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Abstract

In this paper we propose a model of random compositions of maps of a
cylinder, which in the simplified form is as follows: (θ, r) ∈ T×R = A and

f±1 :

(
θ
r

)
7−→

(
θ + r + εu±1(θ, r).
r + εv±1(θ, r).

)
,

where u± and v± are smooth and v± are trigonometric polynomials in θ
such that

∫
v±(θ, r) dθ = 0 for each r. We study the random compositions

(θn, rn) = fωn−1 ◦ · · · ◦ fω0(θ0, r0)

with ωk ∈ {−1, 1} with equal probabilities. We show that under natural
non-degeneracy hypothesis for n ∼ ε−2 the distributions of rn − r0 weakly
converge to a diffusion process with explicitly computable drift and vari-
ance.

In the case of random iteration of the standard maps

f±1 :

(
θ
r

)
7−→

(
θ + r + εv±1(θ).
r + εv±1(θ)

)
,

where v± are trigonometric polynomials such that
∫
v±(θ) dθ = 0 we prove

a vertical central limit theorem. Namely, for n ∼ ε−2 the distributions
of rn − r0 weakly converge to a normal distribution N (0, σ2) for σ2 =
1
4

∫
(v+(θ)− v−(θ))2 dθ.
Such random models arise as a restrictions to a Normally Hyperbolic

Invariant Lamination for a Hamiltonian flow of the generalized example of
Arnold. We hope that this mechanism of stochasticity sheds some light on
formation of diffusive behaviour at resonances of nearly integrable Hamil-
tonian systems.
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1 Introduction

1.1 Motivation: Arnold diffusion and instabilities

By Arnold-Louiville theorem a completely integrable Hamiltonian system can be
written in action-angle coordinates, namely, for action p in an open set U ⊂ Rn

and angle θ on an n-dimensional torus Tn there is a function H0(p) such that
equations of motion have the form

θ̇ = ω(p), ṗ = 0, where ω(p) := ∂pH0(p).

The phase space is foliated by invariant n-dimensional tori {p = p0} with either
periodic or quasi-periodic motions θ(t) = θ0 + t ω(p0) (mod 1). There are many
different examples of integrable systems (see e.g. wikipedia).

It is natural to consider small Hamiltonian perturbations

Hε(θ, p) = H0(p) + εH1(θ, p), θ ∈ Tn, p ∈ U

where ε is small. The new equations of motion become

θ̇ = ω(p) + ε∂pH1, ṗ = −ε∂θH1.

In the sixties, Arnold [1] (see also [2, 3]) conjectured that for a generic analytic
perturbation there are orbits (θ, p)(t) for which the variation of the actions is of
order one, i.e. ‖p(t)− p(0)‖ that is bounded from below independently of ε for all
ε sufficiently small.

See [5, 10, 25, 26, 27] about recent progress proving this conjecture for convex
Hamiltonians.

1.2 KAM stability

Obstructions to Arnold diffusion, and to any form of instability in general, are
widely known, following the works of Kolmogorov, Arnold, and Moser called
nowadays KAM theory. The fundamental result says that for a properly non-
degenerate H0 and for all sufficiently regular perturbations εH1, the system de-
fined by Hε still has many invariant n-dimensional tori. These tori are small
deformation of unperturbed tori and measure of the union of these invariant tori
tends to the full measure as ε goes to zero.

One consequence of KAM theory is that for n = 2 there are no instabilities.
Indeed, generic energy surfaces SE = {Hε = E} are 3-dimensional manifolds,
KAM tori are 2-dimensional. Thus, KAM tori separate surfaces SE and prevent
orbits from diffusing.
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1.3 A priori unstable systems

As an interesting model [1] Arnold proposed to study the following example

Hε(p, q, I, ϕ, t) =
I2

2
+H0(p, q) + εH1(p, q, I, ϕ, t) :=

=
I2

2︸ ︷︷ ︸
harmonic oscillator

+
p2

2
+ (cos q − 1)︸ ︷︷ ︸
pendulum

+εH1(p, q, I, ϕ, t),
(1)

where q, ϕ, t ∈ T are angles, p, I ∈ R are actions (see Fig. 3) and H1 = (cos q −
1)(cosϕ+ cos t).

Figure 1: The rotor times the pendulum

For ε = 0 the system is a direct product of the harmonic oscillator ϕ̈ = 0 and
the pendulum q̈ = sin q. Instabilities occur when the (p, q)-component follows the
separatrices H0(p, q) = 0 and passes near the saddle (p, q) = (0, 0). Equations
of motion for Hε have a (normally hyperbolic) invariant cylinder Λε which is C1

close to Λ0 = {p = q = 0}. Systems having an invariant cylinder with a family
of separatrix loops are called an apriori unstable. Since they were introduced
by Arnold [1], they received a lot of attention both in mathematics and physics
community see e.g. [4, 9, 10, 11, 13, 21, 40, 41].

Chirikov [10] and his followers made extensive numerical studies for the Arnold
example. It indicates that the I-displacement behaves randomly, where random-
ness is due to choice of initial conditions near H0(p, q) = 0.

More exactly, integration of solutions whose “initial conditions” randomly
chosen ε-close to H0(p, q) = 0 and integrated over time ∼ −ε−2 ln ε -time. This
leads to the I- displacement being of order of one and having some distribution.
This coined the name for this phenomenon: Arnold diffusion.

Let ε = 0.01 and T = −ε−2 ln ε. On Fig. 1.3 we present several histograms
plotting displacement of the I-component after time T, 2T, 4T, 8T with 6 different
groups of initial conditions, and histograms of 106 points. In each group we start
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with a large set of initial conditions close to p = q = 0, I = I∗.1 One of the
distinct features is that only one distribution (a) is close symmetric, while in all
others have a drift.

(a) (b)

(c) (d)

(e) (f)

1

A similar stochastic behaviour was observed numerically in many other nearly
integrable problems ([10] pg. 370, [16, 28], see also [37]). To give another illus-
trative example consider motion of asteroids in the asteroid belt.

1These histograms are part of the forthcoming paper of the second author with P. Roldan
with extensive numerical analysis of dynamics of the Arnold’s example.
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1.4 Random fluctuations of eccentricity in Kirkwood gaps
in the asteroid belt

The asteroid belt is located between orbits of Mars and Jupiter and has around
one million asteroids of diameter of at least one kilometer. When astronoters
build a histogram based on orbital period of asteroids there are well known gaps
in distribution called Kirkwood gaps (see Figure below).

These gaps occur when ratio of of an asteroid and of Jupiter is a rational
with small denominator: 1/3, 2/5, 3/7. This correspond to so called mean motion
resonances for the three body problem. Wisdom [42] made a numerical analysis of
dynamics at mean motion resonance and observed random fluctuations of eccen-
tricity of asteroids. As these fluctuations grow and eccentricity reaches a certain
critical value an orbit of a hypothetic asteroid starts to cross the orbit of Mars.
This eventually leads either to a collision of the asteroid with Mars or a close
encounter. The latter changes the orbit so drastically that almost certainly it
disappears from the asteroid belt. In [17] we only managed to prove existence of
certain orbits whose eccentricity change by O(1) for the restricted planar three
body problem. Outside of these resonances one could argue that KAM theory
provides stability [33].

1.5 Random iteration of cylinder maps

Consider the time one map of Hε, denoted

Fε : (p, q, I, ϕ)→ (p′, q′, I ′, ϕ′).

It turns out that for initial conditions ε-close to H0(p, q) = 0, except of a hy-
persurface, one can define a return map to an O(ε)-neighborhood of (p, q) = 0.
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Often such a map is called a separatrix map and in the 2-dimensional case was
introduced by physicists Filonenko-Zaslavskii [18]. In multidimensional setting
such a map was defined and studied by Treschev [34, 39, 40, 41].

It turns starting near (p, q) = 0 and iterating Fε until the orbit comes back
(p, q) = 0 leads to a family of maps of a cylinder

fε,p,q : (I, ϕ)→ (I ′, ϕ′), (I, ϕ) ∈ A = R× T

which are close to integrable. Since at (p, q) = 0 the (p, q)-component has a
saddle, there is a sensitive dependence on initial condition in (p, q) and returns
do have some randomness in (p, q). The precise nature of this randomness at the
moment is not clear. There are several coexisting behaviours, including unstable
diffusive, stable quasi-periodic, orbits can stick to KAM tori, and which one is
dominant is to be understood. May be mechanism of capture into resonances [15]
is also relevant in this setting.

In [22] we construct a normally hyperbolic lamination (NHL) for an open class
of trigonometric perturbations of the form

H1 = (cos q − 1)P (exp(iϕ), exp(it)).

Constructing unstable orbits along NHL is also discussed in [14]. In general, NHL
give rise to a skew shift. For example, let Σ = {−1, 1}Z be the space of infinite
sequences of −1’s and 1’s and σ : Σ→ Σ be the standard shift.

Consider a skew product of cylinder maps

F : A× Σ→ A× Σ, F (r, θ;ω) = (fω(r, θ), σω),

where each fω(r, θ) is a nearly integrable cylinder maps, in the sense that it almost
preserves the r-component 2.

The goal of the present paper is to study a wide enough class of skew products
so that they arise in Arnold’s example with a trigonometric perturbation of the
above type (see [22]).

Now we formalize our model and present the main result.

1.6 Diffusion processes and infinitesimal generators

In order to formalise the statement about diffusive behaviour we need to recall
some basic probabilistic notions. Consider a Brownian motion {Bt, t ≥ 0}.

2The reason we switch from the (I, ϕ)-coordinates on the cylinder to (r, θ) is because we
perform a coordinate change.
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A Brownian motion is a properly chosen limit of the standard random walk.
A generalisation of a Brownian motion is a diffusion process or an Ito diffusion.
To define it let (Ω,Σ, P ) be a probability space. Let R : [0,+∞)× Ω→ R. It is
called an Ito diffusion if it satisfies a stochastic differential equation of the form

dRt = b(Rt) dt+ σ(Rt) dBt, (2)

where B is an Brownian motion, b : R→ R and σ : R→ R are Lipschitz functions
called the drift and the variance respectively. For a point r ∈ R, let Pr denote the
law of X given initial data R0 = r, and let Er denote expectation with respect to
Pr.

The infinitesimal generator of R is the operator A, which is defined to act on
suitable functions f : R→ R by

Af(r) = lim
t↓0

Er[f(Rt)]− f(r)

t
.

The set of all functions f for which this limit exists at a point r is denoted DA(r),
while DA denotes the set of all f ’s for which the limit exists for all r ∈ R. One
can show that any compactly-supported C2 function f lies in DA and that

Af(r) = b(r)
∂f

∂r
+

1

2
σ2(r)

∂2f

∂r∂r
. (3)

The distribution of a diffusion process is characterise by the drift b(r) and the
variance σ2(r).

2 The model and statement of the main result

Let ε > 0 be a small parameter and l ≥ 12, s ≥ 0 be integers. Denote by
Os(ε) a Cs function whose Cs norm is bounded by Cε with C independent of
ε. Similar definition applies for a power of ε. As before Σ denotes {0, 1}Z and
ω = (. . . , ω0, . . . ) ∈ Σ.

Consider two nearly integrable maps:

fω : T× R −→ T× R

fω :

(
θ
r

)
7−→

(
θ + r + εuω0(θ, r) +Os(ε1+a, ω)

r + εvω0(θ, r) + ε2wω0(θ, r) +Os(ε2+a, ω)

)
. (4)

for ω0 ∈ {−1, 1}, where uω0 , vω0 , and wω0 are bounded Cl functions, 1-periodic in
θ, Os(ε1+a, ω) and Os(ε2+a, ω) denote remainders depending on ω and uniformly
Cs bounded in ω, and a > 1/2. Assume

max |vi(θ, r)| ≤ 1,
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where maximum is taken over i = −1, 1 and all (θ, r) ∈ A, otherwise, renormalize
ε.

We study random iterations of the maps f1 and f−1, such that at each step
the probability of performing either map is 1/2. Importance of understanding
iterations of several maps for problems of diffusion is well known (see e.g. [24, 33]).

Denote the expected potential and the difference of potentials by

Eu(θ, r) :=
1

2
(u1(θ, r) + u−1(θ, r)), Ev(θ, r) :=

1

2
(v1(θ, r) + v−1(θ, r)),

u(θ, r) :=
1

2
(u1(θ, r)− u−1(θ, r)), v(θ, r) :=

1

2
(v1(θ, r)− v−1(θ, r)).

Suppose the following assumptions hold:

[H0] (zero average) Let for each r ∈ R and i = ±1 we have
∫
vi(θ, r) dθ = 0.

[H1] (no common zeroes) For each integer n ∈ Z potentials v1(θ, n) and v−1(θ, n)
have no common zeroes and, equivalently, f1 and f−1 have no fixed points;

[H2] for each r ∈ R we have
∫ 1

0
v2(θ, r)dθ =: σ(r) 6= 0;

[H3] The functions vi(θ, r) are trigonometric polynomials in θ, i.e. for some
positive integer d we have

vi(θ, r) =
∑

k∈Z, |k|≤d

v(k)(r) exp 2πikθ.

For ω ∈ {−1, 1}Z we can rewrite the maps fω in the following form:

fω

(
θ
r

)
7−→

(
θ + r + εEu(θ, r) + εω0u(θ, r) +Os(ε1+a, ω)

r + εEv(θ, r) + εω0v(θ, r) + ε2wω0(θ, r) +Os(ε2+a, ω)

)
.

Let n be positive integer and ωk ∈ {−1, 1}, k = 0, . . . , n− 1, be independent
random variables with P{ωk = ±1} = 1/2 and Ωn = {ω0, . . . , ωn−1}. Given an
initial condition (θ0, r0) we denote:

(θn, rn) := fnΩn(θ0, r0) = fωn−1 ◦ fωn−2 ◦ · · · ◦ fω0(θ0, r0). (5)

[H4] (no common periodic orbits) Suppose for any rational r = p/q ∈ Q with
p, q relatively prime, 1 ≤ |q| ≤ 2d and any θ ∈ T

q∑
k=1

[
v−1(θ +

k

q
, r)− v1(θ +

k

q
, r)

]2

6= 0.

This prohibits f1 and f−1 to have common periodic orbits of period |q|.
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[H5] (no degenerate periodic points) Suppose for any rational r = p/q ∈ Q with
p, q relatively prime, 1 ≤ |q| ≤ d, the function:

Evp,q(θ, r) =
∑
k∈Z

0<|kq|<d

Evkq(r)e2πikqθ

has distinct non-degenerate zeroes, where Evj(r) denotes the j–th Fourier
coefficient of Ev(θ, r).

A straightforward calculation shows that:

θn = θ0 + nr0 + ε

n−1∑
k=0

(Eu(θk, rk) + Ev(θk, rk))

+ε
n−1∑
k=0

ωk (u(θk, rk) + v(θk, rk)) +Os(nε1+a)

rn = r0 + ε
n−1∑
k=0

Ev(θk, rk) + ε
n−1∑
k=0

ωkv(θk, rk) +Os(nε2+a)

(6)

Even though these maps might not be area-preserving, using normal forms we
will simplify these maps significantly on a large domain of the cylinder.

Theorem 2.1. Assume that in the notations above conditions [H0-H5] hold.
Let nεε

2 → s > 0 as ε → 0 for some s > 0. Then as ε → 0 the distribution of
rnε − r0 converges weakly to Rs, where R• is a diffusion process of the form (2),
with the drift and the variance

b(R) =

∫ 1

0

E2(θ, R) dθ, σ2(R) =

∫ 1

0

v2(θ, R) dθ.

for some function E2, defined in (11).

• In the case that u±1 = v±1 and they are independent of r we have two
area-preserving standard maps. In this case the assumptions become

– [H0]
∫
vi(θ)dθ = 0 for i = ±1;

– [H1] v1 and v−1 have no common zeroes;

– [H2] v is not identically zero.

– [H3] the functions vi are trigonometric polynomials;

– [H4] the same condition as above without dependence on r;
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– [H5] the same condition as above without dependence on r;

A good example is u1(θ) = v1(θ) = cos θ and u−1(θ) = v−1(θ) = sin θ. In
this case ∫ 1

0

E2(θ, r)dθ ≡ 0, σ2 =

∫ 1

0

v2(θ) dθ

and for n ≤ ε−2 the distribution rn−r0 converges to the zero mean variance
εn2σ2 normal distribution, denoted N (0, εn2σ2). More generally, we have
the following “vertical central limit theorem”:

Theorem 2.2. Assume that in the notations above conditions [H0-H5]
hold. Let nεε

2 → s > 0 as ε → 0 for some s > 0. Then as ε → 0
the distribution of rnε − r0 converges weakly to a normal random variable
N (0, s2σ2).

• Numerical experiments of Mockel [32] show that no common fixed points
[H1] (resp. [H4]) is not neccessary for Theorem 2.1 to hold. One could
probably replaced by a weaker non-degeneracy condition, e.g. that the
linearisation of maps f±1 at the common fixed point (resp. periodic points)
are different.

• In [35] Sauzin studies random iterations of the standard maps (θ, r)→ (θ+
r+λφ(θ), r+λφ(θ)), where λ is chosen randomly from {−1, 0, 1} and proves
the vertical central limit theorem; In [30, 36] Marco-Sauzin present examples
of nearly integrable systems having a set of initial conditions exhibiting the
vertical central limit theorem.

• In [29] Marco derives a sufficient condition for a skew-shift to be a step
skew-shift.

• The condition [H3] that the functions vi are trigonometric polynomials in θ
seems redundant too, however, removing it leads to considerable technical
difficulties (see Section 3.2 and Remark 3.1). In short, for perturbations
by a trigonometric polynomial there are finitely many resonant zones. This
finiteness considerably simplifies the analysis.

• One can replace Σ = {0, 1}Z with ΣN = {0, 1, . . . , N − 1}Z, consider any
finite number of maps of the form (4) and a transitive Markov chain with
some transition probabilities. If conditions [H2–H4] are satisfied for the
proper averages Ev of v, then Theorem 2.1 holds.
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3 Strategy of the proof

3.1 Strip decomposition

The main idea of the proof is to divide the cylinder A in strips T × I iβ, where

Ijβ ⊂ R, j ∈ Z are intervals of size εβ, for any 0 < β ≤ 1/5. Then we will study
how the random variable rn−r0 behaves in each strip. More precisely, decompose
the process rn(ω), n ∈ Z+ into infinitely many time intervals defined by stopping
times

0 < n1 < n2 < . . . , (7)

where

• rni(ω) is ε-close to the boundary between Ijβ and Ij+1
β for some j ∈ Z

• rni+1
(ω) is ε-close to the other boundary of either Ijβ or of Ij+1

β and ni+1 > ni
is the smallest integer with this property.

