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Abstract

In this paper we consider a simultaneous system of spatially interrelated cross sectional equa-
tions. Our speci.cation incorporates spatial lags in the endogenous and exogenous variables. In
modelling the disturbance process we allow for both spatial correlation as well as correlation
across equations. The data set is taken to be a single cross section of observations. The model
may be viewed as an extension of the widely used single equation Cli3-Ord model. We sug-
gest computationally simple limited and full information instrumental variable estimators for the
parameters of the system and give formal large sample results.
c© 2003 Elsevier B.V. All rights reserved.

JEL classi(cation: C31

Keywords: Spatial dependence; Simultaneous equation system; Two-stage least squares; Three-stage least
squares; Generalized moments estimation

1. Introduction

Spatial models have attracted considerable interest in the recent economics and
econometrics literature, both on an empirical and theoretical level. 1 One of the most
widely used spatial models is the single equation model introduced by Cli3 and Ord
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1 Recent empirical and theoretical papers include De Long and Summers (1991), Case (1991), Krugman
(1991, 1995), Case et al. (1993), Holtz-Eakin (1994), Shroder (1995), Anselin et al. (1996), Audretsch and
Feldmann (1996), Ausubel et al. (1997), Driscoll and Kraay (1998), Kelejian and Robinson (1997), Kelejian
and Prucha (1998, 1999, 2001a,b, 2002), Pinkse and Slade (1998), Buettner (1999), Conley (1999), Pinkse
(1999), Lee (1999a, b, 2001a, b, 2002), Rey and Boarnet (1999), Bell and Bockstael (2000), Baltagi et al.
(2000), Baltagi and Li (2001a, b), and Giacomini and Granger (2001). For reviews and general discussions
relating to spatial models see, e.g., Cli3 and Ord (1973, 1981), Anselin (1988), and Cressie (1993).
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(1973, 1981). This model is a variant of the model introduced by Whittle (1954) and
is sometimes referred to as a spatial autoregressive model; see, e.g., Anselin (1988).
In this paper we consider an extension of the single equation Cli3 and Ord model.
In particular, we consider the estimation of a simultaneous system of cross sectional
equations with spatial dependencies. The data set is assumed to be a single cross sec-
tion of observations on the variables involved. 2 The spatial dependencies arise for two
reasons. First, the error terms are assumed to be spatially correlated, as well as corre-
lated across equations. Second, the value of the dependent variable in a given equation
corresponding to a given cross sectional observation is assumed, in part, to depend
upon a weighted sum of that dependent variable over “neighboring” cross sectional
units. Such weighted sums over neighboring units are often described in the literature
as spatial lags of the variables involved. Our equations may also contain spatial lags
of the exogenous variables.
We introduce both limited and full information estimators for the model parameters

that are in the spirit of the classical two and three stage least squares estimators. We
give formal large sample results relating to our suggested estimators. Speci.cally, we
demonstrate that our estimators are consistent and asymptotically normal. Our results
therefore generalize those given by Kelejian and Prucha (1998) in a single equation
framework. One step in our procedure is based on a generalized moments (GM) es-
timator of spatial autoregressive coeIcients. The GM estimator was introduced by
Kelejian and Prucha (1999).
It will become evident that our systems estimators are computationally simple even

in large samples. One reason for this is that our procedure is based in part on our
GM procedure rather than on a quasi maximum likelihood procedure, which is often
considered in a single equation framework, e.g., see Anselin (1988), Case (1991),
and Case et al. (1993). Even in a single equation framework, such quasi maximum
likelihood procedures are often infeasible in moderate to large size samples unless the
weights matrix is of a special form—see, e.g., the discussion and references in Kelejian
and Prucha (1999).
The model is speci.ed and interpreted in Section 2. The limited and full information

estimators are de.ned, and their asymptotic properties are given in Section 3. Con-
clusions and suggestions for further work are given in Section 4. Proofs and other
technical details are relegated to Appendix A.

2. Model

In this section we specify the model along with a discussion of the maintained
assumptions. It proves helpful to introduce the following notational conventions and
de.nitions: Let (An)n∈N be some sequence of np× np matrices where p¿ 1 is some

2 The force of our modelling and suggested estimation procedure is that it only requires a single cross
section of data. Evident variations of our procedure could also be considered if panel data were available
and the number of time periods, say T , were small relative to the number of cross sectional units, say n.
In the panel data case, if T were large relative to n, a wide variety of models and estimation procedures
would be available. For example, see Prucha (1985) and Baltagi (1995).
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.xed positive integer. Then we denote its (i; j)th element as aij;n. If An is a square
nonsingular matrix, then A−1

n denotes its inverse and aijn denotes its (i; j)th element; if
An is singular, A−1

n denotes the generalized inverse. If An is some vector or matrix, then
‖An‖ = [tr(A′

nAn)]1=2 where tr(:) denotes the trace. Furthermore we say that the row
and column sums of the sequence of matrices An are bounded uniformly in absolute
value if there exits a positive .nite constant cA, independent of n, such that

max
16i6np

np∑
j=1

|aij;n|6 cA and max
16j6np

np∑
i=1

|aij;n|6 cA

for all n ∈ N. We note for future reference that if the row and column sums of An

and Bn are bounded uniformly in absolute value, then (assuming conformability for
multiplication) so are the row and column sums of Cn = AnBn; see Remark A.1 in
Appendix A.

2.1. Model speci(cation

The following spatial simultaneous equation model can be viewed as an extension
of the widely used spatial single equation model introduced by Cli3 and Ord (1973,
1981). In particular, we consider the following system of spatially interrelated cross
sectional equations corresponding to n cross sectional units:

Yn = YnB+ XnC+ NYn�+Un; (1)

with

Yn = (y1; n; : : : ; ym;n); Xn = (x1; n; : : : ; xk;n); Un = (u1; n; : : : ; um;n);

NYn = (Ny1; n; : : : ; Nym;n); Nyj;n =Wnyj;n; j = 1; : : : ; m;

where yj;n is the n×1 vector of cross sectional observations on the dependent variable
in the jth equation, xl;n is the n× 1 vector of cross sectional observations on the lth
exogenous variable, uj;n is the n × 1 disturbance vector in the jth equation, Wn is
an n × n weights matrix of known constants, 3 and B, C, and � are correspondingly
de.ned parameter matrices of dimension m×m, k×m and m×m, respectively. In this
model spatial spillovers in the endogenous variables are modelled via Nyj;n; j=1; : : : ; m.
The vector Nyj;n is typically referred to as the spatial lag of yj;n. The ith element of
Nyj;n is given by

Ny ij;n =
n∑

r=1

wir;nyrj;n:

The weights wir;n are usually speci.ed to be nonzero if cross sectional unit i relates
to unit r in a meaningful way. In such cases, units i and r are said to be neighbors.

