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Abstract 

 

Using the 2006 China Agricultural Census (CAC), we examine whether the introduction of 

the New Cooperative Medical System (NCMS) has affected child mortality, maternal mortality, and 

school enrollment of 6-16 year olds. Our data cover 5.9 million people living in eight low-income 

rural counties, of which four adopted the NCMS by 2006 and four did not adopt it until 2007.  

Raw data suggest that enrolling in the NCMS is associated with better school enrollment and 

lower mortality of young children and pregnant women. However, using a difference-in-difference 

propensity score method, we find that most of the differences are driven by endogenous introduction 

and take-up of the NCMS, and our method overcomes classical propensity score matching’s failure 

to address selection bias. While the NCMS does not affect child morality and maternal mortality, it 

does help improve the school enrollment of six-year-olds. 
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1. Introduction 

 Many governments advocate nationwide health insurance in order to improve individual 

welfare. In this paper, we use the recent expansion of health insurance coverage in rural China to 

quantify the impact of health insurance on child mortality, maternal mortality, and school enrollment. 

Although the Chinese economy has continued to grow during the past 20 years, many rural residents 

remain poor and have difficulty obtaining access to health care when they are sick.
2
 To address the 

problems associated with the lack of health insurance in rural areas
3
, China initiated the National 

Cooperative Medical System (NCMS) in 2003, targeting rural residents with large subsidies from 

central and local governments. Unlike mandatory insurance proposed elsewhere, the NCMS is 

implemented county-by-county, allowing local governments to decide when to introduce the NCMS, 

how much premium to charge, and how many benefits to offer. If the county offers the NCMS, a 

rural household can choose to enroll in the NCMS for either every household member or none of 

them. Diffusion of the NCMS has been fast: in 2004, 14% of counties offered NCMS coverage 

(MOH 2005); by June 30, 2008, all counties offered the NCMS, covering 91.54% of the rural 

population.
4
 A more detailed description of the NCMS can be found in Wagstaff et al. (2009).   

                                                 
2
 China shows an uneven progress against poverty (Ravallion and Chen 2007). In 2005, China still has 208 million 

people living below the World Bank’s $1.25-per-day poverty line (Chen and Ravallion 2008), most of them being rural. 

According to the 2007 National Statistical Yearbook, rural residents on average spend 5.34% of income on health care 

and the ratio increases to 10% for the poorest twenty percent. These numbers tend to underestimate the financial burden 

of health care cost because poor households are often under-treated. There is also a sizable health-expenditure disparity 

between urban and rural areas, largely due to the increasing gaps in income, health care utilization and local government 

budget deficit (Liu et al. 1999; Chou and Wang 2009). 
3
 The old community-based health insurance system broke down when the rural economy shifted away from the 

collective system in 1978 (Hsiao 1984). As a result, patients face increased financial burden, reduced access to health 

care services, and compromised service quality (MOH 1999).    

4
 News release from Guang Ming Daily, written by Ying Zhang, October 22, 2008, accessed at 

http://www.hyey.com/Article/zhengcezhuanti/xinnonghe/now/xiyue/200810/141630.html on June 5, 2010. This 

article cites data source from the Ministry of Health. 

http://www.hyey.com/Article/zhengcezhuanti/xinnonghe/now/xiyue/200810/141630.html%20on%20June%205
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 In theory, health insurance can affect a household in many ways, ranging from increased 

health care utilization, better health, and higher productivity, to greater financial resources freed up 

from medical costs. Our data do not include direct measures of health care utilization, but they allow 

us to study the effect of the NCMS on mortality of pregnant women and young children at the village 

level and school enrollment at the individual level.  

Mortality and educational outcomes have long been studied as potential consequences of 

health insurance. For example, the expansion of Medicaid coverage in the US has been shown to 

improve the mother’s prenatal care, reduce infant mortality, and reduce the incidence of low birth 

weight (Currie and Gruber 1996a, 1996b); the introduction of the State Children’s Health Insurance 

Program (SCHIP) has been linked to better child health and better school performance (Joyce and 

Racine 2003; Levine and Schanzenbach 2009); and the adoption of nationwide health insurance has 

reduced the mortality rate of young children in Taiwan (Chou 2011) . There is also evidence that 

health insurance can relieve financial burdens on individual households (Miller et al. 2010), and an 

increase in financial resources available can boost children’s school performance (Morris, Duncan & 

Rodrigues 2004; Dahl and Lochner 2005). Several survey articles have reviewed research on the 

impact of health insurance on health (Levy and Meltzer 2008) and the impact of child health on 

educational outcomes in both developed and developing countries (Currie 2009; Glewwe and Miguel 

2008). 

 Turning to the effects of the NCMS in particular, the existing evidence is mixed. On the 

positive side, some studies show that the NCMS reduced illness-related poverty, increased 

inpatient/outpatient utilization of health services and reduced the rate of non-hospitalization after two 



4 

 

weeks of diagnosis (Chen et al. 2005; Yuan et al. 2006; Wagstaff et al. 2009; Wang 2007; Zhu et al. 

2007; Fang et al. 2006; Zhang et al. 2007). Because deliveries constitute a significant fraction of 

hospitalizations, many studies compare the percent of hospitalized deliveries before and after the 

NCMS. Cheng et al. (2008) report an increase in the hospitalized delivery rate from 85% to 96.9% in 

14 counties of Hubei (2002-2006), from 77.5% to 92.5% in 3 counties of Chongqing (2003-2007), 

and from 32.43% to 83.24% in the rural area of Qinghai (2002-2007).
5
 Similar increases have been 

shown in Guangxi (Liao 2009) and Yunnan (Lu and Li 2010). These studies find that the NCMS 

increased the health of women and infants because mortality risk is much lower for hospital delivery 

than for home delivery.
6
 Two of them also report a significant decline in maternal and birth deaths 

after the NCMS (Liao 2009; Lu and Li 2010). On the negative side, some researchers have expressed 

concerns that the low reimbursement rate in the NCMS will limit its effectiveness (Zhang et al. 2006, 

Yi et al. 2009), and that the China Health and Nutrition Survey lacks evidence of better health care 

utilization and improved health condition after the adoption of the NCMS (Lei and Lin 2009).  

 This paper aims to provide additional evidence regarding the impact of the NCMS, using a 

large cross-sectional data set from the 2006 China Agriculture Census. Unlike Wagstaff et al. (2009), 

we do not track individuals before and after the introduction of the NCMS. But our data cover 

neighboring areas within a poor inland province including four counties that introduced the NCMS at 

the time of the survey (end of 2006) and four counties that did not introduce the NCMS until 2007. 

                                                 
5
 Focusing on one county of Qinghai, Shi (2008) shows that the rate of hospitalized delivery increased from 90.16% in 

2004 to 98.67% in 2006. 

6
 According to WHO (2005), most maternal deaths take place in developing countries and the leading causes are 

haemorrhage (severe bleeding, 25%), infections (15%), and eclampsia (12%). Skilled professional care is essential to 

save lives at and after birth.  
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The eight counties are geographically adjacent to each other, belong to the same administrative 

district, and are similar in demographics, access to health care services, and access to public 

education. Because the data were collected as a part of the census, our sample includes 5.9 million 

individuals, 1.4 million households, and 1.4 million school age children across 3,977 villages.
7
 The 

advantage of such a large sample is that it helps capture severe health risks that are small probability 

events and could have a catastrophic impact on a rural household without health insurance. 

Furthermore, the high poverty in this area makes it attractive for identifying the impact of the NCMS 

on a financially vulnerable population.   

 It is difficult to establish a causal relationship between health insurance and measurable 

outcomes in observational data because they both may be influenced by unobservable factors. There 

are two sets of endogenous unobservables that may contaminate the estimation. One is 

heterogeneous county-level characteristics. For instance, if the NCMS counties are richer and in 

better fiscal condition, then the population in the NCMS counties could have better health and 

educational outcomes compared with the population in the non-NCMS counties even without the 

NCMS. The other set is heterogeneous household-level characteristics. For example, comparing two 

households residing in the same NCMS county, richer and more health-conscious households may be 

more likely to take up the insurance.  

 The classical cross-sectional propensity score matching method focuses on estimating the 

effect of a treatment program (i.e. the NCMS counties in our context) by comparing the treated 

individual with an untreated one. The validity of the method relies on the assumption that treated and 

                                                 
7
 There are actually 3,986 villages in the data but 9 did not provide any village-level information. We deleted them from 

analysis. 
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untreated individuals are similar in unobservables if they are matched on observables (Rosenbaum 

and Rubin, 1983). To correct the two kinds of selection bias mentioned above, instead of directly 

estimating the treatment effect of enrolling in the NCMS, we estimate the treatment effect of the 

NCMS being offered in a county. This is an intent-to-treat analysis.  

