NEW EXAMPLES OF S-UNIMODAL MAPS WITH A SIGMA-FINITE ABSOLUTELY CONTINUOUS INVARIANT MEASURE

Jawad Al-Khal
Department of Mathematics
Howard University, DC, USA
Henk Bruin
Department of Mathematics
University of Surrey, England
MichaEl Jakobson
Department of Mathematics
University of MD, College Park, MD, USA

(Communicated by the associate editor)

Dedicated to Yakov B. Pesin on the occasion of his 60-th birthday

Abstract

We combine the technique of inducing with a method of Johnson boxes and construct new examples of S-unimodal maps φ which do not have a finite absolutely continuous invariant measure, but do have a σ-finite one which is infinite on every non-trivial interval. We prove the following dichotomy. Every absolutely continuous invariant measure is either σ-finite, or else it is infinite on every set of positive Lebesgue measure.

1. Introduction.

1.1. Overview. We consider non-renormalizable \mathcal{S}-unimodal maps $\varphi:[0,1] \rightarrow$ $[0,1]$, with $\varphi(0)=\varphi(1)=0$ and having no attracting periodic orbits. We refer the reader to [22] for detailed properties of \mathcal{S}-unimodal maps. The topological behavior of such maps is easily described. The iterates of every point, except 0 and 1 , eventually fall inside an interval I^{\prime} bounded by the critical value $\varphi(c)$ and its image $\varphi^{2}(c)$, and φ restricted to this interval is topologically mixing. In addition, the ω-limit set $\omega_{\varphi}(x)$ coincides with I^{\prime} for x belonging to a residual subset B of I^{\prime}.
It was S. D. Johnson who first showed the existence of non-renormalizable S unimodal maps with no finite acim, [15]. In [10, 18, 8] the question about whether such maps have a σ-finite acim was raised, and in [11] infinite σ-finite measures were shown to exist if omega limit set of the critical point is a Cantor set. For S unimodal maps φ the omega limit set $\omega_{\varphi}(x)$ is the same for Lebesgue almost every

[^0]point x. We refer to this set \mathcal{A}_{φ} as attractor.
First examples of maps φ such that $\mathcal{A}_{\varphi}=I^{\prime}, \varphi$ has no finite a.c.i.m and φ has a σ-finite a.c.i.m were constructed in [3]. For these maps the graphs of certain iterates φ_{n} are almost tangent to the diagonal line $y=x$, exhibiting almost saddle-node bifurcations.

Another method of constructing maps with σ-finite a.c.i.m and no finite a.c.i.m was developed in [2]. Here iterates φ^{n} exhibit Johnson boxes, [15]. We use Johnson boxes to prove our main result:

Theorem A. There are uncountably many maps in the quadratic family that admit no finite a.c.i.m. but that have a σ-finite a.c.i.m. measure that is infinite on every interval.

Most of the results of this paper were first proved in [2]. However, Theorems 2.1 and 2.2 were first proved in [3] and [4]. To our knowledge, the phenomenon that μ is infinite on every interval was previously encountered only in invertible dynamics (circle diffeomorphisms) by Katznelson [17, Part II, Section 2]. Our work uses the tower construction from [12], [14]. Generally tower constructions are going back to Kakutani [16].
1.2. The Power Map T and Acim ν. For ease of exposition we will construct our examples from the one-parameter family $\left\{\varphi_{t}: t \in[0,4]\right\}$ of quadratic maps $x \mapsto t x(1-x)$. Our procedures generalize to any full family of \mathcal{S}-unimodal maps $\varphi_{t}(x)$ which depend continuously on the parameter t in the C^{1} topology, and have topological entropy varying between 0 and $\log 2$.
Let $G: I \rightarrow I$ be the first return map on the interval $I:=\left[q^{-1}, q\right]$ bounded by the fixed point $q \in[1 / 2,1]$ of φ and its second preimage $q^{-1} \in[0,1 / 2]$. When $t \approx 4, G$ has many monotone branches G_{i} and a central parabolic branch h, which we also call critical. The domains of these branches form a partition $\tilde{\xi}_{0}$ of I.
Our construction starts by refining $\tilde{\xi}_{0}$ to a partition ξ_{0} with sufficiently small elements. Starting from ξ_{0} we construct inductively an increasing sequence of partitions ξ_{n} converging to a limit partition ξ_{∞} of I into a countable union of nonoverlapping intervals Δ_{i} and a complementary Cantor set of Lebesgue measure zero such that every Δ_{i} is mapped diffeomorphically onto I by some iterate $G^{N_{i}}$. The power map T defined by $T \mid \Delta_{i}=G^{N_{i}}$ satisfies the conditions of the Folklore Theorem [1] and therefore has a unique ergodic invariant probability measure ν, which is absolutely continuous with respect to Lebesgue measure $|\cdot|$, and has a density bounded away from zero and infinity.
Since ν is ergodic, Lebesgue almost every point in I satisfies $\omega_{T}(x)=I$ and $\omega_{\varphi}(x)=\left[\varphi^{2}(c), \varphi(c)\right]$. Next a φ-invariant measure μ is obtained from ν by using a tower construction.

2. Tower Construction and σ-finite Measures.

2.1. The Tower Construction.

2.1.1. Given the measure ν of the power map T, one can obtain an absolutely continuous invariant measure for the map G by defining

$$
\mu(\cdot)=\sum_{i} \sum_{j=0}^{N_{i}-1} \nu\left(G^{-j}(\cdot) \cap \Delta_{i}\right),
$$

see e.g. [12] or [22, Chapter V, Lemma 3.1]. However μ is not a probability measure, and can only be normalized if $\sum_{i} N_{i} \nu\left(\Delta_{i}\right)<\infty$. Our set-up will be the following. Let

$$
A_{i j}=G^{j}\left(\Delta_{i}\right) \quad\left(i=0,1, \ldots ; j=0,1, \ldots, N_{i}-1\right)
$$

and let \mathcal{H} be the disjoint union

$$
\mathcal{H}=\bigsqcup_{i=0}^{\infty} \bigsqcup_{j=0}^{N_{i}-1} A_{i j}
$$

We call the sets $A_{i j}$ (i fixed; j varies) the tower over Δ_{i}. As \mathcal{H} is a disjoint union of subintervals of I, and each $u \in \mathcal{H}$ belongs to some $A_{i j}$, we can define the map $\pi: \mathcal{H} \rightarrow I$ by letting $\pi(u)$ be the natural inclusion of $u \in A_{i j}$ into I. Let

$$
\mathcal{G}(u)= \begin{cases}\pi^{-1} \circ G \circ \pi(u) \cap A_{i, j+1} & \text { if } u \in A_{i j}\left(j=0,1, \ldots, N_{i}-2\right) \\ \pi^{-1} \circ G \circ \pi(u) \cap\left(\cup_{i} A_{i, 0}\right) & \text { if } u \in A_{i, N_{i}-1}\end{cases}
$$

By construction, $G \circ \pi=\pi \circ \mathcal{G}$. Define a measure ρ on \mathcal{H} by

$$
\rho(A)=\nu\left(\mathcal{G}^{-j}(A)\right) \quad \text { when } \quad A \subset A_{i j} .
$$

Since ν is T-invariant, ρ is \mathcal{G}-invariant. Notice that if we view I as the base of the tower \mathcal{H} then T is the first return map and $\nu=\rho \mid I$.
Put $\mu=\pi_{*} \rho$. By construction μ is G-invariant. As T-invariant measure ν is equivalent to the Lebesgue measure and the piecewise smooth map G maps sets of Lebesgue measure zero into sets of Lebesgue measure zero, we get from the definition that μ and Lebesgue measure have the same sets of zero measure. So μ is equivalent to the Lebesgue measure.
2.1.2. An interesting fact is that if μ is not finite then no finite acim exists.

Theorem 2.1. The map φ has a finite acim if and only if

$$
\begin{equation*}
\sum_{i} N_{i}\left|\Delta_{i}\right|<\infty \tag{1}
\end{equation*}
$$

Proof. As G is a first return map with a bounded return time, the map φ has a finite acim if and only if G has. So we prove that G has a finite acim if and only if
(1) holds.
(i) The convergence of the sum in (1) above is sufficient.

Suppose that $\mu=\pi_{*} \rho$ is given as above, then

$$
\mu(I)=\rho(\mathcal{H})=\sum_{i} \sum_{j=0}^{N_{i}-1} \rho\left(A_{i j}\right)=\sum_{i} N_{i} \cdot \nu\left(\Delta_{i}\right)<\infty
$$

where the last inequality follows from (1) because ν has a bounded density. Thus G admits a finite acim.
(ii) The convergence of the sum in (1) above is necessary.

Assume there exits a G-invariant absolutely continuous probability measure (acip), μ on I. Then by a theorem of G. Keller [19] μ lifts to an acip $\hat{\mu}$ on the canonical Markov extension (\hat{I}, \hat{G}). As was shown in [4], the power map $\left(T, \cup_{i} \Delta_{i}\right)$ with $\left.T\right|_{\Delta_{i}}=\left.G^{N_{i}}\right|_{\Delta_{i}}$ corresponds to a first return map in the Hofbauer tower. More precisely, there is a subset $\hat{\Delta}$ of \hat{I} consisting of (possibly countably many) disjoint copies of $\Delta:=\cup_{i} \Delta_{i}$, such that if $\hat{x} \in \hat{\Delta}$ belongs to a copy of Δ_{i}, then $\hat{G}^{N_{i}}(\hat{x})$ is the first return of \hat{x} to $\hat{\Delta}$.

Since $\hat{\mu}$ is \hat{G}-invariant, the (non-normalized) restriction $\left.\hat{\mu}\right|_{\hat{\Delta}}$ of $\hat{\mu}$ to $\hat{\Delta}$ is invariant for the first return map to $\hat{\Delta}$. Let $\pi: \hat{\Delta} \rightarrow \Delta$ be the natural projection, and $\nu=\frac{1}{\hat{\mu}(\hat{\Delta})} \pi_{*} \hat{\mu}_{\hat{\Delta}}$. Since $T: \Delta \rightarrow \Delta$ corresponds to the first return map to $\hat{\Delta}, \nu$ is a T-invariant absolutely continuous probability measure. By the Folklore theorem such measure is unique and has continuous density bounded away from zero.
Let $\hat{\Delta}_{i} \subset \hat{\Delta}$ be the union of intervals, which are projected onto Δ_{i}. For such intervals the return time equals N_{i}, and we get

$$
\frac{1}{\hat{\mu}(\hat{\Delta})}=\frac{\hat{\mu}(\hat{I})}{\hat{\mu}(\hat{\Delta})}=\sum_{i} N_{i} \hat{\mu}\left(\hat{\Delta}_{i}\right)=\frac{1}{\hat{\mu}(\hat{\Delta})} \sum_{i} N_{i} \nu\left(\Delta_{i}\right) .
$$

Because the density of ν w.r.t. Lebesgue measure is bounded away from 0 , it follows that $\sum_{i} N_{i}\left|\Delta_{i}\right|<\infty$.

2.2. A Property of σ-finite Acims.

2.2.1. Consider the T-invariant measure ν (equivalent to Lebesgue measure) and the measure ρ, which is defined on the tower as indicated above, with $\mu=\pi_{*} \rho$. Let m denote the normalized Lebesgue measure on I.
Theorem 2.2. Either μ is σ-finite or else $\mu(B)=\infty$ for all B with $m(B)>0$.
Proof. Assume μ is not σ-finite and let $\mu(B)>0$. Then $m(B)>0$. As μ is G-invariant

$$
\mu(B)=\mu\left(G^{-1} B\right)=\mu\left(G^{-2} B\right)=\cdots
$$

Let $B_{0}=B$ and

$$
B_{n}=G^{-n}(B) \backslash\left(\bigcup_{i=0}^{n-1} B_{i}\right) \quad(n=1,2, \ldots)
$$

Now, consider the set

$$
\begin{equation*}
\mathcal{A}=\bigcup_{n=0}^{\infty} G^{-n}(B)=\bigcup_{n=0}^{\infty} B_{n} \tag{2}
\end{equation*}
$$

Clearly $m(\mathcal{A})>0$. Now, if $m(\mathcal{A})=1$ and $\mu(B)<\infty$, then equality (2) gives us a decomposition of I into a countable union of disjoint sets B_{n} of finite μ measure, contradicting that μ is not σ-finite.

On the other hand, assume $0<m(\mathcal{A})<1$. Since $G^{-1}(\mathcal{A}) \subset(\mathcal{A})$ we have $T^{-1}(\mathcal{A}) \subset(\mathcal{A})$, contradicting that T is ergodic with respect to the invariant measure ν equivalent to m.

