are C1

graphs over the u1 direction with uniformly bounded derivatives. Moreover, the energy
E(p+(T )), E(p−(T )) and E(p c(T )) are monotone functions of T .

We now prove Theorem 1.1 assuming Propositions 5.2 and 5.3.

Proof of Theorem 1.1. Note that due to Proposition 3.2, the sign of s1 and u1 does
not change in the boundary value problem. It follows that the energies of p±(T ) are
positive, and the energy of p c(T ) is negative. Reparametrize by energy, we obtain
families of fixed points (p±(E))0<E≤E0 and (p c(E))−E0≤E<0, where

E0 = min{E(p+(T0)), E(p−(T0)),−E(p c(T0))}.
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We now denote the full orbits of these fixed points γ+E , γ−E and γcE, and the theorem
follows.

To prove Proposition 5.2, we notice that the rectangle R++(T ) has C1 sides, and
there exists a C1 change of coordinates turning it to a standard rectangle. It’s easy
to see that the isolation block conditions are satisfied for the following maps and
rectangles:

Φ+
glob ◦ Φ++

loc and R++(T ), Φ−glob ◦ Φ−−loc and R−−(T ),

Φ+
glob ◦ Φ−+loc ◦ Φ−glob ◦ Φ+−

loc and (Φ−glob ◦ Φ+−
loc )−1R−+(T ) ∩R+−(T ).

It suffices to prove the stable and unstable conditions C1-C3 for the corresponding
return map and rectangles. We will only prove the C1-C3 conditions conditions for
the unstable cone Cu, c

E , the map Φ+
glob ◦Φ++

loc and the rectangle R++(T ); the proof for
the other cases can be obtained by making obvious changes to the case covered.

Lemma 5.2. There exists T0 > 0 and c > 0 such that the following hold. Assume
that U ⊂ Σs

+ ∩Br is a connected open set on which the local map Φ++
loc is defined, and

for each x ∈ U ,
inf{t ≥ 0 : ϕt(x) ∈ Σu

+} ≥ T0.

Then the map D(Φ+
glob◦Φ

++
loc ) preserves the non-empty cone field Cu, c, and the inverse

D(Φ+
glob◦Φ

++
loc )−1 preserves the non-empty Cs, c. Moreover, the projected cones πCu, c∩

U and πCs, c∩V are preserved by Φ+
glob◦Φ

++
loc and its inverse, where V = Φ+

glob◦Φ
++
loc (U).

The same set of conclusions hold for the restricted version. Namely, we can replace
Cu, c and Cs, c with Cu, c

E and Cs, c
E , and U with U ∩ SE.

Let x ∈ U and denote y = Φ++
loc (x). We will first show that DΦ++

loc (x)Cu, c(x) is
very close to the strong unstable direction T uu. In general, we expect the unstable
cone to contract and get closer to the T uu direction along the flow. The limiting size
of the cone depends on how close the flow is to a linear hyperbolic flow. We need the
following auxiliary Lemma.

Assume that ϕt is a flow on Rd × Rk, and xt is a trajectory of the flow. Let
v(t) = (v1(t), v2(t)) be a solution of the variational equation, i.e. v(t) = Dϕt(xt)v(0).
Denote the unstable cone Cu, c = {‖v1‖2 < c‖v2‖2}.
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Lemma 5.3. With the above notations assume that there exists b2 > 0, b1 < b2 and
σ, δ > 0 such that the variational equation

v̇(t) =

[
A(t) B(t)
C(t) D(t)

] [
v1(t)
v2(t)

]
satisfy A ≤ b1I and D ≥ b2I as quadratic forms, and ‖B‖ ≤ σ, ‖C‖ ≤ δ.

Then for any c > 0 and ε > 0, there exists δ0 > 0 such that if 0 < δ, σ < δ0, we
have

(Dϕt)C
u, c ⊂ Cu,βt , βt = ce−(b2−b1−ε)t + σ/(b2 − b1 − ε).

Proof. Denote γ0 = c. The invariance of the cone field is equivalent to

d

dt

(
β2
t 〈v2(t), v2(t)〉 − 〈v1(t), v1(t)〉

)
≥ 0.