Specifically, we propose a difference-in-difference (DID) propensity score method using both 

NCMS and non-NCMS county data, with which we can explore within-county heterogeneity and 

cross-county difference. The key assumption in classical cross section matching, that individuals 

matched in observables are similar in the unobservables, can be relaxed when we construct the 

propensity score to use households in the non-NCMS counties as a control for similar households in 

the NCMS counties, regardless of the participation status of the households. The heterogeneity 

within a county allows us to control for the unobservable county specific attributes and thus account 

for the endogenous introduction of the NCMS county by county. Our method is similar to the DID 

matching strategy proposed by Heckman, Ichimura and Todd (1997) and Heckman, Ichimura, Smith 

and Todd (1998). The main difference is that they use longitudinal (or repeated cross-section) data to 

difference out the time-invariant factors before and after a treatment program
8
, whereas we use all 

households within each county with unequal propensity to enroll in the NCMS to difference out the 

county-specific unobservables and use households in non-NCMS counties as a control group.  

                                                 
8
 Using longitudinal data that track program participants and non-participants before and after a treatment program, 

Smith and Todd (2005) show that DID matching estimators perform much better than classical cross-sectional matching 

when participants and non-participants are drawn from different regional labor markets and/or were given different 

survey questionnaires. 
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Wagstaff et al. (2009) also use DID together with the propensity score method to evaluate the 

impact of the NCMS (on health care utilization), but there is an important difference between their 

methodology and ours: they compare the NCMS-insured individuals with observationally similar 

individuals in non-NCMS counties, while we compare both the NCMS insured and uninsured 

individuals in the NCMS counties with individuals in the non-NCMS counties. As detailed below, 

the two types of comparisons lead to different results and we argue that our method can better 

address the endogenous take-up of NCMS due to non-observables.  

Results from our DID propensity score method suggest that most of the seemingly beneficial 

effects of NCMS are driven by selection. By applying the DID propensity score method to 

populations of different socioeconomic status, we find that the NCMS may have moderate effects in 

improving the school enrollment of six-year-olds. 

 The rest of the paper is organized as follows: Section 2 describes the data and the background 

of NCMS in the studied area. Section 3 presents a data summary and classical analysis (OLS and 

propensity score matching) of key outcomes. Section 4 specifies our DID propensity score 

methodology. Section 5 reports the main results. Section 6 offers a brief discussion and conclusion. 

  

2. Background and Data 

The National Bureau of Statistics of China organized local governments to conduct two 

rounds of the China Agricultural Census (CAC) in 1996 and 2006. Drawing from the 2006 CAC, our 

data cover all the residents residing or having a registered residence in a continuous area as of 

December 31, 2006.  Due to data confidentiality, we are not allowed to reveal the geographic 
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location, but we can say that the studied counties are mostly rural, belong to the same inland 

province, and have a per-capita income below the national average. In total, we observe 5.9 million 

individuals in 1.4 million households in 3,977 villages. The villages spread across 250 townships in 8 

counties, among which one county adopted the NCMS in 2004 (referred to as county A), three 

counties adopted it in 2006 (B, C, D), and the other four did not adopt the NCMS until 2007 (E, F, G, 

H). The size of the whole census area is roughly 16,000 km
2 in total, with an average area of 4 km

2 

per village. More details of this data set are available in Chen, Jin and Yue (2010).  

In 2006, each NCMS participating individual cost on average 50 RMB
9
 in the NCMS 

system, of which 10 RMB was paid by the individual, 20 RMB was subsidized by the central 

government and the other 20 RMB were contributed by the county government. This structure 

remained unchanged in 2007 and 2008
10

, but both the central and local government subsidies 

increased from 20 to 40 RMB per person in 2009.  To ensure the appropriate use of the NCMS 

funds, the central government required local governments to devote the funds to reimbursement and 

fund management. Local governments were also required to post a list of existing claims and 

reimbursements within each village, so that both participating and non-participating villagers had a 

good idea of how much reimbursement they could obtain from the NCMS if they participated.  

In the study area, the NCMS paid the insured amount directly if the treatment was delivered 

at a county- or town-level hospital. If health services were delivered at an above-county hospital, the 

                                                 
9
 The exchange rate between the Chinese currency (RMB) and US dollar at the study period was roughly seven RMB for 

one dollar. 

10
 One exception is that that the individual premium of county E was 12 instead of 10 RMB in 2007. County E reduced 

this number to 10 RMB in 2008.  
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NCMS required the patient to pay the full amount out of pocket and then seek reimbursement. For 

simplicity, we refer to both types of NCMS payment as reimbursement. In our sample period, the 

reimbursement rate was 60-70% for township healthcare providers, 45-55% for county level 

providers, and 35-40% for out-of-county providers. These rates have increased 5-15% over time 

because the total subsidy from the central and local governments doubled in 2009. Benefits cover 

both inpatient and outpatient care performed by designated providers for designated procedures, so 

the actual reimbursement rate for all diseases could be significantly lower than the percentages 

mentioned above. Moreover, the reimbursement is capped at 200-300 RMB per individual per year 

for outpatient care and 10k-25k RMB for inpatient care. As documented in the existing literature, the 

potential benefit of the NCMS in relieving a household's financial burden mostly depends on the 

extent to which NCMS covers inpatient cost.   

Since take-up of the NCMS is voluntary, not every household participates. In 2006, among 

the four counties that offered the NCMS, 80% of the households had at least one person enrolled in 

the program. Although the NCMS in principle does not allow partial participation, we observe that 

13% of the households had partial participation because some household members migrated out of 

the area for work and therefore were unlikely to enjoy the benefits of NCMS, or some members had 

a non-rural or non-local residential permit (hukou), hence were likely to have insurance coverage 

somewhere else.   

The NCMS was offered to the whole area in 2007, with an average take-up rate of 86.74% in 

2007, 92.64% in 2008 and 93.37% in 2009. In 2007, 39.59% of the participating individuals received 
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NCMS reimbursement.
11

 Conditional on receiving reimbursement, the average reimbursement was 

76 RMB per person, and over 250 (0.013%) individuals received more than 10,000 RMB from the 

NCMS. With more government subsidies in 2009, 66.56% of participating individuals received some 

form of NCMS reimbursement from January to November 2009, with an average reimbursement of 

100.65 RMB per person, and over 700 (0.019%) individuals received more than 10,000 RMB.  

Given the fact that the 2005 per-capita income in the studied area was between 1500 and 

2000 RMB, these numbers suggest that the NCMS is unlikely to offer much financial help for a 

healthy enrollee who only needs outpatient care for minor diseases. However, the NCMS could be a 

significant help if the enrollee needed hospitalization (e.g. for birth delivery), had a severe chronic 

disease (e.g. dialysis due to kidney failure) or had encountered a major acute health problem during 

the year. The 35-70% reimbursement rate and the restriction to designated providers and designated 

procedures imply that individual households still need to pay a large proportion of health care costs if 

they have severe diseases, and the out-of-pocket health care expenditure could be even higher if the 

NCMS motivates the insured to seek more treatment.  

Due to the low probability of severe health events, we need a large sample to capture the 

events and their potential impact on a household's health- and non-health outcomes. In addition to 

the large sample size, our sample area is much poorer than the average in rural China, where the cost 

of health care is not proportional to household income. If the NCMS has any effects on health- and 

non-health outcomes, they should be likely to show up in our sample. These reasons lead us to 

believe that our data could provide better insights into the effects of the NCMS as compared to much 

                                                 
11

 Reimbursement data are only available in county aggregate (from the local government reports). This is why we 

cannot examine whether NCMS has increased health care utilization at the household or individual level.  
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smaller and probably more national representative samples used in Yi et al. (2009), Lei and Lin 

(2009) and Wagstaff et al. (2009).  

The main part of the data was collected at the household level.
12

 By this design, we observe 

detailed household information including how many individuals reside in the household, their 

relationship to the household head, their age and gender composition, the amount of contract land, 

the amount of land in use, ownership of housing, the self-estimated value of house(s), ownership of 

durable goods, the availability of electricity, water and other amenities, whether the household has 

enrolled in the NCMS (for counties A to D), the number of household members that receive 

government subsidies, and the household engagement in various agricultural activities. The CAC 

does not collect data on household or personal income.  

Individual-level data are limited to age, sex, education, employment, occupation, and the 

number of months away from home for out-of-township employment in 2006. Since a child in the 

studied area may get married as early as 17 and daughters often leave their own home after marriage, 

we restrict our definition of children to age 0-16.  

School age children are defined as anyone between 6 and 16 inclusive. According to the Law 

of Compulsory Education of China, the parent or legal guardian of a six-year-old (by September 1) is 

mandated to enroll the child in school; for the areas short of educational resources (like our study 

area), the compulsory education age may be delayed until seven. In other words, a seven year old in 

our sample area is required to enroll in school but the enrollment of a six year old can be voluntary. 

