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ABSTRACT. We combine the technique of inducing with a method of Johnson
boxes and construct new examples of S-unimodal maps ¢ which do not have
a finite absolutely continuous invariant measure, but do have a o-finite one
which is infinite on every non-trivial interval.

We prove the following dichotomy. Every absolutely continuous invariant mea-
sure is either o-finite, or else it is infinite on every set of positive Lebesgue
measure.

1. Introduction.

1.1. Overview. We consider non-renormalizable S-unimodal maps ¢ : [0,1] —
[0, 1], with »(0) = ¢(1) = 0 and having no attracting periodic orbits. We refer the
reader to [22] for detailed properties of S-unimodal maps. The topological behavior
of such maps is easily described. The iterates of every point, except 0 and 1, eventu-
ally fall inside an interval I’ bounded by the critical value o(c) and its image ©?(c),
and ¢ restricted to this interval is topologically mixing. In addition, the w-limit set
wy, () coincides with I’ for  belonging to a residual subset B of I'.

It was S. D. Johnson who first showed the existence of non-renormalizable S-
unimodal maps with no finite acim, [15]. In [10, 18, 8] the question about whether
such maps have a o-finite acim was raised, and in [11] infinite o-finite measures
were shown to exist if omega limit set of the critical point is a Cantor set. For S-
unimodal maps ¢ the omega limit set w, () is the same for Lebesgue almost every
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point x. We refer to this set A, as attractor.

First examples of maps ¢ such that A, = I’, ¢ has no finite a.c.i.m and ¢ has a
o-finite a.c.i.m were constructed in [3]. For these maps the graphs of certain iterates
o are almost tangent to the diagonal line y = z, exhibiting almost saddle-node
bifurcations.

Another method of constructing maps with o-finite a.c.i.m and no finite a.c.i.m was
developed in [2]. Here iterates ¢™ exhibit Johnson bozes, [15]. We use Johnson
boxes to prove our main result:

Theorem A. There are uncountably many maps in the quadratic family that admit
no finite a.c.i.m. but that have a o-finite a.c.i.m. measure that is infinite on every
interval.

Most of the results of this paper were first proved in [2]. However, Theorems 2.1
and 2.2 were first proved in [3] and [4]. To our knowledge, the phenomenon that u
is infinite on every interval was previously encountered only in invertible dynamics
(circle diffeomorphisms) by Katznelson [17, Part I, Section 2]. Our work uses the
tower construction from [12], [14]. Generally tower constructions are going back to
Kakutani [16].

1.2. The Power Map T and Acim v. For ease of exposition we will construct
our examples from the one-parameter family {¢; : t € [0,4] } of quadratic maps
2 +— tx(l — x). Our procedures generalize to any full family of S-unimodal maps
©¢(x) which depend continuously on the parameter ¢ in the C! topology, and have
topological entropy varying between 0 and log 2.

Let G: I — I be the first return map on the interval I := [¢~ !, g] bounded by the
fixed point ¢ € [1/2,1] of ¢ and its second preimage ¢~* € [0,1/2]. When t ~ 4, G
has many monotone branches G; and a central parabolic branch A, which we also
call critical. The domains of these branches form a partition éo of I.

Our construction starts by refining & to a partition & with sufficiently small el-
ements. Starting from £, we construct inductively an increasing sequence of par-
titions &, converging to a limit partition £, of I into a countable union of non-
overlapping intervals A; and a complementary Cantor set of Lebesgue measure zero
such that every A; is mapped diffeomorphically onto I by some iterate G:. The
power map T defined by T|A; = GVi satisfies the conditions of the Folklore Theo-
rem [1] and therefore has a unique ergodic invariant probability measure v, which
is absolutely continuous with respect to Lebesgue measure | - |, and has a density
bounded away from zero and infinity.

Since v is ergodic, Lebesgue almost every point in I satisfies wp(z) = I and
wy(z) = [p?(c), p(c)]. Next a p-invariant measure u is obtained from v by us-
ing a tower construction.

2. Tower Construction and o-finite Measures.
2.1. The Tower Construction.

2.1.1. Given the measure v of the power map 7', one can obtain an absolutely
continuous invariant measure for the map G by defining

N;—1
p(-) =D wGE()NnAy,
j=0

i
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see e.g. [12] or [22, Chapter V, Lemma 3.1]. However p is not a probability measure,
and can only be normalized if ), N;v(A;) < co. Our set-up will be the following.
Let
Ay = GI(A) (i=0,1,...;5=0,1,...,N;,—1)
and let H be the disjoint union
o0 Ni—l
i=0 j=0
We call the sets A;; (i fixed; j varies) the tower over A;. As H is a disjoint union
of subintervals of I, and each u € H belongs to some A;;, we can define the map
w: H — I by letting m(u) be the natural inclusion of u € A;; into I. Let
g()_ w_loGow(u)ﬂAmH iquAij(jZO,l,...,Ni—Q);
w= r 1 OGOﬂ'(u)ﬂ(UiAiyo) ifUEAiﬁNifl.
By construction, G om = m o G. Define a measure p on ‘H by
p(A) =v(G7(A)) when AC Ay

Since v is T-invariant, p is G-invariant. Notice that if we view I as the base of the
tower H then T is the first return map and v = p|I.

Put u = m.p. By construction p is G-invariant. As T-invariant measure v is
equivalent to the Lebesgue measure and the piecewise smooth map G maps sets of
Lebesgue measure zero into sets of Lebesgue measure zero, we get from the definition
that ;1 and Lebesgue measure have the same sets of zero measure. So p is equivalent
to the Lebesgue measure.

2.1.2.  An interesting fact is that if u is not finite then no finite acim exists.

Theorem 2.1. The map ¢ has a finite acim if and only if

Proof. As G is a first return map with a bounded return time, the map ¢ has a
finite acim if and only if G has. So we prove that G has a finite acim if and only if
(1) holds.
(i) The convergence of the sum in (1) above is sufficient.
Suppose that = m.p is given as above, then
Ni—1
pI) = p(H) = > p(Ay) =D Ni-v(A;) < o0,
i =0 i
where the last inequality follows from (1) because v has a bounded density. Thus
G admits a finite acim.

(ii) The convergence of the sum in (1) above is necessary.

Assume there exits a G-invariant absolutely continuous probability measure (acip),
won I. Then by a theorem of G. Keller [19] p lifts to an acip ji on the canoni-
cal Markov extension (I,G). As was shown in [1], the power map (T, U;A;) with
T|a, = GMi|a, corresponds to a first return map in the Hofbauer tower. More
precisely, there is a subset A of I consisting of (possibly countably many) disjoint
copies of A := U;A;, such that if & € A belongs to a copy of A;, then GNi (%) is the
first return of 2 to A.
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Since i is G-invariant, the (non-normalized) restriction /i| A of fito A is invariant
for the first return map to A. Let 7 : A — A be the natural projection, and
v = ﬁw*ﬂ& Since T : A — A corresponds to the first return map to A, v is
a T-invariant absolutely continuous probability measure. By the Folklore theorem
such measure is unique and has continuous density bounded away from zero.

Let A; ¢ A be the union of intervals, which are projected onto A;. For such

intervals the return time equals N;, and we get

L oad) Ay L
@ a2

= = Nil/ Al
Ald) g A) Z (&)

Because the density of v w.r.t. Lebesgue measure is bounded away from 0, it follows
that Ez N1|AZ| < 0. O

2.2. A Property of o-finite Acims.

2.2.1.  Consider the T-invariant measure v (equivalent to Lebesgue measure) and
the measure p, which is defined on the tower as indicated above, with p = m,.p. Let
m denote the normalized Lebesgue measure on [.

