PARAMETER CHOICE FOR FAMILIES OF MAPS WITH MANY CRITICAL POINTS

MICHAEL JAKOBSON

ABSTRACT. We consider families of smooth one-dimensional maps veétresal critical points and
outline the main ideas of the construction in the parameiaces that allows to get infinite Markov
Partitions and SRB measures for a positive set of paramatees.

The construction is based on the properties of uniformlyesc®arkov partitions from [6]. The
same approach works for families of Henon-like maps.

1. FORMULATION OF THE THEOREM

1.1. There are several approaches to the construction oftaély continuous invariant measures
in families of non-hyperbolic maps depending on the param&he original method of [4] provides
infinite Markov partitions for the related family of piecesei continuous expanding iterates A =

f" of the initial smooth magf;. The method of [1], [2], see also [10], [3] and subsequenepsp
based on large deviations is non-Markov. It results in aniaripgmaller set of parameter values
satisfying Collet-Eckmann type conditions. The method1d][ [12] combines Markov property
and Collet-Eckmann conditions. For further referencesasescent survey [9] which in particular
contains a detailed discussion of parameter exclusion.

In any method the choice of parameter is an important pahetonstruction. Here we outline
several features of a method based on the uniform scalingaokdw partitions, see [6].

There are similarities and differences between constrmstin dimensions one and two. For ex-
ample, distortion estimates in dimension two are more caatgd, see [7], [11]. In the method
based on uniformly scaled Markov partitions the problemarmeter choice for two-dimensional
families is similar to the problem for one-dimensional faes with several critical points . We
mostly discuss that one-dimensional case and at the eridesfecifics of the 2-dimensional con-
struction.

1.2. After some preliminary construction, which includemnsition to a first return map and tak-
ing several iterates of that map, see [5], [6], we get a familpne-dimensionaC? mappingsh
depending on the parametet 7y = [to,t1] with the following properties.

For eaclht, R is piecewise continuous with a finite number of branches. urfien of the domains
of these branches is an intertalvhich can be considered independent pgayl = [0, 1] for all t.
The branches dk are of three types.

(1) There aran critical branchedy,l = 1,...m, whose domains are callentral domains
Each central domaid contains a single critical poir®, of /. Without loss of generality
one can assume th@ do not depend ohand so fol = 1,...mand for allt we have

hlx(ol) =0
(2) Monotone expanding branches which we alsogatid branches

(1) fi: A — |
1
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satisfying for allt
) |fix| > Ro

whereRy > 1 is a large constant.
(3) Brancheg; which map preimages of central domadgiffeomorphically onta,

3) Gi: g "
satisfying for allt

(4) |gix| > a0 >1

The above domains form a partiti@p of | and we assume that the elements of that partition vary
continuously witht . All new branches constructed in the inductive processarated insidé, and
their preimages, .

1.3. LetW(t) =h/(O)) be the critical values difi. We assume their speeds are bounded away from
zero by somé&/y > 0.

%) Wit| > Vo

Whent varies in7p, each critical valué\f (t) moves through the elements of some partitipn
Although geometrically different partitions may have coomelements, or just be parts of the same
partition of the phase space, we consider them separately.

It is convenient to imagin®4 (t) moving along its own copy of thgaxis partitioned by, .

In the case of the quadratic family

X — ax(1—x)

whenais close to 4 we take for the intervathe domain of the first return map between the fixed
point and its preimage. One can make a change of variablehwiéaked fixed. At the same time
the critical value moves far away frohracross a partition created by adjacent preimagéswdfich
accumulate toward 1. Similar examples with two criticaluesd each moving near a fixed point and
other examples with several critical points are describd8]i.

We assume that partitiony consist of domaind andd ™ of the same type§2) and(3) as
elements ot in the subsection.2 above.

1.4. We define thdistortion®(f) of a diffeomorphisnt defined on a domaiaf as the following

supremum over € Af

| hx(2)]

1x(2)|

We assume the maps defined above satisfy the following dondit
(1) There exist®q > 0 such that all good maps: Af — | satisfy

(6) o(f) = sup IAf]

(7) O(f) < Do
and there exists a smalj > 0 such that all mapg: 6l’”i — Q) satisfy
8 ©(9) <¢o

(2) For allt the relative measure of good brancheggris close to one

9) meag JAf > 1—g
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(3) Letf: Af —1org: 6l’”i — 0 be maps defined on elements of partitiops Then they are
moving much slower than the critical values:

[l Jorl
[Tl lox|
(4) Letlk = [Wk(t1) —Wk(to)] = Utes, Wk(t) be the interval of variation of thieth critical value.