                                                 
12

 The household head was asked to enter information for every family member. If a resident was away from home at the 

time of the interview, his/her information was still collected from the household. If the whole household had a registered 

residence in the studied area but was away from home at the time of interview, the village head would fill in the form for 

the household. Please see a more detailed description of this data set in Chen, Jin and Yue (2010).  



12 

 

Given the lack of day care services in rural China, a six year old is most likely to stay at home if he 

or she is not enrolled in school. Compulsory education is free of tuition but parents need to pay fees 

for books and in-school activities, which in total might exceed 200 RMB per child per year. Children 

from far away families also need to pay for in-school boarding and meals, which could bring the total 

cost of schooling to as high as 500 RMB per year. Many children from extremely poor families 

cannot afford boarding and have to walk hours a day to school carrying lunch prepared from home. If 

the NCMS eases the financial burden on a household, it could make more resources available to 

support child schooling. It could also allow poor children to access health care services when they 

are sick and reduce the potential interruption of schooling due to illness. Note that the question that 

the CAC asked on school enrollment refers to whether a child is currently enrolled in primary or 

secondary school, not whether a child has attended school on a particular day. Because of this, we 

can capture lack of school enrollment due to major health problems but not school absence due to 

minor diseases. 

Supplemental data were collected at the village level, including the size of the village in both 

arable land and registered population, whether the village is a place for minority gathering, the 

number of health care providers serving within the village, the distance to the nearest bus station
13

, 

elementary school, secondary school, and hospital, access to water, electricity and other amenities, 

whether the village has a national poverty status (as designated by the Central government), and how 

many young children (age 0-5) and pregnant women died during 2006.
14

 The data also include 

                                                 
13

 The exact question is to the nearest bus/rail/dock station, but there is no railway station or major river in the studied 

area.  

14
 Due to potential measurement errors in the registered population, we calculate the number of adults per village from 

our study sample and use it to proxy for village population. 
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several township level variables, namely the number and nature of township-village-enterprises, the 

distance between the township and county center, whether there is a highway exit within the 

boundary of the township, and the registered population of the township. 

 

3. Data summary and simple analysis 

Throughout the sample, 48.64% of the 5.9 million population was offered the NCMS in 2006. 

Conditional on the four counties that offered the NCMS, 80% of households had at least one member 

enrolled in the NCMS. Breaking down this number by county, the household take-up rate was 75.7% 

for county A, 83.7% for county B, 78% for county C and 83.9% for county D. Figure 1 plots the 

histogram of household NCMS take-up rate at the village level, which ranges between 0 and 1 but is 

mostly concentrated between 0.7 and 1.  

Table 1 summarizes the village-level mortality of young children and pregnant women in 

NCMS and non-NCMS counties. As shown in the first two columns, NCMS counties have lower 

mortality than non-NCMS counties for both young children and pregnant women. Within the four 

NCMS counties, the median NCMS take-up rate at the village level is 84.1%. And villages with an 

above-median NCMS take-up rate tend to have slightly lower mortality in both absolute count and 

mortality rate.
15

 These comparisons could reflect the beneficial effects of the NCMS or a selection 

bias if richer and healthier counties are more likely to adopt the NCMS early or if richer and 

healthier households are more likely to take-up the NCMS. We will address the selection issue in the 

                                                 
15

 Child mortality rate is computed as the total number of 0-5 year old deaths divided by the sum of the death count and 

the total number of living 0-5 year olds in our sample. Maternal mortality rate is computed as the total number of 

pregnancy deaths divided by the sum of the death count and the total number of living 18-30 year old women in our 

sample. 
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next Section.  

Table 2 summarizes the enrollment rate of school-age children by NCMS status. The 

enrollment rate is almost 4 percentage points higher in NCMS counties than in non-NCMS counties 

(88.09% vs. 84.13%). Within the four NCMS counties, households enrolled in the NCMS are 2.3 

percentage points more likely to have their children enrolled in school (88.55% vs. 86.27%). Again, 

these raw differences could be driven by the NCMS or by selection. If we compare school 

enrollment rates by age the same pattern holds for every age level, but the differences are most 

obvious for ages 6, 7 and 16. One possible explanation is that financially constrained households are 

more likely to delay the start of child schooling or to stop child schooling immediately after the 9-

years of compulsory education. To the extent that the NCMS improves health and relieves a 

household’s financial burden, it could increase child schooling, especially at the two ends of the 

school age range.    

For a closer look at county-level selection, Table 3 lists the relevant fiscal condition, per- 

capita income, demographics, percentage of migrating households, house value, and contract land for 

the eight counties in our sample. Fiscal condition and per-capita income are derived from the area’s 

statistical year book and the rest come directly from the CAC data. On average, NCMS counties have 

relatively higher per-capita income and higher local fiscal income per capita. County D is the richest 

of the eight, while County A is almost the poorest of the four NCMS counties although it adopted the 

NCMS first (in 2004). Note that this comparison is relative within the study area. Overall, the study 

area is quite poor, with 50% of the population living in villages with national poverty status and with 
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a percentage of school enrollment much lower than the national average (>95%).
16

  

Table 4 compares the average household and village characteristics of (1) households 

participating in the NCMS, (2) households not participating in the NCMS but living in NCMS 

counties, and (3) households living in non-NCMS counties. Overall the three groups are similar, but 

households in NCMS counties are slightly more educated, have a slightly smaller household size, 

have slightly higher house value, and are slightly less likely to live in villages with national poverty 

status. Similar differences exist between NCMS participating and non-participating households 

within NCMS counties.  

 Our first attempt to address the selection bias is controlling for observables. Denoting cty  

for county,   for village,   for household,  and    for individual, we regress the three main 

outcomes – village-level young child mortality (               ), village-level pregnant women 

mortality (                   ), and individual-level schooling (         ) – on whether the 

residing county offered the NCMS in 2006 (              ) and the extent to which the residents 

take up the NCMS (village take-up rate            ) or an individual take-up 

dummy             ), controlling for a number of village, household and individual attributes. In 

particular,  

(1)                      
                  

                    
  

(2)                          
                  

                    
  

                                                 
16

 In a news conference held by the Ministry of Education on February 28, 2006, Minister ZHOU Ji reported that the 

nationwide average enrollment rate for 9-year compulsory education is over 95%. In particular, the nationwide 

enrollment rate is 99.15% for elementary school (grade 1-6) and 95% for middle school (grade 7-9). Source: Ministry 

of Education ( http://www.moe.gov.cn/edoas/website18/11/info18511.htm), accessed at June 5, 2010. 

 

http://www.moe.gov.cn/edoas/website18/11/info18511.htm
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(3)                                                                

As shown in Table 1, the distribution of village-level mortality is concentrated at zero or one 

death. So we define                 as a dummy of having any young child mortality in village  , 

and                     as a dummy of having any maternal mortality in village  . In an 

unreported table, we use the mortality rate instead and the results are similar. 

The village attributes (  ) include village population, distance to the nearest bus station, 

distance to the nearest elementary school, distance to the nearest secondary school, distance to the 

nearest hospital as well as the village’s poverty status and minority gathering status. The household 

attributes (    include house value (self-reported), contract land, whether any household member has 

migrated for a job out of the study area, number of 0-5 year olds, number of 6-16 year olds, number 

of 17-23 year olds, number of 24-44 year olds, number 45-59 year olds, number of 60+ year olds, 

and an indicator of the main source of income. The individual attributes (  ) include child age, 

gender, and birth order. If the NCMS is effective in improving health and reducing the financial 

burden of health care, we expect {  
    

    
    

 } to be negative and {     } to be positive, 

although all of them can be overestimated due to selection bias.  

Table 5 reports the linear-probability OLS results for the two village-level dummies of 

whether there is any mortality in 0-5 year old children and pregnant women. Table 6 reports the 

linear-probability OLS results for the individual dummy of school enrollment.
17

 In both tables, we 

report one version without county dummies and one version with county dummies. The version 

without county dummies identifies the coefficient of               . The other version 

                                                 
17

 We have tried negative binomial for the death count and probit for in school enrollment. Results are similar. 
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absorbs                in the county dummies and controls for the endogeneity of NCMS 

introduction. For school enrollment, we also report results for the full sample of 6-16 year olds and 

the sub-sample of 7-15 year olds separately. 

Both tables confirm the impression from the raw data: NCMS counties have lower mortality 

and higher school enrollment, though the difference on the village-level mortality is not statistically 

significant. Conditional on residing in NCMS counties, households enrolled in the NCMS are 1.3-1.7 

percentage points more likely to send their children to school compared with those not enrolled, but 

villages with higher NCMS take-up rates do not show significantly lower mortality.  