Notice that the power map T from [14] exists if and only if the measure of the set $C=I \backslash \bigcup \Delta_{i}$ equals zero (see also related results in [20]). If $|C|>0$ then the $\operatorname{map} \varphi$ has a wild attractor, see [5]. In that case there exists a dissipative absolutely continuous invariant measure, see [21, 6]; the latter also establishes the existence of a σ-finite acim of φ is infinitely renormalizable. Combining this with Theorem 2.2 we get for any map, whether dissipative or conservative, the following:

Theorem 2.3. Any \mathcal{S}-unimodal map has either a σ-finite acim, or it has an invariant measure μ such that $\mu(B)=\infty$ for all sets B with $m(B)>0$.

Remark 1. If φ has a quadratic critical point, but exhibits neither almost saddlenode bifurcations nor Johnson boxes, then φ has a finite acim, see [7]. If the critical orbit is nowhere dense, then φ has a σ-finite $\operatorname{acim} \mu$ such that $\mu(J)<\infty$ for every interval J away from the critical orbit, see e.g. [3].

3. Preliminary Construction.

3.1. The Koebe Distortion Property. Diffeomorphisms with negative Schwarzian derivative have bounded distortion in the following sense: Let J, I, \hat{I} be intervals, with $\hat{I}=L \cup I \cup R$ where L is the interval adjacent to the left of I and R to the right. Note that L and R form a collar around I. Suppose

$$
\min \left\{\frac{|L|}{|I|}, \frac{|R|}{|I|}\right\}>\tau
$$

Then there is $c=c(\tau)$ such that every diffeomorphism $F: \hat{J} \rightarrow \hat{I}$ with negative Schwarzian derivative satisfies

$$
1 / c<\left(\frac{\left|F^{\prime}(x)\right|}{\left|F^{\prime}(y)\right|}\right)<c
$$

for all $x, y \in F^{-1}(I)$. We refer to c as the Koebe distortion constant, and say that a map has small distortion, whenever $c=1+\varepsilon$ for a small ε.

3.2. The First Return Map.

3.2.1. For any $t>3$, the quadratic map φ_{t} has two repelling fixed points 0 and $q_{t}^{+}=1-1 / t$. Let $q_{t}^{-}=1 / t$ denote the second preimage of q_{t}^{+}and consider the first return map G_{t} induced by φ_{t} on the interval $I:=\left[q_{t}^{-}, q_{t}^{+}\right]$, then G_{t} has $2 K$ monotone branches (diffeomorphisms) and one central parabolic branch. When $t \rightarrow 4$, $K \rightarrow \infty$.

In our construction distortion and other properties of maps G_{t} hold for all t within certain parameter intervals. Therefore we often suppress dependence on the parameter in the notation. Let us denote the monotone branches by $f_{i}: \Delta_{i}^{ \pm} \rightarrow I$, where Δ_{i}^{-}denotes the domain to the left of the critical point $1 / 2$ and Δ_{i}^{+}denotes the symmetrical one to the right of $1 / 2$ that has the same return time $i=2,3, \ldots, K+1$. The central parabolic branch $h_{0}: \delta_{0} \rightarrow I$ has return time $K+2$. We denote the two boundary intervals of I with return time equal to 2 by Δ_{l} (l for left) and Δ_{r} (r for right). If we let $\underline{\varphi}=\varphi_{t}\left|[0, q], \varphi_{0}=\varphi_{t}\right| I$, and $\bar{\varphi}=\varphi_{t} \mid[q, 1]$, then $G: I \rightarrow I$ is given by:

$$
\begin{align*}
f_{l} & =\bar{\varphi} \circ \varphi_{0} \mid \Delta_{l}, \\
f_{r} & =\bar{\varphi} \circ \varphi_{0} \mid \Delta_{r}, \\
f_{i}^{ \pm} & =\underline{\varphi}^{i-2} \circ \bar{\varphi} \circ \varphi_{0} \mid \Delta_{i}^{ \pm} \quad(i=3,4, \ldots, K+1), \\
h_{0} & =\underline{\varphi}^{K} \circ \bar{\varphi} \circ \varphi_{0} \mid \delta_{0} . \tag{3}
\end{align*}
$$

Denote the resulting partition of I by $\tilde{\xi}_{0}$.

3.3. Uniform Extendibility.

3.3.1. In our construction $I=\left[q^{-1}, q\right]$ is extended to some interval $\hat{I}:=\left[a^{-}, a^{+}\right]$ where $a^{-} \in\left(0, q^{-1}\right)$, and $a^{+} \in(q, 1)$, are specified below. We use the notation $\hat{f}: \hat{\Delta} \rightarrow \hat{I}$, where $\hat{\Delta}=\Delta_{L} \cup \Delta \cup \Delta_{R}$ and $\hat{f}: \Delta_{L} \rightarrow\left[a^{-}, q^{-1}\right], \hat{f}: \Delta_{R} \rightarrow\left[q, a^{+}\right]$.
When the collar $\hat{I} \backslash I$ remains the same for all branches, then we refer to these extensions as uniform and the collar is said to be a Uniform Extendibility Collar.
We define an extendibility collar by choosing a^{-}close to q^{-1} and a^{+}close to q. Then for all monotone branches except for the boundary ones which domains Δ_{l} and Δ_{r} are the boundary domains of I, respective extensions are contained inside the adjacent domains. Since the fixed point q is repelling, sufficiently small intervals adjacent to q are contracted by G_{t}^{-1}. Then the extensions of Δ_{l} and Δ_{r} are both contained in \hat{I}. That implies that compositions $f_{j_{1} j_{2} \cdots j_{k}}$ of f_{i} are extendible.
3.3.2. In our construction critical branches have the form $h=F \circ Q$, where F is a diffeomorphism and Q is the restriction of the initial quadratic map to a small interval δ around the critical point $1 / 2$. Critical branches are also called central and their domains are called central domains. A central branch h is said to be extendible if F is extendible. In which case the extension $\hat{h}=\hat{f} \circ Q$ is a critical branch defined on $\hat{\delta} \supset \delta$ whose image contains either $\left[a^{-}, q^{-1}\right]$ or $\left[q, a^{+}\right]$. In particular, the initial critical branch $h_{0}: \delta_{0} \rightarrow I$ of the first return map is extendible and its extension \hat{h}_{0} is given by equation (3). The image of $\hat{h}_{0}: \hat{\delta} \rightarrow \hat{I}$ contains [q, a^{+}].

Let

$$
\chi: \delta^{-k} \rightarrow \delta
$$

be a diffeomorphism from a preimage of a central domain δ onto δ. We call χ extendible whenever it extends up to a diffeomorphism $\hat{\chi}$ onto $\hat{\delta}$.

3.4. The Initial Partition.

3.4.1. For the purposes of our construction it is convenient to refine $\tilde{\xi}_{0}$ into a partition ξ_{0} with sufficiently small elements, see [13]. It is done by using consecutive pull backs of $\tilde{\xi}_{0}$ by monotone branches of the first return map, and by their compositions. Then we get a partition ξ_{0} called initial partition, from which we can start our inductive construction:

$$
\begin{equation*}
\xi_{0}: I=\left(\cup_{i} \Delta_{i}\right) \cup\left(\cup_{k} \delta_{0}^{-k}\right) \cup \delta_{0} \tag{4}
\end{equation*}
$$

where Δ_{i} denotes domains of uniformly extendible monotone branches, δ_{0}^{-k} denotes preimages of δ_{0} by extendible diffeomorphisms $\chi=G^{k} \mid \delta_{0}^{-k}$. and δ_{0} is the domain of an extendible parabolic branch h_{0}.

The lemma below follows from straightforward estimates of derivatives of the first return map, see [13].

Lemma 3.1. For every $\varepsilon>0$ we can construct the partition ξ_{0} to have the following properties:
(i) Each monotone domain has length less than ε.
(ii) The aggregate sum of lengths of the "holes" δ_{0}^{-k} is less than ε.
(iii) The Extendibility Collar does not depend on ε.

Let us describe one property of ξ_{0} which is used later. When $t=4$, the first return map G_{4} has an infinite number of monotone branches that converge toward the middle point $1 / 2$ and has no central parabolic branch. There exists a constant c_{0}, such that, $\left|\Delta_{j}\right|<\frac{c_{0}}{2^{j}}$ for every j, see [13].

Let us now suppose that G_{t} has $2 K$ monotone branches and one central branch where K is extremely large. Then choose a large index $j_{0} \ll K$ such that

$$
\begin{equation*}
\frac{c_{0}}{2^{j_{0}}}<\varepsilon \tag{5}
\end{equation*}
$$

and consider the initial partition $\tilde{\xi}_{0}$ described in Section 2. When constructing ξ_{0} out of $\tilde{\xi}_{0}$ we do not change the branches with indices $j \geq j_{0}$.
Expansions of all monotone branches f_{j} besides possibly the two branches $f_{K}^{ \pm}$next to the middle central branch satisfy

$$
\begin{equation*}
\left|\frac{d f_{j}}{d x}\right|>c_{1} 2^{j} \tag{6}
\end{equation*}
$$

and we assume that $c_{1} 2^{j}$ is large for $j \geq j_{0}$. If the height of the parabolic branch is small, then derivatives of $f_{K}^{ \pm}$can be small. However in our construction, we choose the position of the critical value $h_{0}(1 / 2)$ above $1 / 2$. Then the distance between Δ_{K} and the critical point is comparable to the size of Δ_{K} and the derivatives of $f_{K}^{ \pm}$will also satisfy (6).

4. Construction of Partitions.

4.1. The Basic Step.

4.1.1. Starting from ξ_{0} we construct inductively an increasing sequence of partitions $\xi_{0} \prec \xi_{1} \prec \ldots \prec \xi_{n} \prec \ldots$ We assume by induction that after step $n-1$ we have constructed the following partitions $\xi_{m}, 0 \leq m \leq n-1$ of I :

$$
\xi_{m}: I=(\cup \Delta) \cup\left(\cup_{i} \cup_{k} \delta_{i}^{-k}\right) \cup \delta_{m} \cup C_{m} .
$$

Here $0 \leq i \leq m$, the collection $\{\Delta\}$ are monotone domains mapped onto I by uniformly extendible diffeomorphisms, δ_{m} is the domain of the extendible central parabolic branch and each δ_{i}^{-k} is a preimage of some δ_{i} by an extendible diffeomorphism χ. Sets C_{m} are Cantor sets with zero Lebesgue measure and $C_{0}=\emptyset$. Partitions ξ_{m} and associated maps are defined for t which belong to parameter intervals $\Lambda_{m} \subset \Lambda_{m-1}, 0 \leq m \leq n-1$. Notice that elements Δ of ξ_{m} are not changed at subsequent steps of induction, but δ_{i}^{-k} and δ_{m} are substituted by the new Δ, δ_{j}^{-k} and δ_{m+1}. Sometimes we call Δ good intervals, and we call δ_{i}^{-k} holes.

Depending on the step of induction we use one of the several operations described below. In particular the following operation is used throughout our construction.
(1) Monotone Pullback: Suppose

$$
f_{0}: \Delta_{0} \rightarrow I
$$

is a monotone branch and let ξ denote a partition of I. Then we refer to $f_{0}^{-1}(\xi)$ as the monotone pullback of the partition ξ onto Δ_{0}. This creates a partition of Δ_{0} into domains of various types. For every domain J of the partition ξ we have the corresponding domain $f_{0}^{-1}(J) \subset \Delta_{0}$.
4.1.2. Let $\xi_{m}, 0 \leq m \leq n-1$, be a partition constructed at the previous steps of induction. Assume the critical value $h_{n-1}(1 / 2)$ belongs to a certain element $\Delta_{m}^{*} \in \xi_{m}$. We refer to this as a Basic step and we proceed with the construction of the partition ξ_{n} using the following procedures.
(2) Critical Pullback: We induce on δ_{n-1} the partition $h_{n-1}^{-1}\left(\xi_{m}\right)$ thus creating preimages of all the elements of ξ_{m} that are contained in the image of h_{n-1}. This gives us domains inside δ_{n-1} of branches of the following type:

- Two new monotone branches $f \circ h_{n-1}$ for each monotone domain $\Delta(f)$ which lies inside the image of h_{n-1}.
- A central parabolic branch $h_{n}:=f_{n}^{*} \circ h_{n-1}$, where $f_{n}^{*}: \Delta_{n}^{*} \rightarrow I$ is the monotone branch containing the critical value $h_{n-1}(1 / 2)$.
- We also obtain the diffeomorphisms $\chi \circ h_{n-1}$ from the corresponding diffeomorphisms $\chi: \delta_{i}^{-k} \rightarrow \delta_{i}$ of ξ_{n-1}. When the range of h_{n-1} contains the central domain δ_{m}, we also get two preimages $h_{n-1}^{-1}\left(\delta_{m}\right)$.
(3) Grow-up procedure: It may be that the range of the central branch $h_{n-1}\left(\delta_{n-1}\right)$ is contained in the rightmost boundary domain Δ_{r} of the initial partition ξ_{0}, or in the leftmost boundary domain Δ_{l}. Notice that Δ_{l} and Δ_{r} are good intervals which are not changed at subsequent steps of induction, so they are as well the boundary domains of all partitions ξ_{n}. Then we replace the central branch respectively, by

$$
f_{l}^{m} \circ h_{n-1} \quad \text { or } \quad f_{l}^{m-1} \circ f_{r} \circ h_{n-1}
$$

where m is the smallest number such that the image of the new central branch covers more than just a boundary interval. The domain of definition of the new central branch remains the same, and we keep the same notation h_{n-1}.
(4) Extra Pullback Procedure: In our estimates on the measure of holes in Chapter 5 we use that ratio $\left|\delta_{n}\right| /\left|\delta_{n-1}\right|$ is small. According to Lemma 3.1, all elements belonging to the preliminary partition are of length less than ε. If the image of the central branch h_{n-1} covers more than half the length of I, then

$$
\frac{\left|\delta_{n}\right|}{\left|\delta_{n-1}\right|} \leq c \sqrt{2 \frac{\left|\Delta_{n-1}^{*}\right|}{|I|}}
$$

is small. However, if the image of h_{n-1} does not cover that much, then the length of Δ_{n-1}^{*} may be comparable to the height of that image. Therefore we introduce the following rule of Extra Pullback.
If $\left|\operatorname{Im}\left(h_{n-1}\right)\right|<\frac{1}{2}|I|$, then we do one extra monotone pullback of ξ_{0} onto Δ_{n-1}^{*} which ensures that after critical pullback the ratio

$$
\begin{equation*}
\frac{\left|\delta_{n}\right|}{\left|\delta_{n-1}\right|} \leq \varepsilon_{1} \tag{7}
\end{equation*}
$$

is small. Here ε_{1} depends on our choice of ε.
(5) Boundary Refinement Procedure: Suppose $F: \Delta \rightarrow I$ is an extendible monotone branch, where $\Delta \in \xi_{m}, \Delta \subset h_{n-1}\left(\delta_{n-1}\right)$, and $h_{n-1}(1 / 2) \notin \Delta$. If Δ is too close to $h_{n-1}(1 / 2)$ then when we do critical pullback onto δ_{n-1}, the monotone domain $h_{n-1}^{-1}(\Delta)$ may be not extendible. In which case, we perform the boundary refinement procedure as follows:
The initial partition (4) contains the boundary branch $f_{r}: \Delta_{r} \rightarrow I$ which has a repelling fixed point q. We refine Δ_{r} by monotone pullback, thus creating the
partition $f_{r}^{-1}\left(\xi_{0}\right)$ which has a boundary domain $\Delta_{r r}$ adjacent to q. Then we refine $\Delta_{r r}$ by monotone pullback of ξ_{0} by f_{r}^{-2} and so on. The $k^{t h}$ step refinement creates a copy of ξ_{0} on $\Delta_{\underbrace{r}_{k} \ldots r}$ contracted approximately by $\left|f_{r}^{\prime}(q)\right|^{-k}$. We call the resulting partition the $k^{t h}$ right boundary refinement of ξ_{0}; it is denoted by $\xi_{0, k}$. After constructing such a partition on Δ_{r}, we pull back $\xi_{0, k-1}$ by f_{l} onto the leftmost boundary interval Δ_{l} of ξ_{0} to create the $k^{\text {th }}$ left boundary refinement of ξ_{0} denoted by $\xi_{k, 0}$ with the most left interval $\Delta_{\underbrace{l r r \ldots r}_{k}}$. As the sizes of extensions of $\Delta_{\underbrace{r}_{p} \ldots r}^{r r}$ and $\Delta_{\underbrace{}_{p}}^{l r r \ldots r}$ decrease exponentially there exists k such that all elements of $h_{n-1} \circ$ $F^{-1} \xi_{0, k}$ or respectively $h_{n-1} \circ F^{-1} \xi_{k, 0}$ are extendible.

Remark 2. . Notice that Δ remains unchanged. Its refinement is used to construct uniformly extendible monotone branches during the critical pullback. After doing boundary refinement for all elements Δ which need it, we get a partition of δ_{n-1}, which we denote by

$$
\eta_{n-1}: \delta_{n-1}=\delta_{n} \cup(\cup \Delta) \cup\left(\cup_{i} \cup_{p} \delta_{i}^{-p}\right) \quad(\bmod 0) .
$$

Notice that by construction at every step $i=0,1, \ldots, n-1$, similar partitions ξ_{i-1} and η_{i-1} are defined.
(6) Filling-in: We fill each preimage

$$
\delta_{j}^{-k}=\chi^{-1}\left(\delta_{j}\right) \quad j=0,1, \ldots, n-1
$$

with the pullback $\chi^{-1}\left(\eta_{j}\right)$. In this way we get a 'copy' of the elements of η_{j} inside each δ_{j}^{-k}.

After the above operations we get a new partition ξ_{n} which has the form

$$
\begin{equation*}
\xi_{n}=(\bigcup \Delta) \cup\left(\bigcup_{j \leq n} \bigcup_{p>0} \delta_{j}^{-p}\right) \cup \delta_{n} \tag{8}
\end{equation*}
$$

Here all the monotone domains Δ are uniformly extendible due to the boundary refinement. Moreover, as explained in the next section, we choose the position of the critical value in such a way that all maps from δ_{j}^{-k} onto δ_{j} have small distortions.

4.2. Enlargements.

4.2.1. When constructing the partitions ξ_{n} we emphasized that the critical value $h_{n}(1 / 2)$ falls in a monotone domain. Clearly that excludes $h_{n}(1 / 2)$ from being inside a hole δ_{i}^{-k}. However, we will add the assumption that the critical value does not belong to an enlargement of δ_{i}^{-k} which we will define below. For δ_{0} we define

$$
\delta_{0}=\bigcup_{m=2 j_{0}}^{K}\left(\Delta_{m}^{ \pm} \cup \delta_{0}\right)
$$

where j_{0} is defined by (5). Next we define enlargements as follows. If δ_{i} is a central domain of a basic step, then $\tilde{\delta}_{i}=\delta_{i-1}$. However if δ_{i} is a central domain of a Johnson step, then $\tilde{\delta}_{i}=H_{i}$, where H_{i} is a small subset of δ_{i-1}, see below.
When we apply the critical pullback procedure, we make sure that the critical value does not belong to the union of enlargements $\bigcup \tilde{\delta}_{i}$.
Then for any hole $\delta_{i}^{-k}=h_{n}^{-1} \delta_{i}^{-m}$, the restriction of h_{n} to δ_{i}^{-k} can be extended up
to a diffeomorphism from $\tilde{\delta}_{i}^{-k}$ onto $\tilde{\delta}_{i}$ and respectively the enlargement $\tilde{\delta}_{i}^{-k}$ is well defined, and for any $\delta_{i}^{-k} \subset \delta_{n}$ its enlargement $\tilde{\delta}_{i}^{-k}$ also belongs to δ_{n}. As any hole is a diffeomorphic preimage of the respective central domain we get that if δ_{i}^{-k} is obtained by filling in of δ_{j}^{-p} then $\tilde{\delta}_{i}^{-k} \subset \delta_{j}^{-p}$.

Below we prove that the measure of the union $\cup_{i} \cup \delta_{i}^{-k}$ of holes at step n tends to zero when $n \rightarrow \infty$. The same holds for the measure of enlargements, because by construction the union of enlargements of step n is a subset of the union of the holes of step $n-1$. So the above choice of the position of the critical value outside of the enlargements is possible.
4.2.2. Recall that for all domains Δ, except Δ_{r}, Δ_{l}, extensions $\hat{\Delta}$ are contained in I and $\hat{\Delta}_{r}, \hat{\Delta}_{l} \subset \hat{I}$. Therefore extensions of $h_{n-1}^{-1}(\Delta)$ are contained in δ_{n-1}, and extensions of $h_{n-1}^{-1}\left(\Delta_{r}\right), h_{n-1}^{-1}\left(\Delta_{l}\right)$ are contained in $\hat{\delta}_{n-1}$. At a basic step when we construct a new central domain δ_{n}, its extension is the critical pullback of the extension $\hat{\Delta}^{*}$ of the monotone domain Δ^{*} which contains the critical value. Therefore $h_{n}^{-1}\left(\Delta^{*}\right) \subset \delta_{n-1}$. As a result $\hat{\delta}_{n} \subset \delta_{n-1}=\tilde{\delta}_{n}$. The same holds at the Johnson step, see below. So all diffeomorphisms mapping δ_{i}^{-k} onto δ_{i} are extendible and extensions of their domains are subsets of respective enlargements.
4.2.3. For δ_{n} constructed at a basic step we have

$$
\begin{equation*}
\frac{\left|\delta_{n}\right|}{\left|\tilde{\delta}_{n}\right|} \leq \varepsilon_{1} \tag{9}
\end{equation*}
$$

for some small ε_{1} determined by the sizes of elements in the preliminary partition ξ_{0}.

At a Johnson step described in Section 4.3, (9) holds as well. As all diffeomorphisms $\chi: \delta_{i}^{-k} \mapsto \delta_{i}$ are extendible up to $\tilde{\delta}_{i}^{-k} \mapsto \tilde{\delta}_{i}$ we obtain from the Koebe property that their distortions are small.

4.3. The Delayed Basic or Johnson Step.

4.3.1. At certain induction steps we use the method of S. Johnson [15] to get an infinite acim. We select parameter values such that $h_{n-1}\left(\frac{1}{2}\right) \in \delta_{n-1}$, the image of h_{n-1} contains $\frac{1}{2}, h_{n-1}\left(\frac{1}{2}\right)$ is close to $\frac{1}{2}$, but the map remains non-renormalizable. According to terminology of [14] such steps are called delayed basic. We shall also call them Johnson steps.

After we construct the partition ξ_{0} at the preliminary step, it is convenient to make a Johnson step.
4.3.2. The Johnson Box: Let h_{0} be the parabolic branch of G. Note that the first return map reverses orientation and consequently h_{0} has a minimum at the critical point. We choose an initial parameter interval Λ_{0}, so that for $t \in \Lambda_{0}, h_{0}(1 / 2) \in \delta_{0}$ with $h_{0}(1 / 2)<1 / 2$. Then the image of h_{0} contains all the domains of ξ_{0} that are located to the right of δ_{0}. We define a Johnson box as the interval $B_{0}=\left[q_{0}, q_{0}^{-1}\right]$ where q_{0} is one of the two fixed point of h_{0}, the one which is farther away from $1 / 2$, and $q_{0}^{-1}=h_{0}^{-1} q_{0}$. Since we choose our maps non-renormalizable, we place the critical value outside of $\left[q_{0}^{-1}, q_{0}\right]$. We call the part of the graph outside this box the hat and denote its base by H_{0}.
4.3.3. Constructing the First Step of the Staircase. Let us denote $h_{0, \text { right }}^{-1}$ the inverse branch of h_{0}^{-1} which image is on the right of $1 / 2$, and by $h_{0, \text { left }}^{-1}$ the second branch. Then $\mathcal{S}_{1}=h_{0, \text { left }}^{-1} \xi_{0} \cup h_{0, \text { right }}^{-1} \xi_{0}=\mathcal{S}_{1, \text { left }} \cup \mathcal{S}_{1, \text { right }}$ is the first step of the staircase.
4.3.4. The Infinite Staircase Construction. We proceed by constructing the infinite staircase $\mathcal{S}=\cup_{j \geq 1} \mathcal{S}_{j}$ where each \mathcal{S}_{j} consists of two components $\mathcal{S}_{j, \text { left }}=$ $h_{0, \text { left }}^{-1} \mathcal{S}_{j-1, \text { right }}$ and $\mathcal{S}_{j, \text { right }}=h_{0, \text { right }}^{-1} \mathcal{S}_{j-1, \text { right }}$ symmetric about $1 / 2$. These preimages are adjacent and form an infinite staircase

$$
\mathcal{S}=\mathcal{S}_{\text {left }} \cup \mathcal{S}_{\text {right }} .
$$

They are outside the Johnson box, in fact $\mathcal{S}=\delta_{0} \backslash B_{0}$.
4.3.5. Filling-in the Box. Define

$$
r_{0}=\min \left\{r: h_{0}^{r}(1 / 2) \notin \delta_{0}\right\} .
$$

We choose parameter values such that $h_{0}\left(\frac{1}{2}\right)$ belongs to some monotone domain $\Delta \subset$ $\mathcal{S}_{r_{0}, \text { left }}$. Then we fill the base of the hat H_{0} by critical pullback $h_{0}^{-1}\left(\bigcup_{j=r_{0}}^{\infty} \mathcal{S}_{j, \text { left }}\right)$ thus creating a new partition ζ_{0} inside H_{0}, which in particular contains a new critical branch

$$
h_{1}:=f_{0}^{*} \circ h_{0}^{r_{0}} .
$$

Here f_{0}^{*} is the monotone branch whose domain $\Delta_{0}^{*} \in \mathcal{S}_{1}$ contains the iterate $h_{0}^{r_{0}}(1 / 2)$ of the critical point.