Compute the derivatives using the variational equation, apply the norm bounds and
the cone condition, we obtain

2βt (β′t + (b2 − δβt − b1)βt − σ) ‖v2‖2 ≥ 0.

We assume that βt ≤ 2γ0, then for sufficiently small δ0, δβt ≤ ε. Denote b3 = b2−b1−ε
and let βt solve the differential equation

β′t = −b3βt + σ.

It’s clear that the inequality is satisfied for our choice of βt. Solve the differential
equation for βt and the lemma follows.

Proof of Lemma 5.2. We will only prove the unstable version. By Assumption 4,
there exists c > 0 such that DΦ+

glob(q+)T uu(q+) ⊂ Cu, c(p+). Note that as T0 −→ ∞,
the neighborhood U shrinks to p+ and V shrinks to q+. Hence there exists β > 0 and
T0 > 0 such that DΦ+

glob(y)Cu, β(y) ⊂ Cu, c for all y ∈ V .
Let (s, u)(t)0≤t≤T be the trajectory from x to y. By Proposition 3.2, we have

‖s‖ ≤ e−(λ1−ε)T/2 for all T/2 ≤ t ≤ T . It follows that the matrix for the variational
equation [

A(t) B(t)
C(t) D(t)

]
=

[
− diag{λ1, λ2}+O(s) O(s)

O(u) diag{λ1, λ2}+O(u)

]
(9)
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satisfies A ≤ −(λ1 − ε)I, D ≥ (λ1 − ε)I, ‖C‖ = O(δ) and ‖B‖ = O(e−(λ1−ε)T/2). As
before Cu, c(x) = {‖vs‖ ≤ c‖vu‖}, Lemma 5.3 implies

DϕT (x)Cu, c(x) ⊂ Cu,βT (y),

where βT = O(e−λ
′T/2) and λ′ = min{λ2 − λ1 − ε, λ1 − ε}. Finally, note that

DϕT (x)Cu, c(x) and DΦ++
loc (x)Cu, c(x) differs by the differential of the local Poincaré

map near y. Since near y we have |s| = O(e−(λ1−ε)T ), using the equation of motion,
the Poincaré map is exponentially close to identity on the (s1, s2) components, and is
exponentially close to a projection to u2 on the (u1, u2) components. It follows that
the cone Cu, βT is mapped by the Poincar’e map into a strong unstable cone with
exponentially small size. In particular, for T ≥ T0, we have

DΦ++
loc (x)Cu, c(x) ⊂ Cu, β(y),

and the first part of the lemma follows. To prove the restricted version we follow the
same arguments.

Conditions C1-C3 follows, and this concludes the proof of Proposition 5.2.

Proof of Proposition 5.3. Again, we will only treat the case of p+(T ). Note that
l+(p+) := (p+(T ))T≥T0 is a forward invariant set of Φ+

glob ◦ Φ++
loc , and by Lemma 5.2,

the map Φ+
glob ◦Φ++

loc also preserves the (unrestricted) strong unstable cone field Cu, c.
Apply Proposition 5.1, we obtain that l+(p+) is contained in a Lipschitz graph over the
s1u1u2 direction. Since l+(p+) is also backward invariant, and using the invariance of
the strong stable cone fields, we have l+(p+) is contained in a Lipschitz graph over the
s1u1s2 direction. The intersection of the two Lipschitz graph is a Lipschitz graph over
the s1u1 direction. Since l+(p+) ⊂ {s1 = δ}, we conclude that l+(p+) is Lipschitz
over u1. Since the fixed point clearly depends smoothly on T , l+(p+) is a smooth
curve. The Lipschitz condition ensures a uniform derivative bound. This proves the
first claim of the proposition. Note that this also implies u1 is a monotone function
of T .

