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ABSTRACT. We consider families of smooth one-dimensional maps with several critical points and
outline the main ideas of the construction in the parameter space that allows to get infinite Markov
Partitions and SRB measures for a positive set of parameter values.

The construction is based on the properties of uniformly scaled Markov partitions from [6]. The
same approach works for families of Henon-like maps.

1. FORMULATION OF THE THEOREM

1.1. There are several approaches to the construction of absolutely continuous invariant measures
in families of non-hyperbolic maps depending on the parameter. The original method of [4] provides
infinite Markov partitions for the related family of piecewise continuous expanding iteratesFt | ∆i =
f ni
t of the initial smooth mapft . The method of [1], [2], see also [10], [3] and subsequent papers,

based on large deviations is non-Markov. It results in an a priori smaller set of parameter values
satisfying Collet-Eckmann type conditions. The method of [13], [12] combines Markov property
and Collet-Eckmann conditions. For further references seea recent survey [9] which in particular
contains a detailed discussion of parameter exclusion.

In any method the choice of parameter is an important part of the construction. Here we outline
several features of a method based on the uniform scaling of Markov partitions, see [6].

There are similarities and differences between constructions in dimensions one and two. For ex-
ample, distortion estimates in dimension two are more complicated, see [7], [11]. In the method
based on uniformly scaled Markov partitions the problem of parameter choice for two-dimensional
families is similar to the problem for one-dimensional families with several critical points . We
mostly discuss that one-dimensional case and at the end outline specifics of the 2-dimensional con-
struction.

1.2. After some preliminary construction, which includes transition to a first return map and tak-
ing several iterates of that map, see [5], [6], we get a familyof one-dimensionalC2 mappingsFt

depending on the parametert ∈ T0 = [t0,t1] with the following properties.
For eacht, Ft is piecewise continuous with a finite number of branches. Theunion of the domains

of these branches is an intervalI which can be considered independent oft , sayI = [0,1] for all t.
The branches ofFt are of three types.

(1) There arem critical brancheshl , l = 1, . . .m, whose domains are calledcentral domains.
Each central domainδl contains a single critical pointOl of Ft . Without loss of generality
one can assume thatOl do not depend ont and so forl = 1, . . .m and for allt we have

hlx(Ol ) = 0

(2) Monotone expanding branches which we also callgood branches

(1) fi : ∆i → I
1
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satisfying for allt

(2) | fix| > R0

whereR0 > 1 is a large constant.
(3) Branchesgi which map preimages of central domainsδl diffeomorphically ontoδl

(3) gi : δ−ni
l → δl

satisfying for allt

(4) |gix| > a0 > 1

The above domains form a partitionξ0 of I and we assume that the elements of that partition vary
continuously witht . All new branches constructed in the inductive process are created insideδl and
their preimagesδ−ni

l .

1.3. LetWl (t) = hl (Ol ) be the critical values ofhl . We assume their speeds are bounded away from
zero by someV0 > 0.

(5) |Wlt | > V0

When t varies inT0, each critical valueWl (t) moves through the elements of some partitionηl .
Although geometrically different partitions may have common elements, or just be parts of the same
partition of the phase space, we consider them separately.

It is convenient to imagineWl (t) moving along its own copy of they axis partitioned byηl .
In the case of the quadratic family

x→ ax(1−x)

whena is close to 4 we take for the intervalI the domain of the first return map between the fixed
point and its preimage. One can make a change of variables which makesI fixed. At the same time
the critical value moves far away fromI across a partition created by adjacent preimages ofI which
accumulate toward 1. Similar examples with two critical values each moving near a fixed point and
other examples with several critical points are described in [5] .

We assume that partitionsηl consist of domains∆i andδ−ni
l of the same types(2) and(3) as

elements ofξ0 in the subsection 1.2 above.

1.4. We define thedistortionΘ( f ) of a diffeomorphismf defined on a domain∆ f as the following
supremum overz∈ ∆ f

(6) Θ( f ) = sup
| fxx(z)|
| fx(z)|

|∆ f |

We assume the maps defined above satisfy the following conditions.

(1) There existsD0 > 0 such that all good mapsf : ∆ f → I satisfy

(7) Θ( f ) < D0

and there exists a smallε0 > 0 such that all mapsg: δ−ni
l → δl satisfy

(8) Θ(g) < ε0

(2) For allt the relative measure of good branches inξ0 is close to one

(9) meas
[

∆ f > 1− ε0
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(3) Let f : ∆ f → I or g: δ−ni
l → δl be maps defined on elements of partitionsηk. Then they are

moving much slower than the critical values:

(10)
| ft |
| fx|

,
|gt |

|gx|
< ε0 ≪V0.