To estimate the effect of the NCMS on school enrollment rate, a typical way to address the 

endogenous take-up of the NCMS is to find an instrumental variable that is correlated with an 

individual household’s take-up decision but uncorrelated with the household’s decision for children’s 

school enrollment. Since the household is likely the unit of decision for both, such an instrument is 

difficult to find. One candidate we have considered is the percentage of elderly (age 60+) in other 

households of the same village. Age is likely to affect a household’s take-up decision because the 

elderly are vulnerable to health risks and the existing claims and reimbursements are supposedly 

posted in the village. This positive correlation is confirmed in the data (with a first-stage t-statistics 

on the instrument equal to 2.35). When we use it as an instrument in equation (3), the coefficient 

of             is positive and insignificant with a magnitude roughly 30 times higher than the 

OLS coefficient.
18

 This leads us to conclude that the IV approach is not useful, either because the 

instrument is weak or is invalid.  

                                                 
18

 The 2SLS coefficient of NCMS take-up is 0.593 for 6-16 year olds and 0.346 for 7-15 year olds, using a sample of 

only NCMS counties. 
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Another method to deal with the selection bias of NCMS take-up is propensity score 

matching. Conditional on the four NCMS counties, the classical propensity score matching will 

match one NCMS participating household with one non-participating household based on the 

predicted propensity of take-up and then compare the school enrollment outcome of the two 

households. Similar matching can be applied to village-level mortality, while the dependent variable 

of the propensity score prediction is the village-level NCMS take-up rate, not the individual decision 

of whether or not to enroll in the NCMS. 

Table 7 shows the results of the classical cross-sectional propensity score matching, using a 

sample of the four NCMS counties only. In particular, we first use data from the NCMS counties to 

estimate the propensity of a household having at least one member participating in the NCMS. This 

prediction is not by individual because the CAC reports how many household members enroll in the 

NCMS but not who has enrolled. Among the 80% of households that participate in the NCMS, 13% 

participate partially because some household members have non-rural and non-local hukou or have 

migrated out of the area for work. These factors are controlled for in the propensity score prediction 

in addition to household size, number of children, number of the elderly, contract land, house value 

and village-level variables such as national poverty status, minority gathering status, whether the 

village is the center of a town, and the village’s nearest distance to elementary school, secondary 

school and hospital.
19

 Many of these explanatory variables have statistically significant coefficients 

(p<0.01) in the probit estimation of the propensity score, but the overall pseudo R-square is not high 

(0.016 at the household level and 0.168 at the village level). The low household-level R-square is 

                                                 
19

 We have also tried to include household head education in the propensity score regression, but it is never statistically 

significant. 
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comparable to what is reported in Wagstaff et al. (2009) Table 5 (0.010-0.044) and does not have a 

natural interpretation econometrically (Greene 2008). Even if the low pseudo R-square indicates an 

imperfect fit of the model, it highlights the presence of unobservables and therefore the importance 

of relaxing assumptions behind the classical cross-sectional propensity score matching estimators.   

Once we identify the propensity score function, every participating household is matched 

with one non-participating household within the four NCMS counties, by both nearest neighbor 

matching and stratification matching. Since the two matching methods yield similar results, we 

report the result from nearest neighbor matching. The average treatment effect of NCMS take-up on 

school enrollment is presented in Panel A of Table 7. The result (0.016) is close to that of Table 5 

(0.017), suggesting that either there is little selection bias in the OLS results or the classical 

propensity score matching does not address the selection bias either.  

Panel B of Table 7 extends the propensity score prediction to the full sample, and allows an 

NCMS participating household to be matched with a similar household in a non-NCMS county. As 

shown in Figure 2, the propensity score distribution is similar across the two types of counties, 

except that the propensity score of non-NCMS counties has more density in the first (lower) mode 

and less density in the second (higher) mode. This is consistent with the poorer status of non-NCMS 

counties as shown in Table 3. Compared to the within-NCMS county matching, the propensity score 

matching across the two types of counties finds a larger effect of NCMS take-up on school 

enrollment (0.026 versus 0.016), partly because the across-county comparison includes the 

fundamental difference between NCMS and non-NCMS counties.  

We also use the NCMS counties to predict the average take-up rate per village as a function 
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of village attributes and extend the prediction to the villages in non-NCMS counties. Since almost all 

the villages have a positive NCMS take-up rate, it is impossible to conduct village-level propensity 

score matching within the NCMS counties. Panel C of Table 7 presents the propensity score 

matching results when we match each village in the four NCMS counties with a village in a non-

NCMS county. We find a negative effect of NCMS take-up rate on both types of mortality. 

Compared to OLS results, the effect on whether there is any 0-5 year old deaths is marginally 

significant.     

Overall, raw data comparison across NCMS and non-NCMS counties, as well as OLS and 

propensity matching results suggest that the NCMS may have a significant effect on school 

enrollment. The effect of the NCMS on village-level mortality is negative as we expect, but 

statistically significant in raw data comparison, marginally significant in propensity score matching, 

and not significant in OLS.    

 

4. Our methodology: DID in propensity score matching 

In this section, we propose a new propensity score matching methodology to better utilize 

variations in our data. We observe outcomes for three sets of households: participants in the NCMS 

(   , non-participants in the NCMS (   ), and people not exposed to the NCMS (   ).  The 

outcome of an NCMS-participating household    depends on the household’s observable attributes 

(   ), unobservables that are specific to NCMS-exposed counties, such as county investment in 

health care and education infrastructure (    and individual-specific unobservable attributes (   ). 

Ideally, the average treatment effect (ATE) of enrolling in NCMS would be estimated as: 
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(4)      [  (          )]       (          ) .        

However, the non-treatment outcome of the treated    (          ) is not observed. Classical 

propensity score matching finds a non-participating household     in the same county that has the 

same observable attributes (        
  ) and rewrites the average treatment effect estimator as: 

(5)          [  (        )]       (         
) .  

If the two households differ in   (i.e.         
  and   affects the NCMS take-up decision, 

        is a biased estimator of       

Another option is comparing household    with a matched household     in the non-NCMS 

counties so that         
  , which leads the average treatment effect to be estimated as: 

(6)          [  (        )]       (          
) .  

However, since we do not observe whether     would actually take up the NCMS should the 

NCMS be offered, it is likely that         
 due to the endogenous take-up of the NCMS in 

NCMS counties. County specific unobservables may differ as well due to the endogenous offer of 

NCMS (       . Both suggest         is a biased estimator of      

To alleviate the selection bias, consider two groups of households in all counties: the first 

group has high take-up propensity based on their observable attributes (
hX ) and the second group 

has low take-up propensity because of their different observables (
lX ). Because      , the two 

groups are likely to differ in unobservables as well (      . Each group may contain NCMS-

participating, NCMS-non-participating, and NCMS-non-exposed households. If we compare high-

propensity households between NCMS-exposed (E) and non-NCMS-exposed (NE) counties and 

assume the probability of taking up NCMS condition on    is    , we get: 
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(7)        
   [  (         

 )]   [   (           

 )]  

     [  (         
 )]          [   (         

 )]   [   (           

 )] 

    {                           }         {                            } 

under the assumption that household-specific unobservables follow the same statistical distribution 

conditional on    in NCMS and non-NCMS counties       
            

      . Note that this 

assumption is weaker than what is assumed in classical propensity matching (     
      

      

      or      
            

       because    
  is for any high propensity household i in 

NCMS exposed counties that does not depend on the NCMS actual take-up status but    
  and     

  

do. The assumption of      
            

      is more likely to be satisfied in our data because 

the two types of counties are similar in the distribution of population, although their county specific 

unobservables can differ (       . Similarly, under the assumption of      
            

     , 

we have for the low propensity group: 

(8)        
   [  (         

 )]   [   (           

 )]  

     [  (         
 )]          [   (         

 )]   [   (           

 )] 

    {                           }         {                            }. 

If we further assume that the influence of X and W on Y is separable (i.e.           

           ), the average treatment effect (ATE) of the NCMS is the same for high and low 

propensity groups, and the treatment effect does not arise until the NCMS is in effect, we can write 

the difference between (7) and (8) as a DID propensity score estimator: 

(9)                
         

  

    {                           }         {                            } 
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    {                           }         {                            } 

    {                   }         {              } 

    {                   }         {              } 

    {    }     {    }               . 

In other words, we can difference out the county specific unobservables between NCMS and non-

NCMS counties, hence circumventing the endogenous offering of NCMS by county. This way we 

identify the true ATE as a proportion of       . Alternatively,        can be interpreted as the 

average treatment effect of randomly increasing NCMS enrollment from     to    .  

 Note that our DID estimator utilizes three groups: (1) those who take up NCMS in the NCMS 

counties, (2) those who do not take up NCMS in the NCMS counties, and (3) those living in the non-

NCMS counties. The endogenous individual take-up is controlled for by comparing observationally 

similar households between NCMS and non-NCMS counties, while the endogenous introduction of 

NCMS at the county level is controlled for by comparing high propensity households and low 

propensity households within the same type of county.  