Restricting h_{0} to the two symmetric intervals of $B_{0} \backslash H_{0}$, we obtain two monotone maps g_{1}, g_{2}. Since $H_{0} \neq \emptyset$, we get that g_{1}, g_{2} and all their iterates are uniformly extendible branches of an \mathcal{S}-unimodal map. Thus they have uniformly bounded distortions. Then B_{0} is a countable union of preimages $g_{i_{k}}^{-1} \circ \ldots \circ g_{i_{1}}^{-1} H_{0}$ and a Cantor set of zero Lebesgue measure. Therefore we get a partition $(\bmod 0)$ of B_{0} which is a union of ζ_{0} and all pullbacks $g_{i_{k}}^{-1} \circ \ldots \circ g_{i_{1}}^{-1} \zeta_{0}$. We combine that partition with staircases and get the partition η_{0} of δ_{0}

$$
\begin{equation*}
\eta_{0}: \delta_{0}=(\cup \Delta) \cup\left(\cup \delta_{0}^{-p}\right) \cup\left(\cup \delta_{1}^{-p}\right) \quad(\bmod 0) \tag{10}
\end{equation*}
$$

4.3.6. Staircases and Extendibility. Consider the domains $\Delta_{i}, i>j_{0}$ of the partition ξ_{0}. These domains are not refined at the preliminary construction because their sizes are small enough. Then, as for all domains of the first return map, the extensions of Δ_{i} are contained inside the adjacent domains Δ_{i-1} and Δ_{i+1}. And the left and right extensions of the central domain $\delta_{0}=\Delta_{N}$ are contained inside $\Delta_{N_{ \pm}}$. Notice that the extensions of the boundary elements of the partition $h_{0}^{-1} \xi_{0}$ are inside extensions of δ_{0}. Thus they are contained respectively inside $\Delta_{N_{+}}$and $\Delta_{N_{-}}$.

Each step \mathcal{S}_{k} has two boundary elements $\Delta_{k, \text { int }}$ located closer to the critical point and $\Delta_{k, \text { ext }}$. As $\mathcal{S}_{k}=h_{0}^{-1} \mathcal{S}_{k-1}$ we get that extension of $\Delta_{k, \text { ext }}$ is contained inside $\Delta_{k-1, i n t}$.

As δ_{0} is small, \mathcal{S}_{1} is the preimage of almost one half of the interval I. Thus \mathcal{S}_{1} covers almost one half of δ_{0} and all remaining steps cover a small fraction of δ_{0}. By choosing a small extendibility collar we ensure that interior extensions of $\Delta_{N_{ \pm}}$are contained respectively inside $\mathcal{S}_{1, \text { left }}$ and $\mathcal{S}_{1, \text { right }}$. Moreover these extensions do not intersect the domains $h_{0}^{-1} \Delta_{i}, \quad i>j_{0}$ located in the "middle" of \mathcal{S}_{1}.

The extension of $\Delta_{k-1, \text { int }}$ is contained inside \mathcal{S}_{k} and moreover does not intersect preimages $h_{0}^{-k} \Delta_{i}, \quad i>j_{0}$ located in the "middle" of \mathcal{S}_{k}. This implies

Corollary 1. For every k and for every domain $h_{0}^{-k} \Delta_{i}, \quad i>j_{0}$ located inside \mathcal{S}_{k} one can choose the position of the critical value of h_{0} inside $h_{0}^{-k} \Delta_{i}$ so that all maps constructed at Johnson step are extendible.

In this situation we do not need to do boundary refinement and η_{0} constructed above is the partition of δ_{0} at the first step of induction.
Finally we get the partition ξ_{1} of I by filling-in every element δ_{0}^{-k} of ξ_{0} by the pullback of the partition η_{0}.
4.3.7. Now let $n=n_{k}$ be a step of induction, when the k-th Johnson step occurs. Then $h_{n-1}(1 / 2) \in \delta_{n-1}$ and $1 / 2 \in \operatorname{Im}\left(h_{n-1}\right)$. We define

$$
r_{k}=\min \left\{r: h_{n-1}^{r}(1 / 2) \notin \delta_{n-1}\right\} .
$$

We define the Johnson box B_{k} bounded by the points q_{k}, q_{k}^{-1} where q_{k} is one of the two fixed point of h_{n-1} - the one farther away from $1 / 2$ - and $q_{k}^{-1}=h_{n-1}^{-1} q_{k}$. The part of the graph, which contains the critical value and is located outside this box is called the hat. We denote its base by H_{n-1}. As in the first step we construct an infinite staircase $\mathcal{S}=\cup_{j \geq 1} \mathcal{S}_{j}$ where each \mathcal{S}_{j} consists of two components $\mathcal{S}_{j, \text { left }}$ and $\mathcal{S}_{j, \text { right }}$, symmetric about $1 / 2$.
As at the first Johnson step we can choose parameter in such a way that the critical value $h_{n-1}(1 / 2)$ belongs to a preimage of one of the elements $\Delta_{i}, i>j_{0}$ of ξ_{0}, and boundary refinement is not needed at Johnson step. Then we fill the base of the hat H_{k} by using critical pullback. In particular, we get a new critical branch $h_{n}:=f_{n}^{*} \circ h_{n-1}^{r_{k}}$. Here f_{n}^{*} is the monotone branch whose domain Δ_{n}^{*} contains $h_{n-1}^{r_{k}}(1 / 2)$. Restricting h_{n-1} to the two symmetric intervals of $B_{k} \backslash H_{k}$, we obtain two monotone maps g_{1} and g_{2}. So, as before almost every point of $B_{k} \backslash H_{k}$ under the iterations of g_{1} and g_{2} eventually 'escapes' the box through H_{k}. The preimages of the partition of H_{k} under the two monotone branches g_{1} and g_{2} generates a partition of $B_{k} \backslash H_{k}$ (modulo a Cantor set of zero Lebesgue measure). This partition of B_{k} adjoined with that of the staircase \mathcal{S} constitute the desired partition η_{n-1} of δ_{n-1}. Finally, the partition (8) is obtained by filling in each domain δ_{j}^{-k} of ξ_{n-1}.

4.4. The Limit Partition.

4.4.1. Let

$$
\mathcal{H}_{n-1}=\bigcup_{j<n ; p \geq 0} \delta_{j}^{-p}
$$

denote the collection of holes. At each step of induction we construct domains of monotone branches which are not changed anymore, domains δ_{i}^{-k} which are filled-in at the next steps and Cantor sets of zero measure. As δ_{j}^{-k} are mapped onto δ_{j} with uniformly bounded distortions, the relative measure of new holes obtained after the filling-in of δ_{j}^{-k} is bounded away from one, if and only if the measure of the new holes obtained at step $j+1$ inside δ_{j}, is bounded away from one. This implies

Proposition 1. Suppose that at each step n of our construction the relative measure of \mathcal{H}_{n-1} within δ_{n} is less than a uniform constant $\theta<1$. Then as $n \rightarrow \infty$
we obtain a limiting partition $\xi=\xi_{\infty}$ of I consisting of an infinite number of uniformly extendible domains Δ_{i} of monotone branches $f_{i}: \Delta_{i} \rightarrow I$ and a Cantor set of Lebesgue measure zero.

As $\left|\Delta_{i}\right|<\varepsilon$, where ε can be made arbitrary small and distortions of f_{i} are bounded by a constant independent of ε, we get that for any $R>1$ one can find $\varepsilon>0$ such that expansions of all f_{i} in Proposition 1 are greater than R. Under the conditions of Proposition 1 above, we obtain that all monotone branches f_{i} are expanding and have uniformly bounded distortion.

5. The Proof of Theorem A.

5.1. Preliminary Definitions.

5.1.1. (i) In the course of our construction we need to keep track of certain quantities associated with the successive partitions ξ_{n}. Let

$$
\begin{equation*}
\mathcal{H}_{n}:=\bigcup_{j \leq n} \bigcup_{p>0} \delta_{j}^{-p} \tag{11}
\end{equation*}
$$

denote the union of all holes δ_{j}^{-p} at step n. These are preimages of central domains δ_{j} for $j=0,1,2, \ldots, n$, which are elements of ξ_{n}. Let $\alpha_{n}=\left|\mathcal{H}_{n}\right|$ be the Lebesgue measure of \mathcal{H}_{n}.
(ii) If Δ needs a boundary refinement, then we define $R_{n}(\Delta)$ to be the minimal number of boundary refinements needed so that all new elements constructed inside $h_{n-1}^{-1}(\Delta)$ are extendible.
(iii) If $n=n_{k}$ is a delayed basic step and we have the box B_{k} and the base of the hat H_{k} we will have the ratio

$$
\left|H_{k}\right| /\left|B_{k}\right| \leq \beta_{k}
$$

where β_{k}, to be specified later, is chosen in advance to be small enough in order that the acim μ is on the one hand

5.2. Strategy of the Construction.

5.2.1. The examples we give are constructed by a decreasing sequence of nested parameter intervals Λ_{n} such that for all $t \in \Lambda_{n}$ the map φ_{t} admits the partition ξ_{n} as described in Section 4 In addition, we will arrange that ξ_{n} satisfies certain conditions specified below, so that for $t=\cap_{n} \Lambda_{n}, \varphi_{t}$ has a non-integrable invariant density. At each step either $h_{n}(1 / 2)$ falls in a monotone domain Δ_{n}^{*} created at one of the previous steps (Basic Case); Or $h_{n}(1 / 2)$ is "delayed" in δ_{n} and falls instead in a preimage of a monotone domain Δ_{n}^{*} belonging to ξ_{n}, so that $h_{n}^{r_{n}}(1 / 2) \in \Delta_{n}^{*}$ (Delayed Basic Case). Notice that in the latter case $h_{n}(1 / 2)$ still falls in a monotone domain, except that this monotone domain is created at the current step, that is, it belongs to the partition ξ_{n+1}.

Thus, in either situation, the critical value falls in a domain which is mapped onto I by a monotone branch. It follows from the monotonicity of the kneading invariant, (see [9]), that if the critical value enters a certain domain $\Delta=\left[a_{1}, a_{2}\right]$, say through a_{1} when the parameter $t=t_{1}$, then it remains inside Δ until the parameter reaches
$t=t_{2}$ when it then leaves Δ through a_{2}. Therefore, by varying the parameter, we can arrange that the new critical value

$$
h_{n+1}(1 / 2)= \begin{cases}f_{n}^{*} \circ h_{n}(1 / 2) & \text { at a basic step }, \\ f_{n}^{*} \circ h_{n}^{r_{n}}(1 / 2) & \text { at a delayed basic step }\end{cases}
$$

is mapped anywhere in I. In this way, we can ensure that the forward G-orbit of the critical point is dense, i.e., $\omega_{G}(1 / 2)=I$ and hence $\omega_{\varphi_{t}}(1 / 2)=\left[\varphi_{t}^{2}(1 / 2), \varphi_{t}(1 / 2)\right]$.
Moreover, every time the critical value $h_{n}(1 / 2)$ is delayed in the box, the level of the staircase, r_{n}, which contains $h_{n}(1 / 2)$, as well as the size of the hat can be chosen independent of the topological requirements on the critical orbit because each level of the infinite staircase consists of the preimage of the previous level.
5.2.2. Every monotone branch $f_{i}: \Delta_{i} \rightarrow I$ is by construction a composition of iterates of the first return map G. Accordingly $f_{i}=G^{N_{i}} \mid \Delta_{i}$ and we call N_{i} the power of f_{i}. Every critical branch h_{n} can be factored into $h_{n}=F_{n} \circ h_{0}$, where F_{n} is a composition of monotone branches and h_{0} is the central parabolic branch of the first return map G restricted to a small neighborhood of the critical point. In this case, we define the power of h_{n} as 1 plus the sum of powers of each of the monotone branches in the composition F_{n}. Notice that in this sense, the power of all branches of the first return map G is 1 , and all monotone branches can be factored into compositions of branches of G. In terms of the Tower Construction of Chapter $2, N_{i}$ corresponds to the number of domains in the tower over Δ_{i} and thus may be referred to as the height of Δ_{i}.

We define a map $T: I \rightarrow I$ piecewise by

$$
T\left|\Delta_{i}=f_{i}:=G^{N_{i}}\right| \Delta_{i}: \Delta_{i} \rightarrow I
$$

and T is expanding with uniformly bounded distortion for all branches f_{i}. It satisfies the hypothesis of the so-called Folklore Theorem, see [1]. Therefore T has an ergodic acim ν with a density function that is continuous and bounded away from zero.
5.2.3. The G-invariant measure μ on I given by the formula

$$
\begin{equation*}
\mu(E)=\sum_{i} \sum_{j=0}^{N_{i}-1} \nu\left(\Delta_{i} \cap G^{-j} E\right) \tag{12}
\end{equation*}
$$

for every measurable set $E \subset I$. Since G is a smooth map, formula (12) implies that μ is an absolutely continuous invariant measure. Since ν has a bounded density, $\mu(E)<\infty$ if and only if

$$
\begin{equation*}
\Sigma:=\sum_{i} \sum_{j=0}^{N_{i}-1}\left|\left(\Delta_{i} \cap G^{-j} E\right)\right| \tag{13}
\end{equation*}
$$

converges, and μ is finite if and only if

$$
\begin{equation*}
\sum_{i} N_{i}\left|\Delta_{i}\right|<\infty \tag{14}
\end{equation*}
$$

Our aim is to construct the map T in such a way that:
(A) The convergence of the sum in (14) does not hold.
(B) There exists a set E with positive Lebesgue measure for which the sum Σ in (13) converges.
(C) The μ-measure of every interval is infinite.