Theorem 2.2. Either u is o-finite or else p(B) = oo for all B with m(B) > 0.
Proof. Assume g is not o-finite and let p(B) > 0. Then m(B) > 0. As pu is

G-invariant
p(B) = p(G™'B) = u(G™*B) = - -
Let Bp = B and

n—1
B, =G™(B)\ <U Bi> (n=1,2,...)
i=0
Now, consider the set
A=[JG™B) =] B (2)
n=0 n=0

Clearly m(A) > 0. Now, if m(A) =1 and u(B) < oo, then equality (2) gives us a
decomposition of I into a countable union of disjoint sets B,, of finite x4 measure,
contradicting that p is not o-finite.

On the other hand, assume 0 < m(A) < 1. Since G'(A4) C (A) we have
T~Y(A) C (A), contradicting that T is ergodic with respect to the invariant measure
v equivalent to m. O

Notice that the power map T from [14] exists if and only if the measure of the
set C =T\ |JA; equals zero (see also related results in [20]). If |C| > 0 then the
map @ has a wild attractor, see [5]. In that case there exists a dissipative absolutely
continuous invariant measure, see [21, (]; the latter also establishes the existence of
a o-finite acim of ¢ is infinitely renormalizable. Combining this with Theorem 2.2
we get for any map, whether dissipative or conservative, the following:

Theorem 2.3. Any S-unimodal map has either a o-finite acim, or it has an in-
variant measure fi such that pu(B) = oo for all sets B with m(B) > 0.
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Remark 1. If ¢ has a quadratic critical point, but exhibits neither almost saddle-
node bifurcations nor Johnson boxes, then ¢ has a finite acim, see [7]. If the critical
orbit is nowhere dense, then ¢ has a o-finite acim p such that u(J) < oo for every

interval J away from the critical orbit, see e.g. [3].

3. Preliminary Construction.

3.1. The Koebe Distortion Property. Diffeomorphisms with negative Schwarzian
derivative have bounded distortion in the following sense: Let J, I, I be intervals,
with I = L U T U R where L is the interval adjacent to the left of I and R to the
right. Note that L and R form a collar around I. Suppose

min { B @} > T
1] ]
Then there is ¢ = ¢(r) such that every diffeomorphism F:.J — I with negative
Schwarzian derivative satisfies
FI
tfe< (T ) <

[E"(y)]

for all x,y € F~1(I). We refer to c as the Koebe distortion constant, and say that
a map has small distortion, whenever ¢ = 1 + ¢ for a small ¢.

3.2. The First Return Map.

3.2.1. For any t > 3, the quadratic map ¢; has two repelling fixed points 0 and
¢ =1—1/t. Let ¢; = 1/t denote the second preimage of ¢, and consider the first
return map Gy induced by ¢; on the interval I := [¢; ,¢;"], then G} has 2K mono-
tone branches (diffeomorphisms) and one central parabolic branch. When ¢ — 4,
K — oo.

In our construction distortion and other properties of maps G hold for all ¢ within
certain parameter intervals. Therefore we often suppress dependence on the param-
eter in the notation. Let us denote the monotone branches by f;: A;-t — I, where
A; denotes the domain to the left of the critical point 1/2 and A} denotes the sym-
metrical one to the right of 1/2 that has the same return time i = 2,3,..., K + 1.
The central parabolic branch hg: 69 — I has return time K +2. We denote the two
boundary intervals of I with return time equal to 2 by A; (I for left) and A, (r for
right). If we let ¢ = ([0, ¢q], wo = ¢¢|I, and B = ¢¢|[q, 1], then G: I — I is given
by:

fi = PowolAy,

fr = @O@OlAra

fE = ¢ 20Bogp|AL (i=34,...,K+1),

ho = ¢ 0B opgld. (3)

Denote the resulting partition of I by §~0.

3.3. Uniform Extendibility.
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3.3.1.  In our construction I = [¢!,q] is extended to some interval I := [a~,a™]
where a= € (0,¢7 '), and a™ € (g, 1), are specified below. We use the notation
f:A—1I where A=A, UAUAR and f: Ap —la=,q7 Y, f:AR— [q,a™].
When the collar [ \ I remains the same for all branches, then we refer to these
extensions as uniform and the collar is said to be a Uniform Extendibility Collar.

We define an extendibility collar by choosing a~ close to ¢! and a* close to g.

Then for all monotone branches except for the boundary ones which domains A;
and A, are the boundary domains of I, respective extensions are contained inside
the adjacent domains. Since the fixed point ¢ is repelling, sufficiently small intervals
adjacent to ¢ are contracted by G, ! Then the extensions of A; and A, are both
contained in /. That implies that compositions firja-ju Of fi are extendible.

3.3.2.  In our construction critical branches have the form h = F o ), where F' is
a diffeomorphism and @ is the restriction of the initial quadratic map to a small
interval § around the critical point 1/2. Critical branches are also called central and
their domains are called central domains. A central branch h is said to be extendible
if F' is extendible. In which case the extension h = f Q is a critical branch defined
on & D & whose image contains either [a~,¢'] or [¢,a™]. In particular, the initial
critical branch hg: g — I of the first return map is extendible and its extension ilo
is given by equation (3). The image of hg: 6 — I contains [¢, a't].

Let

x: 6 F—=4
be a diffeomorphism from a preimage of a central domain § onto §. We call x
extendible whenever it extends up to a diffeomorphism y onto 5.

3.4. The Initial Partition.

3.4.1.  For the purposes of our construction it is convenient to refine 50 into a par-
tition & with sufficiently small elements, see [13]. It is done by using consecutive
pull backs of §~0 by monotone branches of the first return map, and by their compo-
sitions. Then we get a partition & called initial partition, from which we can start
our inductive construction:

o: I = (UiAi) U (Ukéak) U do, (4)

where A; denotes domains of uniformly extendible monotone branches, 8, * denotes
preimages of dy by extendible diffeomorphisms y = G*|d; k. and 8 is the domain
of an extendible parabolic branch hyg.

The lemma below follows from straightforward estimates of derivatives of the
first return map, see [13].

emma 3.1. For every e > 0 we can construct the partition &y to have the followin,
L 3.1. I ye >0 truct the partiti to have the following
properties:

(i) Each monotone domain has length less than e.

i e aggregate sum of lengths of the “holes is less than e.

i) The aggregat lengths of the “holes” 65" is less th

(i1i) The Extendibility Collar does not depend on €.

Let us describe one property of & which is used later. When ¢t = 4, the first
return map G4 has an infinite number of monotone branches that converge toward
the middle point 1/2 and has no central parabolic branch. There exists a constant
co, such that, |A;| < 55 for every j, see [13].
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Let us now suppose that Gy has 2K monotone branches and one central branch
where K is extremely large. Then choose a large index jo < K such that

Co

2? <e€ (5)
and consider the initial partition éo described in Section 2. When constructing &
out of & we do not change the branches with indices j > jo.
Expansions of all monotone branches f; besides possibly the two branches f; next
to the middle central branch satisfy

df

diL' > C1 2j (6)

and we assume that c;27 is large for j > jo. If the height of the parabolic branch is
small, then derivatives of f I% can be small. However in our construction, we choose
the position of the critical value ho(1/2) above 1/2. Then the distance between Ag
and the critical point is comparable to the size of Ax and the derivatives of f; will
also satisfy (6).

4. Construction of Partitions.
4.1. The Basic Step.

4.1.1. Starting from &y we construct inductively an increasing sequence of parti-
tions &g < & < ... < &, < ... We assume by induction that after step n — 1 we
have constructed the following partitions &,,, 0 < m <n —1 of I:

Em o T = (UA) U (U; U 87%) U by U Gy

Here 0 < ¢ < m, the collection {A} are monotone domains mapped onto I by
uniformly extendible diffeomorphisms, &,, is the domain of the extendible central
parabolic branch and each 4, ¥ is a preimage of some d; by an extendible diffeo-
morphism y. Sets C,, are Cantor sets with zero Lebesgue measure and Cy = 0.
Partitions &, and associated maps are defined for ¢ which belong to parameter in-
tervals A, C A1, 0 < m < n—1. Notice that elements A of &,, are not changed
at subsequent steps of induction, but §; k¥ and 6, are substituted by the new A,
5;’“ and d,,41. Sometimes we call A good intervals, and we call 61-_’“ holes.

