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Abstract 

We perform laboratory experiments comparing auctions with endogenous budget constraints. A 
principal imposes a budget limit on a bidder (an agent) in response to a principal-agent problem. 
In contrast to the existing literature where budget constraints are exogenous, this theory predicts 
that tighter constraints will be imposed in first-price auctions than in second-price auctions, 
offsetting any advantages attributable to the lower bidding strategy of the first-price auction. Our 
experimental findings support this theory: principals are found to set significantly lower budgets 
in first-price auctions. Our results help to explain the prevalence of ascending (i.e., second-price) 
formats in high-stakes auctions. 
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1. Introduction 

Beginning with important articles by Che and Gale (1996, 1998), an active literature has 

explored the implications of budget constraints in auctions. This literature models environments 

in which bidders have well-defined values for the items being auctioned, but may also face 

binding budget constraints. For example, a telecommunications entrant may value a spectrum 

license at $800 million, but may be limited to a budget of $500 million.1 The existing literature 

identifies a number of interesting consequences. For example, a standard format such as the 

second-price auction may no longer be efficient in the sense of allocating items to the bidders 

who value them the most, as the bidder with the highest value may not have the highest budget. 

More surprisingly, budget constraints may cause first-price auctions to outperform second-price 

auctions with respect both to efficiency and revenues. Since bidders shade their bids in first-price 

auctions but bid full value in second-price auctions, bidders are less likely to find their budgets to 

be binding in first-price auctions. This upsets revenue equivalence and results in first-price 

auctions producing higher revenues. Moreover, since bids are relatively more likely to reflect 

bidders’ values than their limited budgets, first-price auctions may also yield more efficient 

outcomes than second-price auctions. 

However, most conclusions to date about auctions with budget-constrained bidders have 

depended crucially on a modeling assumption that their budgets are determined exogenously.2 

Recent work by Burkett (2011) demonstrates that conclusions change qualitatively if, instead, the 

choice of budgets is allowed to be endogenous. In Burkett’s work, the budget constraint is a 

control mechanism that a principal (e.g., the corporate board) imposes on an agent (e.g., the 

manager delegated to bid for an asset) in order to curb managerial discretion such as empire 

building. Therefore, a principal seeking to constrain its agent ought to set a relatively more 

stringent budget when the agent bids in a first-price rather than in a second-price auction, as 

                                                            
1 There is longstanding evidence that bidders in spectrum auctions face significant budget constraints. In 
describing the Nationwide Narrowband Auction (FCC Auction #1), Cramton (1995) wrote: “Budget 
constraints undoubtedly played a role in the bidding.” More recently, Bulow, Levin and Milgrom (2009) 
emphasized two issues—exposure problems and budget constraints—arguing that the latter are 
“ubiquitous” in large spectrum auctions. 
2 Experimental results on auctions with budget constraints are limited and we are not aware of any other 
experimental paper with endogenous budget decisions in auctions  (for example, Pitchic and Schotter 
(1998) studied sequential auctions where budget is common knowledge.)  
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identical budgets will leave the agent unconstrained in more states of the world in a first-price 

auction. Comparing revenues without allowing the principal’s choice of budget to depend on the 

auction format may have no greater justification than comparing revenues without allowing the 

bidder’s strategy to depend on the auction format. 

In this paper, we attempt to test the above reasoning experimentally. The “bidder” (the agent) 

seeks to acquire an asset, but will derive a private benefit from acquiring the asset, above and 

beyond mere profit maximization. The “principal” can limit the bidder’s discretion by imposing 

a budget constraint on bids. Each player observes a signal of the asset’s value before moving: the 

principal chooses the budget and the agent chooses the bid based on their respective signals. In 

our laboratory experiments, the variable of greatest interest is the principal’s choice of budget—

we wish to see whether it is set independently of the auction format, or whether the principal sets 

a lower budget for a first-price auction than for a second-price auction. The bidder’s choice of 

bid is only of secondary interest and, in some treatments, the role of the bidder will be replaced 

by a computer program rather than being a human subject. 

[Figure 1] 

Our experimental results can be seen most easily in Figure 1, which displays box plots of the 

budgets selected by the principal for each decile of signals from [0,100] for both auction formats. 

Each box indicates the interquartile range (IQR) and the whiskers extend to the furthest data 

point within 1.5IQR. The grey (left) boxes display the budgets selected by the principal in first-

price auctions and the black (right) boxes display the budgets selected in second-price auctions. 

It is apparent to the naked eye that budgets are set substantially lower in first-price than in 

second-price auctions for all signal deciles except [0,10]. The exogeneity of the budget choice is 

also rejected by statistical tests. 

