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Abstract
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1 Introduction

The adoption by the FCC of auction mechanisms to sell licenses for the radio-frequency

spectrum and the emergence of the internet as a commercial medium has drawn attention to

both the theory and practice of auctions over the past ten years. The growth in the popularity

of auctions has obscured an otherwise fairly obvious fact—auctions represent only a very small

part of the feasible set of trading institutions. Many alternative mechanisms such as bilateral

negotiations, posted price institutions and randomized trading mechanisms are also feasible

and potentially optimal.1 This observation is of particular interest in procurement. When the

private knowledge of a supplier may affect not only her marginal cost but also the valuation

of the buyer, auctions are optimal mechanisms in only very narrow environments.2

In an earlier paper, we analyzed a procurement model of adverse selection and we char-

acterized the environments in which two mechanisms, in a sense opposites of each other,

maximize either social or buyer’s surplus. We studied reserve price auctions and direct bar-

gaining institutions—in the latter mechanism, sellers are placed in an order that is determined

by prior beliefs; then take-it-or-leave-it offers are made sequentially.

In this paper, we study hybrid mechanisms, mechanisms that contain features of both

auctions and successive take-it-or-leave-it-offers. We illustrate the environments where these

more sophisticated institutions are optimal.

We use the standard, independent private-values model with quasi-linear utilities. The

first hybrid mechanism we examine is one in which sellers are ordered and a fixed price is

tendered to each seller. If a seller rejects the offer, the following seller has a chance to respond

to the offer. If all sellers reject their offers, then sellers are invited to submit bids in a second

price auction.

The second hybrid mechanism we examine reverses the use of the two main components—
1Manelli and Vincent (2003a) and (2003b) illustrate that in multi-object environments, optimal mechanisms

may require randomization.
2The dependency between the valuation of one agent and the private information of other agents appears

in other models; for instance Samuelson (1984) analyzes a model, in the context of bilateral trading, where the

valuation of the uninformed party is a function of the private information of the other party. Recently Morand

and Thomas (2003) analyze the separation properties of equilibria in adverse selection models with dependency

in valuations.
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an auction is followed by a sequence of take-it-or-leave-it offers. We illustrate the type of

environments where these mechanisms are optimal (and dominate both, auctions and take-it-

or-leave-it-offers).

Finally, we analyze a sequential offer mechanism where one seller is made an offer, upon

rejection, an offer is made to another seller, and if that offer is rejected, a more generous offer

is made to the first seller.

We use canonical examples to demonstrate what factors are relevant in determining the

optimality of such mixtures of auctions and bargaining mechanisms. A rich class of trading in-

stitutions can thus be constructed by combining the two polar institutions. These institutions

are simple to implement—participants can learn equilibrium strategies relatively easily—and

are straightforward to analyze.

The mathematical structure underlying many essential questions in mechanism design is

that of a linear program. It is a frequent practice (see for instance Myerson’s 1981 seminal

piece) to treat the prior distributions of bidders’ types, and the relationship between bidders’

private information and buyer’s valuation as parameters of the linear program which we call

the primal. Seeking a solution then amounts to identify the direct revelation mechanism that

solves the linear program. Using the characterization of incentive compatibility (roughly that

probabilities of trade are monotone), the linear program can be written solely in terms of

probabilities of trade. In many environments, direct inspection of the objective function is

often sufficient to guess the “solution” that maximizes the unconstrained problem—ignoring,

for instance, incentive compatibility constraints. This guessed “solution” is sometimes feasible

in the constrained problem and, therefore, solves the implementation problem. For general

environments, though, once the linear program has been set, i.e, after using the characteriza-

tion of incentive compatibility to simplify the objective function, there is not much guidance

in the literature as to how to “solve” the linear program. In many cases, the dual program

offers such guidance.

We begin our analysis with a precise description of the indirect mechanism that we desire to

analyze, a hybrid mechanism including an auction and direct negotiations. We are concerned

with identifying environments in which the proposed mechanism is socially optimal. We

find that the dual program provides useful additional information in the form of additional

inequalities that the direct mechanism and the environment must satisfy. It is with the aid of
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these inequalities that we come up with our results.3

Once we identify the environment, we state our results in the form “mechanism A is

optimal in environment B.” Once both the the mechanism and the environment are stated, it

is possible to prove the theorem solving either the primal or dual problems.

2 Model

The set of players consists of a single buyer and S potential suppliers or sellers indexed by

s = 1, . . . , S. The set of all sellers is denoted, in an abuse of notation, by S. Each supplier

s observes some private information qs ∈ I ≡ [0, 1]. This private information determines the

supplier’s reservation value and may be directly relevant for the ex post valuation of the buyer.

We will often refer to qs as the quality of the product offered as well as the reservation value

of supplier s.