Since ε � εβ, being ε-close to the boundary of Ijβ with a negligible error means

jump from Ijβ to the neighbour interval Ij±1
β . In what follows for brevity we drop

dependence of rn(ω)’s on ω.

3.2 Subdivision of the cylinder into domains with differ-
ent quantitative behaviour

Fix b > 0 such that 0 < β − 2b < 0.04, small γ > 0, and Ki := Ki(u1, v1, u2, v2),
i = 1, 2, depending on functions uj, vj, j = 1, 2, such that K1 < K2 and all are
independent of ε. Consider the εβ-grid in R. Denote by Iβ a segment whose end
points are in the grid. We distinguish among three types of strips Iβ. We will
have strips of three types as well as transition zones from one to another. We
define:

• The Real Rational (RR) case: A strip Iβ is called real rational if there
exists a rational p/q ∈ Iβ, with gcd(p, q) = 1 and |q| ≤ d. Clearly, there
are just finitely many strips of this kind. However, this case is the most
complicated one and requires a detailed study.

• The Imaginary Rational (IR) case: A strip Iβ is called imaginary
rational if there exists a rational p/q ∈ Iβ, with gcd(p, q) = 1 with d <
|q| < ε−b.
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The reason we call these strips are imaginary rational, because the leading
term of the angular dynamics is a rational rotation, however, averaged
systems appearing in the previous case are vanishing (see the next section).

We show that the imaginary rational strips occupy an O(ερ)-fraction of the
cylinder (see Lm. A.1 in Sect. A). We can show that orbits spend small
fraction of the total time in these strips and global behaviour is determined
by behaviours in the complement, which we call totally irrational.

• The Totally Irrational (TI) case: A strip Iβ is called totally irrational
if r ∈ Iβ and |r − p/q| < εβ, with gcd(p, q) = 1, then |q| > ε−b.

In this case, we show that there is a good “ergodization” and

n−1∑
k=0

ωkv

(
θ0 + k

p

q

)
≈

n−1∑
k=0

ωkv (θ0 + kr∗0) .

Loosely speaking, any r∗0 ∈ Iβ ∩ (R \ Q) can be treated as an irrational.
These strips cover most of the cylinder and give the dominant contribution
to the behaviour of rn − r0. Eventually it will lead to the desired weak
convergence to a diffusion process (Theorem 2.1).

• Transition zones, type I: A zone is a transition zone if there is p/q such
that gcd(p, q) = 1 and |q| ≤ d and it is defined by the corresponding annuli
K1ε

1/2 ≤ |r − p/q| ≤ K2ε
1/6.

Analysis in these zones needs to be adapted as “influence” of real resonances
is strong.

• Transition zones, type II: A zone is a transition zone if there is p/q such
that gcd(p, q) = 1 and |q| ≤ d and it is defined by the corresponding annuli
K2ε

1/6 ≤ |r − p/q| ≤ γ.

Analysis in these zones requires an adjusted coordinates, otherwise, we still
study the Totally Irrational and the Imaginary Rational strips inside of the
type II Transition Zones.

Remark 3.1. Notice that finiteness of Real Rational strips follows from assump-
tion [H3]. If the expected potential is not a trigonometric polynomial in θ this is
not true.

3.3 The normal form

The first step is to find a normal form, so that the deterministic part of map
(6) is as simple as possible. In short, we shall see that the deterministic system
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in both the Totally Irrational case and the Imaginary rational case are a small
perturbation of the perfect twist map:(

θ
r

)
7−→

(
θ + r
r

)
.

On the contrary, in the Real Rational case, the deterministic system will be close
to a pendulum-like system:(

θ
r

)
7−→

(
θ + r

r + εE(θ, r)

)
,

for an “averaged” potential E(θ, r) (see e.g. Thm. 4.2, (12)). We note that this
system has the following approximate first integral:

H(θ, r) =
r2

2
− ε

∫ θ

0

E(s, r)ds, (8)

so that indeed it is close to a pendulum-like system. This will lead to different
qualitative behaviours when considering the random system. Inside the Real
Rational strips as well as the transition zones we use H as one of the coordinates.

The rigorous statement of these results about the normal forms is given in
Theorem 4.2, Sect. 4.

3.4 Analysis of the Martingale problem in each kind of
strip

The next step is to study the behaviour of the random system respectively in
Totally Irrational, Imaginary Rational and Real Rational strips, as well as in the
Transition Zones. This is done in Sections 5.1–5.6. More precisely, we use a
discrete version of the scheme by Freidlin and Wentzell [20], giving a sufficient
condition to have weak convergence to a diffusion process as ε→ 0 in terms of the
associated Martingale problem (see Lemma C.1). Now using the results proved
below we derive the main result — Theorem 2.1. This is done in two steps. First,
we describe local behaviour in each strip and then we combine the information.
Fix s > 0.

By the discrete version of Lemma C.1 is sufficient to prove that as ε→ 0 any
time n ≤ sε−2 and any (θ0, r0) we have

E
(
e−λε

2nf(rn)+

ε2
n−1∑
k=0

e−λε
2k

[
λf(rk)−

(
b(rk)f

′(rk) +
σ2(rk)

2
f ′′(rk)

)])
− f(r0)→ 0,

(9)
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We define Markov times 0 = n0 < n1 < n2 < · · · < nm−1 < nm < n for some
random m = m(ω) such that each nk is the stopping time as in (7). Almost
surely m(ω) is finite. We decompose the above sum

m∑
k=0

E
(
e−λε

2nk+1f(rnk+1
)− e−λε2nkf(rnk)+

ε2

nk+1∑
s=nk

e−λε
2s

[
λf(rs)−

(
b(rs)f

′(rs) +
σ2(rs)

2
f ′′(rs)

)])

and show that it converges to f(r0).

3.4.1 A Totally Irrational Strip

Let the drift and the variance be

b(r) =

∫ 1

0

E2(θ, r) dθ and σ2(r) =

∫ 1

0

v2(θ, r) dθ,

where the function E2 is defined in (11). Let r0 be ε-close to the boundary of two
totally irrational strips and let nβ be stopping of hitting ε-neighbourhoods of the
adjacent boundaries. In Lemma 5.3 we prove that

E
(
e−λε

2nβf(rnβ)+

ε2

nβ−1∑
k=0

e−λε
2k

[
λf(rk)−

(
b(rk)f

′(rk) +
σ2(rk)

2
f ′′(rk)

)])
−f(r0) = O(ε2β+d),

for some d > 0.

3.4.2 An Imaginary Rational Strip

Let the drift and the variance be

bIR(θ, r) =
1

q

q−1∑
k=0

E2(θ + kr, r) and σ2
IR(θ, r) =

1

q

q−1∑
k=0

v2(θ + kr, r).

Let r0 be ε-close to the boundary of an imaginary rational strip and let nβ be
stopping of hitting ε-neighbourhoods of the adjacent boundaries. In Lemma 5.5
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we prove that

E
(
e−λε

2nβf(rnβ)+

ε2

nβ−1∑
k=0

e−λε
2k

[
λf(rk)−

(
b(θk, rk)f

′(rk) +
σ2(θk, rk)

2
f ′′(rk)

)])
−f(r0) = O(ε2β+d),

As one can see, the limiting process does not take place on a line, since the drift
and diffusion coefficient depend also on the variable θ.

Notice that the drift b(θ, r) and the variance σ(θ, r) both are θ-dependent
functions. In Section 3.5 we show that time spent in these strips is too small to
affect the drift and the variance of the limiting process.

3.4.3 A Real Rational Strip

Let in the rescaled variable r − p/q = R
√
ε the drift and the variance be

bRR(θ, R) = F (θ, R), σ2
RR(θ, R) = (Rp/q)2

q−1∑
k=0

v2(θ + kR,R),

where F is some function to be defined in (102). Consider the Real Rational case
assuming that

|r − p/q| ≤ K1ε
1/2 ⇐⇒ |R| ≤ K1

that is, that r is close to the “pendulum” domain. In this case, we study the
process (θqn, Hn) with Hn := Hp/q(θqn, Rqn), where Hp/q(θ, R) is an approximate
first integral of the deterministic system (8). In the rescaled variables it has the
form

Hp/q(θ, R) =
R2

2
− V p/q(θ),

where

V p/q(θ) =

∫ θ

0

Evp,q(s, p/q) ds

for a properly defined averaged potential (see Thm. 4.2, (14)). In Lemma 5.11
we prove that, Hn −H0 converges weakly to a diffusion process Rt with t = ε2n.

Notice that the limiting process does not take place on a line. In this case it
takes place on a graph, similarly as in [20]. More precisely, consider the level sets
of the function Hp/q(θ, R). The critical points of the potential V p/q(θ) give rise
to critical points of the associated Hamiltonian system. Moreover, if the critical
point is a local minimum of V , then it corresponds to a focus of the Hamiltonian
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system, while if it is a local maximum of V p/q, then it corresponds to a saddle
of the Hamiltonian system. Now, if for every value H ∈ R we identify all the
points (θ, R) in the same connected component of the curve {Hp/q(θ, R) = H},
we obtain a graph Γ (see Figure 2 for an example). The interior vertices of this
graph represent the saddle points of the underlying Hamiltonian system jointly
with their separatrices, while the exterior vertices represent the focuses of the
underlying Hamiltonian system. Finally, the edges of the graph represent the
domains that have the separatrices as boundaries. The process Hn takes places
on this graph, and so it is a diffusion process on a graph.

Figure 2: (a) A potential and the phase portrait of its corresponding Hamiltonian
system. (b) The associated graph Γ.

3.4.4 A transition zone

Finally, in Lemma 5.14 we deal with the Transition Zones of Type I and Type
II, that is the zones in the Real Rational strips such that K1 ≤ |R| ≤ K2ε

−1/3

and K2ε
−1/3 ≤ |R| ≤ γε−1/2. In these strips we study the process (θnq, Hnq) =

(θnq, H(θqn, Rqn)). In this regime we fix small ρ > 0 and subdivide each zone in
sub-strips

Iρ(R0) = {H ∈ R : |H −H0| ≤ |R0| ε1/2−ρ}.
We prove that, inside each of one these sub-strips, as ε→ 0 the process Hn−H0

converges weakly to a diffusion process Rt with t = ε2n, zero drift and the
variance:

σ2
TZ(θ, R) = |R|2

q−1∑
k=0

v2(θ + kR,R).
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3.5 From the local diffusion in the rational strips to the
global diffusion on the line

In this section we resolve the following problem. In order to combine all the
previous results, which characterise the local behaviour of the process inside of
infinitesimally small strips, to determine the global behaviour of the process in
a O(1)−strip. First, we prove that the Imaginary Rational and Real Rational
strips cover a negligibly small part of any O(1)−strip (see Section A). Then, one
can argue that the process is determined by the process in the Totally Irrational
strips.

Notice both the drift bIR(θ, r) and the variance bIR(θ, r) at any Imaginary
Rational strip is given by θ-dependent functions. Our main result (Theorem
2.1), however, is a diffusion process on a line. To prove that this dependence
does not enter into the global diffusion process we show that the process spends
infinitesimal amount of time inside of those strips as follows.

Lemma 3.2. Let (θk, rk) = fkΩk(θ0, r0), k ≥ 1 be a random orbit defined by (5)
for some random sequence {ωk}k∈Z+. Let n ≤ ε−2 and

TR(n) = #{0 ≤ k ≤ n : rk belongs to either

an Imaginary Rational or a Real Rational strip}.

Then for any ρ > 0 and ε > 0 small enough

P{TR(n) ≥ ρn} ≤ ρ.

Proof. Define

bIR(r) := min
θ∈[0,1)

bIR(θ, r) and σ2
IR(r) := min

θ∈[0,1)
σ2
IR(θ, r)

Consider the process RIR
t with the drift bIR(r) and the variance σ2

IR(r). By
definition this process spends more time in Iβ that the process with the drift
bIR(θ, r) and the variance σ2

IR(θ, r). Moreover, it is a diffusion process on a line.
Then, using a local time argument, it can be seen that the time spent on a
given domain is proportional to the size of this domain up to a uniform constant.
Hence, the time the original process spends in all the Imaginary Rational strips
is infinitesimally small compared to the time it spends on the Totally Irrational
ones. However, the time spent in the Imaginary Rational strip could be infinite
and the argument would not be valid. This cannot happen, since if r belongs
to an Imaginary Rational strip one has that σ2(θ, r) 6= 0. Thus, it is enough to
prove that for all imaginary rational p/q one has σ2(θ, p/q) 6= 0. Indeed, if this is
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true, then for |r − p/q| ≤ εβ and ε is sufficiently small, one has that σ2(θ, r) 6= 0
by Lemma 3.3.

Finally, in the Real Rational case one can use a result from [19] that diffusion
processes on a graph have well-defined local time. Thus, the time spent in all the
Real Rational strips is infinitesimally small compared to the time spent in the
Totally Irrational ones. Now one can have σ2

RR = 0, but it happens just when
r = p/q, which follows directly from assumption [H2]. In this case, one can see
that bRR(θ, r) 6= 0, so that the process is non-degenerate and thus the fraction of
time spend in the Real Rational strips is less than any ahead given fraction.

Lemma 3.3. σ2(θ, p/q) 6= 0 if p/q is any Imaginary Rational.

Proof. On the one hand, if d < |q| ≤ 2d this is ensured by hypothesis [H4]. On
the other hand, if |q| > 2d then σ2(θ, p/q) = 0 implies:

v(θ + kp/q, p/q) = 0, k = 0, · · · , q − 1. (10)

Now, since v(θ, p/q) is a trigonometric polynomial in θ of degree d, it can have at
most 2d zeros, or else be identically equal to zero. The latter case cannot occur,
since by assumption [H2] we know that∫ 1

0

v2(θ, r) 6= 0 for all r ∈ R,

so that v(θ, p/q) 6≡ 0. Thus, v(θ, p/q) has at most 2d zeros. Consequently equa-
tion (10) cannot be satisfied for all k = 0, · · · , q − 1, since |q| > 2d, so that
σ2(θ, p/q) 6= 0. The same argument applies to the Transition Zones.

Combining these facts one can apply the arguments from [20], sect. 8 and
prove that the limiting diffusion process has the drift b(r) and the variance σ2(r)
corresponding to Totally Irrational strips.

3.6 Plan of the rest of the paper

In Section 4 we state and prove the normal form theorem for the expected cylinder
map Ef . Main difference with a typical normal form is that we need to have not
only the leading term in ε, but also ε2-terms. The latter terms give information
about the drift b(r) (see (11)).

In Section 5.1 we analyse the Totally Irrational case and prove approximation
for the expectation from Section 3.4.1.

In Section 5.2 we analyse the Imaginary Rational case and prove an analogous
formula from Section 3.4.2.
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In Section 5.3 we analyse the Real Rational case and prove an analogous
formula from Section 3.4.3.

In Section 5.6 we study the Transition Zones and prove an analogous formula
from Section 3.4.4.

In Section A we estimate measure of the complement to the Totally Irrational
strips and the Transition Zones of type II.

In Section C we present several auxiliary lemmas used in the proof.

4 The Normal Form Theorem

In this section we shall prove the Normal Form Theorem, which will allow us
to deal with the simplest possible deterministic system. To this end, we shall
enunciate a technical lemma which we will need in the proof of the theorem.
This is a simplified version (sufficient for our purposes) of Lemma 3.1 in [5].

Lemma 4.1. Let g(θ, r) ∈ Cl (T×B), where B ⊂ R. Then:

1. If l0 ≤ l and k 6= 0, ‖gk(r)e2πikθ‖Cl0 ≤ |k|l0−l‖g‖Cl.

2. Let gk(r) be some functions that satisfy ‖∂rαgk‖C0 ≤M |k|−α−2 for all α ≤ l0
and some M > 0. Then:∥∥∥∥∥∥∥

∑
k∈Z

0<k≤d

gk(r)e
2πikθ

∥∥∥∥∥∥∥
Cl0

≤ cM,

for some constant c depending on l0.

Let R be the finite set of resonances of maps (4), namely,

R = {p/q ∈ Q : gcd(p, q) = 1, |q| < d}.

Denote by O(ε) a function whose C0-norm is bounded by Cε for some C inde-
pendent of ε.

Define

E2(θ, r) = Ev(θ, r) ∂θS1(θ, r) + Ew(θ, r), b(r) =

∫ 1

0

E2(θ, r)dθ, (11)

where S1 is a certain generating function defined in (21–22).
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Theorem 4.2. Consider the expected map Ef of the map (4)

Ef
(
θ
r

)
7−→

(
θ + r + εEu(θ, r) +Os(ε1+a)

r + εEv(θ, r) + ε2Ew(θ, r) +Os(ε2+a)

)
.

Assume that the functions Eu(θ, r), Ev(θ, r) and Ew(θ, r) are Cl, l ≥ 3 and
β > 0 small. Let 0 ≤ s ≤ l − 2. Then there exists K > 0 independent of ε and a
canonical change of variables:

Φ : T× R → T× R,
(θ̃, r̃) 7→ (θ, r),

such that:

• If |r̃ − p/q| ≥ β for all p/q ∈ R, then:

Φ−1 ◦ Ef ◦ Φ(θ̃, r̃) =(
θ̃ + r̃ + εEu(θ, r) + εE1(θ, r) +Os(ε1+a) +Os(ε2β−(2s+4))

r̃ + ε2E2(θ̃, r̃) +Os(ε2+a) +Os(ε3β−(3s+5))

)
,

(12)

where E1 and E2 are some Cl−1 functions. There exists a constant K such
that for any 0 ≤ s ≤ l − 1 one has:

‖E1‖Cs ≤ K‖Ev‖Cs+1 , ‖E2‖Cs ≤ Kβ−(2s+3).