Depending on the step of induction we use one of the several operations described
below. In particular the following operation is used throughout our construction.

(1) Monotone Pullback: Suppose
fo: Do — 1

is a monotone branch and let ¢ denote a partition of I. Then we refer to f, ' (£) as
the monotone pullback of the partition £ onto Ag. This creates a partition of Ay
into domains of various types. For every domain J of the partition £ we have the
corresponding domain f; *(.J) C Ao.
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4.1.2. Let &,, 0 < m < n—1, be a partition constructed at the previous steps
of induction. Assume the critical value h,,_1(1/2) belongs to a certain element
A € &,. We refer to this as a Basic step and we proceed with the construction of
the partition &, using the following procedures.

(2) Critical Pullback: We induce on d, 1 the partition h, ' (&,,) thus creating
preimages of all the elements of &, that are contained in the image of h,_;. This
gives us domains inside §,_1 of branches of the following type:

e Two new monotone branches f o h,,_1 for each monotone domain A(f) which
lies inside the image of h,_1.

e A central parabolic branch h,, := f}oh,_1, where f: A¥ — I is the monotone
branch containing the critical value h,_1(1/2).

e We also obtain the diffeomorphisms x o h,_1 from the corresponding diffeo-
morphisms y: 5;’“ — §; of &,—1. When the range of h,,_1 contains the central
domain §,,, we also get two preimages h, ' (6,,).

(3) Grow-up procedure: It may be that the range of the central branch h,,_1(6,—1)
is contained in the rightmost boundary domain A,. of the initial partition &y, or in
the leftmost boundary domain 4A;. Notice that A; and A, are good intervals which
are not changed at subsequent steps of induction, so they are as well the boundary
domains of all partitions &,. Then we replace the central branch respectively, by

-1
flm o h,n,1 or Zn o fr o h,nfl,

where m is the smallest number such that the image of the new central branch
covers more than just a boundary interval. The domain of definition of the new
central branch remains the same, and we keep the same notation h,,_1.

(4) Extra Pullback Procedure: In our estimates on the measure of holes in Chapter
5 we use that ratio |d,|/|0n—1| is small. According to Lemma 3.1, all elements
belonging to the preliminary partition are of length less than . If the image of the
central branch h,_; covers more than half the length of I, then

A%l
]
is small. However, if the image of h,,_; does not cover that much, then the length

of A¥_; may be comparable to the height of that image. Therefore we introduce
the following rule of Extra Pullback.

<cy/2

If [Im(hy,—1)| < 3|I|, then we do one extra monotone pullback of & onto Aj_,
which ensures that after critical pullback the ratio

|00
<
|6n—1| =& (7)

is small. Here 7 depends on our choice of e.

(5) Boundary Refinement Procedure: Suppose F': A — I is an extendible monotone
branch, where A € &,,, A C hp—1(6n-1), and h,—1(1/2) ¢ A. If A is too close
to hp—1(1/2) then when we do critical pullback onto §,_1, the monotone domain
h;il(A) may be not extendible. In which case, we perform the boundary refinement
procedure as follows:

The initial partition (4) contains the boundary branch f,: A, — I which has a
repelling fixed point q. We refine A, by monotone pullback, thus creating the
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partition (&) which has a boundary domain A,.. adjacent to q. Then we refine
A, by monotone pullback of & by f;-2 and so on. The k*" step refinement creates a
copy of & on Ay . ..y contracted approximately by |f~(q)|~*. We call the resulting
k
partition the k'" right boundary refinement of &o; it is denoted by &y . After
constructing such a partition on A,, we pull back & ;—1 by f; onto the leftmost
boundary interval A; of &y to create the k" left boundary refinement of & denoted
by &k,0 with the most left interval A;,.. .. As the sizes of extensions of App

k p
and Alrr. oy decrease exponentially there exists k such that all elements of h,,_; o

P
F_lfo)k or respectively h,,_1 o F‘1§k70 are extendible.

Remark 2. . Notice that A remains unchanged. Its refinement is used to construct
uniformly extendible monotone branches during the critical pullback. After doing
boundary refinement for all elements A which need it, we get a partition of §,,_1,
which we denote by

Nn—1: 0p—1 = 6, U (UA) U (U; Up 6, ") (mod 0).

Notice that by construction at every step ¢ = 0,1,...,n — 1, similar partitions
&1 and ;1 are defined.

(6) Filling-in: We fill each preimage
5;’“ =x"1'6) j=0,1,....n—1
with the pullback x~!(n;). In this way we get a ‘copy’ of the elements of 7; inside
each 5;’“.
After the above operations we get a new partition &, which has the form
&= ulJ U v (8)
7<n p>0

Here all the monotone domains A are uniformly extendible due to the boundary
refinement. Moreover, as explained in the next section, we choose the position of the
critical value in such a way that all maps from 5;’“ onto d; have small distortions.

4.2. Enlargements.

4.2.1.  When constructing the partitions &, we emphasized that the critical value
h,(1/2) falls in a monotone domain. Clearly that excludes h,(1/2) from being
inside a hole ;" k. However, we will add the assumption that the critical value does
not belong to an enlargement of 6, k¥ which we will define below. For 8y we define
K
so=|J (A% U)
m=2jo

where jj is defined by (5). Next we define enlargements as follows. If 0; is a central
domain of a basic step, then 5; = 0;—1. However if §; is a central domain of a
Johnson step, then SZ = H;, where H; is a small subset of d;_1 , see below.

When we apply the critical pullback procedure, we make sure that the critical value
does not belong to the union of enlargements | ¢;.

Then for any hole ;% = h;;16;™, the restriction of h,, to §; * can be extended up
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to a diffeomorphism from 5; k¥ onto §; and respectively the enlargement S; * is well
defined, and for any §; ¥ 6, its enlargement SZ_ * also belongs to d,. As any hole
is a diffeomorphic preimage of the respective central domain we get that if §; ks
obtained by filling in of §;” then o ¢ 6"

Below we prove that the measure of the union U; U §; k of holes at step n tends
to zero when n — oco. The same holds for the measure of enlargements, because
by construction the union of enlargements of step n is a subset of the union of the
holes of step n — 1. So the above choice of the position of the critical value outside
of the enlargements is possible.

4.2.2. Recall that for all domains A, except A,, A, extensions A are contained
in I and AT,Al C I. Therefore extensions of h;fl(A) are contained in 4,1,
and extensions of h; ' (A,), h 1 (A;) are contained in &, ;. At a basic step
when we construct a new central domain §,,, its extension is the critical pullback
of the extension A* of the monotone domain A* which contains the critical value.
Therefore h,'(A*) C 6,-1. As a result 8n C 8p_1 = b,,. The same holds at the
Johnson step, see below. So all diffecomorphisms mapping §; * onto §; are extendible
and extensions of their domains are subsets of respective enlargements.

4.2.3. For §,, constructed at a basic step we have

1)
|~_n| < &1 (9)
[0n|

for some small £ determined by the sizes of elements in the preliminary partition

€o-

At a Johnson step described in Section 4.3, (9) holds as well. As all diffeomorphisms
X : 5;’“ — §; are extendible up to 51-_]“ — J; we obtain from the Koebe property
that their distortions are small.

4.3. The Delayed Basic or Johnson Step.

4.3.1. At certain induction steps we use the method of S. Johnson [15] to get an
infinite acim. We select parameter values such that hn_l(%) € §,_1, the image of
h,,—1 contains %, hn,l(%) is close to %, but the map remains non-renormalizable.
According to terminology of [14] such steps are called delayed basic. We shall also

call them Johnson steps.

After we construct the partition & at the preliminary step, it is convenient to make
a Johnson step.