The effectiveness of        hinges on three assumptions: first, county-specific 

unobservables (W) apply to everyone in the same county so that W can be differenced out. Second, 

conditional on X, the unobservable individual attributes (Z) follow the same distribution between 

NCMS and non-NCMS counties. Note that this does not require Z to be distributed the same for all 

values of X. For example, if Z represents the attitude for child schooling and X represents education 

level of the household head, we assume that households with the same household head education 

have the same distribution of schooling attitude in NCMS and non-NCMS counties, but high- and 
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low-education households could have different schooling attitudes. The third assumption is that the 

average treatment effect (which by definition does not occur until the household is enrolled in the 

NCMS) is the same for all NCMS-participating households.    

We argue that        is better than classical propensity score matching estimates 

(        or        ), because we do not directly compare NCMS participants versus those that 

do not participate or are not exposed to NCMS. More specifically, Wang et al. (2009) and Wagstaff 

et al. (2009) propose estimators similar to        .
20

 This is still biased because insurance 

participants are a selected group and the distribution of     could be systematically different from 

    
 even if the two sets of counties are overall comparable. In contrast, we compare the population 

of NCMS and non-NCMS counties regardless of the household’s actual NCMS take-up decision. 

Therefore, we get around the unobserved selection of NCMS take-up and weaken the assumption 

from similarity between     and     
 to similarity between     and     

 (conditional on X). 

Moreover, our DID design differences out county-specific unobservables, which enables comparison 

between NCMS and non-NCMS counties even if the offering of NCMS is endogenous.  

 

5. Results 

To calculate our DID estimator, we pool the eight counties and divide the overall household-

level propensity score distribution equally into 10 bins by the percentile of the distribution.
21

 For 

example, bin 1 refers to the lowest 10 percent of the propensity score distribution, bin 2 refers to the 

                                                 
20

 Both Wang et al. (2009) and Wagstaff et al. (2009) have data before and after the insurance offer, so their estimate, if 

translated in our framework, is equivalent to         for Y that represents the before-after change of outcomes 

within a household. 

21
 We have tried 20 bins with 5% of data in each bin. Results are very similar.  
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lowest 10-20%, and bin 10 refers to the highest 10%. Using k as the index of bin, we estimate: 

(10)           ∑   
  
         ∑     

 
      ∑                  

  
       

where {
cty } are the eight county dummies, in an attempt to capture county-by-county difference in 

school enrollment, and { k } is the DID estimator for bin k  as compared to bin 1. Since bin 1 has 

the lowest propensity score, a positive effect of the NCMS would be reflected as 0k   for all 

2,3,...10.k  and the magnitude of k  would increase with k .  

 Following the same logic, we can conduct the DID estimator at the village level for both 

types of mortality. Since we have significantly fewer counts of villages (3977) than individuals (1.4 

million), we use 5 instead of 10 bins for the village-level estimation: 

(11)                 ∑    
 
         ∑      

 
      ∑                   

 
        

(12)                 ∑    
 
         ∑      

 
      ∑                   

 
       . 

 In Table 8 we first summarize the distribution of the predicted village-level NCMS take-up 

rate in the two types of counties. The two distributions are similar in mean, standard deviation, 

minimum and maximum. Panel B of Table 8 reports the DID estimators for village-level mortality. 

Using the lowest 20% of villages (in terms of predicted take-up rate) as the benchmark, we find that 

all of the interactions between the bin dummies and NCMSoffered are negative but statistically 

insignificant. These estimates suggest that the NCMS has no obvious effect in reducing the incidence 

of child or maternal mortality at the village level, a result consistent with the OLS regression 

reported in Table 3.  

 Before we present the DID estimators on individual-level school enrollment, Figure 3 plots 

the average of iInSchool  for bins 1-10 in NCMS and non-NCMS counties separately. Within the 
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non-NCMS counties, the average of iInSchool  is 85.6% for the 9
th

 bin (top 10-20% of the 

propensity score) and 83.7% for the 1
st
 bin (lowest 0-10% of the propensity score). The 1.9% 

difference filters out the county-level unobservables (W) and therefore reflects the fundamental 

difference between the two bins when there is no NCMS. Similarly, the difference between the 1
st
 

and 9
th

 bins is 89.4%-87%=2.4% in NCMS counties. According to Section 4, the DID estimator can 

be computed by 2.4%-1.9%=0.5%, which we interpret as the average treatment effect of an 

increasing NCMS take-up rate from the propensity of the 1
st
 bin (0.71) to the propensity of the 9

th
 bin 

(0.872).
22

  

Following this logic, equation (10) identifies the DID estimator ( k ) for every bin 

2,3,...10.k   Compared to Figure 3, equation (10) allows unobservable county attributes to differ 

among each county and lets iInSchool  vary by individual attributes such as age, gender, and birth 

order. These individual attributes do not enter into the propensity score prediction because the 

prediction is done at the household level.  

 Table 9 reports the DID estimators for bins 2,3,...10.k   Unlike the OLS and classical 

propensity score matching results, these DID estimators are all statistically zero, suggesting that the 

NCMS has no significant effect on school enrollment once we control for the endogeneous 

introduction and take-up of the NCMS.  

To make a more straightforward comparison between our DID estimate and the classical 

                                                 
22

 Similar comparison can be conducted between bin 1 and bin 10. We do not have a compelling explanation as to why 

the average school enrollment of bin 10 is lower than that of bin 9. One possibility is that families of bin 10 are more 

likely to have a family member that migrates or holds a non-rural hukou out of the study area, both of which could 

lead to more measurement errors in school enrollment. In our DID estimate, we explicitly control for the systematic 

differences across bins.   
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propensity score estimate, we add the dummy of NCMStakeup to equation (10): 

(13)           ∑   
  
         ∑     

 
      

 ∑                  

  

   

 ∑               

  

   

    

To avoid confusion, we use a different Greek letter for the coefficient of NCMSoffered ( k ) because 

the interpretation of this coefficient will be different from that of k . Following the notation of 

Section 4, k  compares households exposed to the NCMS with households not exposed to the 

NCMS thus representing the average treatment effect of the NCMS (proportional to the propensity of 

enrolling in the NCMS relative to the lowest propensity group). In comparison, k captures the 

difference between NCMS participants and non-participants (both exposed to NCMS), which 

corresponds to        ; k  captures the difference between the non-exposed and the exposed-

but-not-participating; and k k   captures the difference between participants and the non-exposed 

(        . The DID estimator k  should be somewhere between k  and k k  .  

Table 10 reports the estimates of k  and k  for 2,3,...10.k   Consistent with the 

classical propensity score matching results (as reported in Table 7), we find 8 out of the 9 k s are 

statistically significant. Interestingly, none of the k s are significant. Comparing Tables 9 and 10, 

we conclude that most of the observed school enrollment differences between NCMS participating 

and non-NCMS participating households are due to selection. In other words, the classical propensity 

score matching estimate (in Table 7) has failed to control the selection bias due to unobservable 

individual attributes. The propensity score matching between NCMS and non-NCMS counties 

(       ) is even worse because it does not control for the across-county difference either.  

 Is it possible that the NCMS was introduced too soon to have any real effect on school 



28 

 

enrollment by 2006? The second column of Table 9 compares county A (the one that introduced the 

NCMS in 2004) versus the other four non-NCMS counties. This column shows no positive effect of 

the NCMS either: two of the eight DID estimators are even negative, with 95% confidence.  

 So far, we conclude that the NCMS has no positive effect on mortality and school enrollment 

for the average population. One possible explanation for the zero average treatment effect is that the 

NCMS is only effective on a small fraction of the population that is most vulnerable to health risk 

(Levy and Meltzer 2008). To examine this explanation, we try to identify  vulnerable populations in 

six ways: (1) age 6,7,8, 9-14 and 15-16; (2) boys versus girls; (3) households with and without 

elderly; (4) households with a low and high house value; (5) households with a low and high 

percentage of household members being adult laborers; and (6) household heads with lower- or 

higher-than median education.  

 Arguably, younger age children are more vulnerable either because they are more likely to be 

sick or because the enforcement of compulsory schooling is weaker at a younger age (especially six 

years old, given the law’s permission to delay the school start age until seven year old if the area is 

short of educational resources); girls are more vulnerable because households tend to give priority to 

boys’ education; households with elderly are more subject to health risks of the elderly; and 

households with a lower house value and/or lower education of the household head are more 

vulnerable because they are likely to be poorer. These arguments predict that the NCMS may have 

more beneficial effects on six year olds, girls, households with elderly members, and households 

with a lower house value or lower education level for the household head. The difference between 

households with relatively more or less adult laborers is less clear: those with less adult laborers are 
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more vulnerable to health risk, but those with more adult laborers could enjoy a greater gain of total 

labor productivity due to health improvements associated with more labor.  