Each individual parameter qs is independently distributed according to a continuous and

strictly positive density function fs(qs). The corresponding cumulative distribution is denoted

Fs(qs). The vector q = (q1, . . . , qs) ∈ IS is a profile of types. We define f(q) = f1(q1) ×

f2(q2)× . . .× fS(qS) and for any i ∈ S, f−i =
∏

s 6=i fs.

Agents maximize expected utility. Sellers’ preferences are linear over money and the use

of the good: if a seller with quality qs engages in trade and receives a money transfer of m,

her net payoff is m− qs. If no trade occurs, then the net payoff is zero.

The buyer’s use value for a good of quality qs is vs(qs). In this paper, we restrict attention

to piecewise linear functions vs(qs). If the buyer transfers m dollars and receives an object of

quality qs, the buyer’s net payoff is vs(qs)−m. No trade yields a payoff of zero for the buyer.

By consuming the good, the buyer perceives the quality of the object qs and realizes

his benefit vs(qs). Neither the quality of the object nor the actual benefit to the buyer are

verifiable by a third party; it is not possible to contract contingent on an object’s true quality

or on the true benefit that may result from its consumption. To justify this assumption we

observe that even when contracts may include numerous contingencies, there often are residual

elements of private information on which it is not possible to contract. Those are the elements
3To our knowledge, the duality approach has not been widely used in mechanism design; a notable exception

is the work of Gale, I., and T. Holmes (1993) who use a dual program to solve a mechanism design problem.
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that we model; they include features of quality that are not easily observable.

Thiel (1988), Sinclair-Desgagné (1990) and Branco (1992) consider models in which private

information is verifiable. As a result, agents may submit bids that consist of more than just

prices. In our model seller types are determined exogenously. Thus we have a pure adverse

selection model.4

By the revelation principle, we concentrate on direct revelation mechanisms, a pair of

functions ps : IS −→ I and ts : IS −→ IR, for each possible seller s. If sellers report

q = (q1, . . . , qs), the probability that seller s will trade is ps(q) and the expected transfer

payment to seller s, which can be negative, is ts(q). Since the buyer wishes to purchase at

most one good (OG), the following constraint must hold,

(OG)
S∑

s=1

ps(q) ≤ 1, ∀q.

If seller s reports her type to be xs and supposes that the rest of the sellers report truthfully,

s would expect to receive a monetary transfer of
∫
IS\{s} ts(xs, q−s) f−s(q−s) dq−s. We denote

this expected monetary transfer by Ests(xs). Supplier s’s expected payoff of reporting xs

when having true quality qs, is

πs(xs | qs) = Ests (xs)− qs Esps (xs).

Note that Esps(xs) is the expected probability of trade when seller s reports type xs. Agents

will truthfully reveal their private information only if the mechanism is incentive compatible

(IC): for every seller s,

(IC) πs(qs | qs) ≥ πs(xs | qs), ∀qs(ae), ∀xs ∈ I.

Using the well-known characterization of incentive compatibility, it follows that in any IC

mechanism

(IC)
d Esps(qs)

dqs
≤ 0, almost everywhere.

Similarly if the expected probability of trade Esps(qs) is non-increasing in qs, then there exist

transfers ts that will provide the correct incentives. (See for instance, Myerson (1981), and

Myerson and Satterthwaite (1983)).
4We abstract of moral hazard issues such as the provision of incentives for investment in research and

development. See for instance, Rob (1986) or Lang and Rosenthal (1991).
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The buyer’s expected profits are

πb =
S∑

s=1

∫
IS

[vs(qs) ps(q)− ts(q)] f(q) dq. (1)

Let zero be the payoff for agents that do not participate in the mechanism. Individual ratio-

nality (IR) then requires that

(IR) πb ≥ 0 and πs(qs | qs) ≥ 0, ∀qs, ∀s.

We are interested in mechanisms that maximize social surplus. Procuring the object from

seller s with quality qs, generates a total surplus of ws(qs) = vs(qs)− qs. (For ease of notation

and when confusion is unlikely, we drop the subindex s from variables and functions.) Hence,

for a given mechanism, {ps, ts}s∈S , expected social surplus is 5

S∑
s=1

∫
ws(qs) ps(q) f(q) dq. (2)

It has long been recognized that finding an optimal mechanism is formally equivalent to

solving a linear program: the maximization of (2) subject to OG, IC and IR.6

We will proceed as follows. First we propose a particular trading institution. An equilib-

rium of a trading mechanism implies a particular mechanism {ps, ts}s∈S (which, by definition

of equilibrium, represents a feasible solution to the optimization problem). For each seller s,

the equilibrium outcome of the proposed institution specifies an expected probability of trade

Esps. We seek environments for which those functions ps, s ∈ S, maximize (2) subject to

(OG) and (IC). (We will refer to this linear program in infinite dimensions as P.) We charac-

terize those environments by solving the dual program. Finally, we verify that the proposed

institution implements the solution, and that IR is satisfied.