3 We are assuming that the system only involves one weights matrix. This assumption is made for ease of
presentation, but also seems to be the typical speci.cation in applied work. Our results can be generalized
in a straight forward way to the case in which each spatially lagged variable depends upon a weights matrix
which is unique to that variable.
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Usually neighboring units are taken to be those units that are close in some dimension,
such as geographic or technological. We note that � is not assumed to be diagonal,
and hence the speci.cation allows for the jth endogenous variable to depend on its
own spatial lag as well as the spatial lags of other endogenous variables.
In addition to allowing for general spatial lags in the endogenous variables we also

allow for spatial autocorrelation in the disturbances. In particular we assume that the
disturbances are generated by the following spatially autoregressive process:

Un = NUnR + En; (2)

with

En = (�1; n; : : : ; �m;n); R = diagmj=1(�j);

NUn = (Nu1; n; : : : ; Num;n); Nuj;n =Wnuj;n; j = 1; : : : ; m;

where �j;n denotes the n × 1 vector of innovations and �j denotes the spatial autore-
gressive parameter in the jth equation. Analogous to the terminology used above, the
vector Nuj;n is typically referred to as the spatial lag of uj;n. Since R is taken to be
diagonal the speci.cation relates the disturbance vector in the jth equation only to its
own spatial lag. 4 However, as will become evident below, the disturbances will be
spatially correlated across units and across equations via our assumptions concerning
the innovations �j;n; j = 1; : : : ; m.
For purposes of generality we have allowed for the elements of the weights matrices,

the exogenous regressor matrices, the innovation vectors, and therefore, the endogenous
variable matrices to depend on the sample size n, i.e., for the variables to form trian-
gular arrays. We emphasize that by allowing the elements of the exogenous regressor
matrices to depend on the sample size we implicitly also allow for spatial lags among
the exogenous regressors, in addition to spatial lags in the endogenous variables and
disturbances. At this point we also note that our analysis is conditionalized on the
realized values of the exogenous variables and so we will henceforth view the matrix
Xn as a matrix of constants.
We now express the model in (1) and (2) in a form that will more clearly reveal

its solution for the endogenous variables. Let

yn = vec(Yn); Nyn = vec( NYn); xn = vec(Xn);

un = vec(Un); Nun = vec( NUn); �n = vec(En):

Noting that Nyn = (Im ⊗ Wn)yn and, if A1 and A2 are conformable matrices, that
vec(A1A2) = (A′

2 ⊗ I)vec(A1), it follows from (1) and (2) that

yn = B∗
nyn + C

∗
nxn + un;

un = R∗
nun + �n; (3)

4 Allowing for R to be nondiagonal would further complicate the analysis, and is beyond the scope of
the present paper.
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where B∗
n=[(B′⊗In)+(�′⊗Wn)]; C∗

n=(C′⊗In), and R∗
n=(R⊗Wn)=diagmj=1(�jWn),

since R is a diagonal matrix.
Finally, we impose exclusion restrictions on the system in (1). Speci.cally, let �j,

�j, and �j be the vectors of nonzero elements of the jth columns of, respectively, B, C,
and �. Similarly, let Yj;n, Xj;n, and NYj;n be the corresponding matrices of observations
on the endogenous variables, exogenous variables, and spatially lagged endogenous
variables that appear in the jth equation. Then, the system in (1) and (2) can be
expressed as (j = 1; : : : ; m)

yj;n = Zj;n�j + uj;n;

uj;n = �jWnuj;n + �j;n; (4)

where Zj;n = (Yj;n;Xj;n; NYj;n) and �j = (�′j; �
′
j; �

′
j)

′.
We make the following assumptions.

Assumption 1. The diagonal elements of the spatial weights matrices Wn are zero.

Assumption 2. (a) The matrices Imn − B∗
n are nonsingular.

(b) The matrices In − �jWn are nonsingular with |�j|¡ 1; j = 1; : : : ; m.

Assumption 3. The row and column sums of the matrices Wn, (Imn − B∗
n)

−1, and
(In − �jWn)−1; j = 1; : : : ; m, are bounded uniformly in absolute value.

Assumption 4. The matrix of exogenous (nonstochastic) regressors Xn has full column
rank (for n suIciently large). In addition, the elements of Xn are uniformly bounded
in absolute value.

The next assumption de.nes the basic properties of the innovations process. In the
following let Vn = [v1; n; : : : ; vm;n] be an n × m matrix of basic innovations and let
vn = vec(Vn).

Assumption 5. The innovations �n are generated as follows:

�n = ((′
∗ ⊗ In)vn

where (∗ is a nonsingular m×m matrix and the random variables {vij;n: i=1; : : : ; n; j=
1; : : : ; m} are, for each n, identically and independently distributed with zero mean,
variance one and .nite fourth moments, and where the distribution does not depend on
n. Furthermore, let ( = (′

∗(∗, then the diagonal elements of ( are bounded by some
constant b¡∞.

Let �n(i) and vn(i) denote the ith rows of, respectively, En and Vn. Then observ-
ing that En = Vn(∗, and hence �n(i) = vn(i)(∗, it follows from Assumption 5 that
the innovation vectors {�n(i): 16 i6 n; } are distributed identically and independently
with zero mean and variance covariance matrix (. Thus the innovations entering the
disturbance process are spatially uncorrelated. However, analogous to the classical si-
multaneous equation model, the speci.cation allows for the innovations corresponding
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to the same cross sectional unit to be correlated across equations. This is also seen
observing that E�n = 0 and E�n�′n = (⊗ In.

Our suggested estimation procedures are instrumental variable techniques. Let Hn

denote the n × p matrix of instruments utilized by these procedures. As discussed
below, in practice Hn will frequently be chosen as a subset of the linearly independent
columns of (Xn;WnXn; : : : ;Ws

nXn), where s¿ 1 is a .nite integer which would typically
be less than or equal to two. We maintain the following assumptions concerning the
instruments:

Assumption 6. The (nonstochastic) instrument matrix Hn contains at least the linearly
independent columns of (Xn;WnXn). The elements of Hn are uniformly bounded in
absolute value. Furthermore Hn has the following properties:

(a) QHH = limn→∞ n−1H′
nHn is a .nite nonsingular matrix;

(b) QHZj = limn→∞ n−1H′
nE(Zj;n) is a .nite matrix which has full column rank, j =

1; : : : ; m;
(c) QHWZj = limn→∞ n−1H′

nWnE(Zj;n) is a .nite matrix which has full column rank,
j = 1; : : : ; m;

(d) QHZj − �jQHWZj has full column rank, j = 1; : : : ; m;
(e) ,j=limn→∞ n−1H′

n(In−�jWn)−1(In−�jW′
n)

−1Hn is a .nite nonsingular matrix,
j = 1; : : : ; m.

Our next assumption ensures that the autoregressive parameters �1; : : : ; �m are “iden-
ti.ably unique”—see, e.g., Kelejian and Prucha (1999).

Assumption 7. For j = 1; : : : ; m, let

.j;n = n−1E




2u′j;n Nuj;n −Nu′j;n Nuj;n n

2 NNu′j;n Nuj;n − NNu′j;n NNuj;n tr(W′
nWn)

(u′j;n NNuj;n + Nu′j;n Nuj;n) −Nu′j;n NNuj;n 0



; (5)

where Nuj;n =Wnuj;n and NNuj;n =Wn Nuj;n =W2
nuj;n. Let "j;n be the smallest eigenvalue of

.′
j;n.j;n. Then we assume that "j;n¿ "¿ 0, i.e., the smallest eigenvalues are bounded

away from zero.

For future reference, we de.ne N�j;n and NN�j;n in a similar fashion, namely N�j;n=Wn�j;n
and NN�j;n =W2

n�j;n.