(4) Let Ik = [Wk(t1)−Wk(t0)] =
S

t∈T0 Wk(t) be the interval of variation of thek-th critical value.

Then for allt ∈ T0 elements∆ f , δ−ni
l of the partitionsηk are small compared to|Ik| . For

that purpose it is enough to assume

(11) |∆|, |δ−ni
l | < ε0V0|T0|

(5) The variation of lengths|∆(t)| is small

(12) 1− ε0 <
|∆(t1)|
|∆(t2)|

< 1+ ε0

for all t1,t2 ∈ T0.
(6) Let Ml (t) =

S

i ∆i(t) be the union of good branches which are elements ofηl such that the
critical valueWk(ti) belongs to∆i(ti) for someti ∈ T0, and let|Ml (t)| be the measure of
Ml (t). Then for alll and allt

(13)
|Ml (t)|
|Il |

> 1− ε0.

Remark 1.1. (1) The above conditions are satisfied for C2-perturbations of quadratic family
and for multi-modal families considered in[5]. In these examples the interval of parameter
T0 is small and the domainsδl are small. At the same time derivatives of all branches of the
first return map , except for the critical branches are greater than some c> 1. As arbitrary
compositions of a finite number of uniformly expanding C2 maps have uniformly bounded
distortions, one can satisfy simultaneously 2 and 7.

(2) Asδl are small and distortions are uniformly bounded one gets 8 and 9.
(3) The condition 10 is satisfied because the elements of the partitions ηl are mapped onto I

after many iterates, so the respective| fx|, |gx| are large.
(4) The condition 12 is satisfied because the interval of parameter T0 is small.
(5) The condition 13 follows from 9 when the partitionsηl are obtained using various pull-backs

of the partitionξ0.
(6) In order to satisfy 11 it is enough to have elements ofξ0 small and do one extra pullback of

ξ0 onto the elements∆ f of ηl .

1.5. The relations between the parametersR0, V0, ε0, etc., that appear above determine the measure
of parameters with SRB measures, see [6]. For families considered in [5] one can use a preliminary
construction as described in [6] and get a family of mapsFt satisfying the above conditions, where
ε0 can be made arbitrary small,R0 arbitrary large and other parameters uniformly bounded. That
motivates the theorem below. In the general case one can varythe preliminary construction and use
computer assisted estimates.

Theorem 1.2. There existR̄0, ε̄0 such that if the above conditions are satisfied with R0 > R̄0 and
ε0 < ε̄0 and the other parameters D0, V0 fixed, then there is a set of parameters of positive measure
such that the respective maps Ft have SRB measures and the relative measure of such parameters
tends to one when̄R0 → ∞ andε0 → 0.
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2. SPECIFICS OF THEPROOF IN THEPARAMETER SPACE IN THE PRESENCE OFSEVERAL

CRITICAL POINTS

2.1. The inductive construction in the phase space that proves the above theorem is similar to the
one forUnimodal Maps, see [4], [6]. However in the parameter space there are some specifics due
to the presence of several critical points. Below we outlinethat part of the proof.

As the endpoints of the elements ofηl move slower thanWl (t) it follows that to each element∆ ∈
ηl (t) there corresponds a parameter intervalT∆ such thatWl (t) ∈ ∆ whent ∈ T∆. The elements that
containWl (t0) andWl (t1) are exceptional, meaning thatWl (t) moves across a part of such elements.
We delete the respective parameter values. LetS l be the remaining interval of parameters. It follows
from 11 that

(14)
|S l |

|T0|
> 1− ε1

whereε1 is small.
We restrictt to S l and additionally delete parameter intervalsT∆ corresponding to the movement

ofWl (t) through the good branches that are too close to the domainsδ−ni
k . So we consider the location

of Wl (t) inside some enlargements ofδ−ni
k as inadmissible . By definitionadmissible parameter

valuesbelong to the remainingT∆. Let

(15) T l =
[

T∆

be the union ofl- admissibleparameter intervals. Assuming thatε0 from 13 is small enough, one
can choose enlargements that are sufficiently big and imply 8and at the same time satisfy

(16)
|T l |

|T0|
> 1− ε2,

whereε2 is small.
Let us define

(17) A0 =
m

\

l=1

T l .

ThenA0 is the initial set of parameters that are admissible for all critical values simultaneously.
The relative measure ofA0

(18)
|A0|

|T0|
> 1− lε2

is arbitrary close to one ifε0 is sufficiently small.

2.2. For anyt that belongs to anl -admissible parameter interval we get a partitionξl
1 of the central

domainδl by considering the pullback

(19) ξl
1 = h−1

l ηl .

