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There are many situations in which a seller, often a government, auctions many similar items over a
long period of time. For example, over the past severa decades, the Federal Deposit Insurance Corporation
(FDIC) and the Resolution Trust Corporation (RTC) have auctioned tens of thousands of houses for tens of
billions of dollars. Over the past thirty years, the U.S. Department of the Interior has auctioned billions of
dollars worth of timber cutting rights and off-shore oil leases. Sales of treasury bills are in the trillions of
dollars. This paper provides a procedure for increasing the seller's revenue over that obtained by ad hoc
formulae used in practice by using historical datato improve on the minimum acceptable bid, or reserve price,
imposed in the auction. We apply the procedure to datafrom six separate real estate auctionsand find alower
bound for the optimal reserve price for these property of 75% of appraised value, significantly more than
reserve prices often used in practice. Because the procedure is applicable to environments of considerable
economic value, including not only real estate but a so oil and other mineral rights, timber, radio spectrum and
treasury bills, there is a potential for application of our theory to create a significant amount of increased
revenue.

In contrast to much of theliterature, we study an environment which allowsfor affiliation inthesignals
and common components to value, and in which participation is endogenously determined. With some
important exceptions, the empirical auction literature has concentrated on the independent private values
environment in which bidders know their own valuations and these valuations are independently distributed.*
Such models cannot account for either correlation in valuations, as would occur if there are common factors
that influence value and vary from auction to auction, or in unobserved factors affecting valuations that are

common to the bidders.? These factors are clearly important in any rea world auction environment, as Paul

! The most important theoretical treatment is Paul Milgrom and Robert Weber (1982), which devel oped the mathematical tools used
in the present study. The auction literatureis surveyed in McAfee and John McMillan (1987a). More specialized surveys are provided
by Milgrom (1988) and Robert Wilson (1991). Optimal auctions with correlated values were studied by Jacques Cremer and Richard
McLean (1985), McAfee, McMillan, and Philip Reny (1989), and McAfee and Reny (1991).

2 Even if bidders know their own value for the item bei ng sold, it would be rather surprising if these valuesweren't correlated through
unobserved factors. For example, the desirability of awork of art purchased purely for private viewing is likely to be correlated across
bidders. Moregenerally, biddersonly receive an estimate of thevalue, and the realized val uewill depend on unobserved factors correl ated
with al of the bidders signals; e.g. the amount of oil in atract is unobserved prior to drilling, but is presumably correlated with al the
bidders signals. In addition, the potential for resale at an uncertain future price induces correlation in the bidders valuations.



Milgrom and Robert Weber (1982) persuasively argue. In addition, the auction literature has focused on the
case of an exogenous set of bidders. 1n many real situations, bidders are attracted to the auction by potential
profits, and changes in the salling mechanism will change the bidders' participation decisions.

Inall but thes mplest environments, optimal selling mechanismstend to beextraordinarily complicated
and depend on the distributions of signals, utility functions and other aspects of the environment that are not
actually observable but assumed known in order to fully specify a moddl. While we will also assume that
agentsin the model know the distributions of signalsand utility functions of the other agents, in contrast to the
existing literature, we s mply derive alower bound on the optimal reserve price that does not depend on specific
knowledge of the distributions or utility functions posited in the model.® That is, the lower bound will be
distribution-free.* We consider this approach to be an improvement over the optimal auctions approach
because our approach is more likely to be robust to failuresin the assumptions, as our approach depends on
fewer assumptions and less knowledge on the part of the seller. In addition, by focusing on a smple
improvement that aseller might reasonably adopt, rather than acomplex optimal auction, our approach ismore
practical.

Consider asequenceof similar itemssold by auction. Theseitemscould be houses, off-shoreoil rights,
or other related items. We consider how to use datafrom early auctionsto adjust the reserve pricefor the later
sales. We presume that items that fail to sell have realized values prior to the subsequent auctions of new
items. For example, itemsthat fail to sell in early auctions may also be sold at auction or by bargaining or by

any other means. In particular, in the real estate sales application, houses that failed to sell in early auctions

3The present study isan extension of theresults presented in McAfee and Vincent (1992), which applied arelated analysisto the case
of off-shore oil auctions. The present study allows for more general valuation functions, and does not depend on observation of the ex
post vaue of theobject. |n many cases, observation of the ex post value of sold objectswill beimpossible; the OCS oil lease auction data,
studied by Kenneth Hendricks and Robert Porter, with coauthors (1987, 1990, 1992), is an exception in this regard. Perhaps most
importantly, the present study computes improvements for potentially large adjustments to the reserve, while the previous study applied
only to small changes. In addition to our earlier study, McAfee and McMillan (1987b,c), Harstad (1990) and Levin and Smith (1994)
examine endogenous and stochastic participation in auctions.

4 Distributions and uti lity functions are the primitives of auction theory and wefollow theliterature in assuming that these primitives
are common knowledge of the bidders. Our constructed lower bound is observable in many auction data sets. In contrast, setting an
optimal reserve pricein an independent private values auction requires knowledge of the distribution of valuations.
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were sold later by bargaining or subsequent auctions, and a price for the government realized. This later
realized price, discounted to the time of the initial sale attempt, comprises the data for the adjustment of the
reserve for subsequent auction of new items.

We show that the discounted expected sale price of itemsthat failed to sell in past auctionsisalower
bound for the optimal reserve, provided this average sale price exceeds the past reserve. It is useful to
distinguish ex ante considerations of the seller, which occur prior to the participation decisions, from ex post
considerations, which occur at thetime of bidding. Endogenous participation impliesthat the biddersearn zero
ex ante expected rents. Thus, on average, the entire gains from trade accrue to the seller, and in contrast to
models with an exogenous number of bidders, the seller wishes to post an ex ante efficient reserve price.
However, efficiency ex post means setting a reserve price equa to the seller's value associated with retaining
theobject. For alarge class of environments, the ex ante efficient reserve exceedsthe ex post efficient reserve,
because of an entry externality. Therefore, the seller ex ante should post a reserve price above the seller's
opportunity cost of sale.

Two complications arise in calculating the value of the object to the sdller. First, the ex post efficient
reserve holds the participation strategy of the bidders constant, and equates the value of itemsthat just fail to
sl at the current reserve to the seller's expected value of these items,” rather than the average value of al
unsold items. Redlistically, though, it is the average value that is typically observable. Second, even the
average value of unsold itemswill tend to vary with thereserve. If unsold goodsare kept by the seller and used
in some aternative capacity of known value, then the seller could simply observe the vaue of unsold goods.
However, more plausibly, the value of the item depends on some imperfectly observed intrinsic quality. This
is particularly the case when the opportunity cost of sale in the present auction is the value of salein a

subsequent auction. Thisquality will tend to be correlated with buyers willingnessto pay, and thus changing

5 That is, the ex post efficient reserve, r, must satisfy the condition that it equal the seller's value of items that fail to sdll at areserve
r but would sell at any reserver-: for small £>0, sincethis equates the seller's value of selling and not selling at the margin. We will refer
to this value as the value of margind items.



thereserve pricewill change the quality, and hence the expected valueto the sdller, of unsold items. Therefore,
changes in the reserve price change the composition of the set of objects that fail to sell, a classic case of
sample selection bias.

The sample selection problem implies that the present discounted expected value of unsold itemsisa
lower bound on the appropriate reserve price. Suppose that the current reserve priceis less than the average
resale value of objectsthat fail to sell inthe current auction. Then the value of margina objectsthat fail to sell
at the current reserve exceeds the average va ue of objects that fail to sell, which by assumption exceeded the
reserve. Thus, whenever the average present val ue of future resale exceeds the reserve price, the reserve price
should be raised to at least this average value.®

We apply thistheory to auctions of real estatein 1997.While reserve prices were officially kept secret
for most real estate auctions, there is substantial evidence that the reserve was less than 75% of appraised
value, and in some casesreserve prices arelessthan 50%. Wefind that the appropriate reserveisat least 75%
of appraised value, indicating that the government is selling houses with too low areserve.” In particular, we
conclude that plans for the RTC to lower reserve prices to 60%, or even 50%, of appraised value are
misguided.®

Our evaluation of the profitability of raising reserve prices depends on the theory being an accurate

description of theactual environment. To assessthisissue, we collected dataon auctions conducted in the early

b Rais ng the reserve will, of course, increase the value of the margina good that failsto sell. Thus, raising the reserveto the average
value will result in areserve that is still too low.