4.3.2.  The Johnson Box: Let hy be the parabolic branch of G. Note that the first
return map reverses orientation and consequently Ay has a minimum at the critical
point. We choose an initial parameter interval Ag, so that for t € Ay, ho(1/2) € dg
with ho(1/2) < 1/2. Then the image of hy contains all the domains of &y that are
located to the right of dg. We define a Johnson box as the interval By = [qo, qo_l]
where ¢ is one of the two fixed point of hy, the one which is farther away from
1/2, and g, 1 ho 140 . Since we choose our maps non-renormalizable, we place the
critical value outside of gy L go]- We call the part of the graph outside this box the
hat and denote its base by Hj.
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4.3.3.  Constructing the First Step of the Staircase. Let us denote haiight the

inverse branch of hy ! which image is on the right of 1 /2, and by hg llcft the second
branch. Then & = hallc&@ U haiight&) = 51 left U St right s the first step of the
staircase.

4.3.4. The Infinite Staircase Construction. We proceed by constructing the in-
finite staircase S = U;j>1S; where each S; consists of two components S; e =
ha,]leftsj—l,right and Sj right = h&iightsjflvright symmetric about 1/2. These preim-
ages are adjacent and form an infinite staircase

S = Steft U Sright -
They are outside the Johnson box, in fact S = do \ Bo.
4.3.5.  Filling-in the Boz. Define
ro =min{r: hy(1/2) & oo }.

We choose parameter values such that ho(%) belongs to some monotone domain A C

Sro lett- Then we fill the base of the hat Hy by critical pullback hy ! <U?’im Sj 1eft
thus creating a new partition (y inside Hy, which in particular contains a new critical
branch

hi:= f§ o hi°.
Here f§ is the monotone branch whose domain A§ € S; contains the iterate h(°(1/2)
of the critical point.

Restricting hg to the two symmetric intervals of By \ Hp, we obtain two monotone
maps g1, g2. Since Hy # (), we get that gq, go and all their iterates are uniformly
extendible branches of an S-unimodal map. Thus they have uniformly bounded
distortions. Then By is a countable union of preimages g, oo 9; 'Hy and a
Cantor set of zero Lebesgue measure. Therefore we get a partition (mod 0) of By
which is a union of (p and all pullbacks g; o0 9i '¢o. We combine that partition
with staircases and get the partition 7y of dy

no = 0o = (UA) U (Ud, P) U (U6, 7) (mod 0). (10)

4.3.6.  Staircases and Fxtendibility. Consider the domains A;,i > jo of the par-
tition &». These domains are not refined at the preliminary construction because
their sizes are small enough. Then, as for all domains of the first return map, the
extensions of A; are contained inside the adjacent domains A; ; and A;1;. And
the left and right extensions of the central domain dy = Ay are contained inside
Apn, . Notice that the extensions of the boundary elements of the partition Ay e

are inside extensions of dg. Thus they are contained respectively inside Ay, and
An_.

Each step Sj has two boundary elements Ay, ;,;+ located closer to the critical point
and Ay ezt. As S = hglsk,l we get that extension of Ay ;¢ is contained inside
Akfl,int-

As g is small, &; is the preimage of almost one half of the interval I. Thus &;
covers almost one half of §y and all remaining steps cover a small fraction of dg. By
choosing a small extendibility collar we ensure that interior extensions of Ay, are
contained respectively inside S jep¢ and Si rigne. Moreover these extensions do not
intersect the domains hg A, P> jo located in the “middle” of ;.
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The extension of Ag_j ;¢ is contained inside Sy and moreover does not intersect
preimages hy A 0> jo located in the “middle” of Si. This implies

Corollary 1. For every k and for every domain hakAi, i > jo located inside S
one can choose the position of the critical value of ho inside hakAi so that all maps
constructed at Johnson step are extendible.

In this situation we do not need to do boundary refinement and 79 constructed
above is the partition of dg at the first step of induction.

Finally we get the partition & of I by filling-in every element 6, k of & by the
pullback of the partition 7.

4.3.7. Now let n = ny, be a step of induction, when the k-th Johnson step occurs.
Then hy,—1(1/2) € 6,,—1 and 1/2 € Im(h,,—1). We define

re=min{r:h_1(1/2) €& 6,1}

We define the Johnson box Bj, bounded by the points gx, ¢ L where gy, is one of the
two fixed point of h,,—1 — the one farther away from 1/2 — and qlzl = h;ilqk .
The part of the graph, which contains the critical value and is located outside this
box is called the hat. We denote its base by H,_1. As in the first step we construct
an infinite staircase S = U;>1S; where each §; consists of two components Sj et
and Sj right, Symmetric about 1/2.

As at the first Johnson step we can choose parameter in such a way that the critical
value h,,—1(1/2) belongs to a preimage of one of the elements A;,i > jo of &,
and boundary refinement is not needed at Johnson step. Then we fill the base of
the hat Hj by using critical pullback. In particular, we get a new critical branch
hp = froh* . Here f is the monotone branch whose domain A} contains
hyk 1 (1/2). Restricting h,—1 to the two symmetric intervals of By \ Hj, we obtain
two monotone maps g; and g2. So, as before almost every point of By, \ Hj under the
iterations of ¢g; and go eventually ‘escapes’ the box through Hj. The preimages of
the partition of Hj, under the two monotone branches g; and gs generates a partition
of By \ Hy (modulo a Cantor set of zero Lebesgue measure). This partition of By,
adjoined with that of the staircase S constitute the desired partition 7, _1 of §,_1.
Finally, the partition (8) is obtained by filling in each domain 6;]“ of &,-1.

4.4. The Limit Partition.

4.4.1. Let
Hoa= |J 6,7
J<n;p=0

denote the collection of holes. At each step of induction we construct domains of
monotone branches which are not changed anymore, domains ¢, ¥ which are filled-in
at the next steps and Cantor sets of zero measure. As 6;]“ are mapped onto ¢; with
uniformly bounded distortions, the relative measure of new holes obtained after the
filling-in of 5;’“ is bounded away from one, if and only if the measure of the new
holes obtained at step j + 1 inside §;, is bounded away from one. This implies

Proposition 1. Suppose that at each step n of our construction the relative mea-
sure of Hp—1 within &, is less than a uniform constant @ < 1. Then as n — oo
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we obtain a limiting partition £ = £ of I consisting of an infinite number of uni-
formly extendible domains A; of monotone branches f;: A; — I and a Cantor set
of Lebesgue measure zero.

As |A;| < e, where ¢ can be made arbitrary small and distortions of f; are
bounded by a constant independent of €, we get that for any R > 1 one can find
€ > 0 such that expansions of all f; in Proposition 1 are greater than R. Under
the conditions of Proposition 1 above, we obtain that all monotone branches f; are
expanding and have uniformly bounded distortion.

5. The Proof of Theorem A.
5.1. Preliminary Definitions.

5.1.1. (i) In the course of our construction we need to keep track of certain quan-
tities associated with the successive partitions &,. Let

Moo= J |J6;? (11)

j<np>0

denote the union of all holes 6j_p at step n. These are preimages of central domains
§; for 7 =0,1, 2,..., n, which are elements of &,. Let a,, = |H,,| be the Lebesgue
measure of H,.

(ii) If A needs a boundary refinement, then we define R, (A) to be the minimal
number of boundary refinements needed so that all new elements constructed inside
hi ' (A) are extendible.

(iii) If n = ny is a delayed basic step and we have the box By, and the base of the
hat Hj we will have the ratio

|Hy|/|Br| < Br.

where (i, to be specified later, is chosen in advance to be small enough in order
that the acim p is on the one hand

5.2. Strategy of the Construction.

5.2.1. The examples we give are constructed by a decreasing sequence of nested
parameter intervals A, such that for all ¢ € A,, the map ; admits the partition
&, as described in Section 4 In addition, we will arrange that &, satisfies certain
conditions specified below, so that for t = N, A,, ¢; has a non-integrable invariant
density. At each step either h,(1/2) falls in a monotone domain A¥ created at one
of the previous steps (Basic Case); Or h,(1/2) is “delayed” in §,, and falls instead
in a preimage of a monotone domain A} belonging to &,, so that hl»(1/2) € A¥
(Delayed Basic Case). Notice that in the latter case hy,,(1/2) still falls in a monotone
domain, except that this monotone domain is created at the current step, that is,
it belongs to the partition &, 4.