Theorem 2.1 implies by property (B) that the measure μ is σ-finite.

5.3. The Parameter Choice Lemma.

5.3.1. The first return map $G: I \rightarrow I$ induced by φ_{t} has $2 K$ monotone branches for all parameter values t inside an interval of parameter denoted by $\left(t_{K}, t_{K+1}\right)$. When $t=t_{K+1}$, the critical branch splits into two new monotone branches and a new critical branch is born in between.

So, our first parameter interval is given by $\Lambda_{0}=\left[t_{K}, t_{K+1}\right]$ and for all parameter values in the interior of Λ_{0}, a partition ξ_{0} is defined and its elements vary continuously with t. In the course of our construction we determine a nested sequence of closed parameter intervals $\Lambda_{n} \subset \Lambda_{n-1}$ such that for all parameter values $t \in \Lambda_{n}, \varphi_{t}$ induces the partition ξ_{n} with desired properties. Then for

$$
\begin{equation*}
\tau=\cap_{i}^{\infty} \Lambda_{i} \tag{15}
\end{equation*}
$$

we obtain the limit maps φ_{τ}, G_{τ} and the limit partition ξ_{∞} corresponding to the power map T_{τ}. In order to do this, we will use the following lemma.
Lemma 5.1. (Parameter Choice Lemma) At each step n, there exists a parameter interval $\Lambda_{n} \subset \Lambda_{n-1}$, such that as t varies in the interior of Λ_{n}, the following two properties hold:
$(i)_{n}$ All intervals of the partition ξ_{n} vary continuously, in particular none of them disappear and no new ones appear.
$(\text { ii })_{n}$ The critical value $h_{n}(1 / 2)$ moves continuously across the whole interval I.
Proof. Assume by induction that the two properties $(i)_{j}$ and $(i i)_{j}$ hold for all $j \leq n$. Then using $(i)_{n}$, continuity of $h_{n}(1 / 2)$ and monotonicity of the kneading invariant ([9]), we get that given a prescribed element $\Delta \in \xi_{n}$, which is a domain of a monotone branch, there exists a parameter subinterval $\Lambda_{n+1} \subset \Lambda_{n}$ such that when $t \in \Lambda_{n+1}, h_{n}(1 / 2)$ moves all the way through Δ without leaving Δ. According to our inductive construction of Chapter 4, the next central branch is $h_{n+1}=F_{n} \circ h_{n}$, where $F_{n}=f_{n}^{*}$ at a basic step, and $F_{n}=f_{n}^{*} \circ h_{n}^{r_{n}}$ at a delayed basic step. Since, in both cases, F_{n} maps Δ onto the whole interval I, it follows that $h_{n+1}(1 / 2)$ satisfies $(i i)_{n+1}$ as $h_{n}(1 / 2)$ moves across the interval Δ. Next, since $h_{n}(1 / 2)$ depends continuously on the parameter t and stays inside the domain Δ when $t \in \Lambda_{n+1}$, the new partition of δ_{n} which we had denoted by η_{n} will satisfy $(i)_{n+1}$. Moreover, the new branches of the partition ξ_{n+1} constructed outside δ_{n} are compositions of branches of ξ_{n} with those branches inside δ_{n}. As both vary continuously, all new branches satisfy (i) $)_{n+1}$.

5.4. Generating Partitions.

5.4.1. In this section, we define an additional sequence of partitions which allows us to ensure that the forward orbit of the critical point is dense in I. Using the sequence of partitions ξ_{n} constructed in Chapter 4, we define a sequence of partitions $\mathcal{P}_{n} \succeq \xi_{n}$ as follows:

Let $\mathcal{P}_{0}=\xi_{0}$ be the preliminary partition constructed in Section 3 .
Let $\mathcal{P}_{n-1} \succeq \xi_{n-1}$ be the partition of step $n-1$. By construction elements of \mathcal{P}_{n-1} are of the same types as elements of ξ_{n-1} : domains Δ of monotone branches and $\delta_{i}^{-k}, \quad 0 \leq i \leq n-1, \quad k \geq 0$.
We construct \mathcal{P}_{n} by refining elements of \mathcal{P}_{n-1} as follows.

1. We are doing filling-in for each element δ_{i}^{-k}.
2. For each Δ which size exceeds $\frac{1}{3^{n}}$ we pull-back on Δ the partition ξ_{0}.

Remark 3. Sizes of elements depend on the parameter. So we are doing the above partition if the size of Δ is too large at least for one parameter value under consideration.
5.4.2. When constructing ξ_{0} we made expansions of all monotone branches of ξ_{0} greater than some $R \gg 1$, and at the same time kept distortions bounded by $c(t a u)$ independently of R. If R is big enough, then the above construction provides elements Δ in \mathcal{P}_{n} with sizes less than $\frac{c}{3^{n}}$. At the same time sizes of holes in ξ_{n} and respectively in \mathcal{P}_{n} satisfy $\delta_{i}^{-k}<\varepsilon^{n}$, where ε is a small constant. Therefore sizes of elements in the increasing sequence of partitions \mathcal{P}_{n} decrease uniformly. So if the critical orbit eventually visits every element of every \mathcal{P}_{n}, then the T-orbit and hence the G-orbit of the critical point is dense in I.

5.5. Positioning the Critical Value at a Johnson Step.

5.5.1. In this section we describe how to achieve at step n the following two properties.
(i) The trajectory of the critical point visits certain good intervals between two consecutive delayed basic steps.
(ii) Given a sequence of numbers γ_{k}, at each delayed basic step $n=n_{k}$, the hat is so small that the ratio $\left|H_{k}\right| /\left|B_{k}\right|<\gamma_{k}$.
We may start the construction of Chapter 4 with a delayed basic step, that is

$$
h_{0}(1 / 2) \in \delta_{0}, \ldots, h_{0}^{r_{0}-1}(1 / 2) \in \delta_{0} \quad \text { and } \quad h_{0}^{r_{0}}(1 / 2) \in I \backslash \delta_{0}
$$

Let $\Delta_{0}^{*} \in \xi_{0}$ denote the monotone domain that contains $h_{0}^{r_{0}}(1 / 2)$.
The idea is to look ahead. Since $h_{0}^{r_{0}}(1 / 2)$ falls in a monotone domain Δ_{0}^{*} that is mapped onto the whole interval I, the location of $h_{0}(1 / 2)$ may be chosen so as for some finite collection of good intervals Δ of \mathcal{P}_{0} there correspond basic steps such that $h_{j}(1 / 2) \in \Delta$. This determines a sequence of basic steps $j=1,2, \ldots, n_{1}-1$. Then the following step is delayed basic: $h_{n_{1}}(1 / 2) \in \delta_{n_{1}}$. For each of these basic steps we let f_{j}^{*} denote the monotone branch whose domain Δ_{j}^{*} contains the critical value $h_{j}(1 / 2)$. Then $h_{j+1}=f_{j}^{*} \circ h_{j}$, and

$$
h_{n_{1}}=f_{n_{1}-1}^{*} \circ f_{n_{1}-2}^{*} \circ \cdots \circ f_{0}^{*} \circ h_{0}^{r_{0}} .
$$

Therefore the above requirement on the critical value for steps $n=1,2, \ldots, n_{1}$ is that the collection of domains

$$
\Delta_{1}^{*}, \Delta_{2}^{*}, \ldots, \Delta_{n_{1}-1}^{*}
$$

includes a given collection of good intervals of \mathcal{P}_{0}. Notice that this requirement is independent of the value of r_{0} which is chosen so large that $\left|H_{0}\right| /\left|B_{0}\right|<\gamma_{0}$ for any prescribed γ_{0}.

Using the Parameter Choice Lemma for each of the steps $n=1,2, \ldots, n_{1}$, we obtain a sequence of parameter intervals

$$
\Lambda_{0} \supset \Lambda_{1} \supset \cdots \supset \Lambda_{n_{1}}
$$

such that for $t \in \Lambda_{n_{1}}$, the trajectory of the critical point has the properties described above.

Observe that $\Lambda_{n_{1}}$ contains a subinterval such that when the parameter runs through
this subinterval, $h_{n_{1}}(1 / 2)$ moves across the staircase $\mathcal{S}=\cup_{j} \mathcal{S}_{j}$ belonging to $\delta_{n_{1}}$. Now, $h_{n_{1}}^{r_{1}}(1 / 2)$ falls in a monotone domain $\Delta_{n_{1}}^{*} \in \xi_{n_{1}}$, and so the location of the critical value $h_{n_{1}}(1 / 2)$ may be chosen so that for the next series of basic steps, the critical value $h_{j}(1 / 2),\left(j=n_{1}+1, n_{1}+2, \ldots, n_{2}-1\right)$, falls in a prescribed collection of good intervals in \mathcal{P}_{1}. At the same time we can take r_{1} arbitrary large, which will make $\frac{\left|H_{1}\right|}{\left|B_{1}\right|}<\gamma_{1}$ for any given γ_{1}.
Then follows a delayed basic step n_{2}. At that step $h_{n_{2}}(1 / 2) \in \delta_{n_{2}}$ and $h_{n_{2}}^{r_{2}}(1 / 2)$ is the smallest iterate of $h_{n_{2}}(1 / 2)$ outside the central domain $\delta_{n_{2}}$. At that step we choose $\left|H_{2}\right| /\left|B_{2}\right|<\gamma_{2}$. At the next basic steps $j=n_{2}+1, n_{2}+2, \ldots, n_{3}-1$, the critical value $h_{j}(1 / 2)$ visits a prescribed collection of good intervals of \mathcal{P}_{2}. Next we consider a delayed basic with $\left|H_{3}\right| /\left|B_{3}\right|<\gamma_{3}$, and so on.

In this way, we may select a sequence of nested parameter intervals $\Lambda_{n_{k}}$ such that for $t=\cap \Lambda_{n_{k}}$, the orbit of $1 / 2$ under G_{t} is ε_{k}-dense, where $\varepsilon_{k} \downarrow 0$. It follows that for $t \in \cap_{k} \Lambda_{n_{k}}\left(=\cap_{n} \Lambda_{n}\right), \varphi_{t}$ has $\omega_{G}(1 / 2)=I$.
At the same time the above property (ii) is satisfied.

5.6. Making the Acim μ Infinite.

5.6.1. We assume that at step $n=n_{k}$, the central branch $h_{n}: \delta_{n} \rightarrow I$ falls in the delayed basic situation and we construct the box B_{k} with hat H_{k}. Set

$$
H_{k}^{-j}=h_{n}^{-j}\left(H_{k}\right),
$$

i.e., if g_{1} and g_{2} denote the two monotone branches of $h_{n} \mid\left(B_{k} \backslash H_{k}\right)$ then H_{k}^{-j} consists of the collection of 2^{j} intervals that are mapped onto H_{k} by the compositions $g_{i_{1} \cdots i_{j}}$ of g_{1} and g_{2} for all possible $i_{1} \cdots i_{j}$. These intervals are called preimages of the hat of order j.

Let t_{k} be the parameter value at which H_{k} disappears. Then for $t \rightarrow t_{k}$ the ratio $\left|H_{k}\right| /\left|B_{k}\right| \rightarrow 0$ and at the same time $\left|B_{k}(t)\right| /\left|B_{k}\left(t_{k}\right)\right| \rightarrow 1$.

Let N_{k} be the power of the central branch:

$$
h_{n_{k}}=G^{N_{k}} .
$$

When $h_{n_{k}}$ exhibits a box B_{k}, one of the boundary points of B_{k} is a fixed point for $h_{n_{k}}$, and hence a periodic point of G with the period N_{k}. We call N_{k} the period of the box B_{k}. The G orbit of any point in H^{-j} includes $j N_{k}$ iterates such that it returns to B_{k} at multiples of N_{k} and finally escapes through the hat.
Let $s=\left\lceil 2 /\left|B\left(t_{k}\right)\right|\right\rceil$. Then $s>1 /|B(t)|$ for all t close enough to t_{k}.
Lemma 5.2. There exists $w_{k} \in(0,1)$ such that if $\left|H_{k}\right| /\left|B_{k}\right|<w_{k}$ then

$$
\left|H_{k}\right|+\cdots+\left|H_{k}^{-s}\right|<\frac{1}{2}\left|B_{k}\right|
$$

Proof. Obvious by continuity, cf. [15].
This leads to
Proposition 2. Assume that in the construction of ξ there are infinitely many delayed basic steps $n=n_{k}$ such that $\left|H_{k}\right| /\left|B_{k}\right|<w_{k}$, where the w_{k} are given by Lemma 5.2. Then the measure μ is infinite, and moreover the measure of every box B_{k} is infinite.