We now set up the conditions we use from the dual program. To simplify notation, we

assume here that there are only two sellers, s = 1, 2. We also assume that for all s, qs are

uniformly and independently distributed on [0, 1].
5Any mechanism that maximizes expected social surplus will also maximize ex ante aggregate seller surplus,

provided it is modified by adding additional transfers chosen so that expected buyer surplus is zero.
6Anderson and Nash (1987) is a good reference on linear programming in infinite-dimensional spaces.
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To construct the Lagrangian of P, we associate to each constraint a multiplier, γ(q1, q2),

λ1(q1), λ2(q2). Rearranging terms, the Lagrangian can be represented in two useful ways:7

L (p1, p2, γ, λ1, λ2) =
∫ 1

0

∫ 1

0
(w1(q1) p1(q1, q2) + w2(q2) p2(q1, q2)) dq1 dq2

+
∫ 1

0

∫ 1

0
γ(q1, q2) (1− p1(q1, q2)− p2(q1, q2)) dq1 dq2

+
∫ 1

0

∫ 1

0

(
−λ1(q1)

d E1p1(q1)
dq1

− λ2(q2)
d E2p2(q2)

dq2

)
dq1 dq2

=
∫ 1

0

∫ 1

0
γ(q1, q2) dq1 dq2

+
∫ 1

0

∫ 1

0

(
w1(q1) p1 − γ(q1, q2) p1(q1, q2)− λ1(q1)

d E1p1(q1)
dq1

)
dq1 dq2

+
∫ 1

0

∫ 1

0

(
w2(q2) p2 − γ(q1, q2) p2(q1, q2)− λ2(q2)

d E2p2(q2)
dq2

)
dq1 dq2.

A pair (p̃1, p̃2) solves P if and only if there are (non-negative) multipliers λ̃1, λ̃2, γ̃, forming

a saddle-point of L : for all p1, p2, γ, λ1, λ2,

L (p̃1, p̃2, γ, λ1, λ2) ≥ L (p̃1, p̃2, γ̃, λ̃1, λ̃2) ≥ L (p1, p2, γ̃, λ̃1, λ̃2).

Manipulating these inequalities in both representations of the Lagrangian, and using the fact

that (p̃1, p̃2) must be feasible yields

L (p̃1, p̃2, γ̃, λ̃1, λ̃2) =
∫ 1

0

∫ 1

0
(w1(q1)p̃1(q1, q2) + w2(q2)p̃2(q1, q2)) dq1 dq2

=
∫ 1

0

∫ 1

0
γ̃(q1, q2) dq1 dq2. (3)

This simply states that at a solution, the value of the dual program must equal the value of

the primal.

Further manipulation of the saddle-point inequalities yields the following well-known result

(Duality Theorem): A feasible pair (p̃1, p̃2) solves P if and only if there are (non-negative)
7In all the cases studied in this paper, the IR constraint on the buyer is non-binding. Thus, although,

formally, the IR constraint should be in the Lagrangian, for conciseness, we leave it out.
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multipliers γ̃, λ̃1 and λ̃2, such that8∫ 1

0

∫ 1

0
(w1(q1)p̃1(q1, q2) + w2(q2)p̃2(q1, q2)) dq1 dq2 =

∫ 1

0

∫ 1

0
γ̃(q1, q2) dq1 dq2 (4)∫ 1

0

∫ 1

0

[
w1(q1)p1(q1, q2)− γ̃(q1, q2)p1(q1, q2)− λ̃1(q1)

d E1p1(q1)
dq1

]
dq1 dq2 ≤ 0, ∀p1 (5)∫ 1

0

∫ 1

0

[
w2(q2)p2(q1, q2)− γ̃(q1, q2)p2(q1, q2)− λ̃2(q2)

d E2p2(q2)
dq2

]
dq1 dq2 ≤ 0, ∀p2 (6)

In addition, complementary slackness implies that (5) and (6) hold with equality when eval-

uated at p̃1 and p̃2 respectively.

3 A Characterization

In this section, we characterize the environments (within our model) in which the basic mech-

anisms, a take-it-or-leave-it offer and an auction, are optimal.

Theorem 1 shows when each of these mechanisms, a take-it-or-leave-it offer or an auction,

is optimal. (It is a direct consequence of Corollaries 2 and 3, Manelli and Vincent (1995).)

We provide a proof here to illustrate the use of the dual program.

Theorem 1 Let v(x) = a+bx, where a ≥ 1 and b ∈ IR, and suppose that the quality variables

{qs}s∈S are uniformly and independently distributed. Then

1. A take-it-or-leave-it offer of k = 1 to an arbitrary supplier s maximizes social surplus if

and only if b ≥ 1;

2. A second price auction maximizes social surplus if and only if b ≤ 1.

Figure 1 illustrates the hypotheses of Theorem 1.