Then for allt € 7p elementaAf, 6,’”‘ of the partitionsni are small compared ty| . For
that purpose it is enough to assume

(10) < &9 < Vo.

(11) 1A],18 ™| < £oVo|To|
(5) The variation of lengthg\(t)| is small
|A(ty)]
12 l-g< <1l+¢g
(2 °< a1

for all ty,ty € 7p.

(6) LetM;(t) = U;Ai(t) be the union of good branches which are elementy slich that the
critical valueW(tj) belongs toA;(t;) for somet; € 7p, and let|M;(t)| be the measure of
M (t). Then for alll and allt

(13)

>1-—¢gg.

Remark 1.1. (1) The above conditions are satisfied fof-Berturbations of quadratic family

and for multi-modal families considered|if]. In these examples the interval of parameter
7o is small and the domainy are small. At the same time derivatives of all branches of the
first return map , except for the critical branches are greatan some ¢ 1. As arbitrary
compositions of a finite number of uniformly expandifgn@ps have uniformly bounded
distortions, one can satisfy simultaneously 2 and 7.

(2) Asg are small and distortions are uniformly bounded one gets@%n

(3) The condition 10 is satisfied because the elements of th&ipastn, are mapped onto |
after many iterates, so the respectj¥g, |gx| are large.

(4) The condition 12 is satisfied because the interval of paranmtis small.

(5) The condition 13 follows from 9 when the partitiopsare obtained using various pull-backs
of the partition&p.

(6) In order to satisfy 11 it is enough to have element&amall and do one extra pullback of
&o onto the elemen®&f ofn;.

1.5. Therelations between the parameRey3/, o, etc., that appear above determine the measure
of parameters with SRB measures, see [6]. For families densil in [5] one can use a preliminary
construction as described in [6] and get a family of mBpsatisfying the above conditions, where
€p can be made arbitrary smaRy arbitrary large and other parameters uniformly boundedat Th
motivates the theorem below. In the general case one carnthapreliminary construction and use
computer assisted estimates.

Theorem 1.2. There exisIR_o,Eo such that if the above conditions are satisfied with>RR, and

£o < €g and the other parametersg)V, fixed, then there is a set of parameters of positive measure
such that the respective mapsitave SRB measures and the relative measure of such parameter
tends to one wheRy — o andeg — 0.
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2. SPECIFICS OF THEPROOF IN THEPARAMETER SPACE IN THE PRESENCE OFSEVERAL
CRITICAL POINTS

2.1. The inductive construction in the phase space thatgsrthe above theorem is similar to the
one forUnimodal Mapssee [4], [6]. However in the parameter space there are spewfies due
to the presence of several critical points. Below we outlive part of the proof.

As the endpoints of the elementsmpfmove slower thall\f (t) it follows that to each element e
ni(t) there corresponds a parameter intemgabuch that (t) € A whent € 75. The elements that
containW (tp) andW (t1) are exceptional, meaning that(t) moves across a part of such elements.
We delete the respective parameter values sLbe the remaining interval of parameters. It follows
from 11 that

|51
(14) o) >1—g1
whereg; is small.

We restrictt to 5| and additionally delete parameter intervajscorresponding to the movement
of Wi (t) through the good branches that are too close to the dogihsSo we consider the location
of W (t) inside some enlargements a‘jni as inadmissible . By definitioadmissible parameter
valuesbelong to the remainingy. Let

(15) 7= J7a

be the union of- admissibleparameter intervals. Assuming ttatfrom 13 is small enough, one
can choose enlargements that are sufficiently big and implydBat the same time satisfy

16 — >1—¢,
(16) 7o) 2
whereg; is small.

Let us define
m
(17) 0= ().
=1

ThenAg is the initial set of parameters that are admissible forrdilcal values simultaneously.
The relative measure cfy

(18) —>1-lg
is arbitrary close to one iy is sufficiently small.