Thus, in either situation, the critical value falls in a domain which is mapped onto I
by a monotone branch. It follows from the monotonicity of the kneading invariant,
(see [9]), that if the critical value enters a certain domain A = [a1, as], say through
a1 when the parameter ¢t = ¢1, then it remains inside A until the parameter reaches
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t = to when it then leaves A through as. Therefore, by varying the parameter, we
can arrange that the new critical value

frohy(1/2)  at a basic step,
frohlm(1/2) at a delayed basic step,

B (1/2) = {

is mapped anywhere in . In this way, we can ensure that the forward G-orbit of the
critical point is dense, i.e., wg(1/2) = I and hence wy, (1/2) = [p7(1/2), p+(1/2)].

Moreover, every time the critical value h,,(1/2) is delayed in the box, the level of the
staircase, 1,,, which contains h,(1/2), as well as the size of the hat can be chosen
independent of the topological requirements on the critical orbit because each level
of the infinite staircase consists of the preimage of the previous level.

5.2.2.  Every monotone branch f; : A; — I is by construction a composition of
iterates of the first return map G. Accordingly f; = GVi|A; and we call N; the
power of f;. Every critical branch h, can be factored into h,, = F),, o hg, where
F,, is a composition of monotone branches and hg is the central parabolic branch
of the first return map G restricted to a small neighborhood of the critical point.
In this case, we define the power of h,, as 1 plus the sum of powers of each of the
monotone branches in the composition F,,. Notice that in this sense, the power
of all branches of the first return map G is 1, and all monotone branches can be
factored into compositions of branches of G. In terms of the Tower Construction
of Chapter 2, N; corresponds to the number of domains in the tower over A; and
thus may be referred to as the height of A;.

We define a map T': I — I piecewise by
T|IA; = fi = GNi|A;: Ay — T,

and T is expanding with uniformly bounded distortion for all branches f;. It satisfies
the hypothesis of the so-called Folklore Theorem, see [1]. Therefore T has an ergodic
acim v with a density function that is continuous and bounded away from zero.

5.2.3. The G-invariant measure y on I given by the formula
Ni—1

pwE)=>"> v(ANGTE) (12)
i j=0

for every measurable set £ C I. Since G is a smooth map, formula (12) implies that
1 is an absolutely continuous invariant measure. Since v has a bounded density,
u(E) < oo if and only if

N;—1
D= Y [(ANGTE) (13)
i =0
converges, and p is finite if and only if

> NilA] < . (14)

Our aim is to construct the map 7" in such a way that:
(A) The convergence of the sum in (14) does not hold.
(B) There exists a set E with positive Lebesgue measure for which the sum ¥ in
(13) converges.
(C) The p-measure of every interval is infinite.
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Theorem 2.1 implies by property (B) that the measure u is o-finite.
5.3. The Parameter Choice Lemma.

5.3.1.  The first return map G: I — I induced by ¢; has 2K monotone branches
for all parameter values ¢ inside an interval of parameter denoted by (tx,tr11)-
When ¢t = tx1, the critical branch splits into two new monotone branches and a
new critical branch is born in between.

So, our first parameter interval is given by Ag = [tk,tx+1] and for all parameter
values in the interior of Ag, a partition &y is defined and its elements vary continu-
ously with ¢. In the course of our construction we determine a nested sequence of
closed parameter intervals A,, C A,,_1 such that for all parameter values t € A,,, ¢
induces the partition &, with desired properties. Then for

T = ﬂ;-)oAi (15)

we obtain the limit maps ¢, G, and the limit partition £, corresponding to the
power map 1. In order to do this, we will use the following lemma.

Lemma 5.1. (Parameter Choice Lemma) At each step n, there exists a param-
eter interval A,, C A,,—1, such that as t varies in the interior of A,,, the following
two properties hold:

(1), All intervals of the partition &, vary continuously, in particular none of them
disappear and no new ones appear.
(#3)n, The critical value hy,(1/2) moves continuously across the whole interval I.

Proof. Assume by induction that the two properties (¢); and (i7); hold for all j < n.
Then using (i), continuity of h,(1/2) and monotonicity of the kneading invariant
([9]), we get that given a prescribed element A € ¢&,, which is a domain of a
monotone branch, there exists a parameter subinterval A,, ;1 C A,, such that when
t € Apt1, hy(1/2) moves all the way through A without leaving A. According to
our inductive construction of Chapter 4, the next central branch is hy,11 = F), 0 hy,
where F,, = f at a basic step, and F,, = f o hl» at a delayed basic step. Since,
in both cases, F,, maps A onto the whole interval I, it follows that h,1(1/2)
satisfies (4i),+1 as hy(1/2) moves across the interval A. Next, since h,,(1/2) depends
continuously on the parameter ¢ and stays inside the domain A when t € A, 41,
the new partition of §,, which we had denoted by 7,, will satisfy (),41. Moreover,
the new branches of the partition &,,1 constructed outside d,, are compositions of
branches of &, with those branches inside d,,. As both vary continuously, all new
branches satisfy (i)51. O

5.4. Generating Partitions.

5.4.1. In this section, we define an additional sequence of partitions which allows
us to ensure that the forward orbit of the critical point is dense in I. Using the
sequence of partitions &, constructed in Chapter 4, we define a sequence of partitions
Pn = &, as follows:

Let Py = & be the preliminary partition constructed in Section 3.

Let Pn—1 = &,—1 be the partition of step n — 1. By construction elements of P, _1
are of the same types as elements of &,_1 : domains A of monotone branches and
67k 0<i<n—1, k>0.

We construct P,, by refining elements of P,,_; as follows.
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1. We are doing filling-in for each element 9, k.

2. For each A which size exceeds % we pull-back on A the partition &.

Remark 3. Sizes of elements depend on the parameter. So we are doing the
above partition if the size of A is too large at least for one parameter value under
consideration.

5.4.2. When constructing £ we made expansions of all monotone branches of
&o greater than some R > 1, and at the same time kept distortions bounded by
¢(tau) independently of R. If R is big enough, then the above construction provides
elements A in P, with sizes less than 5. At the same time sizes of holes in &, and
respectively in P, satisfy d; k < e", where ¢ is a small constant. Therefore sizes
of elements in the increasing sequence of partitions P,, decrease uniformly. So if
the critical orbit eventually visits every element of every P,, then the T-orbit and
hence the G-orbit of the critical point is dense in 1.

5.5. Positioning the Critical Value at a Johnson Step.

5.5.1. In this section we describe how to achieve at step n the following two prop-
erties.

(i) The trajectory of the critical point visits certain good intervals between two

consecutive delayed basic steps.
(ii) Given a sequence of numbers 7, at each delayed basic step n = ng, the hat
is so small that the ratio |Hy|/|Bx| < V-
We may start the construction of Chapter 4 with a delayed basic step, that is
ho(1/2) € 8o,...,he? 1 (1/2) €8y and  hy°(1/2) € I\ do.
Let Af € & denote the monotone domain that contains hq°(1/2).

The idea is to look ahead. Since h(°(1/2) falls in a monotone domain A} that is
mapped onto the whole interval I, the location of ho(1/2) may be chosen so as for
some finite collection of good intervals A of Py there correspond basic steps such
that h;(1/2) € A. This determines a sequence of basic steps j = 1,2,...,n1 — 1.
Then the following step is delayed basic: hy,(1/2) € d,,. For each of these basic
steps we let f! denote the monotone branch whose domain A7 contains the critical
value f;(1/2). Then hji1 = ff o hj, and

hny = fa,—10fa—a 00 fg o hg'

Therefore the above requirement on the critical value for steps n = 1,2,...,n7 is
that the collection of domains

* * *
LAS, AL

includes a given collection of good intervals of Py. Notice that this requirement is
independent of the value of 7o which is chosen so large that |Hyp|/|Bo| < 7o for any
prescribed 7.