 Table 11 reports the DID estimators for children aged 6, 7, 8, 9-14, and 15-16 separately. We 

examine the lower end of the age range in more detail because Table 2 shows that ages 6 and 7 have 

the lowest enrollment rates and the highest variation between NCMS and non-NCMS counties. This 

leads us to suspect that uninsured households may delay the school starting age of their children due 

to lack of financial resources for education, lack of access to health care, or both. As we expect, 

Table 11 shows that the NCMS only has significant effects on school enrollment at age 6, and close 

to zero effect on older children. Even for age 6, only 3 of the 9 interactions of the propensity score 

bin and NCMSoffered are statistically significant, suggesting that the effects of the NCMS on 

reducing the delay of elementary school enrollment are moderate and only present for the households 

with relatively high propensity scores.
23

 

 One may argue that parents want to delay child schooling not due to a lack of financial 

resources but out of concern that a child younger than the average in his/her class may not have good 

opportunities to develop leadership and other social skills. We have two reasons to argue against this 

interpretation. First, if the delay is due to the concern about social skills, the introduction and take-up 

of the NCMS does not affect this concern and therefore should not have any effect on school starting 

age. Second, Chinese families that have more financial resources tend to push for early enrollment 

instead of for delayed schooling. For example, in the China Health and Nutrition Survey (CHNS), a 

longitudinal sample of Chinese households in nine provinces, the six-year-old enrollment rate is 

                                                 
23

 In an unreported table, we repeat the exercise for 16-year-olds alone but do not find any significant effect of NCMS on 

school enrollment.  



30 

 

significantly higher in urban households (65.1%) than in rural households (56.6%). The comparison 

is similar if we divide the CHNS sample by whether a household’s per-capita income is above or 

below the sample median: the six-year-old enrollment rate is 63.37% in above-median households 

and 58.36% in below-median households.   

In addition, Guo et al. (2007) show that urban China has an alarmingly high rate of caesarean 

section (c-section) deliveries in hospital-based births (between 26% and 63% during the late 1990s), 

as compared to the World Health Organization recommended level of 15%. At least anecdotally, part 

of this is attributable to a rush of c-section deliveries in urban China towards the end of August 

because the requirement for compulsory school enrollment is being six years old by September 1.
24

 

To address the parental cry for early enrollment, the Ministry of Education is considering a proposal 

that allows five year olds to enroll in elementary school if the child has received kindergarten 

education and the local area has enough educational resources to admit them.
25

 Based on these facts 

and our DID estimates, it is plausible that the introduction of the NCMS has led to less delay of 

schooling, either because NCMS relieves the financial burden of health care or because better access 

to health care makes more six-year-olds healthy enough for school. Unfortunately, we do not have 

individual-level health utilization data to distinguish these two explanations.  

 Table 12 reports the DID estimators by the percentage of household members that are adult 

laborers (age 17-60). In particular, we divide the households into four quartiles and obtain a separate 

set of parameters for each quartile. The DID estimates are mostly insignificant, except for 4 

                                                 
24

 See http://dailynews.sina.com/bg/chn/chnnews/chinanews/su/20100914/04411830677.html, accessed on September 

14, 2010.  

25
 See http://edu.ce.cn/young/campus/200912/07/t20091207_20566049.shtml, accessed on September 11, 2010.  

http://dailynews.sina.com/bg/chn/chnnews/chinanews/su/20100914/04411830677.html
http://edu.ce.cn/young/campus/200912/07/t20091207_20566049.shtml
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coefficients for households in the third quartile, 1 coefficient for the first quartile and 1 coefficient 

for the fourth quartile. This suggests that, even if the NCMS has improved the health of adult 

laborers, increased their labor income, and made more financial resources available for child 

schooling, the effect is sparse and non-linear. 

 For other sub-groups (not reported), we find no more than one statistically significant DID 

estimate by child gender, by whether a household has elderly members, by house value, and by 

household head education. These results, combined with the above results by child age and adult 

laborers, imply that the NCMS is not effective in improving school enrollment among the most 

vulnerable households, though there is some evidence that the NCMS has reduced the delay of 

elementary education for six-year-olds. 

 

6. Discussion and Conclusion 

 Overall, the raw data of a large cross-section from the 2006 China Agricultural Census 

suggests that NCMS-insured households on average have better outcomes in child school enrollment, 

young child mortality, and maternal mortality than do non-insured households. However, most of 

these differences are driven by the endogenous introduction and take-up of the NCMS. Once we 

control for the selection bias using a difference-in-difference propensity score method, the NCMS 

has close to zero effect on the average population, although there is moderate evidence that it has 

reduced the delay of elementary education for some six-year-olds. 

 This finding of zero average treatment effect is consistent with the existing literature (Yi et al. 

2009; Lei and Lin 2009), who attribute the lack of effect (on health care utilization and health 
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improvement) to the low reimbursement rate and to selection. Wang et al. (2009) do find some 

positive effects of health insurance coverage on self-reported health status, but the insurance program 

they studied is different from the NCMS and arguably more comprehensive in outpatient care and 

could offer more help to deal with non-catastrophic health risk.  

Since our studied area is much poorer than most areas of China, we suspect that the NCMS 

does not improve the three studied outcomes in other areas either. In addition to the low 

reimbursement rate, as noted above, the lack of average effect may be explained by the fact that 

mortality is an extreme event and the effect of the NCMS on school enrollment may take more than 

three years to show up in the data. Another possibility is that the NCMS may encourage more health 

care utilization but the ease of financial burden has not appeared yet, as households need to pay even 

more money out of pocket when they seek more treatment. Wagstaff et al. (2009) confirm this 

suspicion: they find that the NCMS is related to more health care utilization but that it does not 

decrease out-of-pocket spending on health care except for infant deliveries. Thanks to increased 

government subsidies in 2009, the reimbursement rate has increased over time. Whether this 

improvement portends better health and educational outcomes is a topic worth studying in the future.  
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Figure 1: Histogram of village-level take-up rate, conditional on NCMS counties 

 

 

 

 

Figure 2: Propensity score distribution of NCMS and non-NCMS counties 
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Figure 3: School enrollment rate by NCMS/non-NCMS counties and propensity score bins 

 

Cutoff points for bin definition: 

 Mean of p score Min of p score Max of p score 

bin 1 0.71 0.355 0.745 

bin 2 0.755 0.745 0.762 

bin 3 0.768 0.762 0.774 

bin 4 0.782 0.774 0.79 

bin 5 0.798 0.79 0.806 

bin 6 0.814 0.806 0.819 

bin 7 0.824 0.819 0.828 

bin 8 0.833 0.828 0.839 

bin 9 0.846 0.839 0.855 

bin 10 0.872 0.855 0.978 
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Table 1: Summary of village-level mortality of young children and pregnant women, by NCMS status 

 

 non-

NCMS 

counties 

 

All 

NCMS 

counties 

County 

with 

NCMS in 

2004 

Counties 

with 

NCMS in 

2006 

NCMS counties 

village take up 

rate above 

median (84.1%) 

village take up 

rate below 

median (84.1%) 

Total # of 

villages 

2017 1960 483 1477 980 980 

# of young child 

deaths 

1.10 

(1.63) 

0.77 

(1.32) 

0.93 

(1.44) 

0.72 

(1.26) 

0.754 

(1.28) 

0.788 

(1.35) 

0 52.65% 61.68% 55.91% 63.57% 61.22% 62.14% 

1 18.69% 18.06% 19.67% 17.54% 19.08% 17.04% 

2 13.09% 10.87% 12.01% 10.49% 11.02% 10.71% 

3 8.28% 5.14% 5.59% 5.34% 5.00% 5.82% 

3+ 7.29% 4.25% 6.83% 3.06% 3.67% 4.29% 

young child 

mortality rate 

0.011 

(0.016) 

0.0077 

(0.018) 

0.0094 

(0.01) 

0.0072 

(0.024) 

0.009 

(0.02) 

0.009 

(0.04) 

# of pregnant 

women deaths 

0.059 

(0.296) 

0.028 

(0.167) 

0.021 

(0.143) 

0.03 

(0.174) 

0.026 

(0.158) 

0.029 

(0.175) 

0 95.14% 97.29% 97.83% 97.09% 97.14% 97.45% 

1 4.31% 2.66% 2.07% 2.84% 2.76% 2.55% 

2 0.25% 0.05% 0% 0.07% 0.10% 0% 

2+ 0.3% 0% 0% 0% 0% 0% 

pregnancy 

women 

mortality rate 

0.023 

(0.134) 

0.011 

(0.09) 

0.012 

(0.098) 