Proof. As each interval in H_{k}^{-s} visits $B_{k} s$ times before exiting through the hat, the tower construction implies that $\mu\left(H_{k}\right) \geq \sum_{j} j\left|H_{k}^{-j}\right|$. From the previous lemma we get

$$
\begin{equation*}
\sum_{j} j\left|H_{k}^{-j}\right|>s \sum_{j>s}\left|H_{k}^{-j}\right| \geq \frac{1}{2}\left|B_{k}\right| \frac{1}{\left|B_{k}\right|}=\frac{1}{2} \tag{16}
\end{equation*}
$$

Let $G_{\tau}=\lim _{k \rightarrow \infty} G_{t_{k}}$ be the limit map, where τ is from 15 . The above argument proves that the part of the sum 14 for G_{τ} contributed by the intervals $\Delta_{i} \subset B_{k} \backslash H_{k}$ satisfies

$$
\begin{equation*}
\sum_{\Delta_{i} \subset B_{k} \backslash H_{k}} N_{i}\left|\Delta_{i}\right|>\frac{1}{2} \tag{17}
\end{equation*}
$$

Let $d>0$ be a lower bound for the density of the T_{τ} invariant measure ν_{τ}. Then for the G_{τ} invariant measure $\mu=\mu_{\tau}$ we get from 17

$$
\begin{equation*}
\mu\left(B_{k} \backslash H_{k}\right) \geq \frac{d}{2} \tag{18}
\end{equation*}
$$

As the next box is contained inside H_{k}, we get infinitely many disjoint annuli $B_{k} \backslash H_{k}$ satisfying (18). This proves $\mu\left(B_{k}\right)=\infty$ for every k. In particular, the sum Σ of (13) diverges and μ is infinite.

This satisfies condition (A) given in Section 5.2.3.

5.7. Construction of the Set E.

5.7.1. Recall from Section 5.2 .3 that we wish to construct a set E with non-zero Lebesgue measure for which the sum in (13) converges. From the previous section we see that we need to exclude the intervals that go back and forth within a Johnson box. With this in mind, we construct the set E by defining a sequence of open sets U_{k} which contain many iterates of B_{k} and such that their union $U=\bigcup_{k} U_{k}$ does not have full measure in I. Then $E:=I \backslash U$ has positive Lebesgue measure and we prove that E has the desired properties. Take $U_{0}=\delta_{0}$ and define U_{k} inductively by using the partition $\xi_{n_{k}}$ as follows. At each delayed basic step $n=n_{k}$ we have $h_{n}(1 / 2) \in \delta_{n}$. Let N be the power of h_{n} with respect to G, and let $R=h_{n}^{-1}\left(\delta_{n}\right)$. We define U_{k} as the union

$$
G(R) \cup G^{2}(R) \cup \ldots \cup G^{N}(R), \quad \text { where } \quad G^{N}(R)=\delta_{n} \cap \operatorname{Im}\left(h_{n}\right)
$$

Let $B=B_{k}$ denote the associated Johnson box with hat $H=H_{k}$.
Proposition 3. There exists a sequence b_{k} such that if at each delayed basic case $\left|H_{k}\right|<b_{k}$ then $|E|>0$.

Proof. Let $n=n_{k}$ and $m=n_{k-1}$ be two consecutive delayed basic steps. In our construction we will have many basic steps in between. Therefore

$$
h_{n}=f_{n-1}^{*} \circ f_{n-2}^{*} \circ \cdots \circ f_{m}^{*} \circ h_{m}^{r_{m}}
$$

where the branches f_{i}^{*} for $i=m, m+1, \ldots, n-1$ are chosen in order to ensure that the orbit of the critical point is everywhere dense. By construction $h_{m}^{r_{m}}(1 / 2)$ is the first iterate of $h_{m}(1 / 2)$ that falls outside δ_{m}, i.e., $h_{m}(1 / 2) \in \mathcal{S}_{r_{m}}\left(\delta_{m}\right)$ - the r_{m}^{th} level of the staircase construction belonging to δ_{m}. Take $R=h_{n}^{-1}\left(\delta_{n}\right)$ and let N_{n} be the power of h_{n}. Set $S=h_{m}^{r_{m}-1}(R) \in \mathcal{S}_{1}\left(\delta_{m}\right)$ - the first level of the staircase belonging to δ_{m}. Then we decompose the orbit

$$
U_{k}=R \cup G(R) \cup \cdots \cup\left(G^{N_{n}}(R)=\delta_{n} \cap \operatorname{Im} h_{n}\right)
$$

into two blocks

$$
\begin{aligned}
\mathcal{B}_{1} & =R \cup G(R) \cup \cdots \cup S \\
\mathcal{B}_{2} & =G(S) \cup G^{2}(S) \cup \cdots \cup\left(\delta_{n} \cap \operatorname{Im} h_{n}\right)
\end{aligned}
$$

Clearly $R \subset h_{m}^{-1} \delta_{m}$ since $\delta_{n} \subset \delta_{m}$ because $n>m$. Consequently, $\mathcal{B}_{1} \subset U_{k-1}$ and

$$
\left|U_{k} \backslash U_{k-1}\right| \leq\left|\mathcal{B}_{2}\right|
$$

The key point is now, that the number of iterates of S which make up the union in the second block \mathcal{B}_{2} is independent of r_{m}, (remember that by construction $h_{m}^{r_{m}}(S) \subset \Delta_{m}^{*}$, irrespective of r_{m}). So if M denotes the power of h_{m}, then \mathcal{B}_{2} consists of a union of $M+N\left(\Delta_{m}^{*}\right)+N\left(\Delta_{m+1}^{*}\right)+\cdots+N\left(\Delta_{n-1}^{*}\right) G$-iterates of S. It follows by continuity, that \mathcal{B}_{2} can be made arbitrarily small provided $\delta_{n} \subset H_{k-1}$ is small enough, which in turn can be arranged by choosing r_{m} sufficiently large. Therefore at each delayed basic step, we can determine in advance the level of the staircase because the series of basic steps and the following Johnson box depends only on the location of $h_{m}^{r_{m}}(1 / 2)$ within Δ_{m}^{*} and not on r_{m}. Consequently, there exists a sequence b_{k} such that if $\left|H_{k}\right|<b_{k}$ then $|U|<|I|$ and $|E|>0$.

$$
\text { Let } \gamma_{k}=\min \left\{a_{k}, b_{k}\right\} . \text { If }
$$

$$
\begin{equation*}
\left|H_{k}\right|<\left|H_{k}\right| /\left|B_{k}\right|<\gamma_{k}, \tag{19}
\end{equation*}
$$

then the hypotheses of Propositions 2 and 3 are both satisfied.
5.7.2. Having established that μ is infinite, because $\sum_{i} N_{i}\left|\Delta_{i}\right|=\infty$ in (14), we continue to show that Σ in (13) is finite. Then by Theorem 2.2, property (B) implies the measure μ is σ-finite.

If we only count the intervals $G^{k}\left(\Delta_{i}\right)$ that intersect E and denote their number by $N_{E}\left(\Delta_{i}\right)$ we get that the sum Σ given by formula (14) is majorized by

$$
\begin{equation*}
\sum_{n} \sum_{\Delta_{i} \in \xi_{n}} N_{E}\left(\Delta_{i}\right)\left|\Delta_{i}\right| \tag{20}
\end{equation*}
$$

Terminology: We call $N_{E}\left(\Delta_{i}\right)$ the height through E of the monotone branch f_{i} with the domain Δ_{i}.

Let us consider the preliminary partition ξ_{0}. Since this partition consists of a finite number of intervals we can set

$$
N_{0}=\max \left\{N(J): J \in \xi_{0}\right\}
$$

We define the power through E of h_{n} as

$$
\begin{equation*}
N_{E}\left(h_{n}\right):=1+N_{0}^{*}+N_{1}^{*}+\cdots+N_{n-1}^{*} \quad\left(N\left(h_{0}\right)=1\right) \tag{21}
\end{equation*}
$$

where $N_{i}^{*}=N_{E}\left(\Delta_{i}^{*}\right)$ is the height through E of the domain Δ_{i} that contains the critical value $h_{i}(1 / 2)$.

5.8. Properties of Boundary Refinement.

5.8.1. When estimating N_{E} we must take into account boundary refinement. In this section we show how to control it by choosing the appropriate position of the critical value.

Recall that by the choice of parameter, we can ensure that no boundary refinement is needed at Johnson steps. However we will usually have many basic steps $j=$ $n+1, n+2, \ldots, m-1$ between two Johnson steps in order to make the orbit of the critical point dense. In particular for any element Δ there is a step of induction when we put the critical value inside Δ and arbitrary close to its boundary. To make adjacent branches extendible we need many steps of boundary refinement. We will use the following notation:
(i) Suppose $\Delta, \Delta_{0} \in \xi_{n}$ are monotone domains and Δ_{0} contains the critical value $x_{0}=h_{n}(1 / 2)$. Then we let $R_{n}\left(\Delta, \Delta_{0}, x_{0}\right)$ denote the minimum number of boundary refinements needed for Δ in order to make monotone domains $h_{n}^{-1}(\Delta) \in \xi_{n+1}$ extendible.
(ii) Let

$$
R_{n}\left(\Delta_{0}, x_{0}\right)=\max _{\Delta \in \xi_{n}}\left\{R_{n}\left(\Delta, \Delta_{0}, x_{0}\right)\right\}
$$

Remark 4. (i) If the map F is diffeomorphic then $R_{n}\left(F^{-1} \Delta, F^{-1} \Delta_{0}, F^{-1} x_{0}\right)=$ $R_{n}\left(\Delta, \Delta_{0}, x_{0}\right)$, since extensions of preimages are preimages of extensions.
(ii) By the construction of enlargements in Section 5 , each hole δ^{-k} belonging to a given partition ξ has an enlargement $\tilde{\delta}^{-k}$ such that for all elements constructed as a result of filling in δ^{-k}, their extensions are inside $\tilde{\delta}^{-k}$. As a consequence we obtain that no additional boundary refinement is needed after a filling-in operation.

The following lemma is a straightforward consequence from the definition of extendibility. To simplify notation, we may assume $I=[0,1]$.

Lemma 5.3. (The Boundary Refinement Lemma) Suppose $f:[a, b] \rightarrow[0,1]$ is an extendible monotone branch with $f(b)=1$ and let $J=[b, d]$ be an interval that is adjacent to $[a, b]$. Let us consider the refinements of $[a, b]$ and let ζ_{k} be the boundary interval of the $k^{t h}$ refinement which is adjacent to b. Then there exists $k_{0}=k_{0}(|J|)$ such that the extension of the boundary interval $\zeta_{k_{0}}$ is contained in J.

Suppose ξ is a partition with the critical value $x_{0}=h(1 / 2)$ contained in $\Delta_{0} \in \xi$. Also assume $\Delta_{a} \subset \operatorname{Im}(h)$ is the monotone domain adjacent to Δ_{0}. Then, using the boundary refinement lemma we get the following corollary:

Corollary 2. If $\Delta \neq \Delta_{a}$ belongs to ξ and requires boundary refinement, then we will need no more than $k_{0}\left(\Delta_{a}\right)$ steps of boundary refinements.

Recall that if $\xi_{0} \prec \xi_{1} \prec \cdots \prec \xi_{n} \prec \cdots$ are partitions constructed in the course of our induction. Let $\xi_{\infty}=\lim _{n \rightarrow \infty} \xi_{n}$ denote the limit partition.

Lemma 5.4. For $\Delta_{0} \in \xi_{n}$ and $x_{0} \in \Delta_{0}$, we have

$$
R_{\infty}\left(\Delta_{0}, x_{0}\right):=\sup _{m \geq n} R_{m}\left(\Delta, \Delta_{0}, x_{0}\right)=R_{n+1}\left(\Delta_{0}, x_{0}\right)
$$

Proof. Notice that all monotone domains created after step n are inside the holes of ξ_{n}. After the filling-in of any hole δ we get two monotone domains adjacent to the boundary points of δ. Therefore we get a domain Δ adjacent to Δ_{0} no later than at step $n+1$.