Proof (Part 1, necessity) Suppose for simplicity of notation, that there are only two suppliers.

Without loss of generality, let supplier s = 1 be the chosen one, and suppose p̃1(q1, q2) =

1 ∀(q1, q2) is optimal. (Note that because of symmetry, w1 = w2.)
8Although in infinite dimensions a duality gap, a gap between the value of the dual and primal programs,

is possible, it is not an issue in our applications. In previous work, we provide a more detailed discussion of

the gap, and of the duality setting.
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Figure 1: Take-it-or-leave-it Offer vs Auction

Note first that p̃1(q1, q2) = 1q2≤r + (1 − 1q2≤r) = 1 where both terms are continuously

differentiable in q1 for all r. Complementary slackness (applied to (5)) implies∫ 1

0

∫ 1

0

[
w1(q1)− γ̃(q1, q2)− λ̃1(q1)

dE1 [1q2≤r + (1− 1q2≤r)]
dq1

]
dq1 dq2 = 0. (7)

Inequality (5) applied to p1(q1, q2) = 1q2≤r becomes∫ 1

0

∫ 1

0

[
w1(q1)1q2≤r − γ̃(q1, q2)1q2≤r − λ̃1(q1)

dE11q2≤r

dq1

]
dq1 dq2 ≤ 0.

We show now that the expression above must be actually zero. Applying (5) to p1(q1, q2) =

(1 − 1q2≤r) would also yield a non positive expression. But since both expressions must add

up to zero because of (7), they must be both zero.

In addition, since dE11q2≤r

dq1
= 0,∫ r

0
w̄ dq2 =

∫ 1

0

∫ 1

0
1q2≤r γ̃(q1, q2) dq1 dq2, (8)

where

w̄ =
∫ 1

0
ws(qs) dqs.
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Inequality (6) applied to p2 = 1q2≤r implies∫ 1

0

∫ 1

0
1q2≤rγ̃(q1, q2) dq2 dq1 ≥

∫ 1

0

∫ 1

0
w2(q2)1q2≤r − λ̃2(q2)

dE21q2≤r

dq2
dq2 dq1

≥
∫ r

0
w2(q2) dq2, (9)

where the last inequality follows because
∫ 1
0

∫ 1
0 λ̃2(q2)

dE21q2≤r

dq2
dq1 dq2 ≤ 0 (since dE21q2≤r

dq2
≤ 0).

Combining (9) and (8), we obtain∫ r

0
w̄ dq2 ≥

∫ r

0
w2(q2) dq2, ∀r, (10)

or equivalently, that

w̄ ≥ E[w1(q1)|q1 ≤ r], ∀r ∈ [0, 1]. (11)

Using the definition w1(q1) = a + bq1 − q1 and integrating, (11) becomes∫ 1

0
[a + (b− 1)q1] dq1 = a +

(b− 1)
2

≥
∫ r

0
[a + (b− 1)q1]

1
r
dq1 = a +

(b− 1)r
2

, ∀r ∈ [0, 1].

This condition holds if and only if b ≥ 1.

(Part 1, sufficiency) Note that the condition a ≥ 1 implies that a buyer obtains non-

negative expected utility in the take-it-or-leave-it mechanism. Thus, the IR constraint is

satisfied. We must demonstrate that if b ≥ 1, then (4), (5) and (6) hold. To define γ̃ and λ̃1,

let

γ̃(q1, q2) = w̄ and λ̃1(q1) =
∫ q1

0
(w̄ − w1(t))dt.

It is immediate that (4) holds. The non-negativity of λ̃1(q1) follows from the requirement

b > 1. Condition (5) is∫ 1

0

∫ 1

0

[
(w1(q1)− w̄) p1 −

∫ q1

0
(w̄ − w(t)) dt

d E1p1(q1)
dq1

]
dq1 dq2 ≤ 0.

Integrating by parts the last term on the left hand side, we have∫ 1

0

[
(w1(q1)− w̄)

∫ 1

0
p1(q1, q2) dq2 − (w1(q1)− w̄)

∫ 1

0
p1(q1, q2) dq2

]
dq1 = 0.

(The second inequality is handled in a similar fashion.)

This completes the proof of the first part of the Theorem: a take-it-or-leave-it offer of

k = 1 to seller 1 is optimal if and only if b ≥ 1.

A similar argument demonstrates the second part: an auction is optimal if and only if

b ≤ 1. QED
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Remark 1 Let w̄ =
∫ 1
0 ws(qs) dqs. The proof of Theorem 1—see expression (11)—shows that

a take-it-or-leave-it offer of 1 is socially optimal if and only if

w̄ ≥ 0 and w̄ ≥ E[w1(q1) | q1 ≤ r], for all possible offers r.