0.010 

(0.011) 

0.008 

(0.08) 

0.013 

(0.1) 

 

Standard deviation in parentheses.
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Table 2: Summary of school enrollment, by NCMS status 

 

 non- 

NCMS 

counties 

 

NCMS counties All counties 

All County 

with 

NCMS in 

2004 

Counties 

with 

NCMS in 

2006 

not 

enrolled 

in 

NCMS 

enrolled 

in NCMS 

male female 

Total # of school 

age children 

776,854 

 

643,831 

 

151901 

 

491930 

 

128,166 

 

515,665 

 

763364 

 

657334 

 

% in school all age 84.13% 88.09% 86.5% 88.5% 86.27% 88.55% 85.4% 86.4% 

age 6 29.28% 45.26% 36.7% 47.9% 41.19% 46.32% 37.5% 37.5% 

age 7 79.97% 90.86% 86.3% 92.3% 88.94% 91.36% 85.8% 85.8% 

age 8 91.74% 96.02% 94.4% 96.5% 94.79% 96.34% 94.2% 93.2% 

age 9 95.14% 97.34% 96.4% 97.6% 96.55% 97.54% 96.4% 95.9% 

age 10 age 100 95.58% 97.39% 96.8% 97.6% 96.53% 97.61% 96.7% 96% 

age 11 96.52% 97.41% 97.2% 97.4% 96.79% 97.56% 97.1% 96.7% 

age 12 95.79% 97.03% 96.5% 97.2% 95.98% 97.30% 96.6% 96% 

age 13 95.14% 96.58% 95.5% 96.9% 95.65% 96.81% 96.1% 95.4% 

age 14 91.49% 93.39% 92.3% 93.7% 91.22% 93.90% 92.9% 91.7% 

age 15 85.13% 87.52% 86.6% 87.8% 84.91% 88.15% 86.9% 85.7% 

age 16 68.86% 71.60% 73.9% 70.9% 68.10% 72.42% 70.9% 69.4% 

 



41 

 

Table 3: Across county comparison 

 

County Name A B C  D E F G H 

Year to first adopt NCMS
 

2004 2006 2006 2006 2007 2007 2007 2007 

Local fiscal income per capita (2004)
1 

162 166 122 320 141 149 114 68 

Fiscal expenditure per capita (2004)
1 

493 381 352 660 499 434 366 398 

Per-capita income (2004)
1 

1562 1968 1503 2119 1540 1515 1511 1410 

# of children per HH
2 

2.40 2.16 2.01 2.22 1.72 2.37 2.47 2.33 

# of adult labor per HH
2 

2.42 2.49 2.39 2.42 2.34 2.41 2.41 2.52 

Fraction of HH with migrants
2 

0.05 0.25 0.25 0.28 0.34 0.19 0.16 0.33 

Log(house value)
2 

9.44 9.70 9.55 9.67 9.79 9.64 9.44 9.65 

Contract land
2 

3.86 2.93 3.08 2.40 3.15. 2.35 3.37 2.84 

Fraction of HH with non-rural hukou
2 

0.02 0.02 0.03 0.02 0.05 0.02 0.03 0.03 

Fraction of HH with non-local hukou
2 

0.03 0.03 0.05 0.02 0.10 0.02 0.03 0.03 

% of villages with national poverty status
2 

0.59 0.66 0.37 0.60 0.44 0.65 0.65 0.47 

% of villages for minority gathering
2 

0.33 0.38 0.35 0.44 0.20 0.45 0.31 0.13 

Note: 1. Source: the 2004 statistical year book of the study, in RMB. 2. Source: the study sample.  
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Table 4: Compare households across NCMS participants, NCMS non-participants and non-NCMS counties 

 

  Non-NCMS  NCMS counties 

 counties All Non-takeup Takeup 

Household Variables 

years of edu of HH head 
5.97 

(3.03) 

6.28 

(3.16) 

6.25 

(3.44) 

6.29 

(3.10) 

household size 
4.22 

(1.57) 

4.14 

(1.64) 

3.99 

(1.69) 

4.18 

(1.63) 

# of 17-60 year old 
2.46 

(1.28) 

2.5 

(1.43) 

2.37 

(1.41) 

2.54 

(1.44) 

# of 60+ year old 
0.38 

(0.69) 

0.42 

(0.71) 

0.4 

(0.70) 

0.43 

(0.72) 

# of migrating workers 
0.19 

(0.39) 

0.29 

(0.46) 

0.29 

(0.46) 

0.29 

(0.46) 

have non-local hukou 
0.04 

(0.19) 

0.04 

(0.19) 

0.05 

(0.24) 

0.03 

(0.19) 

have non-rural hukou 
0.037 

(0.19) 

0.04 

(0.20) 

0.08 

(0.27) 

0.03 

(0.18) 

have government worker 
0.02 

(0.14) 

0.02 

(0.14) 

0.04 

(0.20) 

0.02 

(0.12) 

log (house value) 
9.42 

(0.999) 

9.55 

(1.02) 

9.42 

(1.02) 

9.59 

(1.02) 

contract land (mu) 
3.35 

(2.55) 

2.97 

(2.33) 

2.7 

(2.27) 

3.03 

(2.35) 

Village Variables         

is the center of the town 
0.094 

(0.29) 

0.1 

(0.31) 

0.13 

(0.34) 

0.1 

(0.31) 

is a minority gathering village 
0.342 

(0.47) 

0.25 

(0.44) 

0.25 

(0.43) 

0.25 

(0.43) 

has national poverty status 
0.51 

(0.50) 

0.49 

(0.50) 

0.48 

(0.50) 

0.49 

(0.50) 

distance to nearest elementary 

school (km) 

1.47 

(2.12) 

1.2 

(1.96) 

1.2 

(1.87) 

1.2 

(1.97) 

distance to nearest secondary 

school (km) 

6.7 

(6.39) 

5.5 

(5.34) 

5.4 

(5.87) 

5.5 

(5.2) 

distance to nearest hospital 

(km) 

7.5 

(7.49) 

5.5 

(5.33) 

5.5 

(5.99) 

5.5 

(5.16) 

Observation 726906 688328 136859 551469 
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Table 5: regression results of village-level mortality 

 

  Any 0-5 year old death Any pregnancy death 

NCMS offered -0.087  -0.02  

 (-1.49)  (-0.91)  

NCMS take-up rate 0.012 -0.031 0.003 -0.003 

 (0.17) (-0.37) (0.11) (-0.12) 

is the center of the town 0.007 -0.005 0.000 -0.003 

 (0.19) (-0.16) (0.000) (-0.20) 

is a minority gathering village -0.034 0.038 0.005 0.01 

 (1.97)* (1.63) (0.76) (1.04) 

has national poverty status 0.023 0.004 -0.006 -0.008 

 (1.40) (0.19) (-0.94) (-1.22) 

# of households in the village 0.000 0.000 0.000 0.000 

 (10.70)** (6.72)** (4.76)** (4.03)** 

distance to the nearest hospital 0.003 -0.001 0.002 0.001 

 (2.32)* (0.35) (2.35)* (1.19) 

County dummies No Yes No Yes 

Observations 3977 3977 3977 3977 

R-square 0.04 0.07 0.02 0.03 

Errors clustered by township.  

Robust t statistics in parentheses,* significant at 5%; ** significant at 1% 
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Table 6: OLS results of individual-level school enrollment  

 

 (1) (2) (3) (4) 

 age 6-16 age 7-15 age 6-16 age 7-15 

NCMS offered 0.014 0.007   

  (4.93)** (2.68)**   

NCMS takeup 0.018 0.014 0.017 0.013 

  (8.36)** (6.52)** (8.64)** (6.78)** 

counties All All All All 

town dummies NO NO YES YES 

Observations 1420685 1154614 1420685 1154614 

R-square 0.28 0.05 0.29 0.06 

All regressions control for individual, household and village variables as described in the paper. Error 

clustered by village. Robust t statistics in parentheses,* significant at 5%; ** significant at 1%,  

 

 

 

Table 7: Classical propensity score matching, all using nearest neighbor matching 

 

 Average 

treatment 

effect 

std err t-stat 

Panel A: Conditional on 4 NCMS counties    

Individual-level School Enrollment 0.016 0.001 11.38** 

Panel B: Conditional on all 8 counties    

Individual-level school enrollment 0.026 0.001 31.11** 

Panel C: Conditional on all 8 Counties    

Village level of having any 0-5 year old death -0.067 0.026 -2.63** 

Village level young child mortality rate 0.000 0.001 0.154 

Village level of having any pregnant women death -0.013 0.009 -1.427 

Village-level pregnant women mortality rate -0.003 0.003 -0.984 

* significant at 5%; ** significant at 1%. 
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Table 8: DID estimates for village-level mortality rate, including all 8 counties 

 