Using the Parameter Choice Lemma for each of the steps n = 1,2, ..., ny, we obtain
a sequence of parameter intervals

AoDAlD"'DAnl

such that for t € A,,,, the trajectory of the critical point has the properties described
above.

Observe that A,, contains a subinterval such that when the parameter runs through
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this subinterval, h,, (1/2) moves across the staircase S = U;S; belonging to dy,.
Now, hy!(1/2) falls in a monotone domain Ay € &,,, and so the location of the
critical value h,,(1/2) may be chosen so that for the next series of basic steps, the
critical value h;(1/2), (j =n1+1,n1+2,...,n2—1), falls in a prescribed collection
of good intervals in P;. At the same time we can take r arbitrary large, which will

make llgi\‘ < 7 for any given 7.

Then follows a delayed basic step na. At that step hn,(1/2) € 6, and h;2(1/2)
is the smallest iterate of hy,(1/2) outside the central domain d,,. At that step we
choose |Hs|/|Bz2| < 2. At the next basic steps j = na + 1,n2+2,...,n3 — 1, the
critical value h;(1/2) visits a prescribed collection of good intervals of Ps. Next we
consider a delayed basic with |H3|/|Bs| < 73, and so on.

In this way, we may select a sequence of nested parameter intervals A, such that
for t = NA,,,, the orbit of 1/2 under G; is ej-dense, where ¢, | 0. It follows that
for t € NEAn, (= NpAL), ¢ has we(1/2) = 1.

At the same time the above property (ii) is satisfied.
5.6. Making the Acim p Infinite.

5.6.1. We assume that at step n = ny, the central branch h,: §,, — I falls in the
delayed basic situation and we construct the box By with hat Hy. Set

Hy? = hy? (Hy),
i.e., if g1 and g2 denote the two monotone branches of h,,|( B\ Hy) then Hk_j consists
of the collection of 27 intervals that are mapped onto Hy, by the compositions Gir i

of g1 and g5 for all possible ¢; - - -i; . These intervals are called preimages of the hat
of order j.

Let ¢ be the parameter value at which Hy disappears. Then for ¢ — t; the ratio
|Hi|/|Br| — 0 and at the same time | By (t)|/|Br(tx)| — 1.

Let Nj be the power of the central branch:
i, = G

When h,, exhibits a box By, one of the boundary points of By, is a fixed point for
hn,, and hence a periodic point of G with the period Nj. We call N}, the period
of the box Bj. The G orbit of any point in H 7 includes j N}, iterates such that it
returns to By at multiples of Vi and finally escapes through the hat.

Let s = [2/|B(tx)| ]. Then s > 1/|B(t)| for all ¢ close enough to t.
Lemma 5.2. There exists wy, € (0,1) such that if |Hy|/|Bi| < wi then

_s 1
|He| + -+ |H®| < 5|Bk|
Proof. Obvious by continuity, cf. [15]. O

This leads to

Proposition 2. Assume that in the construction of £ there are infinitely many
delayed basic steps n = ny, such that |Hg|/|Bk| < wy, where the wy are given by
Lemma 5.2. Then the measure p is infinite, and moreover the measure of every box
By, is infinite.
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Proof. As each interval in H, ® visits By, s times before exiting through the hat, the
tower construction implies that p(Hy) > 37, j|H,’|. From the previous lemma we
get
R —j 1 1 1
S GH | >8> |H | > S| Bl = 5 (16)
- ‘ 2 |Br| 2
J J>s
Let Gr = limy_.o Gy, be the limit map, where 7 is from 15. The above argument
proves that the part of the sum 14 for G, contributed by the intervals A; C By \ Hy,
satisfies )
Z Ni|Aq| > 3 (17)
A;CBR\Hy
Let d > 0 be a lower bound for the density of the T, invariant measure v,. Then
for the G, invariant measure p = p, we get from 17

p(Bi\ Hi) > o (15)

As the next box is contained inside Hy,, we get infinitely many disjoint annuli By \ Hy,
satisfying (18). This proves pu(By) = oo for every k. In particular,the sum ¥ of (13)
diverges and p is infinite. O

This satisfies condition (A) given in Section 5.2.3.
5.7. Construction of the Set E.

5.7.1.  Recall from Section 5.2.3 that we wish to construct a set £ with non-zero
Lebesgue measure for which the sum in (13) converges. From the previous section
we see that we need to exclude the intervals that go back and forth within a Johnson
box. With this in mind, we construct the set E by defining a sequence of open sets
Uy which contain many iterates of By and such that their union U = Uk Uy, does
not have full measure in I. Then E := I \ U has positive Lebesgue measure and we
prove that E has the desired properties. Take Uy = dg and define Uy inductively
by using the partition ¢, as follows. At each delayed basic step n = ny we have
hn(1/2) € 8. Let N be the power of h,, with respect to G, and let R = h,,(,,).
We define U}, as the union

G(R)UG*(R)U...UGY(R), where GY(R)=20,NIm(h,).
Let B = By, denote the associated Johnson box with hat H = Hy.

Proposition 3. There exists a sequence by, such that if at each delayed basic case
|Hk| < by, then |E| > 0.

Proof. Let n = ng and m = ni_1 be two consecutive delayed basic steps. In our
construction we will have many basic steps in between. Therefore
hn = fa10 fa_g0- -0 frnohy,

where the branches f; for i = m,m+1,...,n—1 are chosen in order to ensure that
the orbit of the critical point is everywhere dense. By construction hl™(1/2) is the
first iterate of h,,(1/2) that falls outside d,,, i.e., hn(1/2) € S, (6m) — the rth
level of the staircase construction belonging to 6,,. Take R = h, !(d,) and let N,
be the power of h,,. Set S = hlm~'(R) € Si(d,m) — the first level of the staircase
belonging to d,,. Then we decompose the orbit

Ug=RUG(R)U---U(GN"(R) = 6, NTm h,,)
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into two blocks

Bi = RUGR)U---US,
By = GS)YUG*S)U---U (6, NImhy,).

Clearly R C h, '8, since 6, C d,, because n > m. Consequently, By C Ui_; and
|Uk \ Up—1] < |Bal.

The key point is now, that the number of iterates of S which make up the union
in the second block Bs is independent of r,,, (remember that by construction
hym(S) C Ay, irrespective of ry,). So if M denotes the power of hy,, then B
consists of a union of M + N(A%)) + N(A}, 1) +---+ N(A}_;) G-iterates of S.
It follows by continuity, that By can be made arbitrarily small provided §,, C Hy_1
is small enough, which in turn can be arranged by choosing r,, sufficiently large.
Therefore at each delayed basic step, we can determine in advance the level of the
staircase because the series of basic steps and the following Johnson box depends
only on the location of hl'™(1/2) within A% and not on r,,. Consequently, there

exists a sequence by such that if |Hy| < by, then |U| < |I| and |E| > 0. O
Let v, = min {ag, by }. If

|Hy| < [Hk|/|Bk| < vk, (19)

then the hypotheses of Propositions 2 and 3 are both satisfied.

5.7.2. Having established that p is infinite, because »_, N;|A;| = oo in (14), we
continue to show that ¥ in (13) is finite. Then by Theorem 2.2, property (B) implies
the measure p is o-finite.

If we only count the intervals G¥(A;) that intersect E and denote their number
by Ng(A;) we get that the sum ¥ given by formula (14) is majorized by

> Ne(A)AlL (20)
n Ai€én

Terminology: We call Ng(A;) the height through E of the monotone branch f;
with the domain A;.

Let us consider the preliminary partition &y. Since this partition consists of a finite
number of intervals we can set

No=max {N(J): J €&}
We define the power through E of h,, as
Ng(hn) =14+ Ny +N{ +---+N;_,; (N(ho) =1) (21)
where N = Ng(A}) is the height through E of the domain A; that contains the
critical value h;(1/2).

5.8. Properties of Boundary Refinement.
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5.8.1.  When estimating Ng we must take into account boundary refinement. In
this section we show how to control it by choosing the appropriate position of the
critical value.