Thus, to determine if a take-it-or-leave-it offer of 1 is the optimal mechanism, the designer

only needs to compare that institution against other take-it-or-leave-it offers, ignoring all other

possible mechanisms.

As long as the buyer values quality more than the sellers on the margin, a take-it-or-leave-it

offer to an arbitrarily selected seller is socially optimal; competition among suppliers would

not elicit a higher surplus. On the contrary, if sellers value quality more than the buyer on the

margin, an auction is the socially optimal mechanism; competition among suppliers is useful.

Remark 2 Although, for simplicity, we have used the uniform distribution, the characteri-

zation in Remark 1 holds for any distribution (with a continuous and strictly positive density

function).

Theorem 1 highlights a sometimes overlooked difference between situations where one

object is sold to many bidders, and situations where one object is purchased from many

bidders.

When selling an object to potentially many buyers, it is natural to assume that buyers

are the privately informed parties—they typically know how much they are willing to pay for

the object. It is perhaps also natural to assume that the buyers’ valuations do not affect the

valuation of the seller.9

In a procurement context, however, the private information is frequently possessed by the

potential sellers. A given seller’s private information might index only the private marginal

cost of the seller, and all sellers may have identical objects to sell. If this is so, then it is natural

to assume that the buyer’s valuation does not depend on the sellers’ private information; one

may assume vs(qs) = v̄, a constant.

A given seller’s private information, however, may be an index of both marginal cost and

quality or other such attribute. If the buyer’s valuation depends on quality, one may obtain a
9In some contexts, for example an insurance market, this assumption is less plausible.
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non-trivial functional form for vs(qs). In this case, an auction because it biases trade to sellers

with lower quality, may be very undesirable. In fact, as the number of potential sellers grows,

an auction will lead to trade with the lowest quality supplier. In this case, Theorem 1 shows

it is best to forgo competition entirely in favor of direct negotiation with an arbitrary seller.

Even if the buyer valuation is increasing in quality, a take-it-or-leave-it mechanism might

not be optimal. It follows from Theorem 1 that the optimality of take-it-or-leave-it mechanisms

requires that social surplus (vs(qs)− qs) be increasing in qs (i.e., b > 1). Similarly, an auction

is optimal only if b < 1. Theorem 1 is particularly useful when social surplus is monotone on

qs, admittedly a restrictive environment. The proof of Theorem 1, however, by illustrating

the role played by monotonicity in constructing the dual variables, helps us explore how and

when hybrid mechanisms are optimal.

4 Hybrid Mechanisms

Consider an environment where increases in the quality of the object up to a certain level,

significantly increase the buyer’s well being. Beyond that threshold, however, increases in

quality do not increase the buyer’s payoff. Higher values of qs may cost more to produce but

provide the buyer no additional utility. In this case, social surplus increases with quality for

low levels of qs and decreases for high levels. Figure 2 illustrates this situation. The conditions

for optimality of a take-it-or-leave-it offer hold for low qs’s and those for the optimality of an

auction hold for high qs’s. Theorem 2 demonstrates in a canonical example that a hybrid

mechanism with an auction following rejected take-it-or-leave-it offers is optimal.

Theorem 2 For s = 1, 2, let

vs(qs) =

 1/2 + 3/2qs, if qs ∈ [0, 1/2]

5/4 otherwise

and suppose that qs is uniformly and independently distributed in the unit interval. The

following trading mechanism maximizes social surplus: a take-it-or-leave-it offer of 5/8 is

made to seller one; if rejected, a take-it-or-leave-it offer of 3/4 is made to seller two; and if

rejected, a second price auction is conducted.

12



-

6

�
�

�
�

�
�

�
�
�
�
�
�
�
�
�

0.5

qs

qs

vs(qs)

?

6ws(qs)

Figure 2: A Take-it-or-leave-it Offer and an Auction

The proof below proceeds by proposing values for the dual variables and checking that a

saddle point has been obtained. Before providing the details of the proof, we briefly described

how we arrived at the proposed variables. The value of the take-it-or-leave-it offers is deter-

mined by noting that the supplier with qs = 1/2 must be indifferent between accepting the

offer or waiting for the chance of an auction. The expected price in the auction is 3/4. The

first supplier anticipates that by rejecting the offer the auction occurs with probability 1/2,

the second supplier knows that by rejecting the offer the auction occurs with probability 1.

Thus, the equilibrium probabilities of trade of this mechanism are as illustrated in Figure 3.

Any seller with qs ≤ 1/2 accepts the initial offer. Otherwise, the seller rejects and submits

a bid in the auction (if there is one) equal to her valuation. Expected buyer surplus gross

of payment is 7/8 in the offer phase and 5/4 in the auction phase which exceeds the highest

possible auction price so the buyer IR is satisfied in equilibrium.