For $x_{0} \in \Delta_{0}$, where Δ_{0} is a monotone domain of some ξ_{m}, we define

$$
\begin{equation*}
R\left(x_{0}\right)=R_{\infty}\left(\Delta_{0}, x_{0}\right) \tag{22}
\end{equation*}
$$

Using that $\left|\bigcup_{\Delta \in \xi_{\infty}} \Delta\right|=1$ we can now prove
Proposition 4. The limit $\lim _{n \rightarrow \infty}\left|\left\{x_{0}: R\left(x_{0}\right)<n\right\}\right|=1$.
Proof. For a given $\Delta_{0} \in \xi_{m}$ we have $R_{m}\left(\Delta, \Delta_{0}, x_{0}\right)<k_{0}\left(\Delta_{a}\right)$ for all Δ non-adjacent to Δ_{0}. As for the adjacent interval Δ_{a} the number of boundary refinements is finite for any fixed x_{0} inside the interior of Δ_{0} and tends to ∞ as x_{0} approaches the common boundary between Δ_{0} and Δ_{a}. However,

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\{x_{0}: R_{m}\left(\Delta_{a}, \Delta_{0}, x_{0}\right)>n\right\}\right|}{\left|\Delta_{0}\right|}=0
$$

Hence, for every finite union U of intervals Δ_{0} and every union V of open subintervals of Δ_{0} that is separated from the boundary points of Δ_{0} and has relative measure (in U) close to 1 , there exists an n such that for any m

$$
\max _{\Delta_{0}, x_{0} \in V} R_{m}\left(\Delta_{0}, x_{0}\right)<n
$$

proving the proposition.
Proposition 4 implies that we can carry out the construction of partitions ξ_{n}, and make the trajectory of the critical point everywhere dense, under an additional assumption that the maximum number of boundary refinements needed to make all elements of ξ_{n} extendible does not exceed, say, 2^{n}.

Assume at step n according to our itinerary we must visit certain domains, but it involves more than $M>2^{n}$ refinements. Then we interrupt our itinerary and just pullback ξ_{0} consecutively. We use that for ξ_{0} there are many positions of the critical value such that no boundary refinement is needed. After that we return to our original predetermined itinerary.

5.9. Growth of the N_{E}.

5.9.1. We want to show that the sum $\sum_{n} \sum_{\Delta \in \xi_{n}} N_{E}(\Delta)|\Delta|$ in (20) converges. Since the partitions ξ_{n} have the property that once a uniformly extendible monotone domain is created it is never changed, it follows that all new monotone domains come from the critical pullback into the central domain and then from the subsequent filling in procedure. So to calculate the sum in (20) we will estimate the contribution at each step n due to the these procedures.

5.9.2. Let

$$
N_{E}\left(\xi_{n}\right)=\max _{J \in \xi_{n}} N_{E}(J)
$$

By definition the maximum is taken over all elements J of ξ_{n} including δ_{n}. We define $N_{E}\left(\delta_{n}\right):=N_{E}\left(h_{n}\right)$, where $N_{E}\left(h_{n}\right)$ was defined in (21).

Then

$$
N_{E}\left(\delta_{n}\right) \leq N_{E}\left(\xi_{n}\right)
$$

Since the preliminary partition ξ_{0} is a finite partition, we have $N_{0}:=N_{E}\left(\xi_{0}\right)<\infty$. Next we prove
Proposition 5. For all $n \geq 0$, we have

$$
(a)_{n} \quad N_{E}\left(\xi_{n}\right)<N_{0} 5^{n}
$$

Proof. Clearly $(a)_{0}$ holds. Now, assume by induction $(a)_{n}$ and let us consider the partition ξ_{n+1}. All new elements inside δ_{n} are obtained by using critical pullback and boundary refinement. At a basic step we are doing one critical pullback. Then for the new critical branch $h_{n+1}=f_{n}^{*} \circ h_{n}$ we have

$$
\begin{equation*}
N_{E}\left(h_{n+1}\right) \leq N_{E}\left(h_{n}\right)+N_{E}\left(\xi_{n}\right)<N_{0} 5^{n}+N_{0} 5^{n} \tag{23}
\end{equation*}
$$

The same estimate holds for other elements inside δ_{n} obtained by critical pullback.
By construction at step n we need no more than 2^{n} boundary refinements. If we are doing a grow-up operation, we choose the position of the critical value, so that we need no more than 2^{n} additional compositions. Then we may need one extra pull-back operation. Taking into account all these possibilities we get

$$
\begin{equation*}
\max _{J \in \delta_{n}} N_{E}(J)<2 N_{0} 5^{n}+N_{0}\left(4^{n}+1\right) \tag{24}
\end{equation*}
$$

Recall that at a Johnson step we delete trajectories of all intervals until they enter the first step of the staircase. Deleted intervals cannot contribute to N_{E}. The points from the first step of the staircase are mapped by h_{n} onto the elements of ξ_{n} just as at a basic step. So at a Johnson step we get the same estimate (24). Finally, when we do the filling-in procedure, we add one more term not exceeding $N_{E}\left(\xi_{n}\right)$. So we obtain

$$
N_{E}\left(\xi_{n+1}\right) \leq 3 N_{0} 5^{n}+\left(4^{n}+1\right) N_{0}<N_{0} 5^{n+1}
$$

which proves $(a)_{n+1}$ as required.

5.10. Estimates at Step $\mathbf{n}+1$.

5.10.1. Recall that elements Δ constructed at step n are not changed anymore. New elements at step $n+1$ are constructed inside δ_{n} and inside holes $\delta_{i}^{-k}, i=$ $0,1, \ldots, k \geq 0$.

Let us now estimate the contribution to (20) from the elements constructed inside the preimages δ_{i}^{-p} created by the filling in procedure. Suppose $\Delta, \delta_{j}^{-k} \subset \delta_{i}^{-p}$ are elements obtained by filling in δ_{i}^{-p}. Then we can subdivide the orbit of these elements into two segments. The first segment consists of the trajectory of δ_{i}^{-p} until they reach δ_{i}, the second segment then follows the orbit of the elements inside δ_{i} that are constructed at step $i+1$. In our estimates we accounted for the first segment at step n. At that step we counted the contribution of the hole δ_{i}^{-p} without any partition. In order to estimate the new contribution at step $n+1$ we need to account for the second segment of that orbit. For a given i that contribution does not exceed

$$
\begin{equation*}
N_{E}\left(\xi_{i+1}\right)\left(\sum_{\delta_{i}^{-p} \in \xi_{n}}\left|\delta_{i}^{-p}\right|\right) \tag{25}
\end{equation*}
$$

Since $i \leq n$, Proposition 5 implies that $N_{E}\left(\xi_{i+1}\right) \leq N_{0} 5^{n+1}$ and consequently estimate (25) is at most

$$
N_{0} 5^{n+1} \sum_{\delta_{i}^{-p} \in \xi_{n}}\left|\delta_{i}^{-p}\right|
$$

Therefore, the total contribution to the sum in (20) at step $n+1$ due the preimages δ_{i}^{-k} for $i=0,1,2, \ldots, n$ and $p \geq 0$ does not exceed

$$
\begin{equation*}
N_{0} 5^{n+1}\left(\sum_{n} \sum_{\delta_{i}^{-p} \in \xi_{n}}\left|\delta_{i}^{-p}\right|\right) \tag{26}
\end{equation*}
$$

In the next section we will prove that

$$
\begin{equation*}
\sum_{\delta_{i}^{-p} \in \xi_{n}}\left|\delta_{i}^{-p}\right|<a^{i} b^{n} s_{0} \tag{27}
\end{equation*}
$$

where $a=a\left(\delta_{0}\right), b=b\left(\delta_{0}\right)$ and $s_{0}=s_{0}\left(\delta_{0}\right)$ all tend to zero with δ_{0}. We can ensure that he sum

$$
\begin{equation*}
\sum_{i=0}^{\infty} a^{i} b^{n} s_{0}=\frac{1}{1-a} s_{0} b^{n}<6^{-n} \tag{28}
\end{equation*}
$$

provided a, b and s_{0} are sufficiently small. Combining this with (26) proves the convergence of the sum of the new contributions, and respectively the sum in formula (20).

5.11. Estimating the Measure of Holes $\cup \delta_{i}^{-k}$ inside ξ_{n}.

5.11.1. In our construction every central branch is a composition $h(x)=F \circ Q(x)$, where $Q(x)$ is the standard quadratic map and F is a composition of monotone domains with uniformly bounded distortion. For the quadratic map $Q(x)$ we know that, if $J \subset \delta$ are both symmetric intervals containing the critical point, then

$$
\begin{equation*}
\frac{|J|}{|\delta|}=\sqrt{\frac{|Q(J)|}{|Q(\delta)|}} . \tag{29}
\end{equation*}
$$

Since F has bounded distortion we obtain for similar intervals J and δ

$$
\begin{equation*}
|J|<c|\delta| \sqrt{\frac{|h(J)|}{|h(\delta)|}} \tag{30}
\end{equation*}
$$

Let δ be the domain of a central branch h. By the grow-up procedure the image of the central branch covers at least a fixed length I_{0}. So we may write

$$
\begin{equation*}
|J|<c|\delta| \sqrt{|h(J)|} \tag{31}
\end{equation*}
$$

where c is another uniform constant.
5.11.2. For a given i let $\alpha_{i}^{(n)}=\left|\bigcup_{\xi_{n}} \delta_{i}^{-k}\right|$ be the total measure of the holes $\cup \delta_{i}^{-k}$ that belong to ξ_{n}. In order to estimate from above the relative measure of the holes created inside δ_{n} as a result of the critical pullback procedure, we assume the worst position of these holes. By this, we mean that we assume that all the holes are contiguous with one end being bounded by the critical value $w=h_{n}(1 / 2)$. Let $M_{i}^{(n+1)}$ denote the measure of the union of all preimages of δ_{i} created inside δ_{n} at step $n+1$. For $i<n+1$, inequality (31) implies

$$
\begin{equation*}
\frac{M_{i}^{(n+1)}}{\left|\delta_{n}\right|}<c \sqrt{\alpha_{i}^{(n)}} \tag{32}
\end{equation*}
$$

This gives us the worst estimate on the relative measure of $M_{i}^{(n+1)}$ inside δ_{n}.
For $i=n+1$ we get in the basic case

$$
\begin{equation*}
M_{n+1}^{(n+1)}=\delta_{n+1}<\beta \delta_{n} \tag{33}
\end{equation*}
$$

where β is a small constant depending on the maximal size of elements in ξ_{0}.
We get estimates (32), (33) at basic steps. At a Johnson step, the estimate (32) still
holds for preimages which belong to the first step of the staircase. For subsequent preimages we prove
Lemma 5.5. The union of the box and all stairs except \mathcal{S}_{1} satisfies:

$$
\begin{equation*}
\left|\delta_{n} \backslash \mathcal{S}_{1}\right| \leq c_{1}\left|\delta_{n}\right|^{3 / 2} \tag{34}
\end{equation*}
$$

Proof. Let $h_{n}=F \circ Q$, where Q is the initial quadratic map. Let $J=\delta_{n} \backslash \mathcal{S}_{1}$. By definition $h_{n}(J)=h_{n}\left(\delta_{n}\right) \cap \delta_{n}$ and $\left|\delta_{n}\right|>\left|h_{n}(J)\right|>\frac{1}{2}\left|\delta_{n}\right|$. Since Q is quadratic, (29) gives $\frac{|J|}{\left|\delta_{n}\right|}=\sqrt{\frac{|Q(J)|}{\left|Q\left(\delta_{n}\right)\right|}}$. Using (30), $\left|h_{n}\left(\delta_{n}\right)\right|>1 / 2|I|$ and $h_{n}(J) \subset \delta_{n}$ we obtain $|J|<c\left|\delta_{n}\right|^{3 / 2}$.

So at a Johnson step we get for $i<n+1$

$$
\begin{equation*}
M_{n+1}^{i}<c\left|\delta_{n}\right|\left(\sqrt{\alpha_{i}^{(n)}}+\left|\delta_{n}\right|^{1 / 2}\right) \tag{35}
\end{equation*}
$$

Remark 5. At a Johnson step $n+1$ we get infinitely many preimages of δ_{n+1} all created inside the box B_{n}. Since the tip of the hat is small comparatively to the box, we have $\left|h_{n}(B)\right|=|B|(1+\varepsilon)$. Taking $J=B$ in (31) we obtain $|B|<$ $c\left|\delta_{n}\right| \sqrt{|B|(1+\varepsilon)}$ which shows that the box is of order $\left|\delta_{n}\right|^{2}$. Therefore, when $i=$ $n+1$ we get a stronger estimate

$$
\begin{equation*}
M_{n+1}^{(n+1)}<c_{1}\left|\delta_{n}\right|^{2} \tag{36}
\end{equation*}
$$

As (35) in the Johnson case majorizes (32), we use the estimate (35) in all cases.
5.11.3. When doing filling-in of a hole δ_{j}^{-p} we pullback the structure of δ_{j} that was created by critical pullback at step $j+1$. So we handle this at step $j+1$ as we did above at step $n+1$ and get $M_{i}^{(j+1)}<c\left|\delta_{j}\right|\left(\sqrt{\alpha_{i}^{(j)}}+\left|\delta_{j}\right|^{1 / 2}\right)$. Then we pullback with small distortion onto the preimage δ_{j}^{-p} and obtain new preimages δ_{i}^{-k} with measure less than $c_{1}\left|\delta_{j}^{-p}\right|\left(\sqrt{\alpha_{i}^{(j)}}+\left|\delta_{j}\right|^{1 / 2}\right)$ inside each preimage δ_{j}^{-p}. Notice that the central domain δ_{i} is constructed at step i. Respectively, preimages of δ_{i} can only appear at steps $i, i+1, \ldots$ Taking the union over all preimages δ_{j}^{-p} for $j=i, \ldots, n$, we get that at step $n+1$ the total measure of all preimages δ_{i}^{-r} appearing after filling in all preimages $\delta_{m}^{-k},(m=i, i+1, \ldots, n)$, is at most

$$
c \sum_{m=i}^{n} \alpha_{m}^{(n)}\left(\sqrt{\alpha_{i}^{(m)}}+\left|\delta_{m}\right|^{1 / 2}\right) .
$$

Recall that at a basic step $\frac{\left|\delta_{i}\right|}{\left|\delta_{i-1}\right|} \leq \beta$, where β can be made arbitrary small by choosing elements of the initial partition ξ_{0} small.