2.2. Model implications

Assumption 1 is a normalization of the model; it also implies that no unit is viewed
as its own neighbor. Assumption 2 implies that the system in (1) and (2), or in (3), is
complete in that it de.nes the endogenous variables in terms of the exogenous variables



H.H. Kelejian, I.R. Prucha / Journal of Econometrics 118 (2004) 27–50 33

and innovations. In particular, since Imn−R∗
n =diagmj=1(In−�jWn) it follows from (3)

that

yn = (Imn − B∗
n)

−1[C∗
nxn + un];

un = (Imn − R∗
n)

−1�n: (6)

Since E�n=0 by Assumption 5, we have Eun=0 and Eyn=(Imn−B∗
n)

−1C∗
nxn. Recalling

that Assumption 5 implies E�n�′n=(⊗In we obtain from (6) the following expressions
for the variance covariance matrix of un, say /u;n, and of yn, say /y;n:

/u;n = (Imn − R∗
n)

−1((⊗ In)(Imn − R∗
n
′)−1;

/y;n = (Imn − B∗
n)

−1/u;n(Imn − B∗
n
′)−1: (7)

The disturbances un and the endogenous variables yn are thus seen to be correlated both
spatially as well as across equations, and furthermore will generally be heteroskedastic.
Consider now Assumption 3 and its implications for /u;n and /y;n. Since the row

and column sums of products of matrices, whose row and column sums are bounded in
absolute value, have the same property, Assumption 3 implies that the row and column
sums of both /u;n and /y;n are bounded uniformly in absolute value. Therefore, this
assumption limits the degree of correlation between the elements of un and of yn. For
perspective, we note that in virtually all large sample analyses it is necessary to restrict
the degree of permissible correlation—see, e.g., Amemiya (1985, ch. 3,4) and PQotscher
and Prucha (1997, ch. 5,6).
Now consider Assumption 3 as it relates to the row and column sums of Wn. In prac-

tice, it is often assumed that each cross sectional unit has only a .nite, and typically,
a small number of neighbors and, in turn, it is only a neighbor to a .nite and typically
small number of other units. It is also often assumed that the rows of the weights
matrices are normalized to sum to unity—see, e.g., Case (1991) and Kelejian and
Robinson (1995). Under such assumptions the row and column sums of the weights
matrices would obviously be bounded in absolute value. In other cases the weights
matrices may not be sparse, but the weights are speci.ed to be proportional to the
inverse of a distance measure—see, e.g., Dubin (1988), and De Long and Summers
(1991). Again, under reasonable conditions the row and column sums of the weights
matrices would be bounded in absolute value, provided the weights decline suIciently
fast as the distances between units increases.
Assumption 4 and parts (a) and (b) of Assumption 6 are crucial in ensuring the

consistency of our initial two stage least squares estimator. Parts (c) and (d) of As-
sumption 6 are analogous in that they are crucial in ensuring the consistency of our
generalized two and three stage estimators, which are based on a Cochrane-Orcutt-type
transformation of the model. Part (e) of Assumption 6 is used in deriving the limit-
ing distribution of the initial two stage least squares estimator from the untransformed
model.
For a further interpretation we note that part (b) of Assumption 6 is a high level

condition used to ensure that the instruments Hn allow us to identify the regression
parameters �j in (4), j = 1; : : : ; m. In particular, consider the 2SLS estimator for the
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parameters in (4), and observe that this estimator is a generalized moments estimator
corresponding the moment conditions

E(H′
nuj;n) = 0:

Let uj;n(�j)=yj;n−Zj;n�j=uj;n+Zj;n(�j−�j). The condition that limn→∞ n−1H′
nE(Zj;n)

has full column rank, as maintained in part (b) of Assumption 6, implies that

lim
n→∞ n−1E[H′

nuj;n(�j)] =
[
lim
n→∞ n−1H′

nE(Zj;n)
]
(�j − �j)

is zero if and only if �j = �j. Thus the condition ensures that, at least asymptot-
ically, the instruments Hn identify the true parameter vector �j; j = 1; : : : ; m. We
note that a similar assumption was made in Kelejian and Prucha (1998), as well as
in Lee (2001b), who also provides a discussion of certain cases in which this as-
sumption is violated. 5 In terms of the objective function of the 2SLS estimator, i.e.,
uj;n(�j)′Hn(H′

nHn)−1H′
nuj;n(�j), parts (a) and (b) of Assumption 6 ensure that in the

limit the objective function is uniquely maximized at �j = �j; compare also Amemiya
(1985, p. 246). Parts (c) and (d) of Assumption 6 play an analogous role in the iden-
ti.cation of the model parameters after a Cochrane-Orcutt-type transformation of the
model.
The optimal instruments for Yn and NYn =WnYn are based on their (conditional)

means. It is not diIcult to see from (3) that if the largest eigenroot of Imn − B∗
n is

less than one in absolute value EYn =
∑∞

s=0 W
s
nXn0s, where 0s are matrices whose

elements are functions of the elements of B, C, and �. The instrumental variable
estimators considered below are obtained by instrumenting Yn and NYn in terms of
.tted values from regressions on Hn. Our recommendation for choosing Hn to be a
subset of the linearly independent columns of (Xn;WnXn; : : : ;Ws

nXn), s¿ 1, may hence
be viewed as being geared towards achieving a computationally simple approximation
to the optimal instruments. 6

As indicated earlier, Assumption 7 is essentially an identi.ability condition for the
autoregressive parameters �j. This will become clear from our results in the appendix.
It seems of interest to compare our model with the space-time simultaneous equation

model mentioned by Anselin (1988, p. 156). While a de.nite interpretation of the
model is diIcult because of typographical errors relating to the indices, and because
of a lack of formal speci.cations, it appears that his model can be viewed as a classical
simultaneous equation model. The model contains one equation for each cross sectional
unit, the variables of which are assumed to be observed over T periods. The dependent
variables of the model are simultaneously interrelated across units, and the number of
time periods T is assumed to be large relative to the number of cross sectional units
n. In contrast, our speci.cation considers a system of equations corresponding to each
cross sectional unit, the variables of which are observed for only one time period.
Our speci.cations allow for simultaneity between the di3erent variables corresponding

5 See also Kelejian and Prucha (2002) for another case in which part (b) of Assumption 6 is violated.
6 The basic computational operations needed to compute WnXn are of the order n2. We recommend to

compute, e.g., W2
nXn recursively by multiplying WnXn into Wn, which keeps the computational burden at

the order n2. This approach avoids the need to compute W2
n , which requires computational operations of the

order n3.
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to a particular unit as well as for simultaneity of these variables across units. As an
illustration, Anselin’s system could relate to time series observations on the demand for
police expenditures in each state, which is determined in part by the demand for police
expenditures in neighboring states. In contrast, our model could relate, in a given year,
to the demand for police expenditures, as well as that for education, roads, parks, etc.,
for each state. These variables would interact simultaneously within a state, as well as
between states.

3. Estimation

In the following we de.ne limited and full information instrumental variable esti-
mators for the parameters of the spatial simultaneous equation model speci.ed above,
and derive the limiting distribution of those estimators.

3.1. Limited information estimation: GS2SLS

In this section we introduce a generalized spatial two stage least squares procedure
(GS2SLS) for the estimation of the parameters in the jth equation. This procedure
generalizes the estimator considered in Kelejian and Prucha (1998) for a single equation
spatially autoregressive model. The proposed GS2SLS estimation procedure consists of
three steps. In the .rst step we estimate the model parameter vector �j in (4) by two
stage least squares (2SLS) using Hn as the instrument matrix. Based on the 2SLS
estimates of �j we compute estimates of the disturbances uj;n. In the second step
we use those estimated disturbances to estimate the autoregressive parameter �j using
the generalized moments procedure introduced in Kelejian and Prucha (1999). In the
third step the estimate for �j is used to account for the spatial autocorrelation in the
disturbances uj;n using a Cochran-Orcutt-type transformation. The GS2SLS estimator
for �j is obtained by estimating the transformed model by 2SLS using Hn as the
instrument matrix.