Figure 1 displays clear results with a pair of human subjects in each experiment—one taking 

the role of the principal and one taking the role of the bidder. The results are even sharper in 

treatments where the human bidders are replaced by computerized bidders, as displayed later in 

Figure 3. Since the computerized bidders consistently follow predetermined rules, we are able to 

elicit more information about the principals’ behavior in these sessions. Using this additional 

information, we show that these data support the prediction that the principals constrain the same 

set of bidder types across auction formats, a key implication of the theoretical model.  
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Burkett (2011) demonstrated theoretically, in the model tested here, that the principal 

tightens the budget precisely so as to neutralize the change in auction format from second- to 

first-price. Consequently, the second-price auction with an endogenous budget constraint 

generates exactly the same theoretical allocation as the first-price auction with an endogenous 

budget constraint—a restoration of the revenue equivalence theorem. In particular, the outcome 

of the second-price auction is expected to attain the same degree of efficiency as the first-price 

auction, and both are expected to yield equal revenues. We test—and are unable to reject—the 

efficiency hypothesis in our experimental data. This finding is particularly relevant for 

environments (e.g., spectrum auctions) where budget constraints may be important and the seller 

may be motivated primarily by efficiency considerations. We also test—and do reject—the 

hypothesis of equal revenues. However, the latter experimental finding is unsurprising in light of 

the traditional experimental literature and is what we had expected to find. The experimental 

auctions literature (without budget constraints) has consistently found that bidders in the first-

price auction bid higher than the risk-neutral Nash equilibrium, leading to higher revenues in the 

first-price auction.3 Given this prior evidence, it would have been surprising if adding a pre-

auction budgeting decision by a principal had somehow eliminated the difference in revenues of 

the two auction formats that is generally observed in the laboratory.4 

Our model and experimental findings help to explain why ascending auctions are commonly 

used in high-stakes settings such as the sale of telecommunications spectrum, where budget 

constraints are routinely imposed on managers. Note that most ascending auction formats used 

for spectrum effectively yield second pricing; therefore, the use of ascending auctions would be 

surprising within the context of the literature on exogenous budget constraints. However, with 

endogenous budget constraints, this empirical regularity becomes much easier to understand. 

                                                            
3 See Cox, Roberson and Smith (1982) and Cox, Smith and Walker (1988) as the seminal papers, and 
Kagel (1995) for a detailed survey. Risk aversion (Cox, Smith and Walker (1988)), anticipation of regret 
(Filiz-Ozbay and Ozbay, 2007), joy of winning (see, for example, Goeree, Holt and Palfrey, 2002), fear of 
losing (Delgado et al., 2008, Cramton et al., 2012a, 2012b), and level-k thinking (Crawford and Iriberri, 
2007) have been offered as possible explanations of the overbidding phenomenon. 
4 One interpretation of the results from Burkett (2011) is that the budgets in the model function like bids 
that are not always “active”. If the subjects recognize this, one might expect similarities between the 
budgeting decisions in this experiment and bidding decisions in the existing literature. 
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The rest of this paper is structured as follows. In Section 2, we specify the theoretical model 

and explore its properties. In Section 3, we describe the experimental design, and in Section 4, 

we give the experimental results. Section 5 concludes. 

2. Model 

The models tested in the experiment are standard first- and second-price sealed-bid, 

independent private values auction models with two bidders, extended to include a pre-auction 

budgeting stage. In the budgeting stage, each bidder receives a budget from a principal. Both the 

principal and the bidder receive a payoff in the event that the bidder wins the item at the auction; 

however, the principal’s payoff is always lower than the bidder’s. This is due to an additional 

private payoff that the bidder receives from the item that does not accrue to the principal. It is the 

presence of this private payoff that motivates the principal to restrain the bidder with a budget.     

Formally, the game occurs in two stages. In the first stage, each principal receives a signal 

about the value of the item and decides on a budget for the bidder based on this information. 

Neither the principal’s signal nor the budget choices are observed by the other principal-bidder 

pair. Having observed their budgets, each bidder in the second stage observes her valuation for 

the good and decides on a bid for the auction which may not exceed the budget set by her 

principal.5 The winner of the auction is the principal-bidder team with the highest bid. We 

consider first-price and second-price payment rules. 

Payoffs 

The payoffs to both the principal and the bidder are determined only by the information 

received by the bidder. Specifically, we assume that if bidder ∈ 1,2  observes a valuation of 

, principal i has a valuation for the item given by , where 0 < δ < 1. If bidder i submits the 

winning bid in the auction and pays a price p, then bidder i receives a payoff proportional to 

 and principal i receives a payoff proportional to .6 That is, the bidder and the 

                                                            
5 As will be clear from our equilibrium analysis, the principal’s signal is irrelevant information for the 
bidder in this setup since the equilibrium unconstrained bid is a function of only the bidder’s valuation. 
6 The payoffs are proportional to those expressions to avoid double counting the total profits. For 
example, the bidder and the principal might be equity holders in a firm with shares  and , 
respectively (where 1). The bidder is assumed to receive 	  and the principal to 
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principal are both risk neutral and receive a payoff that is determined by the difference between 

their respective valuations and the price paid for the good. 

Information 

The signal received by principal i is denoted by , assumed to be uniformly distributed on 

0,100 . The signals of principals i and j are independent. The principal does not observe her 

valuation for the good, but knows that her valuation for the good, , is uniformly distributed on 

0, . In other words,  determines the upper limit of the principal’s valuation. Based on the 

realization of , the principal decides on a budget for the bidder, given by . Having observed 

her budget, , bidder i observes her valuation for the object, , which given the assumption on 

the principal’s valuation is uniformly distributed on 0, / . Although the theoretical results 

hold for general distributions, we chose these distributions for the experiment, because we wish 

to focus on the budgeting decision and hence would like the game to be as simple as possible 

from the principal’s perspective. Note that as  decreases (increases) the upper limit on the 

bidder’s valuation increases (decreases) and the agency problem becomes more (less) severe. 