Moreover, E2 verifies:

b(r) :=

∫ 1

0

E2(θ̃, r̃)dθ̃ =∫ 1

0

[
∂rEv(θ̃, r̃)∂θS1(θ̃, r̃)− ∂2

θS1(θ̃, r̃)
(
Eu(θ̃, r̃)− Ev(θ̃, r̃)

)]
dθ̃.

(13)

In particular, b(r) satisfies ‖b‖C0 ≤ K and in the area-preserving case (when
Eu(θ, r) = Ev(θ, r) = Ev(θ)), b(r) ≡ 0.

• If |r̃ − p/q| ≤ 2β for a given p/q ∈ R, then:

Φ−1 ◦ Ef ◦ Φ(θ̃, r̃) = (14)(
θ̃ + r̃ + ε

[
Eu(θ̃, p/q)− Ev(θ̃, p/q) + Evp,q(θ̃, p/q) + E3(θ̃)

]
+Os(ε1+a) +Os(ε3β−(2s+4))

r̃ + εEvp,q(θ̃, r̃) + ε2E4(θ̃, r̃) +Os(ε2+a) +Os(ε3β−(3s+5))

)
,

where Evp,q is the Cl function defined as:

Evp,q(θ̃, r̃) =
∑
k∈Rp,q

Evk(r̃)e2πikθ̃,
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and E3 is the Cl−1 function:

E3(θ̃) = −
∑
k 6∈Rp,q

i(Evk)′(p/q)
2πk

e2πikθ̃,

where Rp,q = {k ∈ Z : k 6= 0, |k| < d, kp/q ∈ Z}.
Moreover, E4 is a Cl−1 function and there exists a constant K such that for
all 0 ≤ s ≤ l − 1 one has:

‖E4‖Cs ≤ Kβ−(2s+3).

Also, Φ is C2-close to the identity. More precisely, there exists a constant M
independent of ε such that:

‖Φ− Id‖C2 ≤Mε. (15)

Proof. For each p/q ∈ R we will perform a different change. Since the procedure
is the same for all p/q ∈ R, from now on we fix p/q ∈ R. The procedure for the
rest is analogous.

We will consider the canonical change defined implicitly by a given generating
function S(θ, r̃) = θr̃ + εS1(θ, r̃), that is:

θ̃ = ∂r̃S(θ, r̃) = θ + ε∂r̃S1(θ, r̃)
r = ∂θS(θ, r̃) = r̃ + ε∂θS1(θ, r̃).

We shall start by writing explicitly the first orders of the ε-series of Φ−1 ◦Ef ◦Φ.
If (θ, r) = Φ(θ̃, r̃) is the change given by the generating function S, then one has:

Φ(θ̃, r̃) =(
θ̃ − ε∂r̃S1(θ̃, r̃) + ε2∂θ∂r̃S1(θ̃, r̃)∂r̃S1(θ̃, r̃) +Os(ε3‖∂2

θ∂r̃S1(∂r̃S1)2‖Cs)
r̃ + ε∂θS1(θ̃, r̃)− ε2∂2

θS1(θ̃, r̃)∂r̃S1(θ̃, r̃) +Os(ε3‖∂3
θS1(∂r̃S1)2‖Cs)

)
.

(16)

Its inverse is given by:

Φ−1(θ, r) =(
θ + ε∂r̃S1(θ, r)− ε2∂2

r̃S1(θ, r)∂θS1(θ, r) +Os(ε3‖∂3
r̃S1(∂θS1)2‖Cs)

r − ε∂θS1(θ, r) + ε2∂θ∂r̃S1(θ, r)∂θS1(θ, r) +Os(ε3‖∂θ∂2
r̃S1(∂θS1)2‖Cs)

)
.

(17)

Now, first we compute Ef ◦ Φ(θ̃, r̃). One can see that:

Ef ◦ Φ(θ̃, r̃) =

(
θ̃ + r̃ + εA1 + ε2A2 + ε3A3

r̃ + εB1 + ε2B2 + ε3B3

)
,
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where:

A1 = Eu(θ̃, r̃)− ∂r̃S1(θ̃, r̃) + ∂θS1(θ̃, r̃)

A2 = −∂θEu(θ̃, r̃)∂r̃S1(θ̃, r̃) + ∂rEu(θ̃, r̃)∂θS1(θ̃, r̃) + ∂θ∂r̃S1(θ̃, r̃)∂r̃S1(θ̃, r̃)

−∂2
θS1(θ̃, r̃)∂r̃S1(θ̃, r̃),

A3 = Os(‖∂2
θ∂r̃S1(∂r̃S1)2‖Cs) +Os(‖∂3

θS1(∂r̃S1)2‖Cs)
+Os(‖Eu‖Cs+1‖∂θS1‖Cs+1‖∂r̃S1‖Cs) +Os(‖Eu‖Cs+2(‖∂θS1‖Cs + ‖∂r̃S1‖Cs)2),

and:

B1 = Ev(θ̃, r̃) + ∂θS1(θ̃, r̃),

B2 = −∂θEv(θ̃, r̃)∂r̃S1(θ̃, r̃) + ∂rEv(θ̃, r̃)∂θS1(θ̃, r̃)

−∂2
θS1(θ̃, r̃)∂r̃S1(θ̃, r̃), (18)

B3 = Os(‖∂3
θS1(∂r̃S1)2‖Cs) +Os(‖Ev‖Cs+1‖∂θS1‖Cs+1‖∂r̃S1‖Cs)

+Os(‖Ev‖Cs+2(‖∂θS1‖Cs + ‖∂r̃S1‖Cs)2).

Then, using (17) one can see that:

Φ−1 ◦ Ef ◦ Φ(θ̃, r̃) =

(
θ̃ + r̃ + εÂ1 + ε2Â2

r̃ + εB̂1 + ε2B̂2 + ε3B̂3

)
, (19)

where:

Â1 = A1 + ∂r̃S1(θ̃ + r̃, r̃),

Â2 = A2 + εA3 +Os(‖∂θ∂r̃S1A1‖Cs) +Os(‖∂2
r̃S1B1‖Cs)

+Os(‖∂2
r̃S1∂θS1‖Cs),

and:

B̂1 = B1 − ∂θS1(θ̃ + r̃, r̃)

B̂2 = B2 − ∂2
θS1(θ̃ + r̃, r̃)A1 − ∂r̃∂θS1(θ̃ + r̃, r̃)B1

+∂θ∂r̃S1(θ̃ + r̃, r̃)∂θS1(θ̃ + r̃, r̃), (20)

B̂3 = B3 +Os(‖∂θ∂2
r̃S1(∂θS1)2‖Cs)

+Os(‖∂2
θS1(A2 + εA3)‖Cs + ‖∂θ∂r̃S1B2‖Cs)

+Os(‖∂3
θS1A

2
1‖Cs + ‖∂2

θ∂r̃S1A1B1‖Cs + ‖∂θ∂2
r̃S1B

2
1‖Cs)

+Os(‖∂2
θ∂r̃S1A1∂θS1‖Cs + ‖∂θ∂2

r̃S1B1∂θS1‖Cs)
+Os(‖∂θ∂r̃S1∂

2
θS1A1‖Cs + ‖(∂θ∂r̃S1)2B1‖Cs).

Now that we know the terms of order ε and ε2 of Φ−1◦Ef ◦Φ, we shall proceed
to find a suitable S1(θ, r̃) such that these terms are as simple as possible. More
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precisely, we want to simplify the second component of (19). Ideally we would
like that B̂1 = 0. Namely, we want to solve the following equation whenever it is
possible:

∂θS1(θ̃, r̃) + Ev(θ̃, r̃)− ∂θS1(θ̃ + r̃, r̃) = 0.

One can easily find a solution of this equation by solving the corresponding equa-
tion for the Fourier coefficients. To that aim, we write S1 and Ev in their Fourier
series:

S1(θ, r̃) =
∑
k∈Z

Sk1 (r̃)e2πikθ, (21)

Ev(θ, r) =
∑
k∈Z

0<|k|≤d

Evk(r)e2πikθ.

It is obvious that for k > d and k = 0 we can take Sk1 (r̃) = 0. For 0 < k ≤ d we
obtain the following homological equation for Sk1 (r̃):

2πikSk1 (r̃)
(
1− e2πikr̃

)
+ Evk(r) = 0. (22)

Clearly, this equation cannot be solved if e2πikr̃ = 1, i.e. if kr̃ ∈ Z. We note
that there exists a constant L, independent of ε, L < d−1, such that if r̃ 6= p/q
satisfies:

0 < |r̃ − p/q| ≤ L

then kr̃ 6∈ Z for all 0 < k ≤ d. Thus, restricting ourselves to the domain
|r̃− p/q| ≤ L, we have that if kp/q 6∈ Z equation (22) always has a solution, and
if kp/q ∈ Z this equation has a solution except at r̃ = p/q. Moreover, in the case
that the solution exists, it is equal to:

Sk1 (r̃) =
iEvk(r)

2πk (1− e2πikr̃)
.

We will modify this solution slightly to make it well defined also at r̃ = p/q. To
this end, let us consider a C∞ function µ(x) such that:

µ(x) =

{
1 if |x| ≤ 1,
0 if |x| ≥ 2,

and 0 < µ(x) < 1 if x ∈ (1, 2). Then we define:

µk(r̃) = µ

(
1− e2πikr̃

2πkβ

)
,

and take:

Sk1 (r̃) =
iEvk(r)(1− µk(r̃))

2πk(1− e2πikr̃)
. (23)
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We note that this function is well defined since the numerator is identically zero
in a neighbourhood of r̃ = p/q, the unique zero of the denominator (if it is a zero
indeed, that is, if k ∈ Rp,q). More precisely, we claim that:

µk(r̃) =


1 if k ∈ Rp,q and |r̃ − p/q| ≤ β/2,
0 if k ∈ Rp,q and |r̃ − p/q| ≥ 3β,
0 if k 6∈ Rp,q.

(24)

Indeed if k ∈ Rp,q there exists a constant M independent of r̃ and ε such that:

1

β
|r̃ − p/q|(1−M |r̃ − p/q|) ≤

∣∣∣∣1− e2πikr̃

2πkβ

∣∣∣∣ ≤ 1

β
|r̃ − p/q|(1 +M |r̃ − p/q|).

Then, on the one hand, if k ∈ Rp,q and |r̃ − p/q| ≤ β/2 we have:∣∣∣∣1− e2πikr̃

2πkβ

∣∣∣∣ ≤ 1

2
+
M

4
β < 1,

for β sufficiently small, and thus µk(r̃) = 1. On the other hand, if |r̃− p/q| ≥ 3β
then: ∣∣∣∣1− e2πikr̃

2πkβ

∣∣∣∣ ≥ 3− 9Mβ > 2,

for β sufficiently small, and thus µk(r̃) = 0. Finally, if k 6∈ Rp,q then:∣∣∣∣1− e2πikr̃

2πkβ

∣∣∣∣ ≥ M

β
> 2

for β sufficiently small and then we also have µk(r̃) = 0.
Now we proceed to check that the first order terms of (19) take the form (12)

if |r̃ − p/q| ≥ 3β and (14) if |r̃ − p/q| ≤ β/2. On the one hand, by definitions
(23) of the coefficients Sk1 (r̃) and (20) of B̂1, we have:

B̂1 =
∑

0<|k|≤d

µk(r̃)Evk(r̃)e2πikθ̃.

Then, recalling (24) we obtain:

B̂1 =


0 if |r̃ − p/q| ≥ 3β∑
k∈Rp,q

Evk(r̃)e2πikθ̃ = Evp,q(θ̃, r̃) if |r̃ − p/q| ≤ β/2. (25)

where we have used the definition (15) of Evp,q(θ̃, r̃). On the other hand, from
the definition (23) of Sk1 (r̃) one can check that:

−∂r̃S1(θ̃, r̃) + ∂r̃S1(θ̃ + r̃, r̃)

= −∂θS1(θ̃ + r̃, r̃)−
∑

0<|k|<d

i(Evk)′(r̃)(1− µk(r̃)) + iEvk(r̃)µ′k(r̃)
2πk

e2πikθ̃.
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Recalling definitions (20) of Â1 and (20) of B̂1, this implies that:

Â1 = Eu(θ̃, r̃)− Ev(θ̃, r̃) + B̂1 (26)

−
∑

0<|k|<d

i(Evk)′(r̃)(1− µk(r̃)) + iEvk(r̃)µ′k(r̃)
2πk

e2πikθ̃. (27)

Then we use (25) and (24) again, noting that µ′k(r̃) = 0 in both regions |r̃−p/q| ≥
3β and |r̃ − p/q| ≤ β/2. Moreover, we note that for |r̃ − p/q| ≤ β/2.

Evp,q(θ̃, r̃) = Evp,q(θ̃, p/q) +O(β),

(Evk)′(r̃) = (Evk)′(p/q) +O(β).

Define

E1(θ̃, r̃) = −
∑

0<|k|<d

i(Evk)′(r̃)
2πk

e2πikθ̃. (28)

Then the same holds for Eu(θ̃, r̃) and Ev(θ̃, r̃): recalling definition (15) of E3,
equation (26) yields:

Â1 =

{
Eu(θ̃, r̃)− Ev(θ̃, r̃) + E1(θ̃, r̃) if |r̃ − p/q| ≥ 3β,

∆E(θ̃, p/q) + Evp,q(θ̃) + E3(θ̃) +O(ε1/6) if |r̃ − p/q| ≤ β/2, (29)

where Eu(θ̃, p/q)− Ev(θ̃, p/q) = ∆E(θ̃, p/q). In conclusion, by (29) and (25) we
obtain that the first order terms of (17) coincide with the first order terms of
(12) and (14) in each region.

For the ε2−terms we rename B̂2 in the following way:

E2(θ̃, r̃) = B̂2|{|r̃−p/q|≥3β}, (30)

E4(θ̃, r̃) = B̂2|{|r̃−p/q|≤β/2}. (31)

Now we shall see that E2 verifies (13). To avoid long notation, in the following
we do not write explicitly that expressions Ai, Bi, Âi and B̂i are restricted to the
region {|r̃ − p/q| ≥ 3β}. We note that since in this region we have B̂1 = 0 by
(25), recalling the definition (20) of B̂1 it is clear that B1 = ∂θS1(θ̃+ r̃, r̃). Hence,
from definition (20) of B̂2 it is straightforward to see that:

B̂2 = B2 − ∂2
θS1(θ̃ + r̃, r̃)A1. (32)

Now we recall that Â1 = A1 + ∂r̃S1(θ̃+ r̃, r̃). Then, using (29), for |r̃− p/q| ≥ 3β
we obtain straightforwardly:

A1 = Eu(θ̃, r̃)− Ev(θ̃, r̃) + E1(θ̃, r̃)− ∂r̃S1(θ̃ + r̃, r̃). (33)
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Using this and the definition (18) of B2 in expression (32) one obtains:

E2(θ̃, r̃) = B̂2|{|r̃−p/q|≥3β} = −∂θEv(θ̃, r̃)∂r̃S1(θ̃, r̃) (34)

+∂rEv(θ̃, r̃)∂θS1(θ̃, r̃)

−∂2
θS1(θ̃, r̃)∂r̃S1(θ̃, r̃)

−∂2
θS1(θ̃ + r̃, r̃)[Eu(θ̃, r̃)− Ev(θ̃, r̃)

+E1(θ̃, r̃)− ∂r̃S1(θ̃ + r̃, r̃)].

Now we show that this expression has the claimed average (13). On the one hand,
it is clear that ∂2

θS1(θ̃, r̃)∂r̃S1(θ̃, r̃) and ∂2
θS1(θ̃+ r̃, r̃)∂r̃S1(θ̃+ r̃, r̃) have the same

average, so:∫ 1

0

−∂2
θS1(θ̃, r̃)∂r̃S1(θ̃, r̃) + ∂2

θS1(θ̃ + r̃, r̃)∂r̃S1(θ̃ + r̃, r̃)dθ̃ = 0.

On the other hand, writing explicitly the zeroth Fourier coefficient of the product,
one can see that:∫ 1

0

−∂θEv(θ̃, r̃)∂r̃S1(θ̃, r̃)− ∂2
θS1(θ̃ + r̃, r̃)E1(θ̃, r̃)dθ̃ = 0.

Thus, recalling (30) and using these two facts in equation (34) we obtain:∫ 1

0

E2(θ̃, r̃)dθ̃ =

∫ 1

0

[
∂rEv(θ̃, r̃)∂θS1(θ̃, r̃)− ∂2

θS1(θ̃, r̃)
(
Eu(θ̃, r̃)− Ev(θ̃, r̃)

)]
dθ̃,

so that (13) is proved.
We note that, from the definition (23) of the Fourier coefficients of S1, it is

clear that S1 is Cl with respect to r. Since it just has a finite number of nonzero
coefficients, it is analytic with respect to θ. Then, from the definitions (30) of E2

and (31) of E4 and the expression (20) of B̂2, it is clear that both E2 and E4 are
Cl−1.

Finally we shall bound the C0-norms of the functions E2, b(r) and E4 and
also the error terms. To that aim, first let us bound the Cl norms of S1 and its
derivatives. We will use Lemma 4.1 and proceed similarly as in [5]. We note that:

1. If µk(r̃) 6= 1 we have |1− e2πikr̃| > Mβ|k|, and thus:∣∣∣∣ 1

1− e2πikr̃

∣∣∣∣ < M−1β−1|k|−1.
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2. Then, using that ‖f ◦ g‖Cl ≤ C‖f|Im(g)
‖Cl
(
1 + ‖g‖lCl

)
, we get that:∥∥∥∥ 1

1− e2πikr̃

∥∥∥∥
Cl
≤Mβ−(l+1)|k|−(l+1),

for some constant M , not the same as item 1.

3. Using the rule for the norm of the composition again and the fact that ‖µ‖Cl
is bounded independently of β, we get:

‖µk(r̃)‖Cl ≤Mβ−l|k|−l,

for some constant M , and the same bound is obtained for ‖1− µk(r̃)‖Cl .

Using items 2 and 3 above and the fact that ‖Evk‖Cl are bounded, we get that:∥∥∥∥∂r̃α [1− µk(r̃)iEvk(r̃)
2πk(1− e2πikr̃)

]∥∥∥∥
C0
≤ M1

∑
α1+α2=α

1

2π|k|
‖1− µk(r̃)‖Cα1

∥∥∥∥ 1

1− e2πikr̃

∥∥∥∥
Cα2

≤ M2β
−(α+1)|k|−α−2.