3.1.1. Initial 2SLS estimation
Consider the system in (4) and let Z̃j;n =PHZj;n, where PH =Hn(H′

nHn)−1H′
n and

Hn is de.ned in reference to Assumption 6. Given our assumptions concerning Hn,
we have Z̃j;n = (Ỹj;n;Xj;n; ÑYj;n), where Ỹj;n = PHYj;n, and ÑYj;n = PH NYj;n. The 2SLS
estimator of �j is then given by

�̃j;n = (Z̃′
j;nZj;n)−1Z̃′

j;nyj;n: (8)

The 2SLS residuals are given by

ũj;n = yj;n − Zj;n�̃j;n: (9)

In the following let uij;n and ũ ij;n denote the ith element of uj;n and ũj;n, and let
zi:j;n denote the rth row of Zj;n. The proof of the following theorem is given in the
appendix.
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Theorem 1. Suppose Assumptions 1–6 hold. Then �̃j;n = �j + Op(n−1=2), and so �̃j;n
is a n1=2-consistent estimator for �j. Furthermore

|ũ ij;n − uij;n|6 ‖zi:j;n‖ ‖�j − �̃j;n‖; (10)

with n−1 ∑n
i=1 ‖zi:j;n‖2+% =Op(1) for some %¿ 0.

The theorem shows that the 2SLS residuals satisfy Assumption 4 maintained in
Kelejian and Prucha (1999) in connection with the generalized moments estimator for
the spatial autoregressive parameter of a disturbance process. This observation will be
utilized in demonstrating the consistency of the generalized moments estimator for �j
discussed in the next step.

3.1.2. Estimation of the spatial autoregressive parameter
As a second step we apply the generalized moments procedure introduced in Kelejian

and Prucha (1999) to estimate the spatial autoregressive parameter of the disturbance
process of each equation. To motivate the procedure observe that the relationship in (2)
implies that uj;n − �j Nuj;n = �j;n. Premultiplication by Wn then yields Nuj;n − �j NNuj;n = N�j;n.
These two relationships imply (j = 1; : : : ; m)

n−1�′j;n�j;n = n−1u′j;nuj;n + �2j n
−1 Nu′j;n Nuj;n − 2�jn−1u′j;n Nuj;n;

n−1 N�′j;n N�j;n = n−1 Nu′j;n Nuj;n + �2j n
−1 NNu′j;n NNuj;n − 2�jn−1 NNu′j;n Nuj;n;

n−1�′j;n N�j;n = n−1u′j;n Nuj;n + �2j n
−1 Nu′j;n NNuj;n − �jn−1[u′j;n NNuj;n + Nu′j;n Nuj;n]: (11)

Assumption 5 implies that E(n−1�′j;n�j;n)=&jj, where &jj is the jth diagonal element of
(. Noting that N�j;n=Wn�j;n, it follows from Assumptions 1 and 5 that E(n−1 N�′j;n N�j;n)=
&jjn−1tr(W′

nWn), and E(n−1�′j;n N�j;n) = &jjn−1 tr(Wn) = 0. Let 'j = (�j; �2j ; &jj)
′, and

�j;n = n−1[E(u′j;nuj;n), E(Nu
′
j;n Nuj;n), E(u

′
j;n Nuj;n)]

′. Then, if expectations are taken across
(11) the resulting system can be expressed as (j = 1; : : : ; m)

�j;n = .j;n'j; (12)

where (j;n is de.ned in (5).
Clearly if (j;n and �j;n were known, �j and &jj would be perfectly determined in

terms of the vector 'j=(−1
j;n �j;n. Following the general approach of Kelejian and Prucha

(1999) we de.ne the following estimators for (j;n and �j;n:

Gj;n = n−1




2ũ′j;n Ñuj;n − Ñu′j;n Ñuj;n n

2ÑNu′j;n Ñuj;n − ÑNu′j;n ÑNuj;n tr(W′
nWn)

(ũ′j;n ÑNuj;n + Ñu′j;n Ñuj;n) − Ñu′j;n ÑNuj;n 0


 ; (13)

gj;n = n−1[ũ′j;nũj;n; Ñu′j;n Ñuj;n; ũ
′
j;n Ñuj;n]

′;
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where ũj;n denotes the 2SLS residuals de.ned in (9), Ñuj;n=Wnũj;n, and ÑNuj;n=Wn Ñuj;n=
W2

nũj;n. Then, an empirical form of (12) is

gj;n =Gj;n'j + �j;n; (14)

where �j;n can be viewed as a vector of regression residuals. Our generalized moments
estimator of (�j; &jj), say (�̃j; &̃jj), is de.ned as the nonlinear least squares estimator
based on (14). That is 7

(�̃j;n; &̃jj;n) = argmin
�j∈[−a;a];&jj∈[0;b]

[gj;n −Gj;n'j]′[gj;n −Gj;n'j]; (15)

where a¿ 1 is a pre-selected constant. The next theorem establishes the consistency
of (�̃j;n; &̃jj;n).

Theorem 2. Suppose Assumptions 1–5 and 7 hold. Then (�̃j;n; &̃jj;n)− (�j; &jj)
P→0 as

n → ∞; j = 1; : : : ; m.

The above theorem establishes the consistency of the generalized moments estimator
�̃j;n. Using Monte Carlo simulations Kelejian and Prucha (1999) and Das et al. (2003)
compare the small sample distribution of �̃j;n with that of the maximum likelihood
estimator within the context of a single equation model. They found that the two
estimators are very similar in small samples. Although such a study has not been
performed for the model at hand, we conjecture that a similar .nding also holds within
the present context.
It is important to note that the optimization space for �j described in (15) is a

compact set containing the actual parameter space. The optimization space does not
exclude values of �j for which In − �jWn is singular.

3.1.3. Generalized spatial 2SLS estimation
Let * be a scalar and de.ne y∗j;n(*) = yj;n − *Wnyj;n and Z∗

j;n(*) =Zj;n − *WnZj;n.
Given this notation, we see that applying a Cochrane-Orcutt-type transformation to (4)
yields (j = 1; : : : ; m):

y∗j;n(�j) = Z
∗
j;n(�j)�j + �j;n: (16)

Assume for a moment that �j is known. The generalized spatial two stage least squares
(GS2SLS) estimator for �j, say �̂j;n, is then de.ned as the 2SLS estimator based on
(16), i.e.,

�̂j;n = [Ẑ∗
j;n(�j)

′Z∗
j;n(�j)]

−1Ẑ∗
j;n(�j)

′y∗j;n(�j); (17)

7 Following Kelejian and Prucha (1999) we could also de.ne an estimator for �j and &jj based on the
ordinary least squares estimator for 'j from (14). We do not consider this estimator here since results given
in Kelejian and Prucha (1999) suggest it is less eIcient.
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where Ẑ∗
j;n(�j)=PHZ∗

j;n(�j) with PH =Hn(H′
nHn)−1H′

n. Our feasible generalized spa-

tial two stage least squares (FGS2SLS) estimator for �j, say �̂Fj;n, is now de.ned by
substituting the generalized moments estimator �̃j;n for �j in the above expression, i.e.,

�̂Fj;n = [Ẑ∗
j;n(�̃j;n)

′Z∗
j;n(�̃j;n)]

−1Ẑ∗
j;n(�̃j;n)

′y∗j;n(�̃j;n): (18)

We have the following theorem concerning the asymptotic distribution of �̂j;n and �̂Fj;n.