" \We have not considered management expensesinvolved in resalein computing this outcome, although we did account for foregone
interest. The expenses involved in resale would tend to lower our estimate of the optimal reserve price. According to the Wall Street
Journal, May 30, 1991, p.1, "The costs of carrying seized property - including fire and liability insurance, general upkeep, repairs from
vandalism, capital improvements, property taxes, legal fees, and, most significantly, theimmobilization of otherwise unproductive assets-
can run 20% of the property's appraised value annually." According to Douglas Hodge, a broker and property manager who has
represented the FDIC, a more reasonabl e figure for maintenance and auction commission chargesis 4% to 6%. Taking this number as
accurate we would find an appropriate reserve of about 70% for buildings.

8 According to the New York Times, March 26, 1991, p. D1: "Under the plan, Resolution Trust will be able to immediately mark
down the price of red estate by 20% of appraised value, 40% after 6 months and 50% after 18 months. EXisting regulations require
periodic appraisals and permit the regulators to mark down the prices of property immediately by only 5 to 10 percent, 15 percent after
six months, and then 20 percent after 9 months."



1990's with published reserve prices held by abank. We find that in the neighborhood of reserve prices at
about 50% of appraised value, increasing reserve pricesincreasesexpected revenue. Analternativeexplanation
for the effect of higher reserveson final sale pricesisthat the reservesreflect correctionsto errorsin appraisals
- higher reserves are posted when it is observable to the seller and buyersthat the property isworth more than
its appraisal. However, were this aternative explanation true, the properties with high reserves would be as
likely to sell as properties with low reserves. In fact, higher reserves are associated with higher probabilities

of failing to sell, supporting the conclusion that the reserve price is inefficiently low.

1. The Affiliated Values M odd with Endogenous Entry: Bidder Behavior

We assume that thereisalarge number, n, of potential bidders, sufficiently large so that even without
a posted reserve, it is not an equilibrium for al biddersto bid. For acost s, each bidder i can obtain asignal
% which is aredlization of the random variable X; with cumulative distribution function F(Xi|e), where s is a
vector of variables not observed by any agent. Bidders who do not pay s are assumed not to bid, perhaps
because they do not learn about the existence of the auction without paying s. We call  the common
component. In applications, e represents all aspects of the item for sale that affect the value of theitem but are
not observed by the agents. By convention, higher values of e correspond to higher values of the good.
Bidders signals are independently distributed, conditional one. We aso assume that X; has a smooth density
f(Xi|p). The value of the good to the buyer, given realized signal x and common component e, is u(x,e). The
payoff u is assumed to be nondecreasing in al of its arguments.

Thismodel isless genera than Milgrom and Weber's (1982) model in two respects. First, Milgrom
and Weber do not assumethe signals are conditionally independent. Second, other buyers signals do not enter

into the payoff u of a given buyer i. We assume, following Milgrom and Weber, that each of the random



variables, X,,..., X, are affiliated with the common component,e.° Asisstandard, u, f, s, n and the distribution
of & are common knowledge among the potentia buyers.

The model is usefully illustrated by considering the sale of ahouse. The variables s represent al of
the unobservabl e attributes of the house, measured so that higher values of e represent higher quality. Potential
buyers decide whether to examine the property; those that conduct an examination incur acost s. Each buyer
forms an estimate of the value of the property, denoted x, which is a sufficient statistic for everything
observable about the house, from the color of the appliances to the sagging roof.’® Armed with the estimate
X, buyers submit bids in an auction. The seller's value of the house if the house failsto sell is denoted o.

Thesdller holdsan auction with reserve pricer. Theauctionform may beany of afirst or second price
auction or ora ascending bid auction. In such auctions bidders will not participate unless their signal is
sufficiently high, at alevel Milgrom and Weber (1982) call the screening level, which we denote by x,. The
screening level isthesignal suchthat, knowing that all other bidderseither didn't participate or observed signals
lessthat x. (and hence didn't submit bids), a buyer with signal equal to x;, just breaks even by paying r for the
good.

Thetiming isasfollows. First, the seller announcesr. Second, the buyers choose whether or not to
pay acost sto acquireasignal. Only the symmetric random participation equilibrium will be considered, in

which buyers choose to acquire asignal with probability pc(0,1).** Third, informed buyers submit bids; bids

® For two random variables, affiliation is also known as the Monotone Likelihood Ratio Property. For general functions as well as
densities, affiliation iscalled log supermodul arity. A twice differentiablefunction f is supermodular if the cross-partials are non-negative.
fislog supermodular if log(f) issupermodular. SeeMilgromand Roberts(1990) for an exhaustive set of consequencesof supermodul arity.
Affiliation may be thought of as a strong form of local positive correlation - that is, two random variables are affiliated if and only if
increasing functions of these random variables are positively correlated, on every sublattice of the variables domain. One consequence
of affiliation, used repeatedly in the present analysis, isthat a=ae %ﬁex)le) > 0.

19}t is arestriction that x be univariate. To our knowl edge, there is no theory of bidding with multidimensional signalsthat does not
readily reduce to the univariate signal case.

u Asymmetric equilibria, with somebuyers participating with certainty and othersnot at all, exist. Theseequilibrialead to qualitatively
similar results, and indeed avoid some of the problems associated with randomi zed participation. However, they asointroduce an "integer
problem," in that participation tends to be a step function of the reserve. See McAfee and McMillan (1987c) for an analysis of such
equilibriain the independent private values framework.



less than r are ignored. Fourth, the bidder with the highest (final) submitted bid in excess of r obtains the
object, and pays a price that will depend on the specific auction form employed. If no buyer submits a bid
exceeding r, the seller kegpstheitem and obtainsthevalue o(e). The seller'svalue o isassumed nondecreasing
ine. We consider in the theory the sale of asingle object, and leave implicit in o the means by which the seller
realizesthe opportunity cost of sale. Bidderswho don't purchase asignal obtain zero. Bidderswho purchase
asignal but fail to obtain the object obtain the von Neumann-Morgenstern utility -s, while bidders who pay p
for the object abtain u(x;,6)-p-s.

A standard approach in anayzing equilibriain auctionswith afixed number of biddersisto conjecture
that bids are monotonic functions of signals. This conjectureisthen used to determine a probability of winning
theauction for agiven bid, b, and to determine the bidder’ s expected utility at the bid, b. The best response bid
iscal culated, symmetry imposed and theresulting bid function isthen checked for themonotonicity assumption.
In affiliated values auctions, monotonicity is generaly implied by the supermodularity assumption embodied
in affiliation. For a fixed participation ratio, p, we can conduct a smilar analysis. Let B(e;p) denote an
equilibrium bidding function.” A sufficient condition for B(e; ) to be nondecreasing isthe log supermodul arity

of 1-p(1-F(xJe)), or

Kl f(x|0)
30 1-p(1-F(x|0))

(@D} (VX =Xx.)

Condition (1) is a sufficient condition for al the intuitive monotonicities derived below, and so we

assume it here, dthough we note below when it is used. Affiliation of f implies (1) for p=1." The meaning

12 | sealed bid auctions, B(;p) isafunction of abidder's signal aone. In ascending bid auctions, it is also a function of the
bidsat which rival bidders drop out. In thislatter case, monotonicity meansB(-;p) isincreasing in the signal x for al values of drop
out bids of rivals.

1% See Athey (1995) for a discussion of log supermodularity and its application. The proof that this condition is sufficient for
monotonicity is an adaptation of proofsin Milgrom and Weber (1982).

14 Since Milgrom and Weber (1982) have p=1, (1) holdsin their model by affiliation. Inequality (1) must fail to hold globally if o is
very closeto zero, and in particular fails for x near itslower bound, as-0. However, we need (1) only for x=x,; thisisfeasible even for
p=0. While asomewhat weaker condition will sufficefor monotonicity of the bidding function (in particular, the log supermodularity of
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of assumption (1) isillustrated in the following thought experiment. Consider first the event of receiving
exactly one bid, B(x;;p), and second, observing no bids at al. Assumption (1) impliesthat the expected value
of the good given thefirst event exceeds the expected value of the good given the second event (thisis proved
inLemmab below). There aretwo circumstances under which abuyer does not bid: either the buyer received
asignal lessthan x., or the buyer did not obtainasignal at al. That abuyer obtained no signa is"good news"
(Milgrom (1981)) about the value of the object, relative to the knowledge that the buyer's signal was very low.
Assumption (1) impliesthat it is better newsto see asignal exactly equa to x,, and hence amarginal bid, than
toseenobid at all. Whether assumption (1) is plausible, then, depends on whether x, is sufficiently large that
the signal x. isgood news. The value of x. dependsonr.

We denote expectation over s by E,. The ex ante density of asigna is then h(x) = E, [f(x]e)].
We denote expected equilibrium profits of abidder with signal, x, by =(x). Note that in environments other than
independent private values, this function will typically differ depending on the auction form that is used.
Nevertheless, our results are robust to thisindeterminacy. The screening level satisfies n(x,)=0, or
@ 0=Ey(u(x.,0) - r)(1- p(1- F(x[0)"*f(x[0).