For the monotonicity, note that all p+(T ) are solutions of the Shil’nikov boundary
value problem. By definition (p+(T ))T>T0 belong to Σs

+ and we have s1 = δ. For all
finite T the union of (p+(T ))T>T0 is smooth. Since l+(p+) is a Lipschitz graph over
u1 for small u1, we have that the tangent (ds2, du1, du2) is well-defined and ratios ds2

du1

and du2
du1

are bounded.
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Theorem 3.1 implies that the s2, u2 components are dominated by the s1, u1
directions, namely, there exist C > 0 and α > 0 such that for components of p+(T )
and all T > T0 we have |u2| ≤ C|u1|α.

Using the form of the energy given by Corollary 2.1 its differential has the form

dE(s, u) = (λ1 +O(s, u)) s1du1 + (λ1 +O(s, u))u1ds1+

+(λ2 +O(s, u)) s2du2 + (λ2 +O(s, u))u2ds2.

On the section Σs
+ differential ds1 = 0 and coefficients in front of ds2 can be make

arbitrary small. Therefore, to prove monotonicity of E(p+(T )) in T it suffices to
prove that for any τ > 0 there is T0 > 0 such that for any T > T0 tangent of l+(p+)
at p+(T ) satisfies |du2

du1
| < τ . Indeed, (s1, s2)(T ) −→ (δ, s+2 ) as T −→∞.

We prove this using Lemma 5.3 and the form of the equation in variations (9).
Suppose |du2

du1
| > τ for some τ > 0 and arbitrary small u1. If T0 is large enough, then

T > T0 is large enough and u1 is small enough. By Theorem 3.1 we have |u2| ≤ C|u1|α
so u2 is also small enough. Thus, we can apply Lemma 5.3 with v1 = (s1, s2, u1) and
v2 = u2. It implies that the image of a tangent to l+(p+) after application of DΦ++

loc is
mapped into a small unstable cone Cu,β with β = (e−(λ2−λ1−ε)T0 +O(δ))/τ . However,
the image of l+(p+) under DΦ++

loc by definition is (q+(T ))T≥T0 and its tangent can’t
be in an unstable cone. This is a contradiction.

As a consequence, the energy E(p+(T )) depends monotonically on u1. Combine
with the first part, we have E(p+(T )) depends monotonically on T .

5.3 Double leaf cylinder

In the case of the double leaf cylinder, there exist two rectangles R1 and R2, whose
images under Φglob ◦ Φloc intersect themselves transversally, providing a “horseshoe”
type picture.

Proposition 5.4. There exists E0 > 0 such that the following hold:

1. For all 0 < E ≤ E0, there exist rectangles R1(E), R2(E) ∈ Σs,E
+ such that for

i = 1, 2, Φi
glob ◦ Φ++

loc (Ri) intersects both R1(E) and R2(E) transversally.

2. Given σ = (σ1, · · · , σn), there exists a unique fixed point pσ(E) of

1∏
i=n

(
Φσi

glob ◦ Φ++
loc

)
|Rσi (E)
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on the set Rσ1(E).

3. The curve pσ(E) is a C1 graph over the u1 component with uniformly bounded
derivatives. Furthermore, pσ(E) approaches pσ1 and for each 1 ≤ j ≤ n− 1,

1∏
i=j

(
Φσi

glob ◦ Φ++
loc

)
(pσ(E))

approaches pσj+1 as E −→ 0.

Remark 5.1. The second part of Theorem 1.1 follows from this proposition.

Proof. Let R++(E) be the rectangle associated to the local map Φ++
loc constructed in

Theorem 4.1, reparametrized in E. Note that for sufficiently small δ, the curve γ+s
contains both p1 and p2, and γ+u contains both q1 and q2.

Let V 1 3 q1 and V 2 3 q2 be the domains of Φ1
glob and Φ2

glob, respectively. It
follows from assumption A4a′ that Φ1

globγ
+
u ∩ V 1 intersects γ+s transversally at pi.

By Proposition 4.1, for sufficiently small E > 0, Φ1
glob(Φ++

loc (R++(E)) ∩ V1) intersects
R++(E) transversally. Let Z1 ⊂ V 1 be a smaller neighborhood of q1. We can truncate
the rectangle Φ++

loc (R++(E)) by stable curves, and obtain a new rectangle R′1(E) such
that

Φ++
loc (R++(E)) ∩ Z1 ⊂ R′1(E) ⊂ Φ++

loc (R++(E)) ∩ V 1.