The timing of the game is depicted in Figure 2. The dashed edges indicate the dependence 

relations between the signals, while the solid edges indicate the actions taken by the participants 

(budgets were always referred to as “caps” in the experiment). 

[Figure 2] 

Equilibrium 

We consider a symmetric equilibrium of this model. The equilibrium will consist of the 

bidder’s unconstrained choice of bid for a given valuation, , and the principal’s choice of 

budget for each possible signal, . It can be shown that given these two choices the bid 

submitted to the auction is min	 , . 

Assuming that the bidders employ bidding strategies that are strictly increasing and 

continuous functions of their valuations, each principal's choice of budget constraint is 

equivalent to choosing a cutoff type, ̂, above which the bidder is constrained. In other words for 

                                                                                                                                                                                                
receive 	 . This formulation identifies the term 1  (the difference between the 
bidder’s payoff and 	 ) as the bidder’s private payoff from obtaining the good. 
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a choice of budget constraint, w(s), we can define a cutoff type as the t that satisfies 

̂  where b(t) is the bidder's unconstrained choice of bid corresponding to the value t. 

The first consequence of this representation is that the bid submitted at the auction is now 

min	 , ̂ ), so that the winning bidder is the bidder with the higher value of min	 , ̂ . 

We refer to this quantity as the bidder's effective type. The bids submitted at the auction are then 

equivalent to the bids submitted in a standard independent private values auction where 

valuations are distributed according to min	 , ̂ . 

As is shown in Burkett (2011), the equilibrium choice of ̂  is the same in the first- and 

second-price auctions when bidders’ signals are independent and is the solution to the following 

equation: 

| ̂ , ̂  .      (1) 

A detailed derivation of the equilibrium is in the Appendix.7 In our setup, the solution to 

Equation (1) is ̂ / 2 . This in turn implies that the distribution of effective types is 

given by the following: 

min , ̂ 2 ln
2
100 100

	. 

In the second-price auction the bidder still has a weakly dominant strategy to bid her own 

value. That is, in the second-price auction . In the first-price auction, the equilibrium 

bid functions are determined according to the expected value of the opponent’s effective type 

given a winning bid:8 

min , ̂ | min , ̂  	.       (2) 

To summarize, in the second-price auction the equilibrium unconstrained bid function is 

given by  and the budget function is given by ̂ . In the 

                                                            
7 Proposition 1.A in the appendix states the uniqueness property of this equilibrium. 
8 Although . 		in Equation (2) looks complicated it is approximately linear for the δ used in our 
experiments (see Figure 4). 
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first-price auction, the unconstrained bid function is given by  in Equation (2), and the 

budget function is given by ̂ . 

The notable results from this analysis are that the first- and the second-price auction raise the 

same expected revenue and have the same expected efficiency for any 0 1.9 This is a 

direct consequence of the bids being determined by the distribution of the effective types, 

min	 , ̂ , which as noted above is unchanged between the first- and second-price auctions. 

Moreover, a principal with signal s sets a lower budget in the first-price than in the second-price 

auction. This is because . These results also extend to a 

model with more than two principal-bidder pairs and valuations with common-value components 

(Burkett (2011)). 

3. Experimental Design 

The experiments were run at the Experimental Economics Lab at the University of Maryland 

(EEL-UMD). All participants were undergraduate students at the University of Maryland.10 The 

main experiment involved five sessions of second-price sealed-bid auctions (SP) and five 

sessions of first-price sealed-bid auctions (FP). In our control treatments we had five sessions of 

FP and five sessions of SP where the bidders were computerized and principals were human 

subjects. In each session there were 16 subjects. No subject participated in more than one session 

and we did not have any pilot session. Therefore, we had 80 subjects per treatment with 320 

subjects in total. The random draws were balanced in the sense that we used the same sequence 

of random number “seed” signals for each auction format, so the random value draws for SP 

matched the random draws for FP.11 A new set of random draws was used for each session in 

each format, etc. Participants were seated in isolated booths. Each session lasted less than two 

                                                            
9 In fact, one can make the stronger assertion that the two auction formats agree in their allocations for 
every possible realization of the signals. This is a consequence of the winner being the one with the 
highest value of min	 , ̂  in both cases.  
10 EEL-UMD is a relatively new lab and one or two auction experiments are conducted in a year. So we 
are confident that our very rich subject pool is not overly experienced in auction experiments. 
11 The random draws were balanced within the main and control treatments not in between. This is 
because in the main treatments, we had eight bidders and eight principals in a session and in the control 
treatments we had sixteen principals in the lab where the bidders were computerized players. 
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hours.12 Bidder instructions are in the Appendix. To test the subjects’ understanding of the 

instructions, they had to answer a sequence of multiple choice questions. The auctions did not 

begin until each subject answered all of the multiple choice questions correctly. The experiment 

is programmed in z-Tree (Fischbacher  2007). 