Theorem 3. Suppose Assumptions 1–7 hold. Then for j=1; : : : ; m we have n1=2(�̂Fj;n−
�̂j;n)

P→0 as n → ∞ and

n1=2(�̂Fj;n − �j)
D→N(0; -j) (19)

as n → ∞ where

-j = &jj
[
p lim

n→∞ n−1Ẑ∗
j;n(�̃j;n)

′Ẑ∗
j;n(�̃j;n)

]−1

= &jj
[
p lim

n→∞ n−1Ẑ∗
j;n(�j)

′Ẑ∗
j;n(�j)

]−1

= &jj[(QHZj − �jQHWZj)
′Q−1

HH (QHZj − �jQHWZj)]
−1: (20)

The theorem shows that the true and feasible GS2SLS estimators have the same
asymptotic distribution. The theorem also holds if �̃j;n is replaced by any other con-
sistent estimator for �j, and thus �j is seen to be a nuisance parameter. A consistent
estimator for -j can be found in an obvious way from the .rst line of (20) by replacing
&jj by &̃jj or any other consistent estimator for &jj; see Lemma 1 below.

3.2. Full information estimation: GS3SLS

The GS2SLS estimator takes into account potential spatial correlation, but is limited
in the information it utilizes in that it does not take into account potential cross equation
correlation in the innovation vectors �j. To utilize the full system information it is
helpful to stack the equations in (16) as

y∗n (�) = Z
∗
n(�)�+ �n; (21)

where

y∗n (�) = (y∗1; n(�1)
′; : : : ; y∗m;n(�m)

′)′;

Z∗
n(�) = diagmj=1(Z

∗
j;n(�j));

and �= (�1; : : : ; �m)′ and �= (�′1; : : : ; �
′
m)

′. Recall that E�n = 0 and E�n�′n = (⊗ In. If
� and ( were known, a natural systems instrumental variable estimator of � would be

U�n = [Ẑ∗
n(�)

′((−1 ⊗ In)(Z∗
n(�)]

−1Ẑ∗
n(�)

′((−1 ⊗ In)y∗n (�) (22)
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where Ẑ∗
n(�)=diagmj=1(Ẑ

∗
j;n(�j)), and as before Ẑ∗

j;n(�j)=PHZ∗
j;n(�j). Consistent with

our terminology for limited information estimators we refer to this estimator as the
generalized spatial three stage least squares (GS3SLS) estimator.
A feasible analog of U�n requires estimators for � and (. As our estimator for � we

take �̃n = (�̃1; n; : : : ; �̃m;n)′ where �̃j;n denotes the generalized moments estimator for �j
de.ned in the previous section. We now suggest a consistent estimator of (. In light of
(16) let �̃j;n = y∗j;n(�̃j;n)−Z∗

j;n(�̃j;n)�̂
F
j;n, and de.ne &̂jl;n = n−1�̃′j;n�̃l;n for j; l=1; : : : ; m.

Furthermore, let (̂n be the m×m matrix whose (j; l)th element is &̂jl;n. The following
lemma establishes that (̂n is a consistent estimator for (.

Lemma 1. Suppose Assumptions 1–7 hold. Then p limn→∞ (̂n = (.

Corresponding to the GS3SLS estimator U�n we now de.ne a feasible generalized
spatial three stage least squares (FGS3SLS) estimator as

U�Fn = [Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)(Z∗

n(�̃n)]
−1Ẑ∗

n(�̃n)
′((̂−1

n ⊗ In)y∗n (�̃n): (23)

The next theorem establishes the asymptotic distribution of U�n and U�Fn .

Theorem 4. Suppose Assumptions 1–7 hold. Then we have n1=2( U�Fn − U�n)
P→0 as n → ∞

and

n1=2( U�Fn − �) D→N(0; -) (24)

as n → ∞ where

-=
[
p lim

n→∞ n−1Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)Ẑ∗

n(�̃n)
]−1

=
[
p lim

n→∞ n−1Ẑ∗
n(�)

′((−1 ⊗ In)Ẑ∗
n(�)

]−1

= [diagmj=1(QHZj − �jQHWZj)
′((−1 ⊗Q−1

HH )diag
m
l=1(QHZl − �lQHWZl)]

−1: (25)

The theorem shows that the true and feasible GS3SLS estimators have the same
asymptotic distribution. We note that the theorem also holds if �̃n and (̂n are replaced
by any other consistent estimators, and thus � and V are nuisance parameters. A com-
parison of (20) and (25) shows, using arguments along the lines of, e.g., Schmidt
(1976, pp. 209–211), that the GS3SLS estimator U�Fn is eIcient relative to GS2SLS es-
timator �̂Fn , as is expected. The theorem also suggests that the small sample distribution
of U�Fn can be approximated as follows

U�Fn
:∼N(�; [Ẑ∗

n(�̃n)
′((̂−1

n ⊗ In)Ẑ∗
n(�̃n)]

−1):

Suppose we are interested in testing the hypothesis H0: h(�) = 0 versus H1: h(�) �= 0,
where h is some (possibly vector valued) di3erentiable function. Then the theorem
can also be used to construct, in the usual way, Wald tests of that hypothesis. In
particular, we can test in this way for the presence of spatial lags in the endogenous
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variables and/or exogenous variables. Kelejian and Prucha (2001a) give general results
concerning the distribution of the Moran I test statistic. Those results can be used to
test the hypothesis that the regression disturbances are not spatially correlated.

4. Conclusion

This paper develops estimation theory for a simultaneous system of spatially inter-
related cross sectional equations. The model may be viewed as an extension of the
widely used single equation model of Cli3 and Ord (1973, 1981). We introduce both
a limited information estimator, termed the FGS2SLS estimator, and a full informa-
tion estimator, termed the FGS3SLS estimator, and rigorously derive their asymptotic
properties. These estimators are based on an approximation of the optimal instruments,
and as a result these estimators are computationally simple even in large samples. In
future research it should be of interest to explore the small sample properties of these
estimators and compare them to those of the maximum likelihood estimator. Compar-
isons of this sort, within the context of a single equation spatial autoregressive model,
have been considered by Das et al. (2003). They found that the maximum likelihood
estimator and the FGS2SLS estimator exhibited very similar small sample properties,
provided at least two spatial lags of the exogenous variables were included among the
instruments. We conjecture that these .nding will extend to the systems case. Das et al.
(2003) also found minor di3erences in the small sample eIciencies of the maximum
likelihood and generalized moments estimators of the spatial autoregressive coeIcient
in the disturbance process. Similar results are also reported in Kelejian and Prucha
(1999).
In future research it should be of interest to extend the analysis of this paper to

instrumental variable estimators that are based on asymptotically optimal instruments
along the lines of Lee (1999a) and Kelejian and Prucha (2001b), who considered such
optimal instruments in the context of a single equation spatial autoregressive model.
In future research it would also be of interest to derive the limiting distribution of the
maximum likelihood estimator in a systems framework under a reasonable set of low
level assumptions. Another avenue of suggested research relates to the development
of further tests of hypotheses in a spatial systems framework based on the Lagrange
Multiplier and Likelihood Ratio testing principles. Such a development could in part
expand on results by Baltagi et al. (2000) and Baltagi and Li (2001b). Also, the
central limit theorem for quadratic forms given in Kelejian and Prucha (2001a) should
be helpful towards establishing the asymptotic distribution of those tests. Finally, it
should be of interest to develop necessary conditions in the form of counting rules
for the identi.cation of the model parameters of systems such as (1). We conjecture
that, given the spatial weights satisfy appropriate conditions, for the purpose of these
counting rules the spatially lagged dependent variables can be treated as if they are
predetermined, since their conditional means will in general di3er from the exogenous
variables appearing in the original system. For an analogous discussion of counting
rules within the framework of a simultaneous equation system that is nonlinear in
variables see, e.g., Kelejian and Oates (1981, pp. 288–299).
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Appendix A.

In this appendix we will repeatedly make use of the following observations.