Then, by item 2 of Lemma 4.1, we obtain:

‖S1‖Cl ≤Mβ−(l+1).

One can also see that ‖∂r̃S1‖Cl ≤M‖S1‖Cl+1 and ‖∂θS1‖Cl ≤M‖S1‖Cl . In general,
one has:

‖∂nθ ∂mr̃ S1‖Cl ≤Mβ−(l+m+1). (35)

Now, recalling definitions (30) of E2 and (31) of E4, and using either expression
(34) or simply (20), bound (35) yields that for 0 ≤ s ≤ l− 1 there exists some K
such that:

‖E2‖Cs ≤ Kβ−(2s+3), ‖E4‖C0 ≤ Kβ−(2s+3).

To bound b(r) we use again (35) and . Then from its definition (13) it is clear
that for 0 ≤ s ≤ l − 1 :

‖b‖Cs ≤ Kβ−(s+1).

Similarly, and taking into account that for n = 1, 2 we have ‖Eu‖Cs+n‖, ‖Ev‖Cs+n‖
because s ≤ l − 2, one can easily bound the error terms in the equation for r̃:

ε3B̂3 = Os(ε3β−(3s+5)), (36)

and the error terms for the equation of θ̃:

ε2Â2 = Os(ε2β−(2s+4)). (37)
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This finishes the proof for the normal forms (12) and (14) (in the latter case, we
have to take into account the extra error term of order O(ε1+a) caused by the β
–error term in (29)).

To prove (15), we just need to recall (16) and use (35). Then one obtains:

‖Φ− Id‖C2 ≤M ′ε‖S1‖C3 .

From now on we will consider that our deterministic system is in the normal
form, and drop tildes.

5 Analysis of the Martingale problem in the

strips of each type

5.1 The Totally Irrational case

First of all we note that in this case, as in the IR case, after performing the change
to normal form, the n-th iteration of our map can be written as:

θn = θ0 + nr0 +O(nε),

rn = r0 + ε
n−1∑
k=0

ωk[v(θk, rk) + εv2(θk, rk)] + ε2

n−1∑
k=0

E2(θk, rk) +O(nε2+a),

(38)
where v2(θ, r) is a given function which can be written explicitly in terms of v(θ, r)
and S1(θ, r).

Recall that Iβ is a totally irrational segment if p/q ∈ Iβ, then |q| > ε−b, where
0 < 2b < β.

We recall that we define b = (β − ρ)/2 for a certain 0 < ρ < β. In the
following we shall assume that ρ satisfies an extra condition, which will ensure
that certain inequalities are satisfied. This inequalities involve the degree of
differentiability of certain Cl functions. We assume that l ≥ 12. Then we have
that: l−11

l−1
> 0, liml→∞

l−11
l−1

= 1. Thus, there exists a constant R > 0 such that:

l − 11

l − 1
> R > 0, for all l ≥ 12. (39)

Given β, satisfying:
0 < β ≤ 1/5, (40)

then we will take ρ satisfying:

0 < ρ < Rβ. (41)

29



Lemma 5.1. Let g be a Cl function, l ≥ 12. Suppose r∗ satisfies the following
condition if for some rational p/q we have |r∗ − p/q| < εβ, then |q| > ε−b. Then
for any A such that

2β < A < (l − 1)b− β, 0 < τ = 1− 2A ≤ min{A− 2β, (l − 1)b− A− β, β}

and ε small enough there is N ≤ ε−A such that for some K independent of ε and
any θ∗ we have:∣∣∣∣∣N

∫ 1

0

g(θ, r∗)dθ −
N−1∑
k=0

g(θ∗ + kr∗, r∗)

∣∣∣∣∣ ≤ Kετ+β.

In particular, one can choose any 0 < β ≤ 1/5, A = 7β/3, τ = A − 2β =
β/3, b = β/3.

Proof. Denote g0(r) =
∫ 1

0
g(θ, r)dθ. Expand g(θ, r) in its Fourier series, i.e.:

g(θ, r) = g0(r) +
∑

m∈Z\{0}

gm(r)e2πimθ

for some gm(r) : R→ C. Then we have:

N−1∑
k=0

(g(θ∗ + kr∗, r∗)− g0(r∗)) =
N−1∑
k=0

∑
m∈Z\{0}

gm(r∗)e2πim(θ∗+kr∗,r∗))

=
N−1∑
k=0

∑
1≤|m|≤[ε−b]

gm(r∗)e2πim(θ∗+kr∗) +
N∑
k=0

∑
|m|≥[ε−b]

gm(r∗)e2πim(θ∗+kr∗)

=
∑

1≤|m|≤[ε−b]

gm(r∗)e2πimθ∗
N−1∑
k=0

e2πimkr∗ +
N−1∑
k=0

∑
|m|≥[ε−b]

gm(r∗)e2πim(θ∗+kr∗)

=
∑

1≤|m|≤[ε−b]

gm(r∗)e2πimθ∗ e
2πiNmr∗ − 1

e2πimr∗ − 1
+

N−1∑
k=0

∑
|m|≥[ε−b]

gm(r∗)e2πim(θ∗+kr∗).

(42)

To bound the first sum in (42) we distinguish into the following cases:

• If r∗ is rational p/q, we know that |q| > ε−b.

– If |q| ≤ ε−A, then pick N = |q| and the first sum vanishes.

– If |q| > ε−A, then by definition of r∗ for any s/m with |m| < ε−b

we have or |mr∗ − s| > εβ. By the pigeon hole principle there exist
integers 0 < N = q̃ < ε−A and p̃ such that |q̃r∗ − p̃| ≤ 2εA.
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• If r∗ is irrational, consider a continuous fraction expansion pn/qn → r∗ as
n → ∞. Choose p′/q′ = pn/qn with n such that qn+1 > ε−A. This implies
that |q′r∗ − p′| < 1/|qn+1| ≤ εA. The same argument as above shows that
for any |m| < ε−b we have |mr∗ − s| > εβ.

Let N be as above. Then∣∣∣∣∣∣
∑

1≤|m|≤[ε−b]

gm(r∗) e2πimθ∗ e
2πiNmr∗ − 1

e2πimr∗ − 1

∣∣∣∣∣∣ ≤ 2εA−β
∑

1≤|m|≤[ε−b]

|gm(r∗)|.

We point out that since g(θ, r) is Cl, then its Fourier coefficients satisfy |gm(r∗)| ≤
C|m|−l, m 6= 0. Thus we can bound the first sum in (42) by:∣∣∣∣∣∣

∑
1≤|m|≤[ε−b]

gm(r∗) e2πimθ∗ e
2πiNmr∗ − 1

e2πimr∗ − 1

∣∣∣∣∣∣ (43)

≤ εA−β
∑

1≤|m|≤[ε−b]

|gm(r∗)| ≤ CεA−β
∑

1≤|m|≤[ε−b]

1

m2
≤ KεA−β.

(44)

To bound the second sum we use again the bound for the Fourier coefficients
gm(r∗): ∣∣∣∣∣∣

N∑
k=0

∑
|m|≥[ε−b]

gm(r∗)e2πim(θ+kr∗)

∣∣∣∣∣∣ ≤ N
∑

|m|≥[ε−b]

1

ml
≤

KNε(l−1)b ≤ Kε(l−1)b−A.

(45)

Clearly, taking τ = 1−2A ≤ min{A−2β, (l−1)b−A−β, β}, and substituting
(43) and (45) in (42) we obtain the claim of the lemma.

Lemma 5.2. Let β satisfy (40), and b = (β−ρ)/2 with ρ satisfying (41). Let nβ
be an exit time of the process (θn, rn) defined by (38) from some bounded domain
Iβ. Let δ > 0 be small enough. Suppose that nβ ≥ ε−2(1−β)+δ. For all l ≥ 8 the
following holds:

1. Given two Cl functions h : R → R and g : T × R → R, there exists a
constant d > 0 such that:

ε2

nβ−1∑
k=0

e−λε
2kh(rk)(g(θk, rk)− g0(rk)) = O(εd),

where g0(r) =
∫ 1

0
g(θ, r)dθ.
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2. If nβ < ε−2(1−β)+δ, then given a Cl function g : T×R→ R and a collection
of functions hk : R → R, with ‖hk‖C0 ≤ M and ‖hk+1 − hk‖C0 ≤ Mε2 for
all k, there exists a constant d > 0 such that

ε2

nβ−1∑
k=0

hk(rk)(g(θk, rk)− g0(rk)) = O(ε2β+d),

where g0(r) =
∫ 1

0
g(θ, r)dθ.

Proof. We shall prove both claims using Lemma 5.1. To that aim fix 2β <
A < min{(l − 1)b − β, (1 − β)/2}. We note that (40) and (41) ensure that
2β < min{(l − 1)b− β, (1− β)/2}, so there always exists such A.

Since we have nβ ≥ ε−(1−β)+δ and we have taken A < (1 − β)/2 < 1 − β − δ
(the second inequality being satisfied because δ is small), we have ε−A < nβ.
Choose N < ε−A from Lemma 5.1 and write nβ = PβN + Qβ, for some integers
Pβ and 0 ≤ Qβ < N . Then:

ε2

∣∣∣∣∣∣
nβ−1∑
k=0

e−λε
2kh(rk)(g(θk, rk)− g0(rk))

∣∣∣∣∣∣
≤ ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

N−1∑
j=0

e−λε
2(kN+j)h(rkN+j)(g(θkN+j , rkN+j)− g0(rkN+j))

∣∣∣∣∣∣
+ ε2

∣∣∣∣∣∣
Qβ−1∑
j=0

e−λε
2(PβN+j)h(rPβN+j)(g(θPβN+j , rPβN+j)− g0(rPβN+j))

∣∣∣∣∣∣ .
(46)

Let us prove item 1. We shall bound the two terms in the right hand side of
(46) in a different way. Recall that in the normal form (12) we have

fω

(
θ
r

)
7→
(
θ + r + εEu(θ, r) + εωu(θ, r) +Os(ε1+a)

r + ε2E2(θ, r) +Os(ε2+a).

)
. (47)

On the one hand we have that for all k ≤ Pβ, and all j ≤ N :

rkN+j = rkN +O(Nε2), (48)

and:
θkN+j = θkN + jrkN +O(N2ε). (49)

Hence:

e−λε
2(kN+j)h(rkN+j)(g(θkN+j, rkN+j)− g0(rkN+j))

= e−λε
2kNh(rkN)(g(θkN + jrkN , rkN)− g0(rkN)) +O(e−λε

2kNN2ε).
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Then:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

N−1∑
j=0

e−λε
2(kN+j)h(rkN+j)(g(θkN+j, rkN+j)− g0(rkN+j))

∣∣∣∣∣∣
≤ ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

e−λε
2kNh(rkN)

N−1∑
j=0

(g(θkN + jrkN , rkN)− g0(rkN))

∣∣∣∣∣∣
+KN3ε3

Pβ−1∑
k=0

e−λε
2kN .

Thus, using Lemma 5.1 we obtain:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

e−λε
2kNh(rkN)

N−1∑
j=0

(g(θkN + jrkN , rkN)− g0(rkN))

∣∣∣∣∣∣
≤ Kε2+τ+β

Pβ−1∑
k=0

e−λε
2kN |h(rkN)| ≤ K̃ετ+β,

for some constants K, K̃ > 0. Moreover, we have:

KN3ε3

Pβ−1∑
k=0

e−λε
2kN ≤ K̃ε1+β−2A.

Thus:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

N−1∑
j=0

e−λε
2(kN+j)h(rkN+j)(g(θkN+j, rkN+j)− g0(rkN+j))

∣∣∣∣∣∣
≤ K(ετ+β + ε1+β−2A).

(50)

On the other hand we have:

ε2

∣∣∣∣∣∣
Qβ−1∑
j=0

e−λε
2(PβN+j)h(rPβN+j)(g(θPβN+j, rPβN+j)− g0(rPβN+j))

∣∣∣∣∣∣
≤ ε2K sup

(θ,r)∈Iβ
|h(r)(g(θ, r)− g0(r))|Qβ ≤ K̃ε2−A. (51)

In conclusion, using (50) and (51) in equation (46) we obtain:

ε2

∣∣∣∣∣
nβ−1∑
k=0

e−λε
2kh(rk)(g(θk, rk)− g0(rk))

∣∣∣∣∣ ≤ K(ε2−A + ε1+β−2A + ετ+β).
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Denoting d = min{2−A, 1 + β − 2A, τ + β}, and letting 1− 2A = τ ≥ β/3. The
proof of item 1 is complete.

Now let us prove item 2. The proof is very similar to item 1. We can use the
same formula (46) substituting e−λε

2kh(rk) by hk(rk). Again, using (48) and (49)
we can write:

hkN+j(rkN+j)(g(θkN+j, rkN+j)− g0(rkN+j))

= hkN(rkN)(g(θkN + jrkN , rkN)− g0(rkN)) +O(N2ε).

Then:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

N−1∑
j=0

hkN+j(rkN+j)(g(θkN+j, rkN+j)− g0(rkN+j))

∣∣∣∣∣∣
≤ ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

hkN(rkN)
N−1∑
j=0

(g(θkN + jrkN , rkN)− g0(rkN))

∣∣∣∣∣∣+KN3ε3Pβ.

Thus, using Lemma 5.1 we obtain:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

hkN(rkN)
N−1∑
j=0

(g(θkN + jrkN , rkN)− g0(rkN))

∣∣∣∣∣∣ ≤
Kε2+τ+βPβ ≤ Kετ+2β,

where we have used that Pβ ≤ nβ ≤ ε−2+2β−δ ≤ ε−2+β. For the same reason we
have Kε3−2APβ ≤ Kε1−2A+β.Thus:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

N−1∑
j=0

hkN+j(rkN+j)(g(θkN+j, rkN+j)− g0(rkN+j))

∣∣∣∣∣∣ ≤
K(ετ+2β + ε1−2A+β).

(52)

On the other hand we have:

ε2

∣∣∣∣∣∣
Qβ−1∑
j=0

hPβN+j(rPβN+j)(g(θPβN+j, rPβN+j)− g0(rPβN+j))

∣∣∣∣∣∣
≤ ε2KQβ ≤ K̃ε2−A. (53)

In conclusion, using (52) and (53) in equation (46) we obtain:

ε2

∣∣∣∣∣
nβ−1∑
k=0

e−λε
2khk(rk)(g(θk, rk)− g0(rk))

∣∣∣∣∣ ≤ K(ε2−A + ε1−2A+β + ετ+2β).

34



Choosing τ = 1−2A > 0 the last two terms are the same. In particular, A < 1/2
and 2− A > 3/2. Therefore, the first term is negligible.

Let r0 belong to the TI case. Consider an interval Iβ = {(θ, r) ∈ T × R :
|r − r0| ≤ εβ}, for some 0 < β ≤ 1/5. Denote nβ ∈ N the exit time from Iβ, that
is the first number such that (θnβ , rnβ) 6∈ Iβ.

Lemma 5.3. Let β satisfy (40), and b = (β − ρ)/2 with ρ satisfying (41). Take
f : R→ R be any Cl function with l ≥ 12. Then there exists d > 0 such that for
all λ > 0 one has:

E

(
e−λε

2nβf(rnβ) +

ε2

nβ−1∑
k=0

e−λε
2k

[
λf(rk)−

(
b(rk)f

′(rk) +
σ2(rk)

2
f ′′(rk)

)])
−f(r0) = O(ε2β+d),

where for E2(θ, r), defined in (11), we have

b(r) =

∫ 1

0

E2(θ, r)dθ, σ2(r) =

∫ 1

0

v2(θ, r)dθ.

Proof. Let us denote:

η = e−λε
2nβf(rnβ) + ε2

nβ−1∑
k=0

e−λε
2k

[
λf(rk)−

(
b(rk)f

′(rk) +
σ2(rk)

2
f ′′(rk)

)]
.

(54)
First of all we shall use the law of total expectation. Fix a small enough δ > 0.
Then we have:

E (η) = E
(
η | ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ)P{ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ}

+ E
(
η |nβ < ε−2(1−β)+δ

)
P{nβ < ε−2(1−β)+δ}

+ E
(
η |nβ > ε−2(1−β)−δ)P{nβ > ε−2(1−β)−δ}.

By Lemma C.2 for ε sufficiently small and c > 0 independent of ε we have

P{nβ < ε−2(1−β)+δ} ≤ exp
(
− c

ε2δ

)
. (55)

Now we write:

e−λε
2nβf(rnβ) = f(r0) +

nβ−1∑
k=0

(
e−λε

2(k+1)f(rk+1)− e−λε2kf(rk)
)
.
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Doing the Taylor expansion in each term inside the sum we get:

e−λε
2nβf(rnβ) = f(r0) +

nβ−1∑
k=0

[
−λε2e−λε

2kf(rk) + e−λε
2kf ′(rk)(rk+1 − rk)

+
1

2
e−λε

2kf ′′(rk)(rk+1 − rk)2 +O(e−λε
2kε3)

]
.

Substituting this in (54) we get:

η = f(r0) +

nβ−1∑
k=0

[
e−λε

2kf ′(rk)(rk+1 − rk) +
1

2
e−λε

2kf ′′(rk)(rk+1 − rk)2

]

−ε2

nβ−1∑
k=0

e−λε
2k

[
b(rk)f

′(rk) +
σ2(rk)

2
f ′′(rk)

]
+

nβ−1∑
k=0

O(e−λε
2kε3). (56)

We note that using (38) we can write:

rk+1 − rk = εωk[v(θk, rk) + εv2(θk, rk)] + ε2E2(θk, rk) +O(ε2+a),

and also:
(rk+1 − rk)2 = ε2v2(θk, rk) +O(ε3).