Denote R1(E) = (Φ++
loc )−1(R′1(E)). The rectangles R2(E) and R′2(E) are defined

similarly. For i = 1, 2, Φi
glob ◦ Φ++

loc (Ri(E)) intersects R++(E), and hence Ri(E)
transversally. This proves the first statement.

Let Rσ(E) denote the subset of Rσ1(E) on which the composition

1∏
i=n

(
Φσi

glob ◦ Φ++
loc

)
|Rσi (E)

is defined. Rσ(E) is still a rectangle. The composition map and the rectangle Rσ(E)
satisfy the isolation block condition and the cone conditions. As a consequence, there
exists a unique fixed point.

The proof of the C1 graph property is similar to that of Proposition 5.3.
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Figure 8: Invariant manifold M near the origin

6 Normally hyperbolic cylinder

6.1 NHIC for the slow mechanical system

In this section we will prove Theorem 1.2. Let us first consider the single leaf case.
We will show that the union

M :=
⋃

0<E≤E0

γ+E ∪
⋃

0<E≤E0

γ−E ∪
⋃

−E0≤E<0

γ+−E ∪ γ+ ∪ γ−

forms a C1 manifold with boundary. Denote

l+(p+) = {p+(E)}0<E≤E0 , l+(p−) = {p−(E)}0<E≤E0 ,

l+(q+) = Φ++
loc (l+(p+)) and l+(q−) = Φ−−loc (l+(q−)). Note that the superscript of l

indicates positive energy instead of the signature of the homoclinics. We denote

l−(p+) = {pc(E)}−E0≤E<0

l−(q−) = Φ+−
loc (l−(p+)), l−(p−) = Φ−glob(l−(q−)) and l−(q+) = Φ−+loc (l−(p−)). An illus-

tration of M the curves l± are included in Figure 8.
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By Proposition 5.3, l±(y) (y is either p±, or q±) are all C1 curves with uniformly
bounded derivatives, hence they extend to y as C1 curves. Denote l(y) = l+(y) ∪
l−(y) ∪ {y} for y either p±, or q±.

Proposition 6.1. There exists one dimensional subspaces L(p±) ⊂ Tp±Σu
± and

L(q±) ⊂ Tq±Σs
± such that the curves l(p±) are tangent to L(p±) at p± and l(q±)

are tangent to L(q±) at q±.

Proof. Each point x ∈ l(p+) contained in SE is equal to the exiting position s(TE), u(TE)
of a solution (s, u) : [0, TE] −→ Br that satisfies Shil’nikov’s boundary value prob-
lem (see Proposition 3.2). As x −→ p+, E −→ 0 and TE −→ ∞. According to
Corollary 3.1, l(p+) must be tangent to the plane {s1 = u2 = 0}. Similarly, l(q+)
must be tangent to the plane {u1 = s2 = 0}. On the other hand, due to assumption
4 on the global map (see Section 1), the image of DΦ+

glob{u1 = s2 = 0} intersects
{s1 = u2 = 0} at a one dimensional subspace. Denote this space L(p+) and write
L(q+) = D(Φ+

glob)−1L(p+). Since l(p+) must be tangent to both {u2 = s1 = 0} and

DΦ+
glob{u1 = s2 = 0}, l(p+) is tangent to L(p+). We also obtain the tangency of l(q+)

to L(q+) using l(q+) = (Φ+
glob)−1l(p+). The case for l(p−) and l(p−) can be proved

similarly.

We have the following continuous version of Lemma 5.2, which states that the
flow on M preserves the strong stable and strong unstable cone fields. The proof of
Lemma 6.1 is contained in the proof of Lemma 5.2.

Lemma 6.1. There exists c > 0 and E0 > 0 and continuous cone family Cu(x) and
Cs(x), such that for all x ∈M, the following hold:

1. Cs and Cu are transversal to TM, Cs is backward invariant and Cu is forward
invariant.

2. There exists C > 0 such that the following hold:

• ‖Dϕt(x)v‖ ≥ Ce(λ2−ε)t, v ∈ Cu(x), t ≥ 0;

• ‖Dϕt(x)v‖ ≥ Ce−(λ2−ε)t, v ∈ Cs(x), t ≤ 0.