Proof Let k = 1/2, w̄k = E[ws(qs)|qs ≤ k] = 2
∫ 1
0 1qs≤k ws(qs) dqs,

γ̃(q1, q2) =


w̄k, if q1 ≤ k
w̄k, if q1 > k, q2 ≤ k
w1(q1), if k < q1 ≤ q2

w2(q2), if k < q2 < q1

and

λ̃s(qs) =
{ ∫ qs

0 (w̄k − ws(t))dt, if qs ≤ k
0, if qs > k.

It is straightforward to verify that the value of the dual equals the value of the primal,

expression (3). Since ws(qs) is monotone increasing on qs for all qs ∈ [0, 1/2], λ̃s is non-
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Figure 3: The Constrained Optimum–Theorem 2

negative.

We now verify that inequality (5) holds. An integration by parts yields that∫ 1

0

∫ 1

0
λ̃1(q1)

d E1p1(q1)
dq1

dq1 dq2 =
∫ 1

0

∫ 1

0
1q1≤k p(q1, q2)(w1(q1)− w̄)dq1dq2

for all p(·, ·) with E1p ∈ C1. Therefore,∫ 1

0

∫ 1

0

[
(w1(q1)− γ̃(q1, q2))p1(q1, q2)− λ̃1(q1)

d E1p1(q1)
dq1

]
dq1 dq2

=
∫ 1

0

∫ 1

0
(1q1≤k [w1 − γ̃p1 − (w1 − w̄)p1] + 1q1≥k [w1 − γ̃] p1) dq1 dq2

=
∫ 1

0

∫ 1

0
1q1≥k [w1(q1)− γ̃(q1, q2)] p1(q1, q2) dq1 dq2 ≤ 0, ∀p1,

where the last inequality uses the definitions of λ̃s and γ̃, and establishes (5): it is non-positive

by definition of γ̃ and because w2(q2) is decreasing in q2 for q2 ≥ 1/2.

A similar argument establishes condition (6).

We conclude that (p̃1, p̃2, λ̃1, λ̃2, γ̃) is a saddle point of P.

QED

It is instructive to compare the optimal hybrid mechanism found in Theorem 2 with

the mechanism that maximizes ex post social surplus. The latter mechanism, illustrated in

14



Figure 4, is an unconstrained optimum, violates incentive compatibility, and is therefore not

feasible. The figure represents the space of qualities (q1, q2). Vertical lines shade the area
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Figure 4: The Unconstrained Optimum–Theorem 2

where seller 2 is allocated the trade, i.e., p̂2(q1, q2) = 1. The complement represents the

region where seller 1 is allocated the trade. Pick any q2 in the vertical axis and consider a

horizontal line through q2. Since bidder types are uniformly and independently distributed,

the length of the horizontal line on the shaded region represents the expected probability of

trade for seller 2 with quality q2, E2p̂2(q2). Direct observation reveals that the expected

probability of trade is not compatible with IC; it is increasing over the region q2 ∈ [0, .5] and

therefore the mechanism is not implementable. Theorem 2 identifies the optimal mechanism.

Consider now situations in which the buyer’s payoff only increases with increases in quality

when quality is high.

Theorem 3 For s = 1, 2, let

vs(qs) =

 3/4, if qs ∈ [0, 1/2]

3/2qs, otherwise,

and suppose also that qs is uniformly and independently distributed in the unit interval. Let

k < 1/2 satisfy

ws(k) = E[ws(qs)|qs ∈ (k, 1]].
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The following trading mechanism maximizes social surplus: a second price auction with reserve

price (1+k)/2 is conducted; if no bids meet the reserve, a take-it-or-leave-it offer of 1 is made

with equal probability to sellers one or two.10

Proof We show first that the subgame perfect equilibrium in this mechanism consists of

the following strategies: in the auction phase, bidders with valuations qs ∈ [0, k] submit bids

equal to their valuations. In the second phase, all bidders accept the price offer of 1. To see

this, suppose a rival bidder is expected to follow this strategy. Consider the expected return

of bidding q̃ ≤ k when the true quality is qs,∫ k

q̃
(b− qs)db + (1− k)((1 + k)/2− qs).

If qs ≤ k, the first term is positive and achieves its maximum at q̃ = qs. A bid q̃ ∈ [k, (1+k)/2]

wins if and only if the rival has valuation greater than k and the reserve price (1+ k)/2. This

yields an expected return of (1− k)
[

1+k
2 − qs

]
.

A bidder with qs > (1+k)/2 receives a strictly negative payoff from such a bid and so will

prefer to wait for the take-it-or-leave-it offer. For a bidder with qs ∈ [k, (1 + k)/2], if no bid

is submitted, then the expected payoff from relying on the take-it-or-leave-it game is

1
2
(1− k)(1− qs) = (1− k)

[
1 + k

2
− qs +

qs − k

2

]
which is greater than the highest achievable payoff in the auction game for any qs > k. Note

that, in the auction phase, the actual price is less than or equal to k ≤ 3/4 = vs(qs), qs ∈ [0, k]

and in the offer phase, the price is 1 which is less than the expected buyer valuation given

qs ∈ (k, 1] so the buyer’s IR constraint is satisfied.