We start with explaining the design for the main treatments where both principals and 

bidders were subjects. Later we will describe the control treatments with computerized bidders. 

 In each session, each subject participated in 30 auctions. The first 5 auctions were practice 

ones and they were only paid for the last 25 rounds. At the beginning of a session, each subject 

was assigned a role randomly: principal or bidder.13 The role of a subject was kept fixed 

throughout the session. There were eight principals and eight bidders in the lab in each session. 

At each round a principal was randomly matched with a bidder and formed a team of two 

subjects. Then two teams were randomly matched to participate in an auction. We made sure that 

not the same group of people played against each other in two consecutive rounds.14 

In each auction, one fictitious item was offered to two randomly matched teams. All 

decisions were anonymous. At the conclusion of each auction, the players learned the outcome of 

the auction. In particular, each subject learned her actual value, her and opponent team’s actual 

bids, whether her team had received the object, the price paid by the winning team, and her own 

payoff.15 The anonymity in conjunction with subjects only learning the outcome of their own 

game in each round was designed to generate a sequence of one-shot games. The screen shots of 

the experiment were in the instructions (see the Appendix.) 

In the beginning of an auction, each principal received a private signal from the uniform 

distribution from [0,100], independently. They did not know their value for the auctioned item at 

                                                            
12 In a typical session, the instructions were described for 20-30 minutes while the actual play lasted for 
about an hour.  
13 In the experiment, we referred to each principal as Participant A and each agent as Participant B, to 
avoid any name driven bias. 
14 The anonymity, in conjunction with subjects learning the outcome of only their own match was 
designed to generate a sequence of one-shot games.  
15 They learned the opponent’s payoff when the opponent lost—it must have been zero—but we did not 
tell them the opponent’s payoff when the opponent wins because, in that case, the subjects could 
determine the actual value of the opponent and his bidding strategy to some extent. Since we used random 
matching in each round to generate single-shot games, we aimed to minimize the learning about the 
strategy of the other subjects. 
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this time but they knew that the value was distributed uniformly on [0,s] when the principal’s 

signal is s. Then the principal was asked to set a budget for her bidder.  

After each principal set a budget, each bidder observed her value and the budget set by her 

principal. The value of a bidder was 2.5 times more than the value of the corresponding 

principal. This sets 	of Section 2 equal to 2/5.16 Therefore, the value of a bidder was from the 

uniform distribution on [0, 2.5s] when the corresponding principal’s signal is s. Then the bidder 

was asked to enter her bid, which was not allowed to exceed the budget. 

After each bidder submitted a bid in behalf of her team, the team with the highest bid won 

the auction and paid its bid (in the first-price treatment) or the opposing team’s bid (in the 

second-price treatment). 

In the control treatments, where we aimed to better understand the principals’ behavior, the 

bidders were computerized. Again we tested first- and second- price auctions. All the 

specifications such as the distribution of values and signals, number of bidders in an auction, and 

the auction rules were the same as in the main treatments. In each session, there were 16 

principals in the experimental laboratory. The computerized bidders were programmed to play 

according to the equilibrium unconstrained bid functions as described in Section 2. We provided 

three tools to the human principals in order to explain to them the bidding strategy of 

computerized bidders: 1) The graph of the bidding function of the computerized bidder; 2) a 

table summarizing the bids corresponding to some actual values; and 3) an interactive tool in the 

software. The graph and the table were given as hard copies, and the interactive tool was a 

numbered line on each principal’s computer screen. The signal received by the principal in a 

round was pointed to as the max value for the object on the numbered line. The principal could 

slide a black square between zero and the max value. The computer reported the corresponding 

unconstrained bid of the principal’s computerized bidder every time the principal dropped the 

black square at a possible actual value on the line. We told the subjects that this tool was being 

provided to help them understand the bidding strategy of the computerized bidder when it was 

unconstrained by the principal’s budget. An example of the computer screen of a principal with 

computerized bidder can be seen in the instructions provided in the Appendix.  

                                                            
16 We set 2/5 in the experiments because for this value of , the equilibrium strategies of first price 
auction are approximately linear.  
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The role of a subject in the control treatments was to decide on a budget after observing her 

signal for the round. Once each principal set the budget, the corresponding computerized bidder 

bid the minimum of the unconstrained bid corresponding to the actual value observed by the 

computerized bidder and the budget set by the principal.  

All the amounts in the experiment were denominated in Experimental Currency Units (ECU). 

Subjects received $8 as initial endowment to cover any possible losses in the experiment. The 

principals were more subject to potential losses since they did not know their values at the time 

of decision making. No subject lost all of her initial endowment.17 The final earnings of a subject 

was the sum of her payoffs in 25 rounds in addition to the initial endowment. The payoffs in the 

experiment were converted to US dollars at the conversion rate of 20 ECU = $1 (for the 

principals) and 80 ECU = $1 (for the bidders). Our calculations based on equilibrium predicted 

four times higher payoffs for the principals than the bidders in their variable payoffs. This was 

because of the difference between the valuations of principals and the bidders for the same 

auctioned item. Hence we set different conversion rates to make the earnings of subjects playing 

different roles comparable. 18 By interpreting the sigma in footnote 5 as the conversion rate, one 

may note that the theory is independent of the conversion rates.19 Cash payments were made at 

the conclusion of the experiment in private. The average principal and bidder payments were $23 

and $25 (including $7 participation fee). 