Recall that by the choice of parameter, we can ensure that no boundary refinement
is needed at Johnson steps. However we will usually have many basic steps j =
n+1,n+2,...,m—1 between two Johnson steps in order to make the orbit of the
critical point dense. In particular for any element A there is a step of induction
when we put the critical value inside A and arbitrary close to its boundary. To
make adjacent branches extendible we need many steps of boundary refinement.
We will use the following notation:

(i) Suppose A, Ag € &, are monotone domains and A, contains the critical
value xg = h,,(1/2). Then we let R, (A, Ag, x¢) denote the minimum number
of boundary refinements needed for A in order to make monotone domains
h Y (A) € &,41 extendible.

(i) Let

Rn(Ao, LL‘Q) = IAneagx{ Rn(A, AQ, LL‘Q) }

Remark 4. (i) If the map F is diffeomorphic then R,,(F~*A, F71Aq, F~1zg) =
R, (A, Ag, xg), since extensions of preimages are preimages of extensions.

(ii) By the construction of enlargements in Section 5, each hole ~* belonging to a
given partition £ has an enlargement 6% such that for all elements constructed
as a result of filling in 6%, their extensions are inside oF Asa consequence
we obtain that no additional boundary refinement is needed after a filling-in
operation.

The following lemma is a straightforward consequence from the definition of
extendibility. To simplify notation, we may assume I = [0, 1].

Lemma 5.3. (The Boundary Refinement Lemma) Suppose f: [a,b] — [0,1]
is an extendible monotone branch with f(b) = 1 and let J = [b,d] be an interval
that is adjacent to [a,b]. Let us consider the refinements of [a,b] and let (i be the
boundary interval of the k' refinement which is adjacent to b. Then there exists
ko = ko(|J]) such that the extension of the boundary interval (, is contained in J.

Suppose ¢ is a partition with the critical value xo = h(1/2) contained in Aj € .
Also assume A, C Im(h) is the monotone domain adjacent to Ag. Then, using
the boundary refinement lemma we get the following corollary:

Corollary 2. If A # A, belongs to & and requires boundary refinement, then we
will need no more than ko(A,) steps of boundary refinements.

Recall that if §g < & < -+ < &, < --- are partitions constructed in the course
of our induction. Let {,, = lim,_ &, denote the limit partition.

Lemma 5.4. For Ag € &, and xg € Ay, we have
Roo(Ao,{E()) = Sl;p Rm(A,Ao,xo) = Rn+1(A0,$0).

Proof. Notice that all monotone domains created after step n are inside the holes
of &,. After the filling-in of any hole § we get two monotone domains adjacent to
the boundary points of §. Therefore we get a domain A adjacent to Ag no later
than at step n + 1. O
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For x¢ € Ag, where Ay is a monotone domain of some &,,,, we define
R(Io) = ROO(A(), .Io). (22)
Using that [Uace Al =1 we can now prove
Proposition 4. The limit lim,, ., |{ o : R(xo) <n}| = 1.

Proof. For a given A € &, we have R, (A, Ag, xg) < ko(A,) for all A non-adjacent
to Ag. As for the adjacent interval A, the number of boundary refinements is finite
for any fixed zy inside the interior of Ay and tends to oo as xy approaches the
common boundary between Ag and A,. However,

hm |{:C0 : Rm(AavAOaIO) > TL}| —

0

Hence, for every finite union U of intervals Ay and every union V' of open subin-
tervals of Ag that is separated from the boundary points of Ay and has relative
measure (in U) close to 1, there exists an n such that for any m

max R (Ag, x0) < n,

Ao,x0€

proving the proposition. |

Proposition 4 implies that we can carry out the construction of partitions &,,
and make the trajectory of the critical point everywhere dense, under an additional
assumption that the maximum number of boundary refinements needed to make all
elements of £, extendible does not exceed, say, 2".

Assume at step n according to our itinerary we must visit certain domains, but
it involves more than M > 2" refinements. Then we interrupt our itinerary and
just pullback &y consecutively. We use that for &, there are many positions of the
critical value such that no boundary refinement is needed. After that we return to
our original predetermined itinerary.

5.9. Growth of the Ng.

5.9.1. We want to show that the sum > > \.. Ng(A)[A[ in (20) converges.
Since the partitions &, have the property that once a uniformly extendible monotone
domain is created it is never changed, it follows that all new monotone domains come
from the critical pullback into the central domain and then from the subsequent
filling in procedure. So to calculate the sum in (20) we will estimate the contribution
at each step n due to the these procedures.

5.9.2. Let
Np(6n) = max No ()
By definition the maximum is taken over all elements J of &, including 6,,. We
define Ng(6y,) := Ng(hy), where Ng(h,,) was defined in (21).
Then
Ng(0n) < Np(8n)
Since the preliminary partition &y is a finite partition, we have Ny := Ng (&) < oco.
Next we prove

Proposition 5. For alln > 0, we have

(@)n Ng(£n) < No5™.
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Proof. Clearly (a)o holds. Now, assume by induction (a), and let us consider the
partition &,11. All new elements inside 4,, are obtained by using critical pullback
and boundary refinement. At a basic step we are doing one critical pullback. Then
for the new critical branch h,41 = f¥ o h,, we have

NE(thrl) < NE(hn) + NE(fn) < Nob™ + Nob"™ (23)
The same estimate holds for other elements inside §,, obtained by critical pullback.

By construction at step n we need no more than 2" boundary refinements. If we
are doing a grow-up operation, we choose the position of the critical value, so that
we need no more than 2" additional compositions. Then we may need one extra
pull-back operation. Taking into account all these possibilities we get

max Nip(J) < 2No5" + No(4" +1). (24)

Recall that at a Johnson step we delete trajectories of all intervals until they enter
the first step of the staircase. Deleted intervals cannot contribute to Ng. The points
from the first step of the staircase are mapped by h,, onto the elements of &, just
as at a basic step. So at a Johnson step we get the same estimate (24). Finally,
when we do the filling-in procedure, we add one more term not exceeding Ng(&,) -
So we obtain

NEg(€nt1) < 3Nob™ + (4™ + 1) Ny < No5™

which proves (a)n+1 as required. O
5.10. Estimates at Step n + 1.

5.10.1. Recall that elements A constructed at step n are not changed anymore.
New elements at step n + 1 are constructed inside ¢,, and inside holes d; koi=
0,1,..., k>0.

Let us now estimate the contribution to (20) from the elements constructed inside
the preimages d; ¥ created by the filling in procedure. Suppose A, 5;]“ C 6; ¥ are
elements obtained by filling in 6; ”. Then we can subdivide the orbit of these
elements into two segments. The first segment consists of the trajectory of 4, "
until they reach §;, the second segment then follows the orbit of the elements inside
0; that are constructed at step ¢ + 1. In our estimates we accounted for the first
segment at step n. At that step we counted the contribution of the hole §; * without
any partition. In order to estimate the new contribution at step n + 1 we need to
account for the second segment of that orbit. For a given i that contribution does

not exceed
Ne(&n) (Y 1671) (25)
5, etn
Since i < n, Proposition 5 implies that Ng(&41) < No5™t! and consequently
estimate (25) is at most

No5™™ > (677,
5, P€tn
Therefore, the total contribution to the sum in (20) at step n+ 1 due the preimages
5;’“ fori=0,1,2,...,n and p > 0 does not exceed

Nos™H (32 Y 10:7) (26)

5, Petn
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In the next section we will prove that
> 167F < a'b"so, (27)
5. Pekn

where a = a(dp), b = b(dp) and s¢p = s0(dg) all tend to zero with §;. We can ensure
that he sum

'] ) 1 .
;cﬁb”so = 1= asob” <6 (28)

provided a, b and so are sufficiently small. Combining this with (26) proves the
convergence of the sum of the new contributions, and respectively the sum in formula
(20).