The participation decision, which determines p, is given by bidders' indifference between expending
s to become informed, and obtaining zero. Thisimplies
(3 s= jn(x) h(x) dx
Equations (2))(r and (3) jointly determine x, and p.

One naturally expectsthat an increasein the reserve pricer would increase the screening level x, and
decrease the participation probability p. That is,

dx
@ —>0ad®<o
dr dr

(1-p(1-F))™ f 2 would suffice), (1) is nevertheless the "natural” sufficient condition to combine with affiliation, especialy as (1) is
independent of n.



However, this“natural” comparative statics does not hold in al environments. Indeed, it is possible to show
that p does not necessarily fall monotonically asr rises. Consider a common value model as follows. Let
u(x,0)=o, 6{0,1}, Prob[e=0]=.5,F (x|0) = x®"*, and consider a single object sold at a second price auction.
Figure 1 shows how x, and p change with r for the case with the maximum number of bidders equal to five.
Although the non-monotonicity in p isdight it appears robust and is more easily generated with higher values
of n than low values.

One reason for the non-monotonicity liesin the peculiar effect that increasing the number of bidders
may have on expected bids and expected seller revenuesin the presence of common values. Steven Matthews
(1984) shows that expected buyer profits need not be monotonic in participation. Thus, if ariseinr, leadsto
an increasein x,, holding p fixed, for example, theinitial impact may, as expected, be to lower bidder profits.
In order to continue to satisfy the zero profit entry condition, it may be necessary either to raise or lower the
expected number of bidders by raising or lowering p depending on the effect of the number of bidders on bidder
profits in the particular environment.

This observation suggeststhat asthe common val ue feature vanishes, then the ambiguity of theimpact
of r on x,, and p aso disappears. With second price auctions, under private values, even with affiliation, this
isindeed the case, as the following lemma shows. Lemma 1 does not require assumption (1).

Lemma 1: Suppose u(x,6)=X, Then (4) holdsin second price auctions.
All proofs are contained within the appendix.

It is readily shown by differentiating (2) that at least one of the inequalities in (4) must hold. In
addition, locally around p=0, (4) holds, aswe demonstrate bel ow for second priceauctions. Thisresult depends
on (1) holding. As p-0, inequality (1) requires that x, be sufficiently large. For example, suppose e has
support [6),6,]. For F(x|0) = x®%, (1) holds ifx_>e "*". similarly, if F(x|0) = 1- e »®, (1) is
equivalentto x> 6,/A.

Lemma 2: For s sufficiently large, so that o is closeto 0, (4) holds in second price auctions.



Thereisapossibility of multiple solutionsto (2) and (3), because expected buyer profits need not be
monotonicin participation. Weignorethiscomplicationin theremainder of theanalysis. Stahility requiresthat,
as participation increases, then expected profits fall, for otherwise a dight increase in bidders beliefs about
participation would lead to increased participation, reinforcing the expectation. Given stability, in the
appendix, thereis asmple to state, but difficult to interpret, sufficient condition imposed on the distribution
F for x. to riseand p to fall withr.

2. The Effect of Reserve Priceson Seller Profits.

Sincethe ex ante surplus of buyersis zero, the seller obtains the gains from trade net of entry costs.’®
Thus the seller wishesto select an efficient auction. Intuitively, this requiresthat the seller sell only when the
expected value of the object to abidder exceedsthe sdller'svalue, denoted o(p). However, we assume that the
seller does not know the redlization of 6, and thus cannot trivialy set an ex ante efficient reserve price.”’
Denotethe seller's surplus by ¥. Assuming that the bids are monotonic in bidder signalsand exploiting the fact
that, in equilibrium, ex ante bidder profits are zero, a useful expression for ¥ is

(5) ¥ = Ejo(0) + f(u(x,ﬂ) - o(0))n(L - p(1-F(x|@))™ *pf(x]0) dx - nps

r

Thus, the sdller's payoff is the value of not selling, o(e), plus the net gains from trade when trade occurs, u-o,
evaluated at the highest signal received, minus the cost of buyer participation, nps.

Expressed asin (5), the sdller's value depends on the reserve r only through the dependence of x. and
p onr. Thisfact explains why the analysis does not rely on the specific form of auction used. Note, however,
the result does not imply that seller expected revenues are independent of the auction mechanism. The failure

of revenue equivalence in affiliated auctionsimplies that different auction mechanismswill generate different

15 our formulation of stabil ity depends not on (3) directly, but on (3) with r replaced with the value solved out from (2).
16 A similar result is noted by McAfee and Vincent (1992) and Levin and Smith (1994).

71f the seller knowse, M ilgrom and Weber (1982) show that the seller should announce e to the bidders, in an environment where
participation is exogenous.
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valuesfor x, and p for agiven reserve price, r. For example, hold x. and r fixed, and consider the equilibrium
value of p from afirst price auction. Since we know that expected payments in second price auctions are
weakly higher than in first price auctions, it must be the case that expected bidder profits would be lower at
the same value of p. Since this value of , yielded zero profits including entry costs in the first price auction,
the same values of x. and p can not represent an equilibrium in a second price auction.

Equation (5) makesclear that the effect of the reserve priceinstrument for aseller’ sexpected revenues
depends on how it changes x. and p. We have shown that these effects can be ambiguous. In this section,
however, in this section we explore the consequences of changes in r, when x, and p change with r in the
expected ways. Lemma 3 characterizes the effects of changesin x, and p on the seller's payoff, which is used
in establishing the effect of a change in the reserve, using (4).

Lemma 3: Assume (4) holds.*®

(6) % = ~Ey[(r - a(0)n(L - p(L - F(x,10)" *pf(x [0)],
o¥ n-1
@) 5 < Ey[(r - o(0))n(1- p(1- F(x [0)" 1 (1- F(x[0))]-

Lemma3 computesthe value of increasing both the screening level x, and the participation probability
p to the seller, and in both cases rel ates these val ues to the difference between the reserve price and the seller's
value. Increasing the screening value increases the sdller's payoff if and only if the seller's value is less than
the reserve price, evaluated at the circumstance where a buyer is just indifferent between paying the reserve
and not purchasing (that is, the seller's expected value for the marginal property). In contrast, there are two
effects from increasing the participation probability. Thefirst effect, which isshownin (7), isthat increasing
p increases the chance that exactly one buyer iswilling to pay thereserve, anet gaintothesdler of r - 6. In

addition, thereisasecondary effect whichisnonpositive. Insecond priceauctions, the effect isstraightforward

BThe provided proof of Lemma3isfor second price auctions. A similar proof holdsfor first price and ord auctionsand isavailable
from the authors on request.
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to describe. There is a marginal loss which is the expected value of the second highest bidder, minus the
expected payment of the highest bidder. For private values, this second term is zero, but in general the
expected value of the second highest bidder (conditional on that bidder being second highest) exceeds the
expected value of that bidder conditional on tying for being highest, which in turn equals the bid.*

We are now in a position to characterize a lower bound on the optimal reserve price, based on
historical data for auctions of similar items. Theorem 4 depends on both (1) and (4). Define ENX to be the
expectation over s conditional on the highest signal being x.

Theorem 4. Fix a reserve price r,, and suppose thatr, < ﬁxro[o(ﬂ)] = g,, that is, the expected value of

propertiesthat just fail to sell is greater than the reserve. ThenLIJ | > 0. Expected seller profitsrise

dr lrereo,
with a small increase in the reserve.

Theorem 4 indicates that if the expected value to a seller, o, of properties that just fail to sdll at a
reserve price, ro, is greater than r,, then seller expected profits are rising in the reserve price for any reserve
betweenr,and o,. InFigure 2, we graphically illustrate Theorem 4. The curve represents the expected value
of marginal unsold items, E[o(0)]. This depends on the reserve price through its effect on x, and p. If the
reserve price is less than E[0(0)], increasing the reserve to E[o(0)] will till leave the reserve below the
optimal one, denoted r*. That E[o(0)] isincreasing in r is a consequence of affiliation, the monotonicity of
o, and (4). However, the uniqueness illustrated in Figure 2 cannot be guaranteed without placing further
restrictions on o.