4. Experimental Results 

The analysis presented in this section is based on 500 auctions we conducted per auction 

format with human bidders and 1000 auctions we conducted per auction format with 

                                                            
17 Bankruptcy is always a potential problem in auction experiments. We assured our subjects that they 
will earn positive amounts. 
18 We are confident that using different exchange rates does not alter our findings since our findings in the 
main treatments and in the control treatments (where the agents are computerized and therefore there is 
only principals’ exchange rate) are qualitatively the same. 
19 An alternative method to balance the earnings of principals and bidders could be to provide them with 
different endowments. We did not use this method since we wanted to keep the relative weights of the 
variable and fixed portions of the bidders’ expected payoff comparable for different roles. 
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computerized bidders. While testing differences between treatments, we report Mann-Whitney-

Wilcoxon statistics for the session averages assuming that session averages are independent.20 

4.1.Budget and Bid Decisions 

We start by examining the strategies of principals in treatments with and without 

computerized bidders. We compare the budgets selected in the first- and second-price auctions 

with the equilibrium budgets. The most basic prediction of the theory is that the principals 

choose lower budgets in the first-price auction.  

Figure 1 shows the principals’ choices of budgets across all sessions in first- and second-

price auctions with human bidders. The figure shows box plots of the budgets21 for each of ten 

bins based on the signal observed by the principals. Figure 3 shows the same plot for the budgets 

submitted in treatments with computerized bidders. Both figures clearly show that, in the 

experiments, the principals set relatively lower budgets in first-price settings, with and without 

human bidders.22 

[Figure 3] 

Moreover, in SP the mean of budgets is higher with computerized bidders than with human 

bidders (p = 0.095). However, the medians of budgets with and without computerized bidders in 

SP, either means or medians of budget decisions with and without computerized bidders in FP 

are not significantly different (all p-values are greater than 0.10).  

Figures 1 and 3 show that in the aggregate level budget increases with signal and the 

relationship is approximately linear. Indeed, many of the principals’ decisions in the data can be 

characterized by linear strategies, and as we discuss in the next paragraph, the equilibrium 

prescribes that the principals should be using linear strategies in the second-price auction and 

                                                            
20 We also performed t-statistics by using each observation and the results were not qualitatively different 
in any of the comparisons except for the revenues in SP experiments and SP equilibrium prediction for 
computerized bidders in Table 7. 
21 The box plots were created using standard techniques. The white lines represent the median; the box 
represents the interquartile range (IQR); the whiskers extend to the furthest data point within 1.5*IQR; 
and the open circles are individual data points outside 1.5*IQR. In Figure 1, 24 out of 28 of the outliers in 
the second-price auction represent decisions made by one subject.  
22 Note that the data from the second price auctions with computerized bidders is noisier than its 
counterpart with human bidders. With human bidders only 28 of 1000 budget decisions were above 100 
and with computerized bidders 179 of 2000 observations were above 100 in Figures 1 and 3, respectively.  
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approximately linear strategies in the first-price auction. To quantify the fit of linear strategies, 

we regressed the budget choices on the principal signals and the square of the principal signals 

for each individual principal. In the first-price auction, we reject the null hypothesis that the 

quadratic term is significant at the 1% level for 93% of the principals. In the second-price 

auction, we reject null for 83% of the principals. With computerized bidders in the first-price 

auction (second-price auction), we reject the null for 91% (84%) of the principals.23 

For the parameters used in the experiment, in SP the equilibrium budget strategy of a 

principal with signal s is: 

2 2
5
8

0.625 	. 

In FP auction, the equilibrium bidding function specified in Equation (2) and hence the 

implied budget function of the principals is complicated. However, they are approximately linear 

for 2/5, the value used in the experiment, on the relevant domain. For linear approximation 

of the equilibrium budget function, if we regress equilibrium budget decision on signal for the 

signals used in the experiment, 0.276 is the estimated slope and 0.9999: 

0.276 	. 

We will use this linear approximation of equilibrium to compare it with our estimates for the 

parameters of the budget function in Table 1. Figure 4 compares the linear estimate (the dashed 

line) to the theoretical equilibrium budget function (solid line).  

[Figure 4] 

Table 1 reports regression results for budget decisions of the principals. A random effect 

model is used in the statistical analysis. Specifically, we assume that the budget set by principal i 

in round p is: 

                                                            
23 In a separate analysis, we calculated the  values from regressions of the budget on the principal 
signals for each individual principal. For principals in the first-price auction, 75% of the principals had  
values above 0.79, 50% were above 0.87 and 25% were above 0.93. The corresponding numbers in the 
second-price auction were 0.87, 0.94 and 0.97. With computerized bidders in the first-price auction 
(second-price auction), 75% of the principals had  values above 0.72 (0.79), 50% were above 0.86 
(0.92), and 25% were above 0.93 (0.96). 
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	. 