Remark A.1. Let An and Bn be np×np matrices (p¿ 1) whose row and column sums
are bounded uniformly in absolute value by .nite constants cA and cB, let Sn be some
np× s matrix whose elements are bounded uniformly in absolute value by some .nite
constant cS , and let 2n and "n be np×1 vectors of uncorrelated random variables with
zero mean and .nite variances &22 and &2", i.e., 2n ∼ (0; &22Inp) and "n ∼ (0; &2"Inp).
Then:

(i) The row and column sums of Cn=AnBn are bounded uniformly in absolute value
by cAcB.

(ii) The elements of AnSn are bounded uniformly in absolute value by the constant
cAcS .

(iii) The elements of n−1S′nSn are O(1), the elements of n−1=2S′n2n are Op(1), and
n−12′nAn"n is Op(1).

The above observations can be readily established: For part (i) see, e.g., Kelejian and
Prucha (1999, p. 526). For the last observation in part (iii) note that E|n−12′nAn"n|6
n−1 ∑

i

∑
j |aij;n|E[|2i;n‖"j;n|]6 &2&"n−1 ∑

i

∑
j |aij;n|6 &2&"cA ¡∞. Also note that

the statement allows for the case where 2n = "n.

Lemma A.1. Given Assumptions 1–5 hold, then for j = 1; : : : ; m:

p lim
n→∞ n−1H′

nZj;n = lim
n→∞ n−1H′

nE(Zj;n) =QHZj ; (A.1)

p lim
n→∞ n−1H′

nWnZj;n = lim
n→∞ n−1H′

nWnE(Zj;n) =QHWZj : (A.2)

Proof. Recall that Zj;n=(Yj;n;Xj;n; NYj;n) and that Xj;n is nonstochastic. Hence to prove
(A.1) it suIces to show that

p lim
n→∞ n−1H′

nYn = lim
n→∞ n−1H′

nE(Yn); (A.3)

p lim
n→∞ n−1H′

n
NYn = lim

n→∞ n−1H′
nE( NYn): (A.4)
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In light of (6) and Assumption 5 observe that yn = Eyn + Anvn with An = (Imn −
B∗
n)

−1(Imn − R∗
n)

−1((′
∗ ⊗ In). Thus

n−1vec(H′
nYn) = n−1(Im ⊗H′

n)yn

= n−1(Im ⊗H′
n)Eyn + n−1(Im ⊗H′

n)Anvn

= n−1vec(H′
nEYn) + n−1(Im ⊗H′

n)Anvn:

In light of Remark A.1 the elements of (Im⊗H′
n)An are bounded uniformly in absolute

value. Since vn is, by Assumption 5, a vector of i.i.d. random variables with zero mean
and variance one it follows from Remark A.1 that n−1(Im ⊗H′

n)Anvn = op(1), which
completes the demonstration of (A.3). The demonstration of (A.4) is similar. Analogous
arguments can be used to prove (A.2).

Proof of Theorem 1. Recall from (8) that �̃j;n = (Z̃′
j;nZj;n)−1Z̃′

j;nyj;n, where Z̃j;n =
PHZj;n and PH =Hn(H′

nHn)−1H′
n. In light of (4) it is readily seen that

n1=2(�̃j;n − �j) = [(n−1Z′
j;nHn)(n−1H′

nHn)−1(n−1H′
nZj;n)]−1

(n−1Z′
j;nHn)(n−1H′

nHn)−1n−1=2F ′
j;n�j;n:

where F ′
j;n =H

′
n(In − �jWn)−1. By Lemma A.1 and Assumption 6 p lim n−1H′

nZj;n =
QHZj , which is .nite and has full column rank, and p lim n−1H′

nHn = QHH , which
is .nite and nonsingular. By Assumption 5 the elements of �j;n are i.i.d. with .nite
variance &jj. Observe further that in light of Remark A.1 and Assumptions 3 and 6,
the elements of Fj;n are bounded in absolute value and 3j = limn→∞ n−1F ′

j;nFj;n is
.nite and nonsingular. Given Theorem A in Kelejian and Prucha (1999) it follows that

n−1=2F ′
j;n�j;n

d→N(0; &jj3j). As a consequence we have n1=2(�̃j;n − �j)
d→N(0; 4j) with

4j = [Q′
HZjQ

−1
HHQHZj ]

−1Q′
HZjQ

−1
HH3jQ−1

HHQHZj [Q
′
HZjQ

−1
HHQHZj ]

−1:

Thus n1=2(�̃j;n−�j)=Op(1), or equivalently �̃j;n=�j+Op(n−1=2), which completes the
proof of the .rst part of the theorem.
We next prove the second part of the theorem. Clearly |ũ ij;n − uij;n|6 ‖zi:j;n‖ ‖�j −

�̃j;n‖ in light of (4) and (9), and since the norm ‖:‖ is submultiplicative. A suIcient
condition for n−1 ∑n

i=1 ‖zi:j;n‖2+% = Op(1), %¿ 0, is that the (2 + %)th absolute mo-
ment of the elements of zi:j;n are uniformly bounded. In the following we demonstrate
that this is indeed the case for, say, % = 1. The vector zi:j;n may contain exogenous,
endogenous, and spatially lagged endogenous variables, which will be considered in
turn. By Assumption 4 the exogenous variables are bounded uniformly in absolute
value, and thus so are their third moments. In light of (3) we have

yn = dy +Dyvn; Nyn = d Ny +D Nyvn; (A.5)
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where

dy = (Imn − B∗
n)

−1C∗
nxn; d Ny = (Im ⊗Wn)dy;

Dy = (Imn − B∗
n)

−1(Imn − R∗
n)

−1((′
∗ ⊗ In); D Ny = (Im ⊗Wn)Dy: (A.6)

Given Assumptions 3 and 4 it follows immediately from Remark A.1 that the elements
of dy and d Ny are bounded uniformly in absolute value, and that the row and column
sums of Dy and D Ny are bounded uniformly in absolute value. Assumption 5 implies that
the elements of vn are i.i.d. with .nite 4th moments. It is hence an immediately con-
sequence of Lemma A.2 below that E|yij;n|36 const ¡∞ and E| Ny ij;n|36 const ¡∞,
where the constants do not depend on any of the indices.

Lemma A.2. Let "n=("1; n; : : : ; "np;n)′ be a np×1 random vector (p¿ 1), where, for
each n, the elements are identically and independently distributed with (nite fourth
moments. Let dn=(d1; n; : : : ; dnp;n)′ be some nonstochastic np×1 vector whose elements
are uniformly bounded in absolute value, and let Dn=(dij;n) be a nonstochastic np×np
matrix whose row and column sums are uniformly bounded in absolute value by some
((nite) constant cd. De(ne

2n = (21; n; : : : ; 2np;n)′ = dn +Dn"n;

then E|2i;n|36 c¡∞, where c is a (nite constant that does not depend on i and n.

Proof. Clearly 2i;n = di;n + fi;n where fi;n =
∑

i dij;n"j;n. By Minkovski’s inequality
[E|2i;n|3]1=36 [|di;n|3]1=3 +[E|fi;n|3]1=3. Since the di;n’s are uniformly bounded in abso-
lute value it suIces to show that moments E|fi;n|3 are uniformly bounded. By assump-
tion the "i;n’s are identically distributed with .nite fourth moments. Hence there exists
some .nite constant c" such that for all indices j; k; l and all n¿ 1: E|"j;n"k;n"l;n|6 c".
Applying the triangle inequality yields

E|fi;n|36
n∑

j=1

n∑
k=1

n∑
l=1

|dij;n‖dik;n‖dil;n|E|"j;n"k;n"l;n|

6 c"
n∑

j=1

n∑
k=1

n∑
l=1

|dij;n‖dik;n‖dil;n|6 c3dc";

observing
∑n

j=1 |dij;n|6 cd, which completes the proof.