Theorem 4 impliesthefollowing. Consider sales of houses, and suppose that the reserve priceisless

than the present value of resale for houses right at the margin, i.e. those with abidder just indifferent between

bidding and not. Then it is profitable for the seller to raise the reserve price to the present value of resale for

%D oes asecond price auction with ex post efficient reserve attract too many bidders? The answer isyes. Suppose the reserve price
is chosen in such a way that (6) is zero, which is the ex post efficient reserve price. Then the right hand side of (7) is nonpositive.
Consequently, if the reserve priceis chosen in such away that the sdller's payoff is maximized with respect to the screening level, then
the participation probability p istoo high. Thisobservation, which appearsempirically useless, doesnot depend on either assumptions (1)
or (4).
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those houses. By itsdlf, thisimplication of Theorem 4 would be difficult to implement empirically, because
it is difficult to establish which houses were at the margin, that is, which houses had a bidder indifferent to
bidding on them.?> However, the average value of unsold houses is less than the value of marginal unsold
houses. Whilethis proposition seemsintuitive, it in fact reliesupon inequality (1) for aproof. The reason the
proposition might be lessthan obviousisthat failing to attract any bidders at all may be aresult of no bidders
becoming informed, which could be good news about the value of the property, as compared with the event of
attracting one marginal bidder. However, assumption (1) impliesthat attracting the marginal bidder isoverall

better news than the event of attracting no bidders at al, as the following lemma shows.

L C Eglo(0)(1- p(1- F(x [O))" (% [0)]  Eg[o(®)(1-p(1- F(x10))"] _
emmabs: > =0.

Eo[(1- p(1- F(x[0))" *f(x [0)] Eq [(1- p(1- F(x[0)))"]

Lemma5 showsthat the value of the good to the seller in the event that no bidders are attracted isless
than the value of the good to the seller in the event that one marginal bid is attracted. Combining Theorem 4
and Lemma 5, we have:

Corollary 6: Suppose that the average value o of unsold items exceeds the reserve price. Then raising the
reserve price to o increases seller revenue.

Corallary 6 dependsonly on observables, and containsatestable prediction. In particular, theaverage
valueto the seller of unsold itemsis often observable by the seller. In the data considered bel ow, we observe
houses that don't sall in an auction, and the later sale of these houses. From data on the later sale price, we
construct a present value, and find that the present value to the seller of red estate that does not sell is about

75% of appraised value. Thisestimate isalower bound of the appropriate reserve price.

20 McAfee and Vincent (1992) propose a methodology for solving this problem, for common value auctions. The strategy requires
the observation of ex post valuations, such as are available for the OCS oil auctions studied by Hendricks, Porter and Boudreau (1987).
The technique isto look at the properties that received bids close to the reserve price, and estimate the distribution of ex post valuations
conditional on amarginal winning bid. Theentiredatabaseis used to estimate the expected winning bid conditional on the ex post value.
Given thisdistribution of valuesfor propertiesreceiving marginal bids, it isthen possibleto estimate the average winning bid of marginal
properties, which, with appropriate discounting, is approximately what could be expected if the properties were re-auctioned | ater.
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Corallary 6 and Theorem 4 both state quite intuitive economic propositions. Effectively, both results
state that one shouldn't sell items for less than their value in an aternative use. These propositions holdin a
broad set of circumstances. It isremarkablehow difficultitisto establish what seem like obviouspropositions.
The source of the difficulty, of course, isthe endogenous entry of bidders; dterationsin the reserve price may
have adverse impact on participation in auctions, and an intuition arising from models with exogenous
participation doesn't account for this effect.

Typicaly, the seller who fails to sall in the current auction will generaly attempt to sell again later;
this is the case in the real estate auctions we study below. It is important to realize that our theory will
accommodate this case. The theory itself accounts for the sample selection bias, in that the distribution of e
for itemsthat fail to sell explicitly dependson thereserve price. Thus, we are considering the appropriate class
of itemsthat fail to sell. Furthermore, the theory suggests away to enhance revenue, and therefore suggests
ameans of increasing the value of itemsthat fail to sell, that is, increasing o. As the theory will suggest that
the average value of ¢ conditiona on no sale isalower bound for the optimal reserve, the historical average
value of o remains alower bound on the optimal reserve after steps are taken to increase o.

There are severa limitations of the moddl that should be acknowledged, because these limitations are
not entirely consistent with the application. We assume symmetry among the buyers. While this may be
realistic for a given type of buyers, house auctions attract both buyers who desire a house to inhabit, and
dealers or brokers, who will sell any propertiesthey buy. These two types of buyers may have distinct value
distributions, that is, both u and F may vary across the two classes. In addition, in our model, information
collection isadiscrete decision. In practice, information collection might be better modeled as a continuous
variable. Moreover, we have assumed symmetry in the information collection, or participation, cost s. While
we consider that constant participation cost is a better model in many applications than an exogenous set of

bidders, amore general model than either case would posit adistribution of participation costs. We expect the
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analysis to be robust to such increasing costs, but the complexity of such amode is daunting.* Finaly, we
remind the reader that condition (4) isasufficient condition for the result. If either participation falls with an
increase in the reserve price or the screening leve fallswith an increasein the reserve, then theimpact of arise
in the reserve may (but not must) be reversed. We believe that (4) is the most likely result. In Section 4 we

conduct atest that provides some empirical support for this presumption.

3. FDIC Auctions

As an example of how Corollary 6 can be implemented to determine if an insufficiently high reserve
price was used, we collected auction information from 6 FDIC auctions held between November 1997 and
November 1998. In these 6 auctions, atotal of 137 properties with an appraised value of $34.8 million were
offered for sale. The auctions were moderately successful in that 90 or 65% of the properties were sold. For
each auction we were able to obtain the total of the sale pricesfor all sold properties. Summary statistics from

this data set are provided in Table 1.

2L One reason to expect that Corollary 5 would continue to hold in amodel with adistribution of participation costsisthat the seller
now has some monopoly power, and thus has an incentive to raise the reserve price above the socially optimal level. Thus, our anaysis
of thesocially optimal reserve should remain alower bound. Theanaysis, however, iseven more complicated than the current study, for
there must now be a critical level of the participation cost, so that agents with lower participation cost choose to participate.
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Table 1: FDIC Summary Statistics

Auctions DC-1 DC-2 FL-2 Louisiana Arkansas AL,GA,&MS
Total/Average

Number of Properties Auctioned 39 14 41 19 9 15 137

Total Appraised Value $24,514,180.00 $2,440,001.00 $5,875,800.00 $1,052,200.00 $236,930.00 $700,250.00 $34,819,361.00
Number Sold at Auction 29 11 33 6 2 9 90,
Total Revenue Raised at Auction $7,020,068.00 $986,700.00 $4,123,910.00 $242,545.00  $31,200.00 $172,802.00 $12,577,225.00
Avg. Sale Price $242,071.31  $89,700.00 $124,966.97 $40,424.17  $15,600.00  $19,200.22 $139,746.94
Appraised Vaue Unsold Properties $14,981,000.00 $151,000.00 $152,500.00 $766,900.00 $205,630.00 $379,850.00 $16,636,880.00
Number Of Properties Later Sold 11 3 8 13 7 6 48
Tota Sales Revenue -- Later Sales $11,214,500.00  $51,500.00 $30,265.00 $95,087.50 $111,600.00 $312,400.00 $11,815,352.50]
Avg. Sales Price -- Later Sales $1,121,450.00  $17,166.67 $4,323.57 $8,644.32  $15942.86  $71,480.00  $1,239,007.41
S.D. of Sales Price -- Later Sales $1,944,450.86  $19,775.83 $4,727.50 $21,461.70  $23,376.64 $120,602.87  $2,134,395.39
Avg. Days Before Later Sales 336 266 270 202 112 161 225
Avg. PVSP -- Later Sales $1,080,885.70  $16,547.67 $4,146.69 $8,369.72  $15,643.82  $69,302.99 $199,149.43

16



Three of the auctionswere oral and the remaining three were sealed-bid auctions. In the ord auctions,
bidders are deemed eligible upon providing evidence of $2000 of verifiable fundsfor each property the bidder
intends to purchase. A successful bidder must close the transaction within 30 days or forfeit a deposit equal
to 5% of the purchase price. Smilar deposits and rules of forfeiture are enforced for the sealed-bid auctions.
The FDIC does not reveal reserve prices. In their promotional brochure, the FDIC stipulates that some
properties may be sold “absolute”’ or with no reserve prices provided there is a minimum of two non-related,
qualified bidders. However, discussionswith FDIC officia sindicatethat they often withdraw the property from
the auction if bids do not reach their implicit reserve price expressed as a percentage of the property’s
appraised vaue.