5.11. Estimating the Measure of Holes U(Si_k inside &,.

5.11.1.  In our construction every central branch is a composition h(z) = FoQ(z),
where Q(z) is the standard quadratic map and F is a composition of monotone
domains with uniformly bounded distortion. For the quadratic map Q(x) we know
that, if J C § are both symmetric intervals containing the critical point, then

|| 1Q(J)|
=i = 29
5 =\ 1ee) (#)
Since F' has bounded distortion we obtain for similar intervals J and ¢
|h(J)]
|J| < cld|y | . (30)
|h(5)]

Let § be the domain of a central branch h. By the grow-up procedure the image of
the central branch covers at least a fixed length Iy. So we may write

[J] < elolV/[h(J)] (31)

where ¢ is another uniform constant.

(n

5.11.2. For a given i let « ) = Uk, 6. "] be the total measure of the holes U, *

that belong to &,. In order to estimate from above the relative measure of the
holes created inside §,, as a result of the critical pullback procedure, we assume the
worst position of these holes. By this, we mean that we assume that all the holes
are contiguous with one end being bounded by the critical value w = h,,(1/2). Let
MZ-("H) denote the measure of the union of all preimages of J; created inside §,, at
step n + 1. For i < n + 1, inequality (31) implies

M.(n+1) -
r5 | <ey/al™. (32)

)

This gives us the worst estimate on the relative measure of Mi(nJr1 inside d,,.
For i = n + 1 we get in the basic case
1
M,(LT[ ) = 601 < 36, (33)
where 3 is a small constant depending on the maximal size of elements in &.

We get estimates (32), (33) at basic steps. At a Johnson step, the estimate (32) still
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holds for preimages which belong to the first step of the staircase. For subsequent
preimages we prove
Lemma 5.5. The union of the box and all stairs except S1 satisfies:
10, \ S1| < €18, */2. (34)

Proof. Let h, = F o @, where @ is the initial quadratic map. Let J = 4§, \ S1. By
definition Ay (J) = hn(6,) N6, and [6,] > |h(J)| > 3|6, Since Q is quadratic,

(29) gives % = \g((éi))‘l' Using (30), |hn(d,)] > 1/2|I] and h,,(J) C §,, we obtain
|| < c|dn|?/2. O

So at a Johnson step we get for i <n +1

M < clon| (v o™ + 16,]2). (35)

Remark 5. At a Johnson step n + 1 we get infinitely many preimages of d,1

all created inside the box B,. Since the tip of the hat is small comparatively to

the box, we have |h,(B)| = |B|(1 + ¢). Taking J = B in (31) we obtain |B| <

c|6,]+/|B|(1 + ) which shows that the box is of order |§,|>. Therefore, when i =
n + 1 we get a stronger estimate

MY < 16,2 (36)

As (35) in the Johnson case majorizes (32), we use the estimate (35) in all cases.

5.11.3.  When doing filling-in of a hole 6;’) we pullback the structure of §; that was
created by critical pullback at step 7 4+ 1. So we handle this at step j + 1 as we did

above at step n + 1 and get M7 < || <V a4+ |5j|1/2). Then we pullback
with small distortion onto the preimage 5;17 and obtain new preimages J; k with
measure less than c1]6; " <\/ oel(-j) + |5j|1/2) inside each preimage ¢;”. Notice that

the central domain §; is constructed at step i. Respectively, preimages of §; can only
appear at steps 4,7+ 1, ... Taking the union over all preimages 5;” forj=1,...,n,
we get that at step n + 1 the total measure of all preimages 0; " appearing after
filling in all preimages 0,.,%, (m =i,i+1,...,n), is at most

ci ag,’f) (\/az(-m) + |5m|1/2) )

Recall that at a basic step | (;Iéjll‘ < B, where § can be made arbitrary small by
choosing elements of the initial partition & small.

We choose dp < 3. Then at a Johnson step we get |§;| < c|§;—1]*> < B]di—1| and
moreover from (36)

]\41Z < 5|5171| (37)
The filling-in operation produces at the middle of any domain ¢, kl a new central
preimage §; * or a union of such preimages Jo; ™, if i was a Johnson step.

Since the diffeomorphisms x : §; kl — ;1 have small distortions, we get for preim-
ages

<(1+¢)p.
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We change notation and use the same constant § as an estimate for the ratio of
these preimages.

Combining the previous estimates we get at step n + 1

o™ < Ba™ + a1y af” (\/ o) + |5j|1/2) (38)
j=i

where 3 and ¢; do not depend on ¢ and on n.
5.11.4. Now, we prove

Proposition 6. There exists small positive constants sg, a and b, such that for all
n >0 and all i < n we have

(Tiny) agn) < a'b"sp. (39)
Moreover, one can choose sg, a and b that tend to zero as |0g] — 0.

Proof. 1. We may assume that Jj is small enough — to be specified below. Recall
that Bl B, where (8 is small. Consequently, in our estimates below, we

9;
use thz‘at‘ _
{ |65 < 5|60l
Oél(-z) < Coﬁz|50|.
Here a constant ¢y appears because &y contains not only dp, but also its preim-
ages.

2. By construction of our initial partition £ we decrease an element until its size
becomes smaller than 9. We recall that when the image of the critical branch
covers less than one half of I | we are using an extra pull-back operation. Hence
B < c24/€0, where ¢y is a uniform constant.

The key observation is that the size of the central domain §y does not depend
on gy, and we can choose |dp| < .

3. Let us choose a constant sy such that |§p| < sp, say |dp| < s3. In addition
, we choose small constants a = 3% and b = (Y where 0 < x,y < 1/2 and
ab > 33. Combining all the above, we will use in our estimates below the
following inequalities

K} 2
{ 8ol < s, 1)

ﬂ<%ab, B<b?  p<a

4. Let us first check the case i = 0. In this case (38) becomes

(40)

aém_l) < Z s0a™b" (\/%bm/2 + |50|ﬂm/2)
m=0

m=0 m=0

T lSObn(Z @ 6] Y 6’“/2)] |

If a, b and 3 are small enough, then the sums of geometric progressions are
close to 1, and we get
aénﬂ) < clsg/2b"(1 +e). (42)

Also, we can arrange that the elements of the initial partition are small enough
to ensure that

Cl\/% < b/lO (43)



26

JAWAD AL-KHAL, HENK BRUIN AND MICHAEL JAKOBSON
Then (42) implies formula (T'(g,541))-
5. Now we assume by induction that I'(; ;) holds for all i < n. Then for all

i=1,2,...,n we get using (38), (40) and (41)

aEnJrl) < ﬁai—lbnSO+CIZSOajbn[\/%ai/2bj/2+ /_|5O|ﬁj/2}

j=i
< %Soaibn-i-l
+ spa¥b" [cl\/%(z ajbj/Q) teciy |50|Zﬁj/2]- (44)
i j=i

1
1—ab2

The first term in the square brackets is < claib% \ /so< L > From ¢1/s¢ <

s
Wl

[N

b/10 given in (43) and since %(1‘1 :
obtain that
o 1 ; 1 a%b% 1 .
ips - )< _(7) < —abb. 45
o \/%(1—@%)—“ [10 1= ab? ]—3“ ()
As |60| < s3 and 3 < a? we get as above that the second term in the square
brackets in (44) satisfies

i 1 1 3

c1v/ 60|82 (—1) < -a?b. (46)
1-p2 3

Combining (45), (44) and (46) we get aEnH) < $0a’b™ ™! proving formula

(L(in41y) for all i <n +1.

)g 1 which holds for small a,b, we

[N
f=a

Thus Proposition 6 follows by induction. O

As discussed in Section 5.10, Proposition 6 implies that p is a o-finite acim.
Finally we get from Proposition 2 that every interval J C I has infinite u-measure.
Let J be any interval in I . By construction there is an n such that h,(c) passes
through J and hence there is a Johnson step ko such that the forward orbit of
the box By, passes through J. We proved that By, has infinite y-measure. As pu
is G-invariant, every iterate of By, has infinite y-measure. Respectively J which
contains an iterate of By, also has infinite py-measure.

This finishes the proof of the main Theorem A.
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