3. There exists a neighborhood U of M on which the projected cones πCu ∩U and
πCs ∩ U are preserved.
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Note that a continuous version of Proposition 5.1 also holds. As a consequence,
the the set M is contained in a Lipschitz graph over the s1 and u1 direction. This
implies that M is a C1 manifold.

Corollary 6.2. The manifold M is a C1 manifold with boundaries γ+E0
, γ−E0

and
γ+−−E0

.

Proof. The curves l(p±) and l(q±) sweep out the setM\{0} under the flow. It follows
that M is smooth at everywhere except may be {0}. Since any x ∈ M ∩ Br(0)
is contained in a solution of the Shil’nikov boundary value problem, Corollary 3.1
implies that x is contained in the set {|s2| ≤ C|s1|α, |u2| ≤ C|u2|α}. It follows that
the tangent plane ofM to x converges to the plane {s2 = u2 = 0} as (s, u) −→ 0.

Corollary 6.3. There exists a invariant splitting Es ⊕ TM⊕ Eu and C > 0 such
that the following hold:

• ‖Dϕt(x)v‖ ≥ Ce(λ2−ε)t, v ∈ Eu(x), t ≥ 0;

• ‖Dϕt(x)v‖ ≥ Ce−(λ2−ε)t, v ∈ Es(x), t ≤ 0;

• ‖Dϕt(x)v‖ ≤ Ce(λ1+ε)|t|, v ∈ TxM, t ∈ R.

Proof. The existence of Es and Eu, and the expansion/contraction properties fol-
lows from standard hyperbolic arguments, see [11], for example. We now prove
that third statement. Denote v(t) = Dϕt(x)v for v ∈ TxM. Decompose v(t) into
(vs1 , vs2 , vu1 , vu2), we have ‖(vs1 , vu1)(t)‖ ≤ Ce(λ1+ε)|t|. However, since M is a Lip-
schitz graph over (s1, u1), the (vs2 , vu2) components are bounded uniformly by the
(vs1 , vu1) components. The norm estimate follows.

Remark 6.1. Part 1 of Theorem 1.2 follows from the last two corollaries.

We now come to the double leaf case. Denote l(p1) =
⋃
e≤E≤E0

pσ(E), where pσ(E)

is the fixed point in Proposition 5.4. We have that l(pσ1) sweeps out Me,E0

h in finite
time. As a consequence Me,E0

h is a C1 manifold. Similar to Lemma 6.1, the flow
on Me,E0

h also preserves the strong stable/unstable cone fields. The fact that Me,E0

h

is normally hyperbolic follows from the invariance of the cone fields, using the same
proof as that of Corollary 6.3. This concludes the proof the Theorem 1.2, part 2.
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6.2 Derivation of the slow mechanical system

We denote by p0 the intersection of the resonance Γ~k and Γ~k′ . This means

~k1 · ∂pH(p0) + k0 = 0, ~k′1 · ∂pH(p0) + k′0 = 0.

We consider the autonomous version of the system Hε(θ, p, t, E) = H0 + εH1(θ, p, t) +
E. In the

√
ε neighborhood of p0, we have the following the normal form

Hε(θ, p, t, E) = H0(p) + εZ(~k1 · θ + k0, ~k
′
1 · θ + k′0, p) + εR + E,

where ‖R‖C2 = O(ε). Denote θss = ~k1 · θ+k0 and θsf = ~k′1 · θ+k′0 and θs = (θss, θsf ),
we further write

Hε(θ, p, t, E) = H0(p0) + ∂H0(p0) · (p− p0) + E + 〈∂2ppH0(p0)(p− p0), p− p0〉
+ εZ(θs, p0) + εR′,

where R′ = R+Z(θs, p)−Z(θs, p0)+ 1
ε
O(|p−p0|3). We make a symplectic coordinate

change (θ, p, t, E) −→ (θs, ps, t, E ′) by taking[
p
E

]
=

[
BT 0
k0, k

′
0 1

] [
ps

E ′

]
, where B =

[
~k1
~k′1

]
.