Thus we can rewrite (56) as:

η = f(r0) + ε

nβ−1∑
k=0

e−λε
2kf ′(rk)ωk [v(θk, rk) + εv2(θk, rk)]

+ε2

nβ−1∑
k=0

e−λε
2kf ′(rk) [E2(θk, rk)− b(rk)]

+
ε2

2

nβ−1∑
k=0

e−λε
2kf ′′(rk)

[
v2(θk, rk)− σ2(rk)

]
+

nβ−1∑
k=0

O(e−λε
2kε2+a). (57)

Now we distinguish between the case ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ and nβ >
ε−2(1−β)−δ. Consider the former case. First, we show that the last term in (57) is
O(εβ+d) for some d > 0. Indeed,∣∣∣∣∣

nβ−1∑
k=0

O(e−λε
2kε2+a)

∣∣∣∣∣ ≤ Kε2+anβ ≤ Kε2β+d, (58)
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where d = a− δ > 0 due to smallness of δ, and K is some positive constant. Now
we use item 2 of Lemma 5.2 in (57) twice. First we take hk(r) = e−λε

2kf ′(r) and
g(θ, r) = E2(θ, r), and after we take hk(r) = e−λε

2kf ′′(r) and g(θ, r) = v2(θ, r).
Then, recalling also (58), equation (57) for ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ yields:

η = f(r0) + ε

nβ−1∑
k=0

e−λε
2kf ′(rk)ωk [v(θk, rk) + εv2(θk, rk)] +O(ε2β+d). (59)

Now we focus on the case nβ > ε−2(1−β)−δ. The last term in (57) can be
bounded by:∣∣∣∣∣

nβ−1∑
k=0

O(e−λε
2kε2+a)

∣∣∣∣∣ ≤ Kε2+a

nβ−1∑
k=0

e−λε
2k = Kε2+a1− e−λε2nβ

1− e−λε2
≤ Kλε

a, (60)

for some positive constants K and Kλ. Similarly to the previous case, we use item
1 of Lemma 5.2 in (57) twice. First we take h(r) = f ′(r) and g(θ, r) = E2(θ, r),
and after we take h(r) = f ′′(r) and g(θ, r) = v2(θ, r). Using this and bound (60)
in equation (57), we obtain the following bound for nβ > ε−2(1−β)−δ:

η = f(r0) + ε

nβ−1∑
k=0

e−λε
2kf ′(rk)ωk [v(θk, rk) + εv2(θk, rk)] +O(εd). (61)

Now we just need to note that since ωk is independent of rk and θk, we have
for all k ∈ N:

E(ωkf
′(rk)[v(θk, rk) + εv2(θk, rk)]) =

E(ωk)E(f ′(rk)[v(θk, rk) + εv2(θk, rk)]) = 0,

because E(ωk) = 0. Thus, denoting nε = [ε−2(1−β)+δ], if we take expectations in
(59) and (61) and use the total expectation formula, it is clear that:

E(η)− f(r0)

= ε
∑
n∈N
n≥nε

E

(
n−1∑
k=0

e−λε
2kf ′(rk)ωk [v(θk, rk) + εv2(θk, rk])

)
P{nβ = n}

+ O (ε2β+d)P{ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ}+O(εd)P{nβ > ε−2(1−β)−δ}

= ε
∑
n∈N
n≥nε

(
n−1∑
k=0

e−λε
2kE(f ′(rk)ωk [v(θk, rk) + εv2(θk, rk)])

)
P{nβ = n} (62)

+ O (ε2β+d)P{ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ}+O(εd)P{nβ > ε−2(1−β)−δ}
= O (ε2β+d)P{ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ}+O(εd)P{nβ > ε−2(1−β)−δ}
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By Lemma C.2 there exists a constant a > 0 such that:

P{nβ > ε−2(1−β)−δ} = O
(
e−

a

εδ

)
. (63)

Clearly, if (63) is true then P{nβ > ε−2(1−β)−δ} is smaller than any order of ε and
then (62) finishes the proof of the lemma.

To prove (63), let us define nδ := [ε−2(1−β)−δ]. Define also ni := i[ε−2(1−β)],
i = 0, . . . , [ε−δ]. Clearly, if nβ > ε−2(1−β)−δ, then |rni+1

− rni | < 2εβ for all i. In
other words, we have that:

P{nβ > ε−2(1−β)−δ} ≤ P{|rni+1
− rni | < 2εβ for all i = 0, . . . , [ε−δ]}

=

[ε−δ]∏
i=0

P{|rni+1
− rni | < 2εβ}, (64)

where in the last equality we have used that rni+1
− rni and rnj+1

− rnj are
independent if i 6= j.

Now, take any i. Then:

rni+1
− rni = ε

ni+1−1∑
i=ni

ωkv(θk, rk) +O(ε2(ni − ni+1)).

Note that ε2(ni − ni+1) = ε2[ε−2(1−β)] ≤ ε2β. Thus:

ε

∣∣∣∣∣
ni+1−1∑
i=ni

ωkv(θk, rk)

∣∣∣∣∣−O(ε2β) ≤ |rni+1
− rni|. (65)

As a consequence, if |rni+1
−rni | ≤ 2εβ then ε

∣∣∑ni+1−1
i=ni

ωkv(θk, rk)
∣∣ ≤ 3εβ. Indeed,

if this latter inequality does not hold, then:

ε

∣∣∣∣∣
ni+1−1∑
i=ni

ωkv(θk, rk)

∣∣∣∣∣−O(ε2β) > 3εβ(1−O(εβ)) ≥ 2εβ ≥ |rni+1
− rni |,

which is a contraditciton with (65). In other words:

P{|rni+1
− rni | < 2εβ} ≤ P

{
ε

∣∣∣∣∣
ni+1−1∑
i=ni

ωkv(θk, rk)

∣∣∣∣∣ ≤ 3εβ

}
.

Now by Lemma C.2 that (ni+1 − ni)−1/2
∑ni+1−1

k=ni
ωkv(θk, rk) converges in distri-

bution to ξ ∼ N (0, c2) for some c > 0.
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Thus, using that ni+1 − ni = [ε−2(1−β)], as ε→ 0 we obtain:

P

{
ε

∣∣∣∣∣
ni+1−1∑
i=ni

ωkv(θk, rk)

∣∣∣∣∣ ≤ 3εβ

}
= P{|ξ| ≤ 3}+ o(1) ≤ ρ < 1,

for some constant ρ > 0. Then, using this in (64) we get:

P{nβ > ε−2(1−β)−δ} ≤ ρ1/εδ .

Defining a = − log ρ > 0 (because ρ < 1) we obtain claim (63).

5.2 The Imaginary Rational case

In this section we deal with the imaginary rational case. The ideas are basically
the same as in the TI case. Recall that after performing the change to normal
form the n-th iteration of our map can be written as:

θn = θ0 + nr0 +O(nε),

rn = r0 + ε
n−1∑
k=0

ωk[v(θk, rk) + εv2(θk, rk)]

+ε2
∑n−1

k=0 E2(θk, rk) +O(nε2+a),

(66)

where v2(θ, r) is a given function which can be written explicitly in terms of v(θ, r)
and S1(θ, r).

We also recall that given an imaginary rational strip Iβ there exists a unique
r∗ ∈ Iβ, with r∗ = p/q and |q| < ε−b. Moreover, for all r0 ∈ Iβ we have
|r0 − r∗| ≤ εβ. Then by (66) for any n ≤ nβ we have:

θn = θ0 + nr∗ +O(nεβ),

rn = r∗ +O(εβ).
(67)

Define

g0(θ, r) =
1

q

q−1∑
i=0

g(θ + ir, r). (68)

Lemma 5.4. Let β satisfy (40), and b = (β−ρ)/2 with ρ satisfying (41). Let nβ
be an exit time of the process (θn, rn) defined by (38) from some bounded domain
Iβ. For all l ≥ 1 the following holds:

1. Given two Cl functions h : R → R and g : T × R → R, there exists a
constant d > 0 such that:

ε2

nβ−1∑
k=0

e−λε
2kh(rk)(g(θk, rk)− g0(θk, rk)) = O(εd).
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2. If nβ < ε−2+β, then given a Cl function g : T × R → R and a collection of
functions hk : R → R, with ‖hk‖C0 ≤ M and ‖hk+1 − hk‖C0 ≤ Mε2 for all
k, there exists a constant d > 0 such that:

ε2

nβ−1∑
k=0

hk(rk)(g(θk, rk)− g0(θk, rk)) = O(ε2β+d).

Proof. Let us start with item 1. Write nβ = Pβq +Qβ, for some integers Pβ and
0 ≤ Qβ < q. Then:

ε2

∣∣∣∣∣
nβ−1∑
k=0

e−λε
2kh(rk)(g(θk, rk)− g0(θk, rk))

∣∣∣∣∣
≤ ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

q−1∑
j=0

e−λε
2(kq+j)h(rkq+j)(g(θkq+j, rkq+j)− g0(θkq+j, rkq+j))

∣∣∣∣∣∣
+ ε2

∣∣∣∣∣∣
Qβ−1∑
j=0

e−λε
2(Pβq+j)h(rPβq+j)(g(θPβq+j, rPβq+j)− g0(θPβq+j, rPβq+j))

∣∣∣∣∣∣ .
(69)

On the one hand, we note that by (67) and j ≤ q < ε−b we have

θkq+j = θkq + jr∗ +O(εβ−b),

rkq+j = r∗ +O(εβ).

Then for all k ≤ Pβ:

e−λε
2(kq+j)h(rkq+j)(g(θkq+j, rkq+j)− g0(θkq+j, rkq+j))

= e−λε
2kqh(rkq)(g(θkq + jr∗, r∗)− g0(θkq + jr∗, r∗)) +O(e−λε

2kqε1−b).

Then:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

q−1∑
j=0

e−λε
2(kq+j)h(rkq+j)(g(θkq+j, rkq+j)− g0(θkq+j, rkq+j))

∣∣∣∣∣∣
≤ ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

e−λε
2kqh(rkN)

q−1∑
j=0

(g(θkq + jr∗, r∗)− g0(θkq + jr∗, r∗))

∣∣∣∣∣∣
+Kε3−2b

Pβ−1∑
k=0

e−λε
2kq. (70)
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Now, recalling that r∗ = p/q, by the definition (68) of g0(θ, r) for all k < Pβ we
have:

q−1∑
j=0

(g(θkq + jr∗, r∗)− g0(θkq + jr∗, r∗)) =

q−1∑
j=0

g(θkq, r
∗)− qg0(θkq, r

∗) = 0.

Moreover:

Kε3−2b

Pβ−1∑
k=0

e−λε
2kq ≤ Kλ ε

1−2b.

Using these estimates (70) yields:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

q−1∑
j=0

e−λε
2(kq+j)h(rkq+j)(g(θkq+j, rkq+j)− g0(θkq+j, rkq+j))

∣∣∣∣∣∣ ≤
K ε1−2b.

(71)

Note that 1− 2b = 1− β + ρ > 0, since β < 1 and β − 2b = ρ > 0.
On the other hand, we have:

ε2

∣∣∣∣∣∣
Qβ−1∑
j=0

e−λε
2(PβN+j)h(rPβN+j)(g(PβN+j, rPβN+j)− g0(rPβN+j))

∣∣∣∣∣∣
≤ ε2K sup

(θ,r)∈Iβ
|h(r)(g(θ, r)− g0(θ, r))|Qβ ≤ K̃ε2−b. (72)

Clearly, 2− b > 0. Substituting (71) and (72) in (69) yields item 1 of the Lemma.
Now let us consider item 2. If we take equation (70) and substitute e−λε

2kh(rk)
by hk(rk), we can write for all k ≤ Pβ:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

q−1∑
j=0

hkq+j(rkq+j)(g(θkq+j, rkq+j)− g0(θkq+j, rkq+j))

∣∣∣∣∣∣ (73)

≤ ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

hkq(rkq)

q−1∑
j=0

(g(θkq + jr∗, r∗)− g0(θkq + jr∗, r∗))

∣∣∣∣∣∣+Kε3−2bPβ.

Again:
q−1∑
j=0

(g(θkq + jr∗, r∗)− g0(θkq + jr∗, r∗)) = 0,

and since Pβ < nβ < ε−2(1−β)−δ and b = (β − ρ)/2

K ε3−2bPβ ≤ K ε1+2β−2b ≤ Kε1+ρ+β.
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Then we have:

ε2

∣∣∣∣∣∣
Pβ−1∑
k=0

q−1∑
j=0

e−λε
2(kq+j)h(rkq+j)(g(θkq+j, rkq+j)− g0(θkq+j, rkq+j))

∣∣∣∣∣∣ ≤
K ε1+ρ+β.

(74)

On the other hand we have:

ε2

∣∣∣∣∣∣
Qβ−1∑
j=0

hPβN+j(rPβN+j)(g(PβN+j, rPβN+j)− g0(rPβN+j))

∣∣∣∣∣∣
≤ ε2KQβ ≤ K̃ε2−b. (75)

We note that 2− b− 2β > 0 for b = (β − ρ)/2 and β < 4/5 and that 1− β > 0
if β < 1. Thus, taking β < 4/5 bounds (74) and (75) prove item 2 of the Lemma
with d = min{2− b− 2β, 1− β, ρ} > 0.

Let r0 belong to the IR case. Consider an interval Iβ = {(θ, r) ∈ T × R :
|r − r0| ≤ εβ}, for some 0 < β < 4/5. Denote nβ ∈ N the exit time from Iβ, that
is the first number such that (θnβ , rnβ) 6∈ Iβ.

Lemma 5.5. Let f : R → R be any Cl function with l ≥ 3. Then, there exists
d > 0 such that for all λ > 0 one has:

E
(
e−λε

2nβf(rnβ)+

ε2

nβ−1∑
k=0

e−λε
2k

[
λf(rk)−

(
b(θk, rk)f

′(rk) +
σ2(θk, rk)

2
f ′′(rk)

)])
−f(r0) = O(ε2β+d),

where:

b(θ, r) =
1

q

q−1∑
i=0

E2(θ + ir, r), σ2(θ, r) =
1

q

q−1∑
i=0

v2(θ + ir, r).

Proof. Let us fix any 0 < δ < 1/6. Again, denoting:

η = e−λε
2nβf(rnβ)+

ε2

nβ−1∑
k=0

e−λε
2k

[
λf(rk)−

(
b(θk, rk)f

′(rk) +
σ2(θk, rk)

2
f ′′(rk)

)]
(76)
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and using the law of total expectation, we have:

E (η) = E
(
η | ε−(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ

)
P{ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ}

+ E
(
η |nβ < ε−(1−β)+δ

)
P{nβ < ε−2(1−β)+δ}

+ E
(
η |nβ > ε−2(1−β)−δ

)
P{nβ > ε−2(1−β)−δ}.

(77)

As in the proof of Lemma 5.3, for ε sufficiently small by Lemma C.2 and some
C > 0 independent of ε we have

P{nβ < ε−2(1−β)+δ} ≤ exp

(
− C

ε2δ

)
,

and, thus, (77) yields:

E (η) = E(η | ε−(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ)P{ε−(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ}
+E

(
η |nβ > ε−2(1−β)−δ)P{nβ > ε−2(1−β)−δ}. (78)

Now, we can write:

e−λε
2nβf(rnβ) = f(r0) +

nβ−1∑
k=0

[
−λε2e−λε

2kf(rk) + e−λε
2kf ′(rk)(rk+1 − rk)

+
1

2
e−λε

2kf ′′(rk)(rk+1 − rk)2 +O(e−λε
2kε3)

]
,

and then (76) can be rewritten as:

η = f(r0)+
nβ−1∑
k=0

[
e−λε

2kf ′(rk)(rk+1 − rk) +
1

2
e−λε

2kf ′′(rk)(rk+1 − rk)2

]

−ε2

nβ−1∑
k=0

e−λε
2k

[
b(θk, rk)f

′(rk) +
σ2(θk, rk)

2
f ′′(rk)

]
+

nβ−1∑
k=0

O(e−λε
2kε3).

(79)

Now, using (66) we have:

rk+1 − rk = εωk[v(θk, rk) + εv2(θk, rk)] + ε2E2(θk, rk) +O(ε2+a),

and:
(rk+1 − rk)2 = ε2v2(θk, rk) +O(ε3).
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Thus, (79) writes out as:

η = f(r0) +

nβ−1∑
k=0

e−λε
2kf ′(rk)εωk [v(θk, rk) + εv2(θk, rk)]

+ε2

nβ−1∑
k=0

e−λε
2kf ′(rk) [E2(θk, rk)− b(θk, rk)]

+
ε2

2

nβ−1∑
k=0

e−λε
2kf ′′(rk)

[
v2(θk, rk)− σ2(θk, rk)

]
+

nβ−1∑
k=0

O(e−λε
2kε2+a). (80)

Now we distinguish between the cases ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ and nβ >
ε−2(1−β)−δ. We shall start assuming that ε−2(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ. As in the
proof of Lemma 5.3 we have:∣∣∣∣∣

nβ−1∑
k=0

O(e−λε
2kε2+a)

∣∣∣∣∣ ≤ Kε2+anβ ≤ Kε2β+a−δ. (81)

We note that 1/6 − δ > 0 since we have taken δ < 1/6. Now we use item 2 of
Lemma 5.4 in (80) twice, taking first hk(r) = e−λε

2kf ′(r) and g(θ, r) = E2(θ, r),
and after hk(r) = e−λε

2kf ′′(r) and g(θ, r) = v2(θ, r). Then, using also (81),
equation (80) yields:

η = f(r0) +

nβ−1∑
k=0

e−λε
2kf ′(rk)εωk [v(θk, rk) + εv2(θk, rk)] +O(ε2β+d), (82)

for some suitable d > 0.
Now turn to the case nβ > ε−2(1−β)−δ. The last term in (80) can be bounded

by: ∣∣∣∣∣
nβ−1∑
k=0

O(e−λε
2kε2+a)

∣∣∣∣∣ ≤ Kε1+a

nβ−1∑
k=0

e−λε
2k = Kε1+a1− e−λε2nβ

1− e−λε2
≤ Kλε

a, (83)

for some positive constants K and Kλ. Then, using item 1 of Lemma 5.4 twice
(first with h(r) = f ′(r) and g(θ, r) = E2(θ, r), and later with h(r) = f ′′(r) and
g(θ, r) = v2(θ, r)), we obtain the following bound for nβ > ε−2(1−β)−δ:

η = f(r0) + ε

nβ−1∑
k=0

e−λε
2kf ′(rk)ωk [v(θk, rk) + εv2(θk, rk)] +O(εd). (84)
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To finish the proof, we follow the same steps as in the proof of Lemma 5.3
and (78) yields:

E(η)− f(r0)

=
∑
n∈N

E

(
n−1∑
k=0

e−λε
2kf ′(rk)εωk [v(θk, rk) + εv2(θk, rk])

)
P{nβ = n}

+ O(ε2β+d)P{ε−(1−β)+δ ≤ nβ ≤ ε−2(1−β)−δ}+O(εd)P{nβ < ε−(1−β)+δ}
= O(ε2β+d),

where by Lemma C.2 for some C > 0 independent of ε

P{nβ > ε−2(1−β)−δ} = exp

(
− C

ε2δ

)
,

so that it is smaller than any power of ε.