The unsold properties were located throughout the country (14 were from the Washington DC area,
8from Florida, 13 from Louisiana, and 13 were from 4 southeastern states) and numerous property typeswere
represented. Of the properties offered at auction, 48 properties (valued at $16.7 million at the time of the
auction) were not sold at auction. Of these, 43 were either eventually sold (38) or are currently pending or
awaiting FDIC’ s acceptance of an outstanding offer. At present, 4 are still unsold and 1 was withdrawn from
sale. For the 43 sold or pending properties, the average time between the auction date and their eventual sale
was 229 days or approximately 8 months. For the 38 properties which were subsequently sold, the sales price
was on average 50% of the appraised value

The reserve prices were not announced.? The secret reserve prices must create some uncertainty in
the minds of the bidders, however, we proceed under the assumption that the bidders had a reasonably good

estimate of the reserve. Given that published accounts of FDIC rules provided some information about the

22 pccordi ng to the FDIC's Asset Disposition Manual, "Disclosure of estimated cash recovery or reserve or minimum prices on loans
or packages of loans or ORE properties can cause competitive harm to the Corporation. They should not be disclosed except to anyone
legdly entitled to such information. Case by case disclosure of minimum bid prices prior to a saleis allowed, however, as part of an
integrated marketing strategy.”

Thefrequent use of secret reservepricesby sellers (Ashenfelter (1989)) ismysterious, given that auction theory tendsto support
announcing thereserve. Vincent (1995) provides atheoretical rationale for secret reserve prices. An open policy of announced reserves
would appear to have two advantages. First, sellers should find it easier to commit to a reserve other than the ex post efficient reserve,
since with an announced reserve, it can more readily be verified that sellers followed their announced policy. Second, a secret reserve
would tend to unravel, in that sellers with unusually high opportunity cost of sale would tend to announce their reserve to force bids up.
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reserve price, this assumption does not seem unreasonable. In addition, it is not uncommon for sellersin oral
auctionsto indicate when the bidding hasfailed to meet the reserve (e.g. by takingsbids"from the chandelier”),
thus giving bidders a chance to increase the bid and meet the reserve; such apolicy, if understood by bidders,
has the effect of revealing the reserve price. Inthe next section, we consider asmaller data set with published
reserve prices. For an analysis of secret reserve prices, see Hendricks, Porter and Wilson (1994).

We are reasonably certain that the reserve price was at least 10% less than the appraised value, and
typically 50% less.?® For the 6 auctions the sale price was on average 75% of appraised value. In one auction
inwhich 11 of 14 propertieswere sold, the sale prices were 43% of appraised value. Since propertiesare never
sold for less than the reserve, this ratio provides an upper bound on the average value of the reserve, at least
among the properties that sold initially.** Bidding less than the reserve price is not necessarily an absolute
barrier to sale; the FDIC would negotiate with buyers who failed to meet the reserve, but were close. As
additional evidence, we observed four auctions by the First Interstate Bank in Austin, Texas, with an
announced reserve. In these instances, the reserve averaged 48% of appraised value. The data from these
auctions are utilized in the next section.

Each auction contained multiple properties. For these sales, we obtained apprai sed value (AV), which
averaged $347,018, and eventual transaction date and price, directly from the FDIC. Only one observation,
a property with a zero appraised value and which was later withdrawn, was omitted. The appraised valuein
the data was the prevailing appraised value at the time of the first auction.”® To construct the present value

of future sale price (PVSP), we discounted the future resale price using a 5% interest rate, which exceeds the

2 Accordi ng to an Associated Pressreview of congressional reports, agency documentsand land records, "RT C routinely sellsproperty
at 50% of the appraised value, or less." (Austin American Satesman, July 11, 1994, p. A11).
Thereisapotential sample selection biasin this data, since reserve prices are not observed. |If some of the reserves exceeded
the optimum, then relatively valuable properties would be counted in the seller's value of not selling, biasing our estimate of the seller's
vaue,

24 Of course, we cannot rule out the possibility that the properties which failed to sell had an unusually high reserve price.
% We obtained the appraised value directly from the FDIC.
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short term government bond or money market rates, but is less than the mortgage rate for the period. The
variable PVSP plays the role of o(s) (conditional on no sale) in the theoretical analysis, for it represents the
current value to the government of failing to sell. The average value of PVSP was $209,953. In the case of
properties that remained unsold, we assigned a value of zero.

Adapting the theory, and in particular Corollary 6, to this environment is straightforward.?® Thefirst
step isto construct an estimate of the mean value of unsold properties conditional on any publicly available
information. The only observable that is linked to value is the appraised value, and this was publicly known.
(We assume that the appraised value is a sufficient statistic for all theinformation available to the seller at the
time of the auction.) Moreover, since the appraised value is an attempt to estimate the actual value of the
property, one expects that both the discounted future sale price (PVSP) and the appropriate reserve should be
a percentage of the appraised value. With thisin mind, we regress PVSP on appraised value (AV) to determine
the seller’ s best estimate of the opportunity cost of selling given the information available. It is not obvious
whether this regression should include or exclude a constant term. Of course, including a constant yields a
better estimate of the relationship between PVSP and AV. However, typical reserve price policies appear to be
based on adirect linear relationship with AV suggesting that sellers may ignore this possibility for developing
an improved estimate.

Using Corollary 6, alower bound on the appropriate reserve is the average PVSP conditional on no
sale. The next step is simply to compare the relationship between this average and AV to (a candidate)
relationship between reserve price and AV. It isimportant to realize that the sample selection bias - that the

propertiesthat didn't sell at auction are not representative of the properties auctioned - is accounted for by the

% Corollary 6 assumes that the seller is maximizing revenue, or, aternately, maximizing socid efficiency (since the two notions
coincideinthemodel). Whilethe government considered other criteriaaswell asrevenue, the Asset Disposition Manual of the FDIC lists
as its first criterion "Timely sales which maximize recovery to FDIC on a net present value basis." None of the other criteria are
inconsi stent with revenue maximization, and include the use of seller financing, education of the brokerage community, fair trestment of
the pubic, provision of accurate information, and compliance with the law.
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theory. In setting areserve price, the seller knowsthat low quality propertieswill fail to meet the reserve, and
alower bound for the appropriate reserve price is the value of these low quality properties.

We regressed PVSP on the appraised value, both with and without a constant. 1n the regression with
a congtant, the constant is not significant (t = -0.80), and the coefficient on appraised vaue is 0.745, with a
t-statistic of 13.9. Thelower bound on a95% confidence interval is 0.637. Without a constant, the coefficient
on appraised value is 0.730, with a t-statistic of 14.4. In this case, the lower bound on the 95% confidence
interval is0.629. The adjusted R? is 0.815, indicating that the fit is quite good. With 10% discounting, the
coefficient on appraised value drops to .689, with a t-statistic of 14.4.

In case there were unobserved auction specific effectsthat entered into the rel ationship between PVSP
and AV, we attempted to account for them by a fixed effects regression, allowing for some auction specific
variation. Inthis case, the constant remainsinsignificant but the coefficient on AV risesto 0.78 with at-statistic
of 11.9 and alower bound on the confidence interval of 0.65. This specification added little to the estimation,
however. An F-test that all six auction specific constantswereidentical easily accepted the null (F(5,40)=0.27)
as did test of the hypothesis that all six constants were zero. %’

Another issueis heteroscedasticity. If there are object or auction specific featuresthat are responsible
for difference in variances, then the estimated standard errors will not be correct. Using White's test for
heteroscedagticity, both the OLS and the fixed effects regressions yielded rejections of the hypothesis of no
heteroscedasticity. The OL S regression using White' s heteroscedastic-robust standard errors yielded alower
bound on the confidence interval for the apprai sed value coefficient of 0.41, probably below any reserve price
in effect. If the variance of the regression of PVSP on AV was linear in the appraised value, then a weighted

least squares regression would be appropriate using AV as the weight. This approach yielded a coefficient

2 random effects specification yielded the same results asthe full sample OL S because the estimated variance of the random effects
component was zero.
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estimate of 0.61 and a 95% lower confidence interval bound of 0.49.% If, on the other hand, the standard
deviation of the regression was linear in appraised value, the resulting weighted regression yields the much
lower coefficient estimate of .37 and a 95% lower confidence interval bound of 0.26.

An interesting question arises concerning our assumption that bidders must incur the signal cost sis
necessary in order to participate in the auction.?® Without this assumption, the standard monotonicity results
in auction theory no longer applies since uninformed bidders will generally be more optimistic than informed
bidderswith pessmigtic signals. Neverthel ess, we can investigate theincentivesfor biddersto follow astrategy
of smply aways bidding the reserve in the hopes of acquiring otherwise unsold properties and later reselling
them. Suppose a bidder used such a strategy (for all properties) and later was able to sell the property for the
same price as the government received. Table 2, Column 2 shows what the strategy would yield in discounted
expected profits, gross of bidding costs, under different assumptions about what the reserve price policy
actually was. Thefinal column shows what the maximum value of swould have to bein order to make such
a strategy unprofitable assuming s is expended for each property bid on. Thus, if the reserve price was 60%
of the appraised value and if the winning bidder expected to obtain the same later price as the FDIC for
properties that did not otherwise sall at the auction, a bidder who ignored al information and just bid the
reserve would make money if it cost less than $600 to submit abid. The strategy would yield zero expected
profits (gross of the bidding cost) at areserve price policy of just under 61%. The table suggeststhat if avery
low reserve price was used, it would have created quite astrong incentive to arbitrage against the government.
However, the conclusion requires the assumption that any such bidder could mimic or improve on the

government’ s resale practice.