2.2. For anyt that belongs to ahadmissible parameter interval we get a partiﬁ@rof the central
domaind, by considering the pullback

(19) & =h .

WhenW!(t) belongs to an admissible domeﬂh, t belongs to the respective interval of parameters

‘Z‘All, and the new central domain, which contains the criticahp©j, is 6'1 = hflA'l.
Notice that differently from the partitiong andn,, which vary continuously for ali, the parti-

tionsE'1 are defined and vary continuously only faf TAll. Whent € TA"l we get a different partition
of §. In particular, there is no well-defined partition&fwhent TA'{ wherek # 1.
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2.3. In our construction in order to get consecutive refinesief the central domain®, at steps
n=1,2,... we first pull back some partition onto a domaih ;, which contains the critical value
W!(t), and after that we pull back that new partition frén , ontodl, ; by h*.

At the first several steps of the induction we pull back aﬁggl the initial partition§g which is
defined for alk.

However, in order to keep the measure of parameters positvieave to consider at some step
n; new admissible intervals in the phase space lying ingide

Let us denote by

m
(20) =7
=1

one of the nonempty intersectionsleidmissible parameter intervals at the first step of inducti
We call it theintersection of rank one By construction at each step of induction the parameter
intervaISfIA!liz_._ik of rankk are partitioned into intervahEA!lizl_.ikik+l of the next rank+ 1 and the
respective intersectiong and Iy 1 of ranksk andk+ 1 are considered. By construction eagh;
belongs to only one.

Let us consider an intersection of rank

m
|
(21) Ing = () Taiy i,
=1
and a respective Intersection of rank one
N
(22) Inp CI1= ﬂTAlv
=1
where
| |
(23) Thiy...in, C T

Let us define ainion of rank A corresponding to the intersection 21 of rankby
m
|
(24) Un = J Thiy..in,
=1

As at stepn; we pull back partitions of rank 1, we get that pull-backs aedl wefined if theunion
of rank n lies inside the respectivatersection of ranik

(25) Un, C I1
We delete Intersections, that do not satisfy 25.

Let us estimate the measure of the deleted parameter itgeByaconstruction 25 is not satisfied
if and only if one of the intervalsrA!l_,_inl contains a boundary point of sorﬁg‘{ with k # 1.

Let Ny be the number of intervals, of rank 1, and les,, be the maximum of the lengths of the
intervals'rA!l_,_inl of rankny. Then the total measure of the deleted intervalsioes not exceed

(26) 2N1sn,
Notice thats, decreases exponentially:
(27) S$H<CRy"

Therefore the measure of the deleted intervals also dasexponentially.
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2.4. At the general step of induction we ugeiform scalingin the phase space, see [6]. By
construction the domains of good branches at stepthe induction satisfy

(28) b < |Afy| < ca",

where
O<b<ax<l1

Estimates of speeds imply that parameter intervals cooregipg to the movement & (t) through
Af, satisfy similar inequalities with another choice of conssa

(29) cib" < |7an| < cha".

By construction at step we are using pull-backs of partitiodg,, of step[nx] wherexo > 0 is a
small constant.

In order to get well-defined partitions we need eaetnion to be a subset of the respective
[nxol-intersection

(30) Un C Ijnyg]
We deleter,, which do not satisfy 30. The measure of the deleted inteisdéss than
(31) Clp~[molgn,

which is exponentially small for largeif
a
32 — <1
(32) o <
If several first steps of induction are adjusted, then onewalke the constantsandb arbitrary close,
see [6]. At the same time one can choggarbitrary small. So it is easy to satisfy 32, although one
should notice that at these special first steps of inductidren we pull the same partitidgy back

several times, we can lose a lot of measure in the parametee sp

2.5. Finally we discuss the problem of parameter choicearMhrkov construction for Henon-like
maps, see [8].

In the two-dimensional case the role of critical branchgdaged by thin horseshoes. At stap
of inductive construction their number is less tha#' 2whereyp > 0 is a small constant.

So 31is replaced by

(33) C2Yonp~ Mol gn,

Using a preliminary construction one can make the exparRjaufficiently large. That makes the
constant small and compensates the the factéf 2Then as above, iy is sufficiently small, the
estimates 33 decrease exponentially for large
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