5.3 The Real Rational case

Here we study the system in the RR case, which is defined by:

|r − p/q| ≤ C1ε
β.

In this subsection we focus in the subdomain:

|r − p/q| ≤ C1ε
1/2.

The remaining part of the Real Rational strips are dealt with in Subsections 5.6
and 5.7.

Figure 3: Level sets of the pendulum p/q = 1/3.
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From the Normal Form Theorem, in the Real Rational strips the system takes
the following form:

θ1 = θ0 + r0 + ε [Eu(θ0, p/q)− Ev(θ0, p/q) + Evp,q(θ0, p/q) + E3(θ0)]

+ εω0u(θ0, p/q) +O(ε1+a),

r1 = r0 + εEvp,q(θ0, r0) + εω0v(θ0, r0)

+ ε3/2ω0v2(θ0, r0) + ε3/2E4(θ0, r0) +O(ε2+a),

(85)

where v2(θ, r) can be written explicitly in terms of v(θ, r) and S1(θ, r). The
function E4 is such that ‖E4‖C0 ≤ K. We point out that it is a rescaled version
of the function E4 appearing in the Normal Form Theorem.

Recall also that:

max{‖Eu‖C0 , ‖Ev‖C0 , ‖Evp,q‖C0 , ‖E3‖C0 , ‖u‖C0 , ‖v‖C0} ≤ K.

Moreover, we have defined v2 also in such a way that ‖v2‖C0 ≤ K.
First, we switch to the resonant variable:

r̂ = r − p/q, 0 ≤ |r̂| ≤ K1ε
1/2.

With this new variable, system (85) writes out as:

θ1 = θ0 + p/q + ε [Eu(θ0, p/q)− Ev(θ0, p/q) + Evp,q(θ0, p/q) + E3(θ0)]

+ r̂0 + εω0u(θ0, p/q) +O(ε1+a),

r̂1 = r̂0 + εÊvp,q(θ0, r̂0) + ε3/2Ê4(θ0, r̂0) + εω0v̂(θ0, r̂0)

+ ε3/2ω0v̂2(θ0, r̂0) +O(ε2+a),

(86)

where:

v̂(θ0, r̂0) = v(θ0, r̂0 + p/q), v̂2(θ0, r̂0) = v2(θ0, r̂0 + p/q),

Êvp,q(θ0, r̂0) = Evp,q(θ0, r̂0 + p/q), Ê4(θ0, r̂0) = E4(θ0, r̂0 + p/q),

From now on, we will abuse notation and drop all hats. We are interested in the
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q−th iteration of map (86), which is given by:

θq = θ0 + qr0+

+ ε

q−1∑
i=0

[Eu(θi, p/q)− Ev(θi, p/q) + (q − i)Evp,q(θi, p/q) + E3(θi)]

+ ε

q−1∑
i=0

ωi [u(θi, p/q) + v(θi, p/q)] +O(ε1+a),

rq = r0 + ε

q−1∑
i=0

[
Evp,q(θi, ri) + ε1/2E4(θi, ri)

]
+ ε

q−1∑
i=0

ωi
[
v(θi, ri) + ε1/2v2(θi, ri)

]
+O(ε2+a).

Taking into account that q is bounded for 0 ≤ i ≤ q we have:

θi = θ0 + i(p/q + r0) +O(ε), ri = r0 +O(ε).

Using this fact and that |r| ≤ K1ε
1/2 we can rewrite the last system as:

θq = θ0 + qr0 + εEu(q)(θ0) + εu(q)(θ0, ω
q
0) +O(ε3/2),

rq = r0 + εEv(q)(θ0, r0, ε) + εv(q)(θ0, r0, ω
q
0) + ε3/2v

(q)
2 (θ0, r0, ω

q
0) +O(ε2).

(87)

where ωqk = (ωqk, . . . , ωqk+q−1) and:

Eu(q)(θ) =

q−1∑
i=0

[Eu(θ + ip/q, p/q)− Ev(θ + ip/q, p/q)+

+ (q − i)Evp,q(θ + ip/q, p/q) + E3(θ + ip/q)] ,

u(q)(θ, ωqk) =

q−1∑
i=0

(q − i)ωqk+i [u(θ + ip/q, p/q) + v(θ + ip/q, p/q)] ,

Ev(q)(θ, r, ε) =

q−1∑
i=0

[
Evp,q(θ + i(p/q + r), r) + ε1/2E4(θ + i(p/q + r), r)

]
,

v(q)(θ, r, ωqk) =

q−1∑
i=0

ωqk+iv(θ + i(p/q + r), r),

v
(q)
2 (θ, r, ωqk) =

q−1∑
i=0

ωqk+iv2(θ + i(p/q + r), r).
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Introduce a rescaled variable r = R
√
ε. Then (θ1, R1) are defined using system

(87) with the corresponding rescaling. This can be rewritten in the following way,
where we just keep the necessary ε-dependent terms:

θq = θ0 + qR0

√
ε+ εEu(q)(θ0) + εu(q)(θ0, ω

q
0) +O(ε3/2),

Rq = R0 + ε1/2Ev(q)(θ0, R0

√
ε, 0) + ε1/2v(q)(θ0, R0

√
ε, ωq0)

+εv
(q)
2 (θ0, 0, ω

q
0) +O(ε3/2).

(88)

We note that the n−th iteration of map (88) is given by:

θnq = θ0 + qnR0

√
ε+O(nε),

Rnq = R0 + ε1/2

n−1∑
k=0

[
Ev(q)(θqk, Rkq

√
ε, 0) + v(q)(θkq, Rkq

√
ε, ωqk)

]
+O(nε).

(89)
Moreover, using that for all 0 ≤ k ≤ n one has:

θkq = θ0 + qkR0

√
ε+O(nε)

and:
Rkq = R0 +O(nε1/2)

system (89) can be written as:

θnq = θ0 + qnR0

√
ε+O(nε),

Rnq = R0 + ε1/2

n−1∑
k=0

[Ev(q)(θ0 + qkR0

√
ε, R0

√
ε, 0)

+v(q)(θ0 + qkR0

√
ε, R0

√
ε, ωqk)] +O(n2ε3/2) +O(nε).

(90)

We shall subdivide the strip IRR in several regimes, which will be treated differ-
ently. Let (θ∗, 0) ∈ IRR be such that:

Ev(q)(θ∗, 0, 0) = 0.

Fix some constants C1 and γ < 1/12. We then define the following regimes:

• Regime 1:

D1 = {(θ, R) ∈ IRR : |θ − θ∗| ≤ C1ε
1
4

+γ, |R| ≤ C1ε
1
4

+γ}.

• Regime 2:

D2 = {(θ, R) ∈ IRR : |θ − θ∗| > C1ε
1
4

+γ, |R| ≤ C1ε
1
4

+γ}.
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• Regime 3:
D3 = {(θ, R) ∈ IRR : C1ε

1
4

+γ < |R| ≤ C1ε
γ}.

• Regime 4:
D4 = {(θ, R) ∈ IRR : C1ε

γ} < |R| ≤ C1}.

5.4 Regimes 1 and 2

We observe that by definition of θ∗, there exists a constant A > 0 such that for
all (θ, R) ∈ D1 one has: ∣∣Ev(q)(θ, R

√
ε, 0)

∣∣ ≤ Aε
1
4

+γ,

and for all (θ, R) ∈ D2: ∣∣Ev(q)(θ, R
√
ε, 0)

∣∣ ≥ Aε
1
4

+γ. (91)

Moreover, we note D2 has a finite number of connected components Dj
2, j =

0, . . . , J , and that, for fixed j, Ev(q)(θ, R
√
ε, 0) does not change sign in Dj

2. Next
lemmas give the exit time of regimes D1 and Dj

2.

Lemma 5.6. Let (θ0, R0) ∈ D1. Let n∗ denote the first exit time of the process
(θqn, Rqn) of this regime. Let δ > 0 be a sufficiently small constant. Then, there
exists a constant b > 0 such that:

P{n∗ > ε−1/2+2γ−δ} ≤ e−
b

εδ .

Proof. Let us denote nγ = [ε−1/2+2γ], ni = inγ and nδ = [ε−δ]. Then one has:

P{n∗ > ε−1/2+2γ−δ} ≤ P{|Rni+1q −Rniq| ≤ 2C1ε
1/4+γ | for all i = 0, . . . , nδ}

≤
nδ∏
i=0

P{|Rni+1q −Rniq| ≤ 2C1ε
1/4+γ}, (92)

where in the last inequality we have used that Rni+1q − Rniq and Rnj+1q − Rnjq

are independent for i 6= j. Let us assume that (θkq, Rkq) ∈ D1 for all k =

ni, . . . , ni+1 − 1. Since in D1 one has
∣∣Ev(q)(θ, R

√
ε, 0)

∣∣ ≤ Aε
1
4

+γ, using (90) we
can write:

Rni+1q = Rniq + ε1/2

nγ−1∑
k=0

v(q)(θniq + qkRniq

√
ε, Rniq

√
ε, ωqni+k)

+O(n2
γε

3/2) +O(nγε
3/4+γ).
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Using that nγ = [ε−1/2+2γ] yields:

Rni+1q = Rniq + ε1/2

nγ−1∑
k=0

v(q)(θniq + qkRniq

√
ε, Rniq

√
ε, ωqni+k) +O(ε1/4+3γ). (93)

Let us define:

ξ =
1

n
1/2
γ

nγ−1∑
k=0

v(q)(θniq + qkRniq

√
ε, Rniq

√
ε, ωqni+k).

Then (93) yields:

P{|Rni+1q −Rniq| ≤ 2C1ε
1/4+γ} ≤ P{|ε1/2n1/2

γ ξ +O(ε1/4+3γ)| ≤ 2C1ε
1/4+γ}

= P{|ξ +O(ε2γ)| ≤ 2C1} ≤ P{|ξ| ≤ 3C1}

We note that for nγ sufficiently large (i.e., ε sufficiently small), the random vari-
able ξ converges in distribution to a normal random variable, that is ξ ∼ N (0, σ2),
with σ2 6= 0. Then, there exists some constant 0 < ρ < 1 such that:

P{|Rni+1q −Rniq| ≤ 2C1ε
1/4+γ} ≤ P{|ξ| ≤ 3C1} ≤ ρ.

This is valid for all i = 0, · · · , nδ, so that using it in (92) we obtain:

P{n∗ > ε−1/2+2γ−δ} ≤ ρ[ε−δ] ≤ ρε
−δ
,

and then the lemma is proved with b = − log ρ > 0, since ρ < 0.

Lemma 5.7. Let (θ0, R0) ∈ D1. Let n∗ be the exit time of the process (θn, Rn) of
D1. Let f : R→ R be any Cl function with l ≥ 3. Then for all λ > 0 one has:

E

(
e−λεn

∗
f(Hn∗) +

ε
n∗−1∑
k=0

e−λεk
[
λf(Hk)− b(θqk, Rqk)f

′(Hk)−
σ2(θqk, Rqk)

2
f ′′(Hk)

])
−f(H0) = O(ε1+2γ−δ),

where:

b(θ, R) = F (θ, R), σ2(θ, R) = R2
qk

q−1∑
i=0

v2(θ + ip/q, 0). (94)
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Lemma 5.8. Let j be fixed. Let (θ0, R0) ∈ Dj
2. Let n∗ denote the first exit time

of the process (θqn, Rqn) of Dj
2. Let δ > 0 be a sufficiently small constant. Then,

there exist constants M, b > 0 such that:

P{n∗ > ε−1/2−2γ−δ} ≤Me
− b

εδ/2 .

Proof. Recall that by (91) for all (θ, R) ∈ D2 we have:

|Ev(q)(θ, R, 0)| ≥ Aε
1
4

+γ, (95)

for some constant A > 0. Denote nγ,δ = [ε−1/2−2γ−δ]. We note that:

P{n∗ > ε−1/2−2γ−δ}
≤ P{|Rnγ,δ −R0| ≤ 2C1ε

1/4+γ | (θkq, Rkq) ∈ Dj
2 for all k = 1, . . . , nγ,δ − 1}.

Assume that (θkq, Rkq) ∈ Dj
2 for k = 1, . . . , nγ,δ − 1. Then, defining:

ξ =
1

n
1/2
γ,δ

nγ,δ−1∑
k=0

v(q)(θ0 + qkR0

√
ε, R0

√
ε, ωqk),

and using (90) we obtain:

Rnγ,δq = R0 + ε1/2

nγ,δ−1∑
k=0

Ev(q)(θqk,Rqk

√
ε, 0) + n

1/2
γ,δ ξ +O(n2

γ,δε
3/2) +O(nγ,δε).

Substituting nγ,δ by its value, we obtain:

Rnγ,δq = R0 + ε1/2

nγ,δ−1∑
k=0

Ev(q)(θqk,Rqk

√
ε, 0) + ε1/4−γ−δ/2ξ +O(ε1/2−4γ−2δ).

Using the fact that Ev(q)(θ, R, 0) does not change sign in Dj
2 and bound (95) we

have:

ε1/2

∣∣∣∣∣
nγ,δ−1∑
k=0

Ev(q)(θqk, Rqk

√
ε, 0)

∣∣∣∣∣ = ε1/2

nγ,δ−1∑
k=0

|Ev(q)(θqk, Rqk

√
ε, 0)|

≥ nγ,δAε
3/4+γ = ε1/4−γ−δA.

Then we can write:

|Rqnγ,δ −R0| ≥ ε1/4−γ−δA−
∣∣ε1/4−γ−δ/2ξ +O(ε1/2−4γ−2δ)

∣∣ .
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Clearly, for sufficiently small ε one has:

ε1/4−γ−δA ≥ 2C1ε
1/4+γ.

If |Rnγ,δq −R0| ≤ ε1/4+γ, then necessarily one has:∣∣ε1/4−γ−δ/2ξ +O(ε1/2−4γ−2δ)
∣∣ ≥ Kε1/4−γ−δ,

for some constant K. In other words:

P{|Rqnγ,δ −R0| ≤ 2C1ε
1/4+γ | (θkq, Rkq) ∈ Dj

2 for all k = 1, . . . , nγ,δ − 1}
≤ P

{∣∣ε1/4−γ−δ/2ξ +O(ε1/2−4γ−2δ)
∣∣ ≥ ε1/4−γ−δK

}
= P

{∣∣ξ +O(ε1/4−3γ−3δ/2)
∣∣ ≥ Kε−δ/2

}
≤ P

{
|ξ| ≥ 2Kε−δ/2

}
,

where we have used that 1/4 − 3γ > 0 because γ < 1/12. One can see that for
nγ,δ sufficiently large (i.e., ε sufficiently small), ξ ∼ N (0, σ2). Moreover, since
‖v‖C0 ≤ k, one can see that σ2 ≤ K̃ for some constant K̃ independent of ε. Using
that the tails of a normal random variable are exponentially small we then obtain:

P{|Rqnγ,δ−R0| ≤ 2C1ε
1/4+γ | (θkq, Rkq) ∈ Dj

2 for all k = 1, . . . , nγ,δ−1} ≤Me
− b

εδ/2 ,

.

Lemma 5.9. Let (θ0, R0) ∈ Dj
2. Let n∗ be the exit time of the process (θn, Rn) of

D2. Let f : R→ R be any Cl function with l ≥ 3. Then for all λ > 0 one has:

E

(
e−λεn

∗
f(Hn∗) +

ε

n∗−1∑
k=0

e−λεk
[
λf(Hk)− b(θqk, Rqk)f

′(Hk)−
σ2(θqk, Rqk)

2
f ′′(Hk)

])
−f(H0) = O(ε1−2γ−δ),

where:

b(θ, R) = F (θ, R), σ2(θ, R) = R2
qk

q−1∑
i=0

v2(θ + ip/q, 0). (96)
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5.5 Regimes 3 and 4

Finally we deal with D3 and D4. Both of them can be treated in a similar way.
To study these regimes, we consider the Hamiltonian:

H(θ, R) =
R2

2
− 1

q

∫ θ

0

Ev(q)(s, R
√
ε, 0)ds. (97)

Let Hn := H(θqn, Rqn). We study the process: (θqn, Hn) := (θqn, H(θqn, Rqn)),
where (θqn, Rqn) is the process obtained iterating (88) n times. One can see that:

H1 = H0+
√
εR0 v

(q)(θ0, R0

√
ε, ωq0)

+ εF (θ0, R0) + εG(θ0, R0, ω
q
0) +O(ε3/2),

(98)

where F and G are:

F (θ, R) = −1

q
Ev(q)(θ, 0, 0) Eu(q)(θ)

− 1

q
Ev(q)(θ, 0, 0)

∫ θ

0

∂rEv(q)(s, 0, 0)ds

− q

2
R2∂θEv(q)(θ, 0, 0) +

1

2

(
Ev(q)(θ, 0, 0)

)2

+
1

2

q−1∑
i=0

v2(θ + ip/q, 0),

G(θ, R, ωqk) = −1

q
Ev(q)(θ, 0, 0) u(q)(θ, ωqk)

− 1

q
v(q)(θ, 0, ωqk, 0)

∫ θ

0

∂rEv(q)(s, 0, 0)ds

+
1

2

q−1∑
i,j=0
i 6=j

ωqk+i ωqk+j v(θ + ip/q, 0)v(θ + jp/q, 0)

+ Ev(q)(θ, 0, 0)v(q)(θ, 0, ωqk)

+ Rv
(q)
2 (θ, 0, ωqk).

We note that since |R| ≤ K1 we have:

‖F‖C0 ≤ K, ‖G‖C0 ≤ K.