We choose $\delta_{0} \ll \beta$. Then at a Johnson step we get $\left|\delta_{i}\right|<c\left|\delta_{i-1}\right|^{2} \ll \beta\left|\delta_{i-1}\right|$ and moreover from (36)

$$
\begin{equation*}
M_{i}^{i} \ll \beta\left|\delta_{i-1}\right| . \tag{37}
\end{equation*}
$$

The filling-in operation produces at the middle of any domain δ_{i-1}^{-k} a new central preimage δ_{i}^{-k} or a union of such preimages $\bigcup \delta_{i}^{-m}$, if i was a Johnson step.
Since the diffeomorphisms $\chi: \delta_{i-1}^{-k} \rightarrow \delta_{i-1}$ have small distortions, we get for preimages

$$
\frac{\left|\delta_{i}^{-k}\right|}{\left|\delta_{i-1}^{-k}\right|} \leq(1+\varepsilon) \beta
$$

We change notation and use the same constant β as an estimate for the ratio of these preimages.

Combining the previous estimates we get at step $n+1$

$$
\begin{equation*}
\alpha_{i}^{(n+1)}<\beta \alpha_{i-1}^{(n)}+c_{1} \sum_{j=i}^{n} \alpha_{j}^{(n)}\left(\sqrt{\alpha_{i}^{(j)}}+\left|\delta_{j}\right|^{1 / 2}\right) \tag{38}
\end{equation*}
$$

where β and c_{1} do not depend on i and on n.
5.11.4. Now, we prove

Proposition 6. There exists small positive constants s_{0}, a and b, such that for all $n \geq 0$ and all $i \leq n$ we have

$$
\begin{equation*}
\left(\Gamma_{(i, n)}\right) \tag{39}
\end{equation*}
$$

$$
\alpha_{i}^{(n)}<a^{i} b^{n} s_{0}
$$

Moreover, one can choose s_{0}, a and b that tend to zero as $\left|\delta_{0}\right| \rightarrow 0$.
Proof. 1. We may assume that δ_{0} is small enough - to be specified below. Recall that $\frac{\left|\delta_{i+1}\right|}{\left|\delta_{i}\right|}<\beta$, where β is small. Consequently, in our estimates below, we use that

$$
\left\{\begin{array}{l}
\left|\delta_{i}\right|<\beta^{i}\left|\delta_{0}\right| \tag{40}\\
\alpha_{i}^{(i)}<c_{0} \beta^{i}\left|\delta_{0}\right| .
\end{array}\right.
$$

Here a constant c_{0} appears because ξ_{0} contains not only δ_{0}, but also its preimages.
2. By construction of our initial partition ξ_{0} we decrease an element until its size becomes smaller than ε_{0}. We recall that when the image of the critical branch covers less than one half of I, we are using an extra pull-back operation. Hence $\beta<c_{2} \sqrt{\varepsilon_{0}}$, where c_{2} is a uniform constant.
The key observation is that the size of the central domain δ_{0} does not depend on ε_{0}, and we can choose $\left|\delta_{0}\right| \ll \varepsilon_{0}$.
3. Let us choose a constant s_{0} such that $\left|\delta_{0}\right| \ll s_{0}$, say $\left|\delta_{0}\right|<s_{0}^{2}$. In addition , we choose small constants $a=\beta^{x}$ and $b=\beta^{y}$ where $0<x, y<1 / 2$ and $a b>3 \beta$. Combining all the above, we will use in our estimates below the following inequalities

$$
\left\{\begin{array}{l}
\left|\delta_{0}\right|<s_{0}^{2}, \tag{41}\\
\beta<\frac{1}{3} a b, \quad \beta<b^{2}, \quad \beta<a^{2} .
\end{array}\right.
$$

4. Let us first check the case $i=0$. In this case (38) becomes

$$
\begin{aligned}
\alpha_{0}^{(n+1)} & <c_{1} \sum_{m=0}^{n} s_{0} a^{m} b^{n}\left(\sqrt{s_{0}} b^{m / 2}+\left|\delta_{0}\right| \beta^{m / 2}\right) \\
& <c_{1} \sqrt{s_{0}}\left[s_{0} b^{n}\left(\sum_{m=0}^{\infty} a^{m} b^{m / 2}+\left|\delta_{0}\right| \sum_{m=0}^{\infty} \beta^{m / 2}\right)\right] .
\end{aligned}
$$

If a, b and β are small enough, then the sums of geometric progressions are close to 1 , and we get

$$
\begin{equation*}
\alpha_{0}^{(n+1)} \leq c_{1} s_{0}^{3 / 2} b^{n}(1+\varepsilon) \tag{42}
\end{equation*}
$$

Also, we can arrange that the elements of the initial partition are small enough to ensure that

$$
\begin{equation*}
c_{1} \sqrt{s_{0}}<b / 10 \tag{43}
\end{equation*}
$$

Then (42) implies formula $\left(\Gamma_{(0, n+1)}\right)$.
5. Now we assume by induction that $\Gamma_{(i, n)}$ holds for all $i \leq n$. Then for all $i=1,2, \ldots, n$ we get using (38), (40) and (41)

$$
\begin{align*}
\alpha_{i}^{(n+1)}< & \beta a^{i-1} b^{n} s_{0}+c_{1} \sum_{j=i}^{n} s_{0} a^{j} b^{n}\left[\sqrt{s_{0}} a^{i / 2} b^{j / 2}+\sqrt{\left|\delta_{0}\right|} \beta^{j / 2}\right] \\
< & \frac{1}{3} s_{0} a^{i} b^{n+1} \\
& +s_{0} a^{\frac{i}{2}} b^{n}\left[c_{1} \sqrt{s_{0}}\left(\sum_{j=i}^{n} a^{j} b^{j / 2}\right)+c_{1} \sqrt{\left|\delta_{0}\right|} \sum_{j=i}^{n} \beta^{j / 2}\right] \tag{44}
\end{align*}
$$

The first term in the square brackets is $\leq c_{1} a^{i} b^{\frac{i}{2}} \sqrt{s_{0}}\left(\frac{1}{1-a b^{\frac{1}{2}}}\right)$. From $c_{1} \sqrt{s_{0}}<$ $b / 10$ given in (43) and since $\frac{1}{10}\left(\frac{a^{\frac{i}{2}} b^{\frac{i}{2}}}{1-a b^{\frac{1}{2}}}\right) \leq \frac{1}{3}$ which holds for small a, b, we obtain that

$$
\begin{equation*}
c_{1} a^{i} b^{\frac{i}{2}} \sqrt{s_{0}}\left(\frac{1}{1-a b^{\frac{1}{2}}}\right) \leq a^{\frac{i}{2}} b\left[\frac{1}{10}\left(\frac{a^{\frac{i}{2}} b^{\frac{i}{2}}}{1-a b^{\frac{1}{2}}}\right)\right] \leq \frac{1}{3} a^{\frac{i}{2}} b \tag{45}
\end{equation*}
$$

As $\left|\delta_{0}\right|<s_{0}^{2}$ and $\beta<a^{2}$ we get as above that the second term in the square brackets in (44) satisfies

$$
\begin{equation*}
c_{1} \sqrt{\left|\delta_{0}\right|} \beta^{\frac{i}{2}}\left(\frac{1}{1-\beta^{\frac{1}{2}}}\right)<\frac{1}{3} a^{\frac{i}{2}} b \tag{46}
\end{equation*}
$$

Combining (45), (44) and (46) we get $\alpha_{i}^{(n+1)}<s_{0} a^{i} b^{n+1}$ proving formula $\left(\Gamma_{(i, n+1)}\right)$ for all $i \leq n+1$.
Thus Proposition 6 follows by induction.
As discussed in Section 5.10, Proposition 6 implies that μ is a σ-finite acim. Finally we get from Proposition 2 that every interval $J \subset I$ has infinite μ-measure. Let J be any interval in I. By construction there is an n such that $h_{n}(c)$ passes through J and hence there is a Johnson step k_{0} such that the forward orbit of the box $B_{k_{0}}$ passes through J. We proved that $B_{k_{0}}$ has infinite μ-measure. As μ is G-invariant, every iterate of $B_{k_{0}}$ has infinite μ-measure. Respectively J which contains an iterate of $B_{k_{0}}$ also has infinite μ-measure.
This finishes the proof of the main Theorem A.
Acknowledgements. The authors are grateful to G. Świa̧tek for useful discussions.

REFERENCES

[1] R. L. Adler, Afterword to R. Bowen, Invariant measures for Markov maps of the interval, Commun. Math. Phys. 69 (1979), 1-17.
[2] J. Al-Khal, "New Examples of S-unimodal Maps with a Sigma-finite Absolutely Continuous Invariant Measure," Ph.D. Thesis, University of Maryland, College Park, 2004.
[3] H. Bruin, "Invariant measures of interval maps," Ph.D. Thesis, University of Delft, 1994.
[4] H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Commun. Math. Phys. 168 (1995), 571-580.
[5] H. Bruin, G. Keller, T. Nowicki and S. van Strien, Wild Cantor sets exist, Annals of Mathematics, 143 (1996), 97-130.
[6] H. Bruin, J. Hawkins, Exactness and maximal automorphic factors of unimodal interval maps, Ergod. Th. \& Dyn. Sys. 21 (2001), 1009-1034.
[7] H. Bruin, W. Shen, S. van Strien, Invariant measures exist without a growth condition, Commun. Math. Phys. 241 (2003), 287-306.
[8] J. Guckenheimer and S. D. Johnson, Distortion of \mathcal{S}-unimodal maps, Annals of Mathematics, 132 (1990), 71-130.
[9] J. Graczyk and G. Świątek, "The real Fatou conjecture," Annals of Mathematics Studies, Princeton University Press, 144, 1998.
[10] F. Hofbauer and G. Keller, Quadratic maps without asymptotic measures, Commun. Math. Phys., 127 (1990), 319-337.
[11] F. Hofbauer and G. Keller, Some remarks on recent results about \mathcal{S}-unimodal maps, Ann. Institute Henri Poincaré, 53 (1990), 413-425.
[12] M. V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun. Math. Phys., 81 (1981), 39-88.
[13] M. V. Jakobson, Piecewise smooth maps with absolutely continuous invariant measures and uniformly scaled Markov partitions, Proceedings of Symposia in Pure Mathematics, 69 (2001), 825-881.
[14] M. V. Jakobson and G. Świątek, Metric properties of non-renormalizable \mathcal{S}-unimodal maps. Part I: Induced expansion and invariant measures, Ergodic Th. \& Dynam. Sys., 14 (1994), 721-755.
[15] S. D. Johnson, Singular measures without restrictive intervals, Commun. Math. Phys., 110 (1987), 185-190.
[16] S. Kakutani, Induced measure preserving transformations, Proc. Japan. Acad., 19 (1943), 635-641.
[17] Y. Katznelson, σ-finite invariant measures for smooth mappings of the circle, Journ. d'Anal Math. 31 (1977), 1-18.
[18] G. Keller, Exponents, attractors and Hopf decompositions for interval maps, Ergodic Th. \& Dynam. Sys., 10 (1990), 717-744.
[19] G. Keller, Lifting measures to Markov extensions, Monatsh. Math. 110 (1989), 183-200.
[20] M. Martens, "Interval Dynamics," Ph.D. Thesis, Delft 1990.
[21] M. Martens, The existence of σ-finite measures, applications to real one-dimensional dynamics, Stony Brook Preprint 1992-1
[22] W. de Melo and S. van Strien, "One-dimensional dynamics," Springer, Berlin, 1993.
E-mail address: jawad7@comcast.net
E-mail address: h.bruin@surrey.ac.uk
E-mail address: mvy@math.umd.edu

[^0]: 2000 Mathematics Subject Classification. Primary: 37E05; Secondary: 28D05, 37C40.
 Key words and phrases. sigma-finite invariant measure, interval maps, infinite measure.
 HB was supported by EPSRC grant GR/S91147/01.