Panel A: Predicted value of village medical insurance participation ratio 

 Number Mean Std Min Max 

Non-NCMS 2017 0.8 0.053 0.357 0.995 

NCMS 1960 0.8 0.055 0.355 0.989 

 

Panel B: DID estimates 

 Children Death Pregnant Women Death 

bin 2 (lowest 20-40% of pscore) -0.037 0.004 

 (-1.15) (0.25) 

bin 3 -0.057 -0.002 

 (-1.71) (-0.11) 

bin 4 -0.033 -0.018 

 (-0.86) (-1.08) 

bin 5 (highest 20% of pscore) -0.065 -0.038 

 (-1.49) (-2.21)* 

bin 2*NCMSoffered -0.016 -0.012 

 (-0.31) (-0.53) 

bin 3*NCMSoffered -0.047 -0.027 

 (-0.95) (-1.35) 

bin 4*NCMSoffered -0.034 -0.004 

 (-0.66) (-0.17) 

bin 5*NCMSoffered -0.091 0.014 

 (-1.67) (-0.66) 

NCMSoffered absorbed absorbed 

county dummy Yes Yes 

Observations 3977 3977 

R-square 0.06 0.02 

Errors clustered by township. Robust t statistics in parentheses,* significant at 5%; ** significant at 1%.  
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Table 9: DID estimates for individual-level school enrollment 

 (1) (2) 

Sample All counties  County A vs. non-NCMS counties 

NCMS offered -0.011 0.058 

 (2.51)* (9.49)** 

bin 2 (lowest 10-20% of pscore) -0.009 -0.015 

 (3.06)** (3.32)** 

bin 3 -0.011 -0.02 

 (3.25)** (4.31)** 

bin 4 -0.009 -0.014 

 (2.65)** (2.71)** 

bin 5 0.000 -0.001 

 (0.14) (-0.34) 

bin 6 0.011 0.008 

 (3.26)** (1.84) 

bin 7 0.017 0.02 

 (5.21)** (4.25)** 

bin 8 0.018 0.02 

 (5.22)** (4.01)** 

bin 9 0.022 0.027 

 (6.16)** (4.98)** 

bin 10 (highest 10% of pscore) 0.016 0.018 

 (3.69)** (3.08)** 

bin 2 * NCMS offered 0.002 -0.006 

 (0.600) (-1.68) 

bin 3 * NCMS offered 0.003 -0.002 

 (0.69) (2.46)* 

bin 4 * NCMS offered 0.002 -0.004 

 (0.51) (-1.52) 

bin 5 * NCMS offered 0.005 0.004 

 (1.33) (1.87) 

bin 6 * NCMS offered 0.004 -0.005 

 (1.09) (-1.26) 

bin 7 * NCMS offered 0.003 0.003 

 (0.62) (0.89) 

bin 8 * NCMS offered 0.003 -0.001 

 (0.75) (0.71) 

bin 9 * NCMS offered 0.003 0.002 

 (0.62) (0.40) 

bin 10 * NCMS offered 0.006 -0.004 

 (1.11) (2.09)* 

county dummies / individual variables yes / yes yes / yes 

Observations 1420685 950681 

R-square 0.27 0.29 

Error clustered by village. Robust t statistics in parentheses,* significant at 5%; ** significant at 1%. 
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Table 10: DID estimators, separating NCMSoffered and NCMStakeup 

 School Enrollment 

bin 2 * NCMS offered -0.007 

 (1.32) 

bin 3 * NCMS offered -0.009 

 (1.23) 

bin 4 * NCMS offered -0.018 

 (2.24)* 

bin 5 * NCMS offered -0.008 

 (1.24) 

bin 6 * NCMS offered -0.007 

 (1.23) 

bin 7 * NCMS offered -0.007 

 (1.26) 

bin 8 * NCMS offered -0.003 

 (0.56) 

bin 9 * NCMS offered -0.009 

 (1.38) 

bin 10 * NCMS offered -0.011 

 (1.63) 

bin 2 * NCMS take-up 0.012 

 (2.45)* 

bin 3 * NCMS take-up 0.015 

 (2.38)* 

bin 4 * NCMS take-up 0.025 

 (3.48)** 

bin 5 * NCMS take-up 0.016 

 (2.81)** 

bin 6 * NCMS take-up 0.013 

 (2.63)** 

bin 7 * NCMS take-up 0.011 

 (2.19)* 

bin 8 * NCMS take-up 0.007 

 (1.37) 

bin 9 * NCMS take-up 0.012 

 (2.29)* 

bin 10 * NCMS take- up 0.018 

 (3.32)** 

NCMStakeup 0.007 

 (1.93) 

Observations/R-square 1420685/0.27 

Error clustered by village. NCMSoffered is absorbed in the regression. Controls for all bin dummies, county dummies, 

and individual variables. Robust t statistics in parentheses,* significant at 5%; ** significant at 1%.
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Table 11: DID estimator on individual-level school enrollment, by child age 

 

 age 6 age 7 age 8 age 9-14 age 15-16 

bin 2 * NCMS offered 0.002 0.022 0.003 -0.004 0.004 

 (0.14) (1.97)* (0.51) (1.1) (0.36) 

bin 3 * NCMS offered 0.009 0.009 -0.003 -0.001 0.006 

 (0.59) (0.75) (0.38) (0.18) (0.51) 

bin 4 * NCMS offered 0.004 0.012 0.006 0.002 0.000 

 (0.23) (0.97) (0.76) (0.42) (0.03) 

bin 5 * NCMS offered 0.028 0.021 0.002 0.002 0.001 

 (1.87) (1.71) (0.27) (0.60) (0.08) 

bin 6 * NCMS offered 0.029 0.005 0.000 -0.002 0.015 

 (1.68) (0.41) (0.01) (-0.49) (1.44) 

bin 7 * NCMS offered 0.038 0.007 0.007 -0.006 0.007 

 (2.22)* (0.59) (0.97) (-1.86) (0.65) 

bin 8 * NCMS offered 0.029 0.017 0.009 -0.002 0.006 

 (1.68) (1.34) (1.29) (-0.57) (0.60) 

bin 9 * NCMS offered 0.041 0.009 -0.006 -0.002 0.013 

 (2.43)* (0.70) (0.82) (0.70) (1.18) 

bin 10 * NCMS offered 0.038 0.006 0.004 -0.003 0.006 

 (2.14)* (0.44) (0.42) (0.75) (0.50) 

NCMS offered absorbed absorbed absorbed absorbed absorbed 

bin 2 – bin 10 dummies Yes Yes Yes Yes Yes 

County dummies Yes Yes Yes Yes Yes 

Individual variables Yes Yes Yes Yes Yes 

Observations 192999 184504 191658 768766 236244 

R-square 0.11 0.07 0.03 0.02 0.05 

Error clustered by village. Robust t statistics in parentheses,* significant at 5%; ** significant at 1%. 
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Table 12: DID estimator on individual-level school enrollment, by % of household members being 17-60 year old 

(adult labor) 

 

 % of adult labor 

1
st
 quartile 

% of adult labor 

2
nd

 quartile 

% of adult labor 

3
rd

 quartile 

% of adult labor 

4
th

 quartile 

bin 2 * NCMS offered 0.002 0.002 0.006 -0.001 

 (0.28) (0.42) (1.15) (-0.11) 

bin 3 * NCMS offered -0.006 0.007 0.015 0.001 

 (-0.84) (1.22) (2.67)** (0.12) 

bin 4 * NCMS offered -0.001 0.008 0.008 0.004 

 (-0.16) (1.24) (1.35) (0.56) 

bin 5 * NCMS offered -0.002 0.01 0.018 0.000 

 (-0.39) (1.70) (3.19)** (0.05) 

bin 6 * NCMS offered 0.002 -0.003 0.009 0.015 

 (0.34) (-0.47) (1.70) (1.99)* 

bin 7 * NCMS offered -0.003 0.003 0.004 0.008 

 (-0.43) (0.57) (0.70) (1.04) 

bin 8 * NCMS offered 0.001 0.004 0.012 -0.002 

 (0.22) (0.68) (2.21)* (-0.31) 

bin 9 * NCMS offered 0.003 0.004 0.006 0.005 

 (0.52) (0.66) (1.00) (0.80) 

bin 10 * NCMS offered 0.005 0.017 0.014 0.008 

 (0.78) (2.16)* (2.29)* (1.23) 

NCMS offered absorbed absorbed absorbed absorbed 

bin 2 – bin 10 dummies Yes Yes Yes Yes 

County dummies Yes Yes Yes Yes 

Individual variables Yes Yes Yes Yes 

Observations 364480 380721 376187 299297 

R-square 0.32 0.33 0.28 0.18 

Error clustered by village. Robust t statistics in parentheses,* significant at 5%; ** significant at 1%. 

 

 

 