2 vet afurther issueisthe assumed i ndependence of the observations per property. We see no obviousway to addressthis potential
problem and leave it as an open question.

2 \Weare grateful to both referees for suggesting this exercise.
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Table 2: Rewardsto Uninformed Bidding.

Reserve Price Policy Discounted Expected Profits Maximal Entry Cost
5 $1,749,307 $12676

.6 $83,618 $605

75 -$2,414,913 -$17,499.4

4. Tegting the Theory

The analysis of the previous section is subject to several criticisms, the most seriousisthe validity of
the maintained assumptions of the model. 1n addition, for most of the sample, reserve prices were kept secret,
which hasan unknown effect onthetheory itself. To assessthe empirical validity of the conclusion that reserve
prices of 50% of appraised value are too low, we collected an additiona data set of first time sales from for
auctions with published reserve prices, and assessed whether the properties with relatively high reserves
brought higher prices on average.

The data come from four oral auctions held by First Interstate Bank between April 1990 and
September 1991 for properties throughout Texas. Although each auction was for multiple properties
throughout Texas (1036 properties), our sampleisfrom saesin Travis, Harris and Dallas counties since we
obtained access to their central appraisal office records. In all four auctions, registered bidders are required
to provide a $3000 deposit for each property they plan to bid on. All sales below a predetermined threshold
(two auctions at $15,000 and two at $25,000) had to be purchased with al cash within 10 days. For sales
exceeding such thresholds, the seller isrequired to provide a 5% deposit and has 30 daysto close. Thebidder’s
inability to provide with the remaining cash or financing within the time period resulted in the forfeit of his
deposit. Many of these propertieswere poorly described in the auction brochure; thereisno reason to think that

a poor description in the auction listing is correlated with any other variable, but we can not rule out such a
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correlation (and consequent sample selection bias). We were able to obtain apprai sed valuesfor 52 properties,
including 7 commercia buildings, 19 residential properties, and the remainder residential and commercial lots.

Of the 52 properties for which we have complete data, 45 sold in the auction and 7 sold later. The
reserve price averaged 39% of appraised value for the properties that sold, and 52% for the properties that
didn't sell, suggesting that high reserve prices significantly increased the likelihood that the property failed to
sell. The present discounted average sale price of properties that initialy failed to sell was .76 of their
appraised value (standard deviation .36), in line with the data examined in the previous section. For buildings
that didn't sell, PVSP was .93 of appraised value.®

We computed the variable PVSP for these data. With propertiesthat failed to sell, PVSP is computed
as before. For properties that sold in the auction, PVSP is the undiscounted sale price. Asafirst attempt to
assesstheeffect of reserve priceson final sale prices, weregressed PVSP/AV, the percent of the appraised value
obtained by the seller, on r/AV, the reserve price as a percent of appraised value, with aconstant. The results
arereported in Table 3, with t-statisticsin parentheses. The reserve appearsto be significant inincreasing the
sale price. The data are plotted in Figure 3 with PVSP plotted against the reserve price, both as a percentage
of appraised value.

Table 3: Reationship of PVSP and AV by Type of Property*

Type Number  r/AV Coefficient ~ Constant Adj. R?
All Buildings 26 0.79 (4.3) 0.41 (4.2) 414
All Land 26 1.10 (4.9) 0.23(2.9) 484
All 52 1.01(7.9) 0.28 (4.8) 555

A more flexible approach is to regress PVSP on the reserve price and the appraised value. Thelogic
underlying this approach can beinterpreted in the following way. Suppose that the statistical model generating

the reserve price and PVSP was given by

%For the properties sold by the First Interstate, we obtained the assessed vaue prevailing prior to the auction from county records;
these are generdly updated every two years.

31t gatisticsin parentheses.
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r=0+u* AV+ i v+ €
PVSP=a+ B+ AV+yxr+v+e,

where the error terms, e, and ¢, are independent. This mode! assumes that there are two separate stochastic
processes, one determining the reserve price and another determining seller revenues. Both therealized reserve
price and the present val ue of seller revenues are partially determined by the appraised value. In addition, there
may be an auction specific term, v, which is unobserved by the econometrician. Furthermore, in a general
specification, the realized reserve price may also affect seller revenues. If « =0, (or if ¢,=0) we can Ssmply run
the second regression directly to test the null hypothesis that v is non-positive because, in this case, the
regressors are independent of the error term ,+v. For aregression on all properties, this approach yields a
significantly positive estimate of 0.98 on the reserve price coefficient with at-statistic of 7.3 and a coefficient
on AV of 0.21 (t=3.6), with an R? of 0.91 while the constant is marginally significant. The t-statistics were
computed using White' s heteroscedastic-corrected standard errors. These results suggest that arise in the
reserve will have a positive effect on seller revenues.

Unfortunately, we cannot rule out on the basis of the evidence that higher reserves are correlated with
higher sale prices because of errorsin appraisals observable to the participants but not recorded. In the model
above, the auction specific term, v, that may be observableto the seller and buyers, but not to usasresearchers
would lead the seller both to raise the estimate of PVSP and increase the reserve price. In this case, then, the
reserve price will be higher precisely when the appraised value is erroneoudly low. Our data set does not
include any potentia instruments that would allow us to test for this effect. However, note that observable
errors in appraisals would not tend to increase the likelihood that such properties fal to sdll. In fact, the
propertiesthat failed to sell had higher reserves as a percentage of appraised val ue than the propertiesthat sold
suggesting that observable errorsin appraisals can not be the entire reason for significance of reserve prices

in predicting sale prices.
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If the seller had better information than the buyers about errors in appraisals, perhaps because the
seller is observing day-to-day transactions prices and hence updating more frequently, then the seller would
post higher reserves precisely when the property is more valuable than the appraisal indicates. In this
circumstance, properties with higher reserves would sell for more, relative to appraisas, and higher reserves
would be correlated with a greater chance of not selling, because buyers are poorly informed. In such a
circumstance, the seller has an incentive to commit to the policy of informing the buyers, although such a
commitment may be difficult to sustain. However, information on recent transactions is available to buyers,
which should mitigate, if not eliminate, the effects of private information held by sellers. However, it is
possible that private information held by sellers accounts for the positive effect of reserve prices on seller
revenues (see Quan and Quigley, 1991, for a more extensive discussion and theoretical analysis of errorsin
appraisals).

Conclusion

In abidding model with endogenous entry, this paper demonstrates the quite intuitive conclusion that
the seller should post areserve price at least as large, and generally strictly larger, than the average value (to
the seller) of goods that fail to meet the reserve. Theintuition for this conclusion rests on two observations.
First, if entry into the auction is endogenous, ex ante bidder profits are zero, and thus the seller captures all
thegainsfromtrade. For thisreason, the seller wishesto post areservethat maximizesthe expected gainsfrom
trade. Second, thisreserveisat least the seller'salternate use value. This second observation is deceptive, for
achange in the reserve price will generally ater the bidders' participation decisions, which affects the sellers
surplus. Indeed, the seller generally wishes to post a reserve strictly higher than the sdller's value of items
retained at the margin, because this reduces the duplication of investment in information by bidders. Under
private vaues, the seller wishes to post a reserve between the sdller's value for marginal items (where the
highest bidder isjust indifferent between paying the reserve and not) and the average valueto the seller of items

that sell at the reserve price.
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In addition, we demonstrated that the lower bound is at least aslarge asthe average value of itemsthat
fail tosell. Thisresult seemsintuitive, inthat the value of itemsthat just fail to sell at the posted reservewould
presumably exceed the value of itemsthat didn't come closeto selling. However, thisintuition is complicated
by the fact that there are two reasons an item might fail to sell. First, abidder considered bidding and decided
the reserve was too high. The value of these itemsis less than the value of items at the margin of not selling.
Second, an item will not sell if no bidder considered purchasing it. These items have avalue distributed like
the ex ante value, which is potentially larger than the value of items at the margin of not selling. However,
under the sufficient condition for the equilibrium bidding function to be monotonic, the first reason dominates
the second, and on average, items that fail to sell are worth less than those right at the margin of not salling.

We, thus, have atestable prediction: if the reserve price isless than the average value to the seller of
itemsthat fail to meet the reserve in previous auctions, raising the reserve price to the average value of unsold
itemswill increase seller revenue on average. This predictionisalso aprescription for raising seller revenue.