Denote ps0 = (BT )−1p0, we have

∂pH0(p0)(p− p0) + E = ∂pH0(p0)B
T (ps − ps0) + k0p

ss + k′0p
sf + E ′

= (∂pH0(p0) · k1 + k0)(p
ss − pss0 ) + (∂pH0(p0) · k′1 + k′0)(p

sf − psf0 ) + (k0, k
′
0) · (pss0 , p

sf
0 )

= (k0, k
′
0) · (pss0 , p

sf
0 ),

hence

Hε(θ
s, ps, t, E ′) = H0(p0) + (k0, k

′
0) · (pss0 , p

sf
0 ) + E ′

+ 〈B∂2ppH0(p0)B
T (ps − ps0), ps − ps0〉+ εZ(θs, p0) + εR′.

Denote Is = (ps − ps0)/
√
ε,

K(Is) = 〈B∂2ppH0(p0)B
T Is, Is〉, (10)
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U(θs) = −Z(θs, p0). (11)

The flow of Hε(θ
s, ps, t) is conjugate to the flow of the rescaled Hamiltonian

1√
ε
Hε(θ

s,
√
εIs, t) = c0/

√
ε+
√
ε(K(Is)− U(θs)) +

√
εR′(θs,

√
εIs, t), (12)

where c0 = H0(p0) + (k0, k
′
0) · (BT )−1p0. By a direct computation, we have the C2

norm of R′(·,
√
ε ·, ·) is bounded by O(

√
ε).

6.3 Normally hyperbolic manifold for double resonance

We now prove Corollary 1.2. By (12), our Hamiltonian system is locally equivalent
to

Hs
ε (θ

s, Is, t) = K(p)− U(θ) +O(
√
ε).

For ε = 0, the system Hs
0 admits a normally hyperbolic manifold M× T. Moreover,

all conclusions of Corollary 6.3 carries over to this system. It is well known that a
compact normally hyperbolic manifold without boundary survives small perturba-
tions (see [11], for example). For manifolds with boundary, we can smooth out the
perturbation near the boundary, so that the perturbation preserves the boundary (see
[6], Proposition B.3). This produces a weakly invariant NHIC, in the sense that any
invariant set near M× T and away from the boundary must be contained in the
NHIC.

This concludes the proof of Corollary 1.2.

A Formulation of the results (intermediate ener-

gies)

Consider the slow mechanical system Hs(ps, θs) = K(ps)−U(θs), U(θ) ≥ 0, U(0) = 0
as in (4) and E0 > 0 is small. For each non-negative energy surface SE = {Hs =
E} consider the Jacobi metric ρE(θ) = 2(E + U(θ))K as defined in (2). Orbits
of Hs restricted on SE are reparametrized geodesics of ρE. Fix a homology class
h ∈ H1(Ts,Z). In the same way as in [19] impose the following assumptions:

B1. For each E > E0, each shortest closed geodesic γhE of ρE in the homology class
h is nondegenerate in the sense of Morse.
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B2. For each E > E0, there are at most two shortest closed geodesics of ρE in the
homology class h.

Let E∗ > E0 be such that there are two shortest geodesics γhE∗ and γhE∗ of ρE∗
in the homology class h. Due to non-degeneracy there is local continuation of
γhE∗ and γhE∗ to locally shortest geodesics γhE and γhE. For a smooth closed curve
γ denote by `E(γ) its ρE-length.

B3. Suppose
d(`E(γhE))

dE
|E=E∗ 6=

d(`E(γhE))

dE
|E=E∗ .

Lemma A.1. There is an open dense set of smooth mechanical systems with proper-
ties B1-B3.

It follows from condition B3 that there are only finitely many values {Ej}Nj=1

where there are two minimal geodesics γhE and γhE. To fit boundary conditions we
have E−10 = EN+1. There is δ > 0 such that for any j = 1, . . . , N the unique shortest
geodesic γhE has a smooth continuation γhE for E ∈ [Ej − δ, Ej+1 + δ].