In the specification above,  is a random effect term, which is iid across i and distributed as 

0, , while  is an idiosyncratic error term, which is iid over i and p and distributed as  

0, . (We also assume that  and  are independent for all i,  j, and p.)  We considered a 

version of this model that contained session fixed effects, but this did not have any effect on the 

standard errors. 24  is a dummy variable which is 1 if subject i participated in a first-price 

auction and zero otherwise. Our equilibrium analysis predicts that the budget set by a principal 

is: (i) linear in principal’s signal for SP with intercept at zero and slope equal to 0.625; (ii) 

approximately linear for FP with slope equal to 0.276 and intercept at zero. In the model above 

 and  are the constant terms for SP and FP, respectively;  and  are the slopes 

for SP and FP, respectively. We find that in both auctions the constant terms are not significant 

and only the signals are significant as predicted by the theory. The estimated coefficient of signal 

is 0.749 in SP and 0.439 (= 0.749 – 0.310) in FP with human bidders. They are 0.932 in SP and 

0.404 (= 0.932 – 0.528) in FP with computerized bidders. In all the treatments the regression 

coefficients suggest that the principals set higher budgets than the equilibrium predictions. We 

consider this result to be in line with the robust aggressive behavior in first and second-price 

auction experiments.  

[Table 1] 
 

A principal’s linear strategy is completely characterized by the budget-to-signal ratio, since it 

passes through the origin. If we calculate a session average value of the budget-to-signal ratio 

and use a Mann-Whitney-Wilcoxon test to compare these ratios between the first- and the 

second-price auctions, we reject the hypothesis that the ratios in the first-price treatment are at 

least as high as those in the second-price treatment (p = 0.004 when we have human bidders and 

p = 0.004 when we have computerized bidders).25 Figures 5a and 5b show the empirical density 

                                                            
24 We also estimated these regressions controlling for the round number by including dummy variables 
indicating the first 10 rounds of the experiment in each treatment. However, these dummy variables were 
not significant at the 5% level and did not affect the estimates of interest when they were included, so 
they are excluded here. Alternatively, we tried OLS model with clustering and the results were 
qualitatively the same. 
25  Note that we continue to reject this hypothesis if we exclude the first session of the second-price 
treatment. The subject who set the outlier budget levels in Figure 1 participated in that session. 
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estimates of the budget ratios for human and computerized bidders, respectively. In addition to 

showing the raw data (dashed curve), we show the densities of the average budget ratios for each 

subject (solid curve). In both figures, we have excluded data where the average ratio exceeds 2 to 

emphasize the range where most of the data is concentrated. In Figure 5a, 0.1% of the raw first-

price data (mean of 6.11) and 2.3% of the raw second-price data (mean of 46.22) is not shown. In 

Figure 5b, 0.1% of the first-price data (mean of 4.79) and 9.7% of the second-price data (mean of 

4.77) is not shown. The larger number of outliers in this last case is evident in Figure 3 above.26 

The vertical lines mark the equilibrium predictions (recall that this is approximate in the first-

price case and Figures 5a,b show the vertical line at 0.276 for the FP equilibrium).27 

[Figure 5] 

The theory predicts that the principals set the same cutoff value for the bidders in both 

auctions. This means that a principal who observed signal s will set the budget so that the set of 

types of bidders for whom the constraint binds are the same. More precisely, we calculate that 

cutoff type as  	 0.625 . This result of course depends on the bidders using equilibrium 

strategies for their bid functions. In the computerized bidder treatment, we are able to invert the 

bid functions used by the bidders to infer the principals’ choice of cutoff type. Inferring the 

cutoff type of the human bidders would involve making assumptions about the unconstrained 

behavior of the human bidders. Therefore, in the following analysis of the cutoff type, we only 

consider the computerized bidder treatment.  

Given the inferred cutoff type choice in the computerized bidder treatment, we use the 

following model for the statistical analysis of the cutoff type:  

̂ 	 	 	. 

                                                            
26 The larger fraction of outliers evident in the second-price treatments might be the result of the noisier 
feedback from the second-price design. The negative consequence of setting a high budget in either 
treatment is that one might have to (possibly) pay too high of a price for the item. In the first-price 
auction, the realization of this consequence requires that one’s bidder also place a high bid, but in the 
second-price auction one’s bidder must place a high bid and one’s opponent must have a high budget and 
place a high bid which is rare.  
27 Instead of the vertical line at the mean value, if we insert the density of equilibrium budget/signal for FP 
in these Figures, we need to draw a density function with very small variance such that it concentrates 
around its mean (0.276) and its peak is too high to include in these Figures. That’s why we present just 
the vertical line passing through the mean of equilibrium budget/signal realizations here. 
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 is a random effect error term, which is iid across i and distributed as 0, , while  is 

an idiosyncratic error term, which is iid (over i and p) and distributed as 0, . (We assume 

that  and  are independent for all i, j, and p.) We considered a version of the above model 

that included session fixed effects but again this did not affect the standard errors. The results 

from the regression are reported in Table 2.28 

[Table 2] 

The theory predicts that in both first-price and second-price auctions, the principals set the 

same cutoff type which is proportional to their signals. This means that the theory predicts zero 

for  , , and 	 . Note that each of these coefficients (in the first, second and fourth rows) is 

insignificant in Table 2. The coefficient of the signal in both formats is predicted to be 0.625 by 

the theory but the estimated  is 0.929. Therefore, the principals in FP and SP auctions do not 

constrain significantly different types of bidders when the bidders are computerized although 

they constrain a smaller set of bidder types than what the equilibrium predicts.  