Wetested the theory using data on auctions with published reserve prices. Thetest isnot as powerful
as one might desire, because of limited sample size, some possibility of selection bias in data acquisition, and
because of alternative explanationsfor expected sale pricesincreasing in thereserve. Nevertheless, wedo find
that increasing thereserve price significantly increasesthe expected present value of sale, in spite of the greater
risk of not selling associated with higher reserves, which is consistent with the theory.

The result is applicable in a variety of contexts, including oil leases and other minera rights, real
estate, radio spectrum, timber, used cars, and other items where a sequence of similar or related items are to
besold. Weapplied thelower bound to real estate auctions. Wefind that the reserve pricefor buildings should
be at least 75% of the appraised value. Considerations of management costs could lower this bound. to the 65-
70% level, which was commonly used by the RTC and FDIC, but still exceeds the 50-60% percent level sused
in some circumstances. Further empirical work, using data from auctions in other regions and other time

periods, is clearly advised before definitive conclusions are drawn.
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A natural question to ask is: should you sall your own home with an auction, using areserve of 75%
of the appraised value? It might seem that one can't go far wrong using such an auction, provided appraised
value is sufficiently close to the expected market value. Indeed, by saving the real estate agency fees, this
procedure may be at worst asgood asthe most common selling procedure.® Cautionisadvised, however, since
our datainclude only homes held by ingtitutions, and these may be qualitatively different than privately held
homes. In particular, some of the RTC and FDIC homes were in poor condition, and auctioning of homes
appears to create a stigma of distressed real estate, attracting a distinct class of buyers that may not include
the individuals willing to pay the most for homesin good condition.** Auctioning of ahome may signal poor
quality even when the home is in good condition, and thus auctioning may not be a desirable transaction
mechanism for well-maintained homes.*

We consider that the auction model with endogenous entry isasignificant improvement in realism over
models with exogenous participation. Endogenous entry implies that the seller maximizes revenue by
maximizing ex ante social surplus, which simplifies parts of the analysis. However, endogenous entry also
complicates the analysis, and plausible economic propositions, such as an increase in the reserve price
decreasing bidder participation, appear difficult to proveingeneral. 1t seemsevident that log supermodularity,
so useful in environments with exogenous participation, is inadequate for environments with endogenous
participation, and further work on the theory of auctions with endogenous participation iswarranted. Finaly,
while endogenous entry represents an increase in realism, our model is hardly an exact representation of redl

auctions, as described by Ashenfelter (1989).

32 Ashenfelter and Genesove (1992) find that condominia sell for significantly more when auctioned than under bargaining.

33 Asauctionsare not familiar to most home buyers, it may bethat the desired buyers possessahigher cost of becoming informed than
do the buyers of distressed real estate, which ismore commonly sold by auction, merely because of the unfamiliarity of auction sales. For
more information, see Quan (1994).

34 One reason for auctioned homesto be poorly maintained isthat often they cameto be held by institutions because the ownerswere
unable to pay the mortgage, a situation that doesn't encourage investment in maintenance. It is a curious fact that no such stigmaiis
attached to auctioning of houses in New South Wales, Australia, where auctions with reserve price are the most common transaction
method.
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The model contains two endogenous variables, the probability of participation p and the screening
value x., but we considered aterations of only one exogenous variable, thereservepricer. Itisthuslikely that
using a second control variable, such as an entry fee, will permit better seller optimization. As a practical
matter, most auctioneers do not charge entry fees, although there are notable exceptions. If optimal entry fees
turn out to be negative, charging the negative entry feeis subject to aseveremoral hazard problem, with people
participating only in order to collect the negative entry fee. Moreover, establishing the effects of entry fees
would require quantitative, rather than qualitative, information on the signs of the comparative staticsin (4).
Nevertheless, an attempt to establish bounds on optimal entry fees appears to be an important unsolved

problem.
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Appendix
Proof of Lemma 1: Substituting u(x,e) = x into (2), we have x. =r. From (4), B(x)=x. Thus, by (3):

s = Ee[ff(x|6)[(x— N(L-pl-F(x[0))"*

+ f(X* y) (-1 (L-p(1-FyIB)™ *pf(yl6) dy dx,

= Ey [fxI0) (- ) (L~ p(L- FEON)™* + (x-y) (A p(L- Fylo))" * |

E

+ [(@-p(L- F(ylo))™ *ay
= Eg|[(L- FXION (- p(L- FXION™ ).

Theright hand sideisobvioudy decreasing in both r and p, which givesaunique solution with x. =r increasing
inr, and p decreasinginr. [ |

Proof of Lemma 2: Notethat (1) impliesf(x |p) is nondecreasing in e. Because of the complexity of some of
the terms below, we adopt the convention that u, F and f are evaluated at (x;,6) and (x|p) unless otherwise
indicated. We aso denote E, by E. Recall that

E()(L-p(1-F)" *f
E(L- p(1-F)"

E(s) =

We will use the following lemma several times.
E(1-F)? . _EQ@-F)f Ef?2

LemmaA: > )
(E1-F)? EQ@Q-F)Ef (Ef)?

Proof of Lemma A:

ELF@-F)f ELFf
E(1-F)? = EXF(L-F)f = Ef—" cEf  E@RT_EQR g pyp,
i Ef Ef  Ef Ef
EXFff EXFf_ 2
EQ-F)f-EFff-gf  >Ef_t Ef"_ Ed-Fgeo -
i Ef Ef Ef Ef
By (2),r = Eu.
EU By sp-DEu—— - EuE' +Eut - EuEk >0
X [T 1-p1-P) 1-p(1-F)] f f

r
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dEu|
ap |p:0

= - (n-1)[Eu(l-F) - EuE1-F] < 0.

=, dx dx
oBu % | @% and either '>00r@<o.
ox dr g dr’ dr dr

r

Eliminate r from (3) by substituting r = Eu to obtain

Thus, 1=

(A1) S= E}f(x|6)((u(x,6)ENu)(lp(lF))”‘l
+ [(u(x8) - BE))(n-1)(1-p(1- F(yIB))" *p(yI6) dy | dx

dx
To establish (4), it sufficesto show that | < 0,

dp|S:s
S - ga-p®Y <o
OX, | ; |p:o
Since 2' < 0, it suffices to show that 0S| < 0.
axr|ng p|p 0 ~
98| - E [f(x16) - (ux0) - Ew)(n-1)(1-F) - JEu
ap|p:0 " ap |p:0
+ f[U(X,G)* B(y)] (n-1) f(y[6)dy |dx
- (- DEUEQ-FY- EQ-F)%EY - (n-DE [{(xI)u(x )1~ F)dx
ap |p:o )

+ E}(l F(x0)) [u(x,6) - B(X)] (n- 1) f(x|0) dx
= (nl){[E(lF)Z]ENU + [E(L-F)Eu(l-F) - EuE(1-F),

+ E}[(F - F(x|0))u(x,0) - (1-F(x]0))B(x)] f(x]|0) dx

[E(L-FR2Euf | EQ-F)Eul-F)f E(1-F)EufE(LF)f
| Ef Ef (Ef)?

=(n-1)

+ Ef[(F* F(x10))u(x,0) - (1-F(x0))B()] f(x[0) dx| =(n-1)¢(x,).
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3s|

Note that ¢(«)=0. Thus, to show that ——
ap |p:0

<0, it suffices to show that ¢/(x.) > 0 for all x,.

[E(L-F)Euf _ E(1-F)Eu(l-F)f E(L-F)Euf E(L-F)f
[ Ef Ef (Ef)?

3
/X =
¢(x.) o

+ Ef(1-F)B(x) + E}f(x|6) f u(x,0) dx

r

0 [E@-FyPEUf  EQ-F)EUQ-F)f EQ-F)EufEQ-F)f
©oox | Ef Ef (Ef)?
2
+EfA-R)EY L Ed-Ryfu
Ef2
_ _ 2
= 72MEuf - M

_ 2
ef,Euf + S ey £+ Euf,
Ef (Ef)2 Ef

_E@A-F)Eu@-F)f,
(Ef)?

E(L-F
- %[Eux(lF)f Euf2 + Eu(l-F)fy - EQL-F)fu

EufEQ-F)f | ,EQ-F)EUEQA-F)TEL  Ef(1-F)Euf?
Ef (Ef)° Ef?

- EA-F) ey fE@-F)f+ Ef UE(1-F)f - EUfEf2 + EUfE(1-F)f
Ef2 | x i

+

+ E(1-F)fu

_ _E) _E)2
= - MEuf - MEfXEuf + M[Eufor Efo]
Ef (Ef)? Ef
_ E(Q-F)Eu(1- F)fEf
(Ef)?
. 2E(1f F)EufE(1-F)fEf, N Ef(1-F)Euf?2
(Ef)3 Ef?