WhenWl (t) belongs to an admissible domain∆l
1, t belongs to the respective interval of parameters

T∆
l
1, and the new central domain, which contains the critical point Ol , is δl

1 = h−1
l ∆l

1.
Notice that differently from the partitionsξ0 andηl , which vary continuously for allt, the parti-

tionsξl
1 are defined and vary continuously only fort ∈ T∆

l
1. Whent ∈ T ′

∆
l
1 we get a different partition

of δl . In particular, there is no well-defined partition ofδl whent ∈ T∆
k
1 wherek 6= l .
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2.3. In our construction in order to get consecutive refinements of the central domainsδl
n at steps

n = 1,2, . . . we first pull back some partition onto a domain∆l
n−1, which contains the critical value

Wl (t), and after that we pull back that new partition from∆l
n−1 ontoδl

n−1 by h−1
l .

At the first several steps of the induction we pull back onto∆l
n−1 the initial partitionξ0 which is

defined for allt.
However, in order to keep the measure of parameters positivewe have to consider at some step

n1 new admissible intervals in the phase space lying insideδl .
Let us denote by

(20) I1 =
m

\

l=1

T∆
l
1

one of the nonempty intersections ofl -admissible parameter intervals at the first step of induction.
We call it the intersection of rank one. By construction at each step of induction the parameter
intervalsT∆

l
i1i2...ik of rankk are partitioned into intervalsT∆

l
i1i2...ikik+1

of the next rankk+ 1 and the
respective intersectionsIk andIk+1 of ranksk andk+1 are considered. By construction eachIk+1

belongs to only oneIk.
Let us consider an intersection of rankn1

(21) In1 =
m

\

l=1

T∆
l
i1...in1

and a respective Intersection of rank one

(22) In1 ⊂ I1 =
m

\

l=1

T∆
l
1,

where

(23) T∆
l
i1...in1

⊂ T∆
l
1

Let us define aunion of rank n1 corresponding to the intersection 21 of rankn1 by

(24) U n1 =
m

[

l=1

T∆
l
i1...in1

.

As at stepn1 we pull back partitions of rank 1, we get that pull-backs are well defined if theunion
of rank n1 lies inside the respectiveintersection of rank1

(25) U n1 ⊂ I1

We delete IntersectionsIn1 that do not satisfy 25.
Let us estimate the measure of the deleted parameter intervals. By construction 25 is not satisfied

if and only if one of the intervalsT∆
l
i1...in1

contains a boundary point of someT∆
k
1 with k 6= l .

Let N1 be the number of intervalsT∆ of rank 1, and letsn1 be the maximum of the lengths of the
intervalsT∆

l
i1...in1

of rankn1. Then the total measure of the deleted intervalsIn1 does not exceed

(26) 2N1sn1

Notice thatsn decreases exponentially:

(27) sn < CR−n
0 .

Therefore the measure of the deleted intervals also decreases exponentially.
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2.4. At the general step of induction we useuniform scalingin the phase space, see [6]. By
construction the domains of good branches at stepn of the induction satisfy

(28) c1bn
< |∆ fn| < c2an

,

where
0 < b < a < 1.

Estimates of speeds imply that parameter intervals corresponding to the movement ofWl (t) through
∆ fn satisfy similar inequalities with another choice of constants:

(29) c′1bn
< |T∆n| < c′2an

.

By construction at stepn we are using pull-backs of partitionsξ[nx0] of step[nx0] wherex0 > 0 is a
small constant.

In order to get well-defined partitions we need eachn-union to be a subset of the respective
[nx0]-intersection

(30) U n ⊂ I [nx0]

We deleteIn which do not satisfy 30. The measure of the deleted intervalsis less than

(31) Clb−[nx0]an
,

which is exponentially small for largen if

(32)
a

bx0
< 1.

If several first steps of induction are adjusted, then one canmake the constantsa andb arbitrary close,
see [6]. At the same time one can choosex0 arbitrary small. So it is easy to satisfy 32, although one
should notice that at these special first steps of induction,when we pull the same partitionξ0 back
several times, we can lose a lot of measure in the parameter space.

2.5. Finally we discuss the problem of parameter choice in the Markov construction for Henon-like
maps, see [8].

In the two-dimensional case the role of critical branches isplayed by thin horseshoes. At stepn
of inductive construction their number is less than 2y0n, wherey0 > 0 is a small constant.

So 31 is replaced by

(33) C2y0nb−[nx0]an
.

Using a preliminary construction one can make the expansionR0 sufficiently large. That makes the
constanta small and compensates the the factor 2y0n. Then as above, ifx0 is sufficiently small, the
estimates 33 decrease exponentially for largen .
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