Because of the sequential nature of our experiments, we observe the bidders’ unconstrained 

bidding strategy only when they submit a bid less than the budget. So we do not know what they 

would have bid if the budget allowed. Tables 3 and 4 report the number of observations where 

the submitted bid in the auction is constrained or unconstrained by the budget in the FP and SP 

auction experiments, respectively. This is done in comparison with the equilibrium prediction for 

those observed budgets. Note that if the equilibrium bid strategy was used, only 298 of the 1000 

bids would be unconstrained in SP and that number is 383 out of 1000 in FP.  More than 82% of 

the time the human bidders bid the budget when this is the behavior predicted by the equilibrium 

in SP and this happened in 71% of the cases in FP. In SP auctions, we observe the unconstrained 

bid of the human bidders in 86% of the cases where the equilibrium unconstrained bid was less 

than the budget and in 18% of the cases where the equilibrium bid was the budget. In FP 

auctions, the corresponding percentages were 83% and 29%. 

                                                            
28 These regressions were also performed with controls for potential round effects. When a dummy for the 
first 10 rounds is included in the regressions, the coefficient on this dummy is positive and significant for 
the first-price treatment (but insignificant for the second-price treatment) suggesting that cutoff types 
were lower on average in the later rounds of the first-price treatment; however, including these controls 
affected neither the values of the or (in both cases the estimates changed by less than 0.001) nor the 
conclusions of the statistical tests reported so they are omitted from the discussion.    
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[Table 3] 

[Table 4] 

One way to evaluate the behavior of the bidders is to do the following test. First, the theory 

predicts that each bidder’s value pins down their choice of unconstrained bid. So we can 

calculate each bidder’s predicted choice conditional on the budget given to them in the 

experiment as the minimum of the predicted unconstrained bid and the observed budget. Figure 6 

presents the distributions of these predicted bids (the light colored curves) and also the 

distributions of actually submitted bids (the dark colored curves) for each format. When we 

compare these distributions using a Kolmogorov-Smirnov test, the test does not reject the null 

hypothesis that the distributions are the same at the 5% level in either auction (p-values are 0.969 

for both auctions). 

[Figure 6] 

Figure 6 suggests that in human bidder treatments, if we used the computerized bidders 

instead, the submitted bids would not change. Recall that budgets in FP with and without 

computerized bidders were not very different, either. In SP, principals set slightly higher budgets 

to computerized bidders than human bidders on average. Since Figure 6 indicates that the 

outcomes of the auctions with human bidders are the same as how they would be if computerized 

bidders were used instead, principals seem to have trusted their human bidders less in SP. We 

should keep in mind that the principals do not know the human bidders’ unconstrained bids 

without experimenting with high budgets but they know the strategy of computerized bidders. As 

we will see in the revenue analysis later, higher budgets in SP auctions with computerized 

bidders do not lead to higher revenue than the corresponding human bidder treatment. This is 

because even though the budgets are high, the bidding behavior is limited by what the computer 

does as a bidder. Moreover, if there are only a few high-budget principals in a session, there is 

relatively little effect on revenues, as a high-budget person needs to be matched with another 

high-budget person in order for their budget to matter.  

4.2. Efficiency and Revenue 

In this section, we compare measures of efficiency and revenues arising in the experiments. 

As we have already seen, principals are observed to constrain approximately the same sets of 
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bidder types in each format in the experiments. Consequently, the level of efficiency of the first-

price format is found to be insignificantly different from the level of efficiency of the second-

price format. However, the phenomenon of overbidding (relative to risk-neutral equilibrium) that 

is typically observed in auction experiments persists in ours. As a result, the first-price auction is 

found to raise higher revenues than the second-price auction—although, as we shall see, for a 

different reason than is told in the literature on auctions with budget constraints. 

Tables 5 and 6 summarize our efficiency findings for the human and computerized bidder 

cases, respectively, using two different measures of efficiency. The first rows report the 

percentages of auctions where the winning principal has the higher valuation. The second rows 

report the average surplus that is realized. This measure is defined as the winning principal’s 

value divided by the highest value of the two principals, telling us the proportion of the available 

surplus that is realized in the auction experiments.  

[Table 5] 

 

Using the Mann-Whitney-Wilcoxon (MWW) test and a significance level of 5%, the average 

rate of efficient allocations is not significantly different between the first- and second-price (p = 

0.205), or the first-price and equilibrium (p = 0.396), or the second-price and equilibrium (p = 

0.057). Using MWW and a significance level of 5%, the average realized surplus is not 

significantly different between the first- and second-price (p = 0.151) or the first-price and 

equilibrium (p = 0.222), but it is significantly different between the second-price and equilibrium 

(p = 0.008). 