For s = 1, the equilibrium probability of trade in this mechanism is therefore (see Figure 6)

p̃1(q1, q2) =


1, if q1 ≤ k, q1 ≤ q2

.5, if q1 > k, q2 > k
0, otherwise.

Define K1 = {(q1, q2)|q1 ≤ q2 ≤ k}, K2 = {(q1, q2)|q2 ≤ q1 ≤ k}, K3 = {(q1, q2)|q1 ≤

k, q2 > k}, K4 = {(q1, q2)|q2 ≤ k, q1 > k}, K5 = {(q1, q2)|q1 > k, q2 > k}.

For any integrable f ,
∫ 1
0

∫ 1
0 f(q1, q2) dq1 dq2 =

∑5
i=1

∫
Ki

f(q1, q2) dq1 dq2.

10Computation yields k = .38 in the case presented.
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Let

w̄B = E[ws(qs)|qs ∈ (k, 1]].

Define

γ̃(q1, q2) =


w1(q1), if q ∈ K1 ∪K3

w2(q2), if q ∈ K2 ∪K4

w̄B, if q ∈ K5.

It is straightforward to verify that the value of the dual equals the value of the primal. Define

λ̃s(qs) =
{

0, if qs ≤ k∫ qs

k (w̄B − ws(t))dt, if qs > k.

To see that λ̃s is non-negative, note that it can be written as

λ̃s(qs) = (qs − k) {w̄B − E[ws(x)|x ∈ (k, qs]]} .

We show the term in braces is always non-negative. This is immediate for qs ∈ (k, 1/2], since

ws(·) is strictly decreasing and ws(k) = w̄B by definition of k. Note that

∂

∂qs
E[ws(x)|x ∈ (k, qs]] =

ws(qs)− E[ws(x)|x ∈ (k, qs]]
(qs − k)

.

Thus, E[ws(x)|x ∈ (k, qs]] is decreasing in qs if and only if it exceeds ws(qs). Let q̂ be such

that

q̂ = minqs≥1/2{qs|E[ws(x)|x ∈ (k, qs]] = w̄B}.

Since E[ws(x)|x ∈ (k, qs]] is continuous and equals w̄B at qs = 1, q̂ exists. Furthermore,

q̂ > 1/2. Suppose q̂ < 1. Since E[ws(x)|x ∈ (k, qs]] is continuous and is less than w̄B for

qs = 1/2, then E[ws(x)|x ∈ (k, qs]] must be increasing at q̂ which implies ws(q̂) ≥ E[ws(x)|x ∈

(k, q̂]] = w̄B. Since ws(·) is strictly increasing in (1/2, 1] ⊃ (q̂, 1], we must have E[ws(x)|x ∈

(k, qs]] > w̄B for all qs > q̂. This violates the definition, E[ws(x)|x ∈ (k, 1]] = w̄B. Therefore,

q̂ = 1 and

λ̃s(qs) = (qs − k) {w̄B − E[ws(x)|x ∈ (k, qs]]} ≥ 0,∀qs.

Integrating by parts, we obtain∫ 1

0

∫ 1

0
λ̃1(q1)

d E1p(q1)
dq1

dq1 dq2 =
∫ 1

0

∫ 1

0
1q1>k p(q1, q2)(w1(q1)− w̄B)dq1dq2

=
∑

i∈{4,5}

∫
Ki

p(q1, q2)(w1(q1)− w̄B)dq1dq2
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for all p(·, ·) with E1p ∈ C1.

Therefore,∫ 1

0

∫ 1

0

[
(w1(q1)− γ̃(q1, q2))p1(q)dq − λ̃1(q1)

d E1p1(q1)
dq1

]
dq1 dq2

=
∫

K1

[w1 − γ̃]p1 dq1 dq2 +
∫

K3

[w1 − γ̃]p1 dq1 dq2 +
∫

K2

[w1 − γ̃]p1 dq1 dq2

+
∫

K4

[w1 − γ̃ − (w1 − w̄B)] p1 dq1 dq2 +
∫

K5

[w1 − γ̃ − (w1 − w̄B)] p1 dq1 dq2

=
∫

K2

[w1 − w2] p1(q1, q2) dq1 dq2 +
∫

K4

[w̄B − w2] p1(q1, q2) dq1 dq2 ≤ 0, ∀p1.

The second equality follows by applying the definition of γ̃. The inequality follows because,

for q ∈ K2, w1(q1) ≤ w2(q2) and for q ∈ K4, w2(q2) ≥ ws(k) = w̄B. (A similar argument may

be applied to λ̃2.)