Consider the union
Mh

j = ∪E∈[Ej−δ,Ej+1+δ]γ
h
E.

It follows from Morse non-degeneracy of γhE that Mh
j is a NHIC. In the same way as

we prove Corollary we can prove

Corollary A.2. For each j = 1, . . . , N the system Hε has a normally hyperbolic
manifold Mh

j,ε which is weakly invariant, i.e. the Hamiltonian vector field of Hε is
tangent to Mh

j,ε. Moreover, the intersection of Mh
j,ε with the regions {Ej − δ ≤ Hs ≤

Ej+1 + δ} × T is a graph over Mh
j .

Proof of Corollary A.2 is very similar to the proof of Corollary 1.2. Notice that the
NHIC is 3-dimensional. It has one-dimensional stable and one-dimensional unstable
direction. Consider a box neighborhood at each point onMh

j,ε formed by taking σ-box
in stable/unstable directions. Taking ε small we can make sure that the time-periodic
system Hε satisfies isolating block property.
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B Non-self-intersecting curves on the torus

We prove Lemma 1.1 in this section.
Denote γ1 = γh10 and γ2 = γh20 and γ = γ0h. Recall that γ has homology class

n1h1 + n2h2 and is the concatenation of n1 copies of γ1 and n2 copies of γ2. Since h1
and h2 generates H1(T2,Z), by introducing a linear change of coordinates, we may
assume h1 = (1, 0) and h2 = (0, 1).

Given y ∈ T2 \ γ ∪ γ1 ∪ γ2, the fundamental group of T2 \ {y} is a free group of
two generators, and in particular, we can choose γ1 and γ2 as generators. (We use
the same notations for the closed curves γi, i = 1, 2 and their homotopy classes). The
curve γ determines an element

γ =
n∏
i=1

γsiσi , σi ∈ {1, 2}, si ∈ {0, 1}

of this group. Moreover, the translation γt(·) := γ(·+t) of γ determines a new element
by cyclic translation, i.e.,

γt =
n∏
i=1

γsi+mσi+m
, m ∈ Z,

where the sequences σi and si are extended periodically. We claim the following:
There exists a unique (up to translation) periodic sequence σi such that γ =∏n

i=1 γσi+m for some m ∈ Z, independent of the choice of y. Note that in particular,
all si = 1.

The proof of this claim is split into two steps.
Step 1. Let γn1/n2(t) = {γ(0) + (n1/n2, 1)t, t ∈ R}. We will show that γ is

isotropic (homotopic along non-self-intersecting curves) to γn1/n2 . To see this, we lift
both curves to the universal cover with the notations γ̃ and γ̃n1/n2 . Let p.q ∈ Z be
such that pn1 − qn2 = 1 and define

T γ̃(t) = γ̃(t) + (p, q).

As T generates all integer translations of γ̃, γ is non-self-intersecting if and only if
T γ̃ ∩ γ̃ = ∅. Define the homotopy γ̃λ = λγ̃ + (1 − λ)γ̃n1/n2 , it suffices to prove
T γ̃λ ∩ γ̃λ = ∅. Take an additional coordinate change[

x
y

]
7→
[
n1 p
n2 q

]−1 [
x
y

]
,
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then under the new coordinates T γ̃(t) = γ̃(t) + (1, 0).
Under the new coordinates, T γ̃ ∩ γ̃ = ∅ if and only if any two points on the same

horizontal line has distance less than 1. The same property carries over to γ̃λ for
0 ≤ λ < 1, hence T γ̃λ ∩ γ̃λ = ∅.

Step 2. By step 1, it suffices to prove that γ = γn1/n2 defines unique sequences
σi and si. Since γ̃n1/n2 is increasing in both coordinates, we have si = 1 for all i.
Moreover, choosing a different y is equivalent to shifting the generators γ1 and γ2.
Since the translation of the generators is homotopic to identity, the homotopy class
is not affected. This concludes the proof of Lemma 1.1.
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