Moreover, one has that for all k ≥ 0:

E(G(θqk, Rqk, ω
q
k)) = 0.
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In terms of the variable H, the {|R| ≤ K1} region can be written as:

IRR := {H ∈ R : |H| ≤ K3}, (99)

for some constant K3. Now, given a1 > a2 ≥ 0 we define:

Da1a2 := {(θ, R) ∈ IRR : C1ε
a1 < |R| ≤ C1ε

a2}.

Note that D3 = Da1a2 with a1 = 1/4+γ and a2 = γ, and D4 = Da1a2 with a1 = γ,
a2 = 0.

Lemma 5.10. Let H∗, 0 < a1 < 1/2, 0 ≤ a2 < a1 and 0 < α < 1/2− a1 be some
fixed constants. Let (θ0, R0) ∈ Da1a2, and consider the strip:

I = {(θ, R) ∈ Da1a2 : |H(θ, R)−H∗| ≤ C1ε
1/2+a1−α}

Let n∗ denote the first exit time of the process (θqn, Rqn) of the strip I. Let δ > 0
be a sufficiently small constant. Then, there exists a constant b > 0 such that:

P{n∗ > ε−2α−δ} ≤ e−
b

εδ .

Proof. Let nα = [ε−2α], nδ = [ε−δ], and ni = inα. Clearly, one has:

P{n∗ > ε−2α−δ} ≤ P{|Hni+1
−Hni | ≤ 2C2ε

1/2+a1−α for all i = 0, . . . , nδ − 1}

=

nδ∏
i=0

P{|Hni+1
−Hni | ≤ 2C2ε

1/2+a1−α}. (100)

By (98) one has that:

Hni+1
= Hni + ε1/2

nα−1∑
k=0

Rni+k v
(q)(θni+k, Rni+k

√
ε, ωqni+k) +O(nαε).

Taking into account that:

θni+k = θni + kqRni

√
ε+O(nαε),

Rni+k = Rni +O(nαε
1/2),

we can write:

Hni+1
= Hni + ε1/2

nα−1∑
k=0

Rni v
(q)(θni + kqRni

√
ε, Rni

√
ε, ωqni+k) +O(n2

αε). (101)
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Let us define:

ξ =
1

n
1/2
α

nα−1∑
k=0

Rni

εa1
v(q)(θni + kqRni

√
ε, Rni

√
ε, ωqni+k).

For nα sufficiently large (i.e., for ε sufficiently small), one has that ξ converges in
distribution to a normal random variable N (0, σ2(θni , Rni)) with:

σ2(θni , Rni) =
1

nα

nα−1∑
k=0

R2
ni

ε2a1

q−1∑
j=0

v2(θni + j(p/q +
√
εRni), Rni).

Note that by assumption [H4] and the fact that Rni/ε
a1 ≥ C1 > 0 we have that

σ2(θni , Rni) ≥ K > 0 for some constant K. Then (101) yields:

Hni+1
= Hni + ε1/2+a1n1/2

α ξ +O(n2
αε)

= Hni + ε1/2+a1−αξ +O(ε1−2α).

Then:

P{|Hni+1
−Hni | ≤ 2C2ε

1/2+a1−α} = P{|ξ+O(ε1/2−a1−α)| ≤ 2C2} ≤ P{|ξ| ≤ 3C2},

where we have used that 1/2 − a1 − α > 0. Since ξ converges in distribution to
N (0, σ2(θni , Rn1)) and σ2(θni , Rn1) ≥ K > 0, one has:

P{|Hni+1
−Hni | ≤ 2C2ε

1/2+a1−α} ≤ ρ,

for some 0 < ρ < 1. Using this in (100) one obtains the claim of the lemma with
b = − log ρ > 0.

Lemma 5.11. Let H∗, 0 < a1 < 1/2, 0 ≤ a2 < a1 and 0 < α < 1/2− a1 be some
fixed constants. Let (θ0, R0) ∈ Da1a2, and consider the strip:

I = {(θ, R) ∈ Da1a2 : |H(θ, R)−H∗| ≤ C1ε
1/2+a1−α}.

Let n∗ be the exit time of the process (θn, Rn) of I. Let f : R → R be any Cl
function with l ≥ 3. Then for all λ > 0 one has:

E

(
e−λεn

∗
f(Hn∗) +

ε

n∗−1∑
k=0

e−λεk
[
λf(Hk)− b(θqk, Rqk)f

′(Hk)−
σ2(θqk, Rqk)

2
f ′′(Hk)

])
−f(H0) = O(ε3/2−2α−δ),
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where:

b(θ, R) = F (θ, R), σ2(θ, R) = R2
qk

q−1∑
i=0

v2(θ + ip/q, 0). (102)

Proof. Denote:

η = e−λεn
∗
f(Hn∗)+

ε
n∗−1∑
k=0

e−λεk
[
λf(Hk)− b(θqk, Rqk)f

′(Hk)−
σ2(θqk, Rqk)

2
f ′′(Hk)

]
.

(103)

By the law of total expectation, one has:

E(η) = E(η |n∗ ≤ ε−2α−δ)P{n∗ ≤ ε−2α−δ}
+E(η |n∗ > ε−2α−δ)P{n∗ > ε−2α−δ}.

Using Lemma 5.10, this writes out as:

E(η) = E(η |n∗ ≤ ε−2α−δ)(1− e−
b

εδ ) + E(η |n∗ > ε−2α−δ)e−
b

εδ . (104)

Now, writing:

e−λεn
∗
f(Hn∗) = f(H0) +

n∗−1∑
k=0

[
e−λε(k+1)f(Hk+1)− e−λεkf(Hk)

]
and expanding each term in the sum in its Taylor series, we can write:

e−λεn
∗
f(Hn∗) = f(H0) +

n∗−1∑
k=0

[
−λe−λεkf(Hk) + e−λεkf ′(Hk)(Hk+1 −Hk)

+
1

2
e−λεkf ′′(Hk)(Hk+1 −Hk)

2 +O(e−λεkε3/2)

]
,

so that (103) writes out as:

η = f(H0)+

n∗−1∑
k=0

[
e−λεkf ′(Hk)(Hk+1 −Hk) +

1

2
e−λεkf ′′(Hk)(Hk+1 −Hk)

2

]

−ε
n∗−1∑
k=0

e−λεk
[
b(θqk, Rqk)f

′(Hk) +
σ2(θqk, Rqk)

2
f ′′(Hk)

]
+

n∗−1∑
k=0

O(e−λεkε3/2).

(105)
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Now, using (98) it is clear that:

Hk+1 −Hk =
√
εRqkv

(q)(θqk, Rqk

√
ε, ωqk)+

εF (θqk, Rqk) + εG(θqk, Rqk, ω
q
k) +O(ε3/2).

(106)

Moreover, we have:

(Hk+1 −Hk)
2 = εR2

qk(v
(q)(θqk, 0, ω

q
k))

2 +O(ε3/2)

= εR2
qk

q−1∑
i=0

v2(θqk + ip/q, 0) + εG0(θqk, Rqk, ω
q
k) +O(ε3/2),

(107)

where:

G0(θqk, Rqk, ω
q
k)

= 2R2
qk

q−1∑
l=0

q−1∑
j=l+1

ωqk+lωqk+jv(θ + lp/q, 0)v(θ + jp/q, 0).

We note that, since Rqk and θqk are independent of ωqk+i for all i ≥ 0, one has
E(G0(θqk, Rqk, ω

q
k)) = 0. Using (106) and (107), equation (105) writes out as:

η = f(H0) +
√
ε

n∗−1∑
k=0

e−λεkf ′(Hk)Rqkv
(q)(θqk,

√
εRqk, ω

q
k)

+ε
n∗−1∑
k=0

e−λεkf ′(Hk) [F (θqk, Rqk)− b(θqk, Rqk)]

+
ε

2

n∗−1∑
k=0

e−λεkf ′′(Hk)

[
R2
qk

q−1∑
i=0

v2(θqk + ip/q, 0)− σ2(θqk, Rqk)

]

+ε
n∗−1∑
k=0

e−λεk
[
f ′(Hk)G(θqk, Rqk, ω

q
k) +

f ′′(Hk)

2
G0(θqk, Rqk, ω

q
k)

]

+
n∗−1∑
k=0

O(e−λεkε3/2). (108)

Now, by definition of b(θ, R) and σ2(θ, R) it is clear that:

F (θqk, Rqk)− b(θqk, Rqk) = 0 (109)

R2
qk

q−1∑
i=0

v2(θqk + ip/q, 0)− σ2(θqk, Rqk) = 0. (110)

On the one hand, if n∗ ≤ ε−2α−δ the last term in (108) can be bounded by:∣∣∣∣∣
n∗−1∑
k=0

O(e−λεkε3/2)

∣∣∣∣∣ ≤ Kε3/2n∗ ≤ Kε3/2−2α−δ, (111)
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for some positive constant K. Then, using (109), (110) and (111) in equation
(108) we obtain that for n∗ ≤ ε−2α−δ one has:

η = f(H0) +
√
ε

n∗−1∑
k=0

e−λεkf ′(Hk)Rqkv
(q)(θqk,

√
εRqk, ω

q
k) (112)

+ε
n∗−1∑
k=0

e−λεk
[
f ′(Hk)G(θqk, Rqk, ω

q
k) +

f ′′(Hk)

2
G0(θqk, Rqk, ω

q
k)

]
+O(ε3/2−2α−δ).

On the other hand, if n∗ > ε−2α−δ then:∣∣∣∣∣
n∗−1∑
k=0

O(e−λεkε3/2)

∣∣∣∣∣ ≤ Kε3/2

n∗−1∑
k=0

e−λεk = Kε3/2 1− e−λεn∗

1− e−λε

≤ Kλε
1/2, (113)

for some positive constants K, Kλ. Using (109), (110) and (113) in equation
(108) we have that for n∗ > ε−2α−δ:

η = f(H0) +
√
ε
n∗−1∑
k=0

e−λεkf ′(Hk)Rqkv
(q)(θqk,

√
εRqk, ω

q
k) (114)

+ ε
n∗−1∑
k=0

e−λεk
[
f ′(Hk)G(θqk, Rqk, ω

q
k) +

f ′′(Hk)

2
G0(θqk, Rqk, ω

q
k)

]
+O(ε1/2).

Thus, to finish the proof, we just need to use that:

E
(
v(q)(θqk,

√
εRqk, ω

q
k)
)

= E (G0(θqk, Rqk, ω
q
k)) = E (G(θqk, Rqk, ω

q
k)) = 0,

and that Rqk and Hk are independent of ωqk. Recalling formula (104) of E(η) and
using these facts in (112) and (114), one obtains straightforwardly:

E(η)− f(H0) = O(ε3/2−2α−δ)(1− e−
b

εδ ) +O(ε1/2)e−
b

εδ = O(ε3/2−2α−δ),

and the proof is finished.

Remark 5.12. We note that there exist H∗ and K1, K2 such that:

Da1a2 = {H ∈ R : K1ε
2a1 ≤ |H(θ, R)−H∗| ≤ K2ε

2a2}.

Thus there exist strips Ij of the form:

Ij = {(θ, R) ∈ Da1a2 : |H(θ, R)−H∗j | ≤ C1ε
1/2+a1−α}
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such that, defining N := [ε−1/2−a1+α+2a2 ], one has:

Da1a2 =
N⋃
j=0

Ij.

Let us denote by E the error terms given Lemma 5.10, that is E = O(ε3/2−2α−δ).
Then the accumulated error along the domain Da1a2 will be:

N2E = O(ε1/2−2a1+4a2−δ).

Tanking δ > 0 sufficiently small, this error will be negligible if:

1/2− 2a1 + 4a2 > 0.

We note that both D3 and D4 satisfy this condition, since in the first case one
has a1 = 1/4 + γ and a2 = γ, and:

1/2− 2(1/4 + γ) + 4γ = 2γ > 0,

and in the second case one has a1 = γ and a2 = 0, and:

1/2− 2γ > 0,

since γ < 1/12.

5.6 Transition Zones type 1

Here we study the system in the RR case, in the subdomain:

C1ε
1/2 ≤ |r − p/q| ≤ C2ε

1/2−τ ,

for certain constants C1 and C2 and τ < 1/4. Performing the same changes as in
Section 5.3, namely r̂ = r − p/q and r̂ = R

√
ε. Then, this region is defined by:

ITZ1 := {(θ, R) ∈ T× R : C1 ≤ |R| ≤ C2ε
−τ}.

As in Section 5.3, one has that:

θnq = θ0 + qnR0

√
ε+O(nε),

Rnq = R0 + ε1/2

n−1∑
k=0

[Ev(q)(θ0 + qkR0

√
ε, R0

√
ε, 0)

+v(q)(θ0 + qkR0

√
ε, R0

√
ε, ωqk)] +O(n2ε3/2) +O(nε).

(115)
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We consider the Hamiltonian H defined in (97), which is:

H(θ, R) =
R2

2
− 1

q

∫ θ

0

Ev(q)(s, R
√
ε, 0)ds.

Let Hn := H(θqn, Rqn). Then, the process (θqn, Hn) := (θqn, H(θqn, Rqn)), where
(θqn, Rqn) is the process obtained iterating (88) n times, is defined in the same
way as (98):

H1 = H0+
√
εR0 v

(q)(θ0, R0

√
ε, ωq0)

+ εF (θ0, R0) + εG(θ0, R0, ω
q
0) +O(ε3/2),

(116)

where F and G are:

F (θ, R) = −1

q
Ev(q)(θ, 0, 0) Eu(q)(θ)

− 1

q
Ev(q)(θ, 0, 0)

∫ θ

0

∂rEv(q)(s, 0, 0)ds

− q

2
R2∂θEv(q)(θ, 0, 0) +

1

2

(
Ev(q)(θ, 0, 0)

)2

+
1

2

q−1∑
i=0

v2(θ + ip/q, 0),

G(θ, R, ωqk) = −1

q
Ev(q)(θ, 0, 0) u(q)(θ, ωqk)

− 1

q
v(q)(θ, 0, ωqk, 0)

∫ θ

0

∂rEv(q)(s, 0, 0)ds

+
1

2

q−1∑
i,j=0
i 6=j

ωqk+i ωqk+j v(θ + ip/q, 0)v(θ + jp/q, 0)

+ Ev(q)(θ, 0, 0)v(q)(θ, 0, ωqk)

+ Rv
(q)
2 (θ, 0, ωqk).

Unlike Section (5.3), here we have |R| ≤ K2ε
−τ so that:

‖F‖C0 ≤ Kε−2τ , ‖G‖C0 ≤ Kε−2τ .

Again, one has that for all k ≥ 0:

E(G(θqk, Rqk, ω
q
k)) = 0.
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Lemma 5.13. Let R∗ ∈ ITZ1, 0 < τ < 1/2 be fixed constants. Define H =
H(R∗, 0), and let α be such that:

0 < α < 1/2− τ, 0 < α < 1/6.

Let (θ0, R0) ∈ ITZ1, and consider the strip:

I = {(θ, R) ∈ ITZ1 : |H(θ, R)−H∗| ≤ C2|R∗|ε1/2−α}.

Let n∗ denote the first exit time of the process (θqn, Rqn) of the strip I. Let δ > 0
be a sufficiently small constant. Then, there exists a constant b > 0 such that:

P{n∗ > ε−2α−δ} ≤ e−
b

εδ .

Proof. Let nα = [ε−2α], nδ = [ε−δ], and ni = inα. Clearly, one has:

P{n∗ > ε−2α−δ} ≤ P{|Hni+1
−Hni | ≤ 2C2|R∗|ε1/2−α for all i = 0, . . . , nδ − 1}

=

nδ∏
i=0

P{|Hni+1
−Hni | ≤ 2C2|R∗|ε1/2−α}. (117)

Since |R∗| ≥ C1 > 0, one can easily see that there exist two constants K1, K2 > 0
such that:

K1|R∗(R−R∗)| ≤ |H −H∗| ≤ K2|R∗(R−R∗)|. (118)

This implies that there exists two constants K1, K2 > 0 (not necessarily the same)
such that:

K1 ≤ |F (θ, R)| ≤ K2|R∗|2, K1 ≤ |G(θ, R)| ≤ K2|R∗|. (119)

By (116) and (119) one has that:

Hni+1
= Hni + ε1/2

nα−1∑
k=0

Rni+k v
(q)(θni+k, Rni+k

√
ε, ωqni+k) +O(nα|R∗|2ε).

By (115) we have:
θni+k = θni + kqRni

√
ε+O(nαε),

Rni+k = Rni +O(nαε
1/2),

so that we can write:

Hni+1
= Hni+ε

1/2

nα−1∑
k=0

Rni v
(q)(θni+kqRni

√
ε, Rni

√
ε, ωqni+k)+O(n2

αε)+O(nα|R∗|2ε).

(120)

61



Let us define:

ξ =
1

n
1/2
α

nα−1∑
k=0

Rni

R∗
v(q)(θni + kqRni

√
ε, Rni

√
ε, ωqni+k).

We note that for Rni ∈ I one has:

0 < K1 ≤
∣∣∣∣Rni

R∗

∣∣∣∣ ≤ K2 (121)

for some constants K1, K2. For nα sufficiently large (i.e., for ε sufficiently
small), one has that ξ converges in distribution to a normal random variable
N (0, σ2(θni , Rni)) with:

σ2(θni , Rni) =
1

nα

nα−1∑
k=0

R2
ni

(R∗)2

q−1∑
j=0

v2(θni + j(p/q +
√
εRni), Rni).

Note that by assumption [H4] and (121) we have that σ2(θni , Rni) ≥ K > 0 for
some constant K. Then (120) yields:

Hni+1
= Hni + ε1/2R∗n1/2

α ξ +O(n2
αε) +O(nα|R∗|2ε)

= Hni + ε1/2−αR∗ξ +O(ε1−4α) +O(|R∗|2ε1−2α).

Then:

P{|Hni+1
−Hni | ≤ 2C2R

∗ε1/2−α}
= P{|ξ +O(|R∗|−1ε1/2−3α) +O(|R∗|ε1/2−α)| ≤ 2C2}
≤ P{|ξ| ≤ 3C2},

where we have used that |R∗|−1ε1/2−3α << 1 because |R∗| > C1 > 0 and 1/2 −
3α > 0, and that |R∗|ε1/2−α ≤ ε1/2−τ−α << 1 because 1/2 − τ − α > 0. Since
ξ converges in distribution to N (0, σ2(θni , Rn1)) and σ2(θni , Rn1) ≥ K > 0, one
has:

P{|Hni+1
−Hni | ≤ 2C2|R∗|ε1/2−α} ≤ ρ,

for some 0 < ρ < 1. Using this in (100) one obtains the claim of the lemma with
b = − log ρ > 0.