Proof of Theorem 2. Recall from (4) that the disturbance process for the jth equation
is de.ned as uj;n = �jWnuj;n + �j;n. To prove the theorem we verify that all of the
conditions assumed by Kelejian and Prucha (1999), i.e., their Assumptions 1–5, are
satis.ed here—with �j, uj;n, �j;n and Wn corresponding to �, un, 7n and Mn in the
earlier paper. Assumptions 1–3 and 5 in Kelejian and Prucha (1999) are readily seen
to hold by comparing them with Assumptions 1–3, and 7 maintained here. Assumption
4 in Kelejian and Prucha (1999) is satis.ed in light of Theorem 1 above. Theorem 2
now follows as a direct consequence of Theorem 1 in Kelejian and Prucha (1999).
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Proof of Theorem 3. Observe that substitution of (16), with �j replaced by �̃j;n, into
(18) yields

�̂Fj;n = �j + [Ẑ∗
j;n(�̃j;n)

′Z∗
j;n(�̃j;n)]

−1Ẑ∗
j;n(�̃j;n)

′u∗j;n(�̃j;n);

where

u∗j;n(�̃j;n) = y
∗
j;n(�̃j;n)− Z∗

j;n(�̃j;n)�j = �j;n − (�̃j;n − �j)Wn(In − �jWn)−1�j;n:

Consequently

n1=2(�̂Fj;n − �j) = [n−1Ẑ∗
j;n(�̃j;n)

′Z∗
j;n(�̃j;n)]

−1

×[n−1=2Ẑ∗
j;n(�̃j;n)

′�j;n + 9j;n]; (A.7)

where

9j;n =−(�̃j;n − �j)n−1=2Ẑ∗
j;n(�̃j;n)

′Wn(In − �jWn)−1�j;n:

Clearly Ẑ∗
j;n(�̃j;n)

′Z∗
j;n(�̃j;n)= Ẑ

∗
j;n(�̃j;n)

′Ẑ∗
j;n(�̃j;n). To prove the theorem we proceed to

establish the following results:

p lim
n→∞ n−1Ẑ∗

j;n(�̃j;n)
′Z∗

j;n(�̃j;n) = NQjj;

n−1=2Ẑ∗
j;n(�̃j;n)

′�j;n
d→N(0; &jj NQjj);

n−1=2Ẑ∗
j;n(�̃j;n)

′Wn(In − �jWn)−1�j;n =Op(1); (A.8)

where

NQjj = [QHZj − �jQHWZj ]
′Q−1

HH [QHZj − �jQHWZj ]: (A.9)

The matrix NQjj is .nite and nonsingular in light of Assumption 6. Given (A.8), the
claim concerning the limiting distribution of n1=2(�̂Fj;n−�j) is then readily seen to hold,
observing that �̃j;n − �j = op(1).
The .rst line in (A.8) follows immediately from Lemma A.1, Assumption 6, and

the consistency of �̃j;n, observing that

n−1Ẑ∗
j;n(�̃j;n)

′Z∗
j;n(�̃j;n)

= (n−1Z′
j;nHn − �̃j;nn−1Z′

j;nW
′
nHn)

×(n−1H′
nHn)−1(n−1H′

nZj;n − �̃j;nn−1H′
nWnZj;n): (A.10)

Next observe that

n−1=2Ẑ∗
j;n(�̃j;n)

′�j;n = (n−1Z′
j;nHn − �̃j;nn−1Z′

j;nW
′
nHn)

×(n−1H′
nHn)−1(n−1=2H′

n�j;n): (A.11)
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In light of Assumption 5 the elements of �j;n are i.i.d. with zero mean and .nite
variance &jj. Given Assumption 6 concerning the instruments Hn it then follows from

Theorem A in Kelejian and Prucha (1999) that n−1=2H′
n�j;n

d→N(0; &jjQHH ). The second
line in (A.8) is now readily seen to hold, utilizing Lemma A.1, Assumption 6, and the
consistency of �̃j;n.
Now observe that

n−1=2Ẑ∗
j;n(�̃j;n)

′Wn(In − �jWn)−1�j;n = (n−1Z′
j;nHn − �̃j;nn−1Z′

j;nW
′
nHn)

×(n−1H′
nHn)−1(n−1=2F∗

j;n
′�j;n)

with F∗
j;n

′ =H′
nWn(In − �jWn)−1. Given Assumptions 3 and 6 it follows from part (i)

and (ii) of Remark A.1 that the elements of F∗
j;n

′ are uniformly bounded in absolute
value. As remarked, the elements of �j;n are i.i.d. by Assumption 5. It hence follows
from part (iii) of Remark A.1 that n−1=2F∗

j;n
′�j;n=Op(1). The third line in (A.8) is now

again readily seen to hold, utilizing Lemma A.1, Assumption 6, and the consistency
of �̃j;n.

We note that in the above arguments we have only utilized the consistency of �̃j;n.
The expressions on the l.h.s. of (A.8) di3er from the analogous expressions obtained
by replacing �̃j;n by �j only by terms of op(1). Thus it is furthermore readily seen that

n1=2(�̂Fj;n − �̂j;n)
P→0 as n → ∞.

We shall make use of the following lemma.

Lemma A.3. Let An be some matrix whose row and column sums are bounded uni-
formly in absolute value. Then, given Assumptions 1–5 hold:

n−1�′j;nAn�l;n =Op(1);

n−1Z′
j;nAn�l;n =Op(1);

n−1Z′
j;nAnZl;n =Op(1); (A.12)

for all j = 1; : : : ; m and l= 1; : : : ; m.

Proof. Consider the expression for yn in (A.5) and (A.6). Let dr;n denote the rth
subvector of dn of dimension n × 1, and let Drs;n denote the (r; s)th submatrix of Dn

of dimension n× n, then

yr;n = dr;n +
m∑
s=1

Drs;nvs;n: (A.13)

As remarked after (A.5) and (A.6), the elements of dy, and hence the elements of dr;n,
are bounded uniformly in absolute value; furthermore, the row and column sums of
Dy, and hence those of Drs;n, are bounded uniformly in absolute value. Also observe
from Assumption 5 that

�l;n =
m∑
s=1

&∗slvs;n: (A.14)
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By de.nition Zj;n = (Yj;n;Xj;n; NYj;n) and NYn =WnYn. Upon substitution of expression
(A.13) for the columns of Yn and expression (A.14) for �l;n into (A.12) we see that the
elements of each term in (A.12) can be expressed as a .nite sum of three basic types
of expressions. Those expressions are of the form, n−1an, n−1b′nvs;n or n−1v′r;nCnvs;n,
where the an’s are nonstochastic scalars, the bn’s are nonstochastic n×1 vectors and the
Cn’s are nonstochastic n× n matrices. Given Assumptions 1–5, the implied properties
of dn and Dn, and the assumption maintained for An it follows from Remark A.1 that
the expressions of the form n−1an are bounded in absolute value, i.e., n−1an = O(1).
Furthermore it is seen that for expressions of the form n−1b′nvs;n and n−1v′r;nCnvs;n
the elements of bn are bounded uniformly in absolute value, and the row and column
sums of the matrices Cn are bounded uniformly in absolute value. Since the elements
of vn are i.i.d. with .nite 4th moments it follows furthermore from Remark A.1 that
n−1b′nvs;n = Op(1) and n−1v′r;nCnvs;n = Op(1). Observing that .nite sums of random
variables of the order Op(1) are again Op(1) completes the proof.