We conclude that (p̃1, p̃2, λ̃1, λ̃2, γ̃) is a saddle point of P.

QED

Figure 5 illustrates the allocation that maximizes ex post social surplus. Again, this

allocation is infeasible. The constrained optimal mechanism is illustrated in Figure 6.
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Figure 5: The Unconstrained Optimum–Theorem 3

Sequential offer mechanisms could also be of the following form: the first seller is made a

take-it-or-leave-it offer, upon rejection, the second seller is made an offer and if that is rejected,
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the first seller is made a second, higher take-it-or-leave it offer. Our final result, Theorem 4, il-

lustrates environments where the mechanism just described is an optimal mechanism. Figure 7

depicts the relevant social welfare functions.

Theorem 4 Let

w2(q2) = v2(q2)− q2 =

 3q2, if q2 ∈ [0, 1/2]

0 otherwise

and

w1(q1) = v1(q1)− q1 =

 4q1, if q1 ∈ [0, 1/2]

1/4 otherwise,

and suppose that for s = 1, 2, qs are independently and uniformly distributed on the unit

interval. The following trading mechanism maximizes social surplus: a take-it-or-leave-it offer

of 3/4 is made to seller one; if rejected, a take-it-or-leave-it offer of 1/2 is made to seller two;

if rejected, a take-it-or-leave-it offer of 1 is made to seller one.

Proof The proof is similar to that of Theorem 2. Let

γ(q1, q2) =


1, if q1 ≤ 1/2
3/4, if q1 > 1/2, q2 ≤ 1/2
1/4, otherwise.
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Figure 7: Sequential take-it-or-leave-it Offers

Observe that

λ̃1(q1) =
{ ∫ q1

0 (1− w1(t))dt, if q1 ≤ 1/2
0, if q1 > 1/2.

and

λ̃2(q2) =
{ ∫ q2

0 (3/4− w2(t))dt, if q2 ≤ 1/2
0, if q2 > 1/2.

Note that λ̃s is non-negative. Integrating by parts, we have∫ 1

0

∫ 1

0
λ̃1(q1)

d E1p1(q1)
dq1

dq1 dq2 =
∫ 1

0

∫ 1

0
1q1≤ 1

2
p1(q1, q2)(w1(q1)− 1)dq1dq2

and ∫ 1

0

∫ 1

0
λ̃2(q2)

d E2p2(q2)
dq2

dq1 dq2 =
∫ 1

0

∫ 1

0
1q2≤ 1

2
p2(q1, q2)(w2(q2)− 3/4)dq1dq2.

QED

The mechanism described in Theorem 4 belongs to a larger class of mechanisms in which

seller types are partitioned into intervals, low seller types are made (appropriately chosen)

offers in turn, then higher seller types are made offers in turn and so on until potentially all

seller types are made offers. Some reflection will reveal that as the partition is made finer,

such mechanisms actually approximate low-price mechanisms.
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5 Conclusion

Our results illustrate that mechanisms constructed by combining features of both auctions and

direct negotiations, can easily dominate the component mechanisms in terms of social surplus.

We illustrate the environments in which each richer hybrid mechanism is optimal. We exploit

the duality of the implicit linear program. The responsiveness of the social surplus function

to changes in qs is fundamental in the construction of the dual variables that demonstrate

the optimality of the hybrid institutions. These techniques could be used with any trading

institution that can be described as a direct revelation mechanism, and with any additional

constraints on outcomes that can be incorporated as linear constraints on the-probability-of-

trade functions.

21



6 References

Anderson, E. J., and P. Nash (1987): Linear Programming in Infinite-Dimensional Spaces.

New York: John Wiley & Sons.

Branco, F. (1992): “The Design of Multidimensional Auctions,” Working Paper 19-92, Banco

de Portugal.

Gale, I., and T. Holmes (1993): “Advance-Purchase Discounts and Monopoly Allocation of

Capacity,” American Economic Review, 83, pp. 135-146.

Lang, K., and R. Rosenthal (1991): “The Contractor’s Game,” Rand Journal of Economics,

22, pp. 329-338.

Manelli, A.M., and D.R. Vincent (1995): “Optimal Procurement Mechanisms,” Economet-

rica, 63, pp. 591-620.

Manelli, A. and D. Vincent (2003a): “Bundling As An Optimal Selling Mechanism For A

Multiple-Good Monopolist,” Working Paper , University of Maryland.

Manelli, A. and D. Vincent (2003b): “Pricing, Revenue Maximization, and the Multiple-

Good Monopoly: a Multidimensional Mechanism Design Approach,” Working Paper ,

Arizona State University.

Morand, P.-H., and L. Thomas (2003): “On Non-responsiveness in Adverse Selection Models

with Common Value,” Working Paper , CRESE, Université de Franche-Compté.
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