The proof of the following lemma is exactly the same as the proof of Lemma
5.11
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Lemma 5.14. Let R∗ ∈ ITZ1, 0 < τ < 1/2 be fixed constants. Define H =
H(R∗, 0), and let α be such that:

0 < α < 1/2− τ, 0 < α < 1/6.

Let (θ0, R0) ∈ ITZ1, and consider the strip:

I = {(θ, R) ∈ ITZ1 : |H(θ, R)−H∗| ≤ C2|R∗|ε1/2−α}.

Let n∗ be the exit time of the process (θn, Rn) of I. Let f : R → R be any Cl
function with l ≥ 3. Then for all λ > 0 one has:

E

(
e−λεn

∗
f(Hn∗) +

ε
n∗−1∑
k=0

e−λεk
[
λf(Hk)− b(θqk, Rqk)f

′(Hk)−
σ2(θqk, Rqk)

2
f ′′(Hk)

])
−f(H0) = O(ε3/2−2α−δ),

where:

b(θ, R) = F (θ, R), σ2(θ, R) = R2
qk

q−1∑
i=0

v2(θ + ip/q, 0). (122)

Remark 5.15. Consider strips Ij of the form:

Ij = {(θ, R) ∈ ITZ1 : |H(θ, R)−H∗j | ≤ K|R∗|ε1/2−α}.

Recalling (118) one has:

Ij = {(θ, R) ∈ ITZ1 : |R−R∗j | ≤ K̃ε1/2−α}.

Then, defining N := [ε−1/2+α−τ ], one can find suitable strips Ij such that:

ITZ1 =
N⋃
j=0

Ij.

Let us denote by E the error terms given Lemma 5.13, that is E = O(ε3/2−2α−δ).
Then the accumulated error along ITZ1 will be:

N2E = O(ε1/2−2τ−δ) << 1,

since τ < 1/4.
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5.7 Transition Zones type 2

Here we study the system in the RR case, in the subdomain:

ITZ2 := {(θ, r) ∈ T× R : K1ε
1/2−τ ≤ |r − p/q| ≤ K2ε

β},

for certain constants K1 and K2. Similarly as in the Totally Irational case, after
performing the change to normal form, the n-th iteration of our map can be
written as:

θn = θ0 + nr0 +O(nε),

rn = r0 + ε
n−1∑
k=0

ωk[v(θk, rk) + εv2(θk, rk)] + ε2

n−1∑
k=0

E2(θk, rk) +O(nε2+a),

(123)
where v2(θ, r) is a given function which can be written explicitly in terms of v(θ, r)
and S1(θ, r). We consider substrips of the following form:

I = {(θ, r) ∈ ITZ2 : |r − r∗| ≤ ε1/2−α},

for some 0 < α < 1/2.

Lemma 5.16. Let r∗ be fixed. Let (θ0, r0) ∈ ITZ2, and consider the strip:

I = {(θ, r) ∈ ITZ2 : |r − r∗| ≤ ε1/2−α},

Let n∗ denote the first exit time of the process (θn, rn) of the strip I. Let δ > 0
be a sufficiently small constant. Then, there exists a constant b > 0 such that:

P{n∗ > ε−2α−δ} ≤ e−
b

εδ .

Lemma 5.17. Let f : R→ R be any Cl function with l ≥ 3. Then for all λ > 0
and δ > 0 sufficiently small one has:

E

(
e−λε

2n∗
f(rn∗) +

ε2

n∗−1∑
k=0

e−λε
2k

[
λf(rk)−

(
E2(θk, rk)f

′(rk) +
v2(θk, rk)

2
f ′′(rk)

)])
−f(r0) = O(ε2+a−2α−δ).

Proof. Let us denote:

η = e−λε
2n∗
f(rn∗) + ε2

n∗−1∑
k=0

e−λε
2k

[
λf(rk)−

(
b(rk)f

′(rk) +
σ2(rk)

2
f ′′(rk)

)]
.

(124)
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First of all we shall use the law of total expectation. Fix a small enough δ > 0.
Then we have:

E (η) = E
(
η |n∗ ≤ ε−2α−δ)P{n∗ ≤ ε−2α−δ}

+ E
(
η |n∗ > ε−2α−δ)P{n∗ > ε−2α−δ}.

Now we write:

e−λε
2n∗
f(rn∗) = f(r0) +

n∗−1∑
k=0

(
e−λε

2(k+1)f(rk+1)− e−λε2kf(rk)
)
.

Doing the Taylor expansion in each term inside the sum we get:

e−λε
2n∗
f(rn∗) = f(r0) +

n∗−1∑
k=0

[
−λε2e−λε

2kf(rk) + e−λε
2kf ′(rk)(rk+1 − rk)

+
1

2
e−λε

2kf ′′(rk)(rk+1 − rk)2 +O(e−λε
2kε3)

]
.

Substituting this in (124) we get:

η = f(r0) +
n∗−1∑
k=0

[
e−λε

2kf ′(rk)(rk+1 − rk) +
1

2
e−λε

2kf ′′(rk)(rk+1 − rk)2

]

−ε2

n∗−1∑
k=0

e−λε
2k

[
b(rk)f

′(rk) +
σ2(rk)

2
f ′′(rk)

]
+

n∗−1∑
k=0

O(e−λε
2kε3). (125)

We note that using (123) we can write:

rk+1 − rk = εωk[v(θk, rk) + εv2(θk, rk)] + ε2E2(θk, rk) +O(ε2+a),

and also:
(rk+1 − rk)2 = ε2v2(θk, rk) +O(ε3).

Thus we can rewrite (125) as:

η = f(r0) + ε
n∗−1∑
k=0

e−λε
2kf ′(rk)ωk [v(θk, rk) + εv2(θk, rk)]

+
n∗−1∑
k=0

O(e−λε
2kε2+a). (126)

65



Now we distinguish between the case n∗ ≤ ε−2α−δ and n∗ > ε−2α−δ. Consider the
former case. First, we show that the last term in (126) is O(ε2+a−2α−δ). Indeed,∣∣∣∣∣

n∗−1∑
k=0

O(e−λε
2kε2+a)

∣∣∣∣∣ ≤ Kε2+an∗ ≤ Kε2+a−2α−δ, (127)

where K is some positive constant. Then, for n∗ ≤ ε−2α−δ we obtain:

η = f(r0) + ε

n∗−1∑
k=0

e−λε
2kf ′(rk)ωk [v(θk, rk) + εv2(θk, rk)] +O(ε2+a−2α−δ). (128)

Now we focus on the case n∗ > ε−2α−δ. The last term in (126) can be bounded
by:∣∣∣∣∣

n∗−1∑
k=0

O(e−λε
2kε2+a)

∣∣∣∣∣ ≤ Kε2+a

n∗−1∑
k=0

e−λε
2k = Kε2+a1− e−λε2n∗

1− e−λε2
≤ Kλε

a, (129)

for some positive constants K and Kλ. Using this bound in equation (126), we
obtain that for n∗ > ε−2α−δ:

η = f(r0) + ε
n∗−1∑
k=0

e−λε
2kf ′(rk)ωk [v(θk, rk) + εv2(θk, rk)] +O(εa). (130)

Now we just need to note that since ωk is independent of rk and θk, we have for
all k ∈ N:

E(ωkf
′(rk)[v(θk, rk) + εv2(θk, rk)]) =

E(ωk)E(f ′(rk)[v(θk, rk) + εv2(θk, rk)]) = 0,

because E(ωk) = 0. Thus, if we take expectations in (128) and (130) and use
Lemma 5.16 it is clear that:

E(η)−f(r0) = O(ε2+a−2α−δ)P{n∗ ≤ ε−2α−δ}+O(εa)P{n∗ > ε−2α−δ} = O(ε2+a−2α−δ).

5.8 An expextation lemma for a whole Real Rational Strip

Finally, we shall put all the information of the previous subsections toghether in
ordrer to obtain an expectation lemma valid in the whole strip.
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Lemma 5.18. Let β, τ, γ > 0 be such that:

2β < min{1/2− τ, 1/2− 2γ, 2γ},

and let δ > 0 be a sufficiently small constant. Let (θ0, R0) be such that |R0| ≤
C2ε

β. Let n∗ be the exit time of the process (θn, Rn) of this domain. Let f : R→ R
be any Cl function with l ≥ 3. Then for all λ > 0 there exists d > 0 such that:

E

(
e−λεn

∗
f(Hn∗) +

ε

n∗−1∑
k=0

e−λεk
[
λf(Hk)− b(θqk, Rqk)f

′(Hk)−
σ2(θqk, Rqk)

2
f ′′(Hk)

])
−f(H0) = O(ε2β+d−δ),

where:

b(θ, R) = F (θ, R), σ2(θ, R) = R2
qk

q−1∑
i=0

v2(θ + ip/q, 0). (131)

Proof. We consider Markov times 0 < n1 < n2 < · · · < nm = n∗ such that, for all
i, (θni , Rni) and (θni+1

, Rni+1
) belong to different substrips of any of the domains

defined in the previous subsections. We define:

Nj = {ni : (θk, Rk) ∈ Dj, k = ni, . . . , ni+1 − 1},

NTZ1 = {ni : (θk, Rk) ∈ ITZ1 , k = ni, . . . , ni+1 − 1},

NTZ2 = {ni : (θk, Rk) ∈ ITZ2 , k = ni, . . . , ni+1 − 1}.

Then if we define:

η = e−λεn
∗
f(Hn∗)

+ε
n∗−1∑
k=0

e−λεk
[
λf(Hk)− b(θqk, Rqk)f

′(Hk)−
σ2(θqk, Rqk)

2
f ′′(Hk)

])
− f(H0)

and:

ηni = e−λεnif(Hni)

+ε

ni−1∑
k=ni−1

e−λεk
[
λf(Hk)− b(θqk, Rqk)f

′(Hk)−
σ2(θqk, Rqk)

2
f ′′(Hk)

])
− f(Hni−1

),
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we have that:

E(η) = E

(
m∑
i=0

ηni

)
= E

(∑
ni∈N1

ηni +
∑
ni∈N2

ηni +
∑
ni∈N3

ηni

+
∑
ni∈N4

ηni +
∑

ni∈NTZ1

ηni +
∑

ni∈NTZ2

ηni

 .

Using the bounds given by the expectation lemmas, we obtain:

E(η) = O(E(|N1|)ε1+2γ−δ) +O(E(|N2|)ε1−2γ−δ) +O(E(|N3|)ε3/2−2α−δ)

+O(E(|N4|)ε3/2−2α−δ) +O(E(|NTZ1|)ε3/2−2α−δ) +O(E(|NTZ2|)ε3/2−2α−δ).

One can easily see that, with probability exponentially small close to 1 as ε→ 0,
one has:

E(|N1|) ≤ K, E(|N2|) ≤ K, E(|N3|) ≤ ε−1/2−2γ+2α,

E(|N4|) ≤ ε−1−2γ+2α, E(|NTZ1|) ≤ ε−1−2τ+2α, E(|NTZ2|) ≤ ε−1+2β+2α.

Then, using that 2β < min{1/2− τ, 1/2− 2γ, 2γ} one obtains:

E(η) = O(ε2β+d − δ),

with d = min{1/2− τ, 1/2− 2γ, 2γ} − 2β > 0.

A Measure of the domain covered by RR and

IR intervals

In this section we show that, with the right choice of b, the measure of the the
union of all strips of RR and IR type inside any compact set:

Aβ = ∪kIkβ ⊂ T×B Ikβ strips of width 2εβ

goes to zero as ε→ 0.
In fact, we will do the proof for A = [0, 1]. The general case is completely

analogous. Let us consider:

R = {p/q ∈ Q : p < q, gcd(p, q) = 1, q < ε−b} = ∪qmax

q=1 Rq ⊂ [0, 1],

where qmax = [ε−b] and:

Rq = {p/q ∈ Q : p < q, gcd(p, q) = 1}.

Finally we denote:

IR = {Ikβ ⊂ [0, 1] : ∃p/q ∈ R ∩ Iβ}.
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Lemma A.1. Let ρ be fixed, 0 < ρ < β, and define b = (β − ρ)/2. Then, for
each Iβ such that there is at most one rational p/q satisfying |q| ≤ ε−b the union
IR has the Lebesgue measure µ(IR) ≤ ερ and, therefore, as ε→ 0:

µ(IR)→ 0,

where µ denotes the Lebesgue measure.

Proof. On the one hand, suppose that p/q ∈ Iβ, q ≤ ε−b. Then, for all p′/q′ ∈ Iβ,
with p′ and q′ relatively prime and p′/q′ 6= p/q, we have:

εβ ≥ |p/q − p′/q′| ≥ 1

qq′
≥ εb

q′
.

Therefore:
q′ ≥ ε−β+b = ε−b−3ρ/2 > ε−b,

so the first part of the claim is proved.
On the other hand we note that, if q1 6= q2, then Rq1 ∩Rq2 = ∅. Moreover, it

is clear that #Rq ≤ q− 1 (and if q is prime then #Rq = q− 1, so that the bound
is optimal). Therefore we have:

#R ≤
qmax∑
q=1

#Rq ≤
qmax∑
q=1

q − 1 =
q2

max

2
< ε−2b.

Since µ(Iβ) = εβ, one has:

0 ≤ µ(IR) = εβ#R < εβε−2b = ερ,

so that the second claim of the lemma is also clear.

B A generalization of Theorem 2.1

Theorem 2.1 can be easily generalized in the following way.

Theorem 2.1’. Let δ1(ε) and δ2(ε) be continuous functions such that for any
γ > 0 one has:

ε1+γ

δi(ε)
→ 0,

as ε→ 0. Then Theorem 2.1 applies to the random collection of maps f̃ω, where
f̃ω is the same as fω replacing the terms εEu(θ) and εω0v(θ) by δ1(ε)Eu(θ) and
δ2(ε)ω0v(θ) respectively.

Remark B.1. For instance, one can take δi(ε) = ε logn ε for any n.
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C Sufficient condition for weak convergence and

auxiliary lemmas

In order to prove that the r-component exhibits a diffusion process we need to
adapt several lemmas from Ch. 8 sec. 3 [20]. We recall some terminology and
notations (see Ch. 1 sec. 1 [20] for more details).

In the notations of section 1.6 we have

Lemma C.1. (see Lm. 3.1, [20]) Let M be a metric space, Y a continuous map-
ping M 7→ Y (M), Y (M) being a complete separable metric space. Let (Xε

t , P
ε
x) be

a family of Markov processes in M ; suppose that the process Y (Xε
t ) has continu-

ous trajectories. Let (yt, Py) be a Markov process with continuous paths in Y (M)
whose infinitesimal operator is A with domain of definition DA. Suppose that the
space C[0,∞) of continuous functions on [0,∞) with values in Γ is taken as the
sample space, so that the distribution of the process in the space of continuous
functions is simply Py. Let Ψ be a subset of the space C(Y (M)) such that for
measures µ1, µ2 on Y (M) the equality

∫
fdµ1 =

∫
fdµ2 for all f ∈ Ψ implies

µ1 = µ2. Let D be a subset of DA such that for every f ∈ Ψ and λ > 0 the
equation λF − AF = f has a solution F ∈ D.

Suppose that for every x ∈ M the family of distributions Qε
x of Y (Xε

•) in the
space C[0,∞) corresponding to the probabilities P ε

x for all ε is tight; and that for
every compact K ⊂ Y (M), for every f ∈ D and every λ > 0,

Eεx
∫ ∞

0

exp(−λt) [λf(Y (Xε
t ))− Af(Y (Xε

t ))] dt→ f(Y (x))

as ε→ 0 uniformly in x ∈ Y −1(K).
Then Qε

x converges weakly as ε→ 0 to the probability measure PY (x).

In our case Y (M) is the real line. We use a discrete version of this lemma in
our proof.

Similarly, to Lemma 3.2 [20] one can show that the family of distributions
Qε
x (those of Y (Xε

•) with respect to the probability measures P ε
x in the space

C[0,∞)) with small nonzero ε is tight. Indeed, in our case speed of change of I
is bounded. Denote H(X) = H(r, θ) = r2/2. Then

• for every T > 0 and δ > 0 there exists H0 such that

Pεx{max
0<t<T

|H(Xε
t )| > H0} < δ.

• for every compact subset K ⊂ A and for every sufficiently small ρ > 0 there
exists a constant Aρ such that for every a ∈ K there exists a function faρ (y)
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on Y (A) such that faρ (a) ≡ 1, faρ (y) ≡ 0 for ρ(y, a) ≥ ρ, 0 ≤ faρ (y) ≤ 1
everywhere, and faρ (Y (Xε

t )) + Aρt is a submartingale for all ε (see Stroock
and Varadhan [38]).

In the proof we need an auxiliary lemmas. We study the random sums

Sn =
n∑
k=1

vkωk, n ≥ 1, (132)

where {ωk}k≥1 is a sequence of independent random variables with equal ±1 with
equal probability 1/2 each and {vk}k≥1 is a sequence such that

lim
n→∞

∑n
k=1 v

2
k

n
= σ.

Here is a standard

Lemma C.2. {Sn/n1/2}n≥1 converges in distribution to the normal dirtribution
N (0, σ2).

Recall that a characteristic function of a random variable X is a function
φX : R → C given by φX(t) = E exp(itX). Notice that it satisfies the following
two properties:

• If X, Y are independent random variables, then ϕX+Y = ϕX · ϕY .

• ϕaX(t) = ϕX(at).

A sufficient condition to prove convergence in distribution is as follows.

Theorem C.3 (Continuity theorem [6]). Let {Xn}n≥1, Y be random variables.
If {ϕXn(t)}n≥1 converges to ϕY (t) for every t ∈ R, then {Xn}n≥1 converges in
distribution to Y .

A direct calculation shows that

lim
n→∞

log φSn/
√
n(t) = − t2

2σ2
for all t ∈ R.

This way of proof was communicated to the authors by Yuri Lima.
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