X

. %[Eux(lF)f - Euf?+ Eu(l-F)f,

_E(@-F)

(Ef)?
_E(1—F)2Equ E(1-F)E(1-F)fEu f E(1-F)Eu(1-F)f
- Ef ) (Ef)2 ’ Ef

[EquE(lf F)f+ Ef, UE(1-F)f - EufEf 2+ EufE(1- F)fx]

. Euf2EQ-F)f EufE(Q-F)f Euf?E(1-F) EUufE(1-F)Ef?
Ef 2 Ef Ef (Ef)2

, E- F)Euf, E(L-F)?EufEf,  E(1-F)E(l-F)fEuf, . E@-F)E(-F)fEufEF,
Ef (Ef)? (Ef)? (Ef)®

[E(l— Fuf, E(Q-F)f,Euf E(1-F)ufEf, . E(1-F)fEuUfEf,

| Ef (Ef)? (Ef)? (Ef)?
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_[ea-r2 E(1F)E(1F)f}Eu . EQ-REu@-Ff

Ef (Ef)2 Ef
_ 2
JEur? Eurlo gy EQ-PES
Efz  Ef Ef
. el £ L Lt
+|E(1-Fy2 - EQ F)EEf(l F)flEUTX EuETX]

+ E(1-F)E|(1-F)(u - E”u)(f_fx - E”f_fX) >0

Thefirst lineis positive by lemma A, the second since
Euf? Euf Ef?
Ef Ef Ef

and the second part of lemma A. Thethird is positive by lemma A and the fact that u and = * areincreas ng
by affiliation. That the fourth is positive requires an argument. The fourth term comesin ' the form Eopy,
where e, B, y are al increasing, «>0, and Eg = Ey = 0. Define an expectation

EapEay EoEPEaEy _ 0

E/( ) = %a) Then Eapy = E«E/By>EaE/BE y =

Ea Ea
This shows the fourth term is positive, as desired. Thus ¢/(x.) >0, and
ISI L (n-1e(x) - - (0-1) [¢/ (9 dx<O. n
ap|p:0 "

Sufficient Condition for (4):

Assuming stability impliesthat 0S/0p < 0, it is sufficient to prove that 0S0x, < 0. Asbefore, we suppressthe
arguments (x.[) and (x.,8). Using (2) and (A1),

9S _ n1 1-F [ 1-F\[ 6Eu
r dl(1-p(L-F)" *f]i(n-1)p(B(x,) - EU)E[— p(lF)) E(—f )(_ax,)
Thus, 2= <0if and only if
oX

r

o<[é$][éux+é(uf_;) EuE +(-Dp(B(x) - EELEE—t— - LT

1-p(1-F) 1-p(1-F)]

Since u, is nonnegative, we may drop it. The resulting sufficient condition becomes

(A2) 0< EN%][E( f) EuE

l + (n-1)p(B(x,) - Eu)’ TF f_ g LF

1-p(1-F) 1-p(1-F)]
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Since (A2) is linear in u, (A2) holds if and only if (A2) holds for a basis of u. A convenient basis is the
indicator functions, u= 1if e>6", and 0 otherwise. Thus, a sufficient condition for (4) (when combined with
stability) is that, for al ",

~ 1-F

=~|fy * =~|fy El—p(l—F) = f * ~ f

EF10>0" |- E=|+ (n-1)p[l - E 0>6" | - E———>0.
f f 1-p(1-F) 1-p(1-F)

This condition is also necessary for (4) to hold for all nondecreasing u.

Proof of Lemma 3: Equation (6) is a routine computation from (5) using (2). We show (7) for the case of
second price auctions. The argument foran oral auction is similar but more tedious. McAfee and Vincent
(1992) show the result for first price auctions. First integrate (3) by parts to obtain:

(A3)s = B (1- F(x10))(u(x..0) - r)(1- p(1- F(x [0)"*

+ }(1 F(x16))u, (x.0) (1 - p(1 - F(x[0))™ * dx

X

+ f(lf F(x10)) (u(x.0) - B())(n- 1)(1- p(1- F(x]6)))" 2 pf(x|0) dx .
Eqi(*)(1 - p(1 - I:(XIG)))”'Zf(XI@)Z}_
Eo1(1 - p(1 - FXIB)™ 2 f(xI6)?

Define éx(-)x':
(A4)  Eq[(1- F(x[0))(u(x0) - BX))(n-1)(1- p(1- F(x[O))™ *f(x[0)]

=E L(Xle) B - - n-2 2
EX[ F(x[9) (u(x,0) B(x))]Ee[(l p(1- F(x|0))" 2 f(x]0)?]

> E[lfF—(X'G)} £ (u(x.0) - BX), Ey[(L- p(1- FX0)" >f(x0)?] = O.
(x[6)

Integrating (5) by parts,
|oo

¥ = Eo(0) - (ux,0) - o(8))d - (1- p(1- F(x[0)))"

%

+ fux(x,ﬂ)(l - (1-p(1-F(x[0))hdx - nps
= E(0(0) + (u(x.,0) - o(0))1 - (1- p(1- F(x 10)))",
+ fux(x,ﬂ)(l - (1-p(1-F(x0))}dx - nps.
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%’ = NEq (U(x,.,0) - o(0)) (1~ F(x10)) (1 - p(1- F(x[B))"*

+ jux(x,ﬂ) (1-p(1-FxO)" 1 (1- F(x]0)) dx - S,

(A3) |
= NEy(r - o(8) (1~ F(x ) (L~ p(L- F(x[0)))"

- f(lf F(x10)) (u(x.0) - B(x))(n- 1)(1- p(1- F(x[6)))" 2 pf(x]6) dx,
(A4) X,
< NE[(r-o(0)(1- F(x10)(1-p(1-F(x [0))" *].

Proof of Theorem 4: First note that

Eo[0(0)(1- p(1- F(x10))" * (1- F(x10))]
Eol(1-p(1- F(x10))" * (1~ F(x [0))]

O(G)ﬂ (1-p(1-F 0™ Hf(x10))
_ ’ f(x 1) r "] Bl p(1- F(x[0))" tf(x,[6)]
Eol(1-p(1-F(x10))" *f(x10)] Eol(1- p(1- F(x [0))" * (1- F(x16))]
- Elo(0) 1-Fx0)|  Epl(l-p(1- F(x[0))" *f(x |0)]
f(x,16) Eol(1-p(1- F(x[0))" * (1~ F(x [0))]
— _ _ n-1
.+ E o(0) E 1-Fx O Eld-p-F(x IG)_)) fx 101 E[o(0)].
f(x 16) Eol(1-p(1- F(x 0))" * (1~ F(x [0))]

Thus, using (4) and Lemma 3,

dy _ o d% | o¥dp

dr ox. dr dp dr

dx.
> = Eg[(0(6) - r)n(1- p(1- F(x,10)))" * pf(x [0)]

+ % Eo[(r - a(®)n(1- p(L- F(x 10)))" * (1 - F(x 10)]

dx -~
= d—);' E[(0(0) - N1 Eg[n(1- p(1- F(x [0))™ * pf(x [0)]
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+[%$)%Kdm0M1pﬂﬂmmW4ﬂmem

dx -~
2 d—);' E[(0(0) - N1 Eg[n(1- p(1- F(x [0))™ * pf(x [0)]

+ [ - %) E[(a(0) - ] Eg[n(L1- p(L- F(x [0))" (1~ F(x, [0))].

Thus E[o(6) - 1]>0 = ‘:'j_q’zo. Since E[0(8)] is increasing in x and decreasing in p, E[0()] is
r

increasing inr. Thus, increasing r fromr, to o, leaves d¥/dr > 0. ||
Proof of Lemma 5:

Eo[0(0)(1- p(1- F(x.10)))" *f(x10)]
Eo[(1- p(1- F(x [0))" *f(x0)]

E 00— 1 oa Fx o))
P e F e T T Bl e P )]

Eq[(1-p(1- F(x[0))"] Eo[(1-p(1-F(x10))" *(x10)]

f(x 10) (1 - p(1-F(x10)))"
Ey[o(8)(1- p(1- F(xO))" 1-p(1-F(x10)) Eq [(1- p(1- F(x10)))"]
Eq[(1- p(1- F(x0)))] Eol(1-p(L-F(x 10"  El(1-p(-F(x[0))" *f(x10)]

Eq[0(0)( - p(1- FIxION)"]
Eo [(1- p(1- F(xI0))"] |
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Figure 1-An example of non-monotonicity of p.
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Figure 2: Anillustration of Theorem 4. Given an initial reserver and arealized o, ther@erve should
beraised to at least o,. Notethat the optimal reserve, r’, exceedsthe solution to r = E[a(0)]r].
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Figure 3—Scatter plot of PVSP/AV versus Reserve/AV in Private Auction