Proof of Lemma 1. To prove the lemma observe that for j = 1; : : : ; m:

�̃j;n = y∗j;n(�̃j;n)− Z∗
j;n(�̃j;n)�̂

F
j;n

=y∗j;n(�̃j;n)− Z∗
j;n(�̃j;n)�j − Z∗

j;n(�̃j;n)(�̂
F
j;n − �j)

=�j;n − (�̃j;n − �j)Wn(In − �jWn)−1�j;n − Z∗
j;n(�̃j;n)(�̂

F
j;n − �j): (A.15)

Consequently for i; j = 1; : : : ; m:

&̂jl;n = n−1�̃′j;n�̃l;n = n−1�′j;n�l;n

− (�̃j;n − �j)[n−1�′j;n(In − �jW′
n)

−1W′
n�l;n]

− (�̂Fj;n − �j)′[n−1Z∗
j;n(�̃j;n)

′�l;n]

− (�̃l;n − �l)[n−1�′j;nWn(In − �lWn)−1�l;n]

+ (�̃j;n − �j)(�̃l;n − �l)[n−1�′j;n(In − �jW′
n)

−1

×W′
nWn(In − �lWn)−1�l;n]

+ (�̃l;n − �l)(�̂Fj;n − �j)′[n−1Z∗
j;n(�̃j;n)

′Wn(In − �lWn)−1�l;n]

− [n−1�′j;nZ∗
l;n(�̃l;n)](�̂

F
l;n − �l)

+ (�̃j;n − �j)[n−1�′j;n(In − �jW′
n)

−1W′
nZ

∗
l;n(�̃l;n)](�̂

F
l;n − �l)

+ (�̂Fj;n − �j)′[n−1Z∗
j;n(�̃j;n)

′Z∗
l;n(�̃l;n)](�̂

F
l;n − �l): (A.16)

Consider the .rst term on the r.h.s. of (A.16), i.e., n−1�′j;n�l;n = n−1 ∑n
i=1 7ij;n7il;n.

Assumption 5 implies that the products 7ij;n7il;n; i = 1; : : : ; n, are i.i.d. Kolmogorov’s
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law of large numbers—see, e.g., PQotscher and Prucha (2001, p. 217)—then implies that
p limn→∞ n−1�′j;n�l;n = &jl. To prove the lemma we next show that all other terms on

the r.h.s. of (A.16) are op(1). Since �̃j;n−�j=op(1) by Theorem 2 and �̂Fj;n−�j=op(1)
by Theorem 3 it suIces to show that each of the terms in square brackets on the r.h.s.
of (A.16) is Op(1). Substitution of Z∗

j;n(�̃j;n) = Zj;n − �̃j;nWnZj;n into those terms
shows all of them are composed of expressions of the three types considered in (A.12)
of Lemma A.3 above, possibly multiplied by �̃j;n and �̃l;n. Given Assumption 3 it
follows immediately from Remark A.1 that the row and column sums of all matrices
An appearing in those expressions are uniformly bounded in absolute value. Hence by
Lemma A.3 the terms in square brackets on the r.h.s. of (A.16) are seen to be indeed
Op(1), which complete the proof of the lemma. We note that the proof only used the
consistency of �̃j;n and �̂Fj;n, and not any other feature of those estimators.

Proof of Theorem 4. Analogous to the proof of Theorem 3 observe that substitution
of (21), with �j replaced by �̃j;n, into (23) yields

U�Fn = �+ [Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)Z∗

n(�̃n)]
−1Ẑ∗

n(�̃n)
′((̂−1

n ⊗ In)u∗n (�̃n);
where

u∗n (�̃n) = [u∗1; n(�̃1; n)
′; : : : ; u∗m;n(�̃m;n)

′]

= �n − diagmj=1[(�̃j;n − �j)Wn(In − �jWn)−1]�n: (A.17)

Consequently

n1=2( U�Fn − �) = [n−1Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)Z∗

n(�̃n)]
−1

×[n−1=2Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)�n + 9n] (A.18)

where

9n =−n−1=2Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)diagmj=1[(�̃j;n − �j)Wn(In − �jWn)−1]�n

=−n−1=2




m∑
l=1

(�̃l;n − �l)&̂1ln Ẑ
∗
1; n(�̃1; n)

′Wn(In − �lWn)−1�l;n

...
m∑
l=1

(�̃l;n − �l)&̂mln Ẑ
∗
m;n(�̃m;n)

′Wn(In − �lWn)−1�l;n




:

Clearly Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)Z∗

n(�̃n) = Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)Ẑ∗

n(�̃n). To prove the theorem
we demonstrate in the following that

p lim
n→∞ n−1Ẑ∗

n(�̃n)
′((̂−1

n ⊗ In)Z∗
n(�̃n) = NQ;

n−1=2Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)�n d→N(0; NQ);

n−1=2Ẑ∗
j;n(�̃j;n)

′Wn(In − �lWn)−1�l;n =Op(1); j; l= 1; : : : ; m; (A.19)
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where

NQ= diagmj=1(QHZj − �jQHWZj)
′((−1 ⊗Q−1

HH )diag
m
l=1(QHZl − �lQHWZl): (A.20)

The matrix NQ is .nite and nonsingular in light of Assumption 6. Given (A.19), the
claim concerning the limiting distribution of n1=2(�̂Fj;n−�j) is then readily seen to hold,
observing that by Theorem 2 and Lemma 1, �̃j;n − �j =op(1) and (̂n −(=op(1), and
thus 9n = op(1) provided the third line in (A.19) holds indeed.
The (j; l)th block of the matrix on the l.h.s. of the .rst line of (A.19) is given by

&̂jln n−1Ẑ∗
j;n(�̃j;n)

′Z∗
l;n(�̃l;n). Since ( is nonsingular we have also (̂−1

n −(−1 =op(1) and

hence p limn→∞ &̂jln =&jl. Furthermore, by arguments analogous to those used to prove
the .rst line of (A.8) we have

p lim
n→∞ n−1Ẑ∗

j;n(�̃j;n)
′Z∗

l;n(�̃l;n) = [QHZj − �jQHWZj ]
′Q−1

HH [QHZl − �lQHWZl]

for j; l= 1; : : : ; m. From this the .rst line in (A.19) is now readily seen to hold.
Next observe that utilizing Assumption 5

n−1=2Ẑ∗
n(�̃n)

′((̂−1
n ⊗ In)�n

=diagmj=1(n
−1Z′

j;nHn − �̃j;nn−1Z′
j;nW

′
nHn)

×[(̂−1
n (′

∗ ⊗ (n−1H′
nHn)−1]n−1=2(Im ⊗H′

n)vn:

By Assumption 5 the elements of vn are i.i.d. with zero mean and variance one.
Given Assumption 6 concerning the instruments Hn it then follows from Theorem A

in Kelejian and Prucha (1999) that n−1=2(Im⊗H′
n)vn

d→N(0; Im⊗QHH ). Observing again
that �̃j;n − �j = op(1), (̂−1

n − (−1 = op(1) and (= (′
∗(∗ the second line in (A.19) is

now readily seen to hold from arguments analogous to those used to prove the second
line of (A.8)
Furthermore, using arguments analogous to those used to prove the third line in

(A.8) also shows that the third line in (A.19) holds.
We note that in the above arguments we have only utilized the consistency of �̃j;n

and (̂n. The expressions on the l.h.s. of (A.19) di3er from the analogous expressions
obtained by replacing �̃j;n by �j only by terms of op(1). Thus it is furthermore readily

seen that n1=2( U�Fn − U�n)
P→0 as n → ∞.
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