The results on the efficiency of the allocations in the treatments with computerized bidders 

are presented in Table 6. There is no significant difference between the first-price and second-

price with respect to either measure and none of them are significantly different from the 

equilibrium prediction (all the p-values are greater than 0.346). Moreover, all of the numbers in 

the last row (realized surplus) of Table 6 are strikingly close to one another. 

[Table 6] 

As for revenues, recall that the theory predicts that the principals choose to constrain the 

same sets of types in both auction formats. Revenue equivalence, however, is sensitive to the 
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particular sets of types that the principals constrain. In our treatments with computerized bidders, 

the principals constrained essentially the same types in first-price and second-price auctions, but 

constrained fewer types than the theory predicts in each (see Table 2).  Moreover, as argued 

earlier, the principals’ behavior in the experiment is close to linear. The proposition below shows 

that the first-price auction can be expected to raise higher revenues if the principals’ deviation 

from the equilibrium has these properties while the bidders follow the equilibrium unconstrained 

bid function (which is how we programmed the computerized bidders). 

Proposition 1. Suppose that the principals choose cutoff types according to linear strategies that 

constrain fewer types than the equilibrium (i.e. ̂  with 0.625). Then the first-price 

auction raises more revenue than the second-price auction with computerized bidders which 

follow the equilibrium unconstrained bid function.  

The seller revenues generated in four treatments as well as the equilibrium predictions based 

on the ex post draws are shown in Table 7. Aggregating average revenue to the session level, we 

performed Mann-Whitney-Wilcoxon tests of whether the session averages came from 

distributions with the same median. In line with Proposition 1, in the treatments with 

computerized bidders the test rejects the hypothesis between the first- and second-price auctions 

(p = 0.032) and between the first-price auction and equilibrium (p = 0.008). The test did not 

reject at the 5% level between the second-price auction and equilibrium (p = 0.056).  

 Table 7 reports the revenue results in treatments with human bidders as well. Although 

Proposition 1 addresses only the situation where the bidders follow the equilibrium strategies, we 

find similar results in the treatments with human bidders. In particular, we still find significantly 

different revenues in the first- and second-price auctions (p = 0.008). The revenue difference is 

significant between the first-price auction and equilibrium (p = 0.008) as well. The test did not 

reject at the 5% significance level that the session averages of the second-price auction came 

from a distribution with the same median as the equilibrium (p = 0.095).29  

[Table 7] 

                                                            
29 Revenues were not significantly different between the treatments with human bidders and those with 
computerized bidders for both the first-price auction (p = 0.690) and the second-price auction (p = 0.690). 
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The tables above indicate that whether we have computerized bidders or human bidders does 

not alter the relative performance of the formats, qualitatively, in terms of efficiency and 

revenues.  

5. Conclusion 

Prior to Vickrey (1961), it might well have been commonplace for observers to wonder, 

“Why would a seller ever want to use a second-price, rather than a first-price auction? Given any 

set of bids, the seller would always do better to charge the winner the highest bid.” The obvious 

oversight is in not taking into account that bidding behavior is affected by a change in the rules. 

Perhaps the literature on budget constraints makes a more subtle (but still analogous) 

oversight. When budget constraints are present, they can be presumed to exist for a reason; quite 

likely, they arise from a principal-agent problem. When a principal imposes a budget on an 

agent, the principal should determine a budget appropriate for the auction format. Just like the 

bidding behavior, the principal’s actions to restrain the bidding behavior should also be affected 

by a change in the rules. 

The introduction of endogenous budgets may be particularly helpful in explaining two of the 

main predictive failures of the literature on auctions with budget constraints. First, as already 

noted in the Introduction, ascending (effectively second-price) formats are commonly used in 

high-stakes settings such as spectrum auctions. The use of ascending auctions would be difficult 

to reconcile with the prevalence of budget constraints, unless the budgets were determined 

endogenously, as is argued here. Second, recall that the literature on budget constraints not only 

predicts the second-price auction to be outperformed by the first-price auction, but it predicts the 

revenues of both formats to be exceeded by the all-pay auction (Che and Gale, 1996). 

Nevertheless, while the all-pay auction is a good model for phenomena such as political lobbying 

and patent races, the all-pay format is hardly ever used for conventional sales of valuable assets. 

Perhaps sellers recognize that principals would neutralize any advantages of the all-pay auction 

by imposing even more stringent budget constraints on their bidders. 

In our experimental results, we found clear evidence that principals set demonstrably lower 

budgets for bidders when the format will be a first-price, rather than a second-price auction. This 
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result holds true robustly, whether the principal seeks to constrain human bidders or 

computerized bidders. 

In the theoretical model we considered, the principals choose to constrain precisely the same 

sets of bidder types in each auction format, implying that the same allocation will arise in 

equilibrium under each auction format. As such, the budget constraint is no more likely to be 

binding in the second-price auction than in the first-price auction. Thus, the endogenous choice 

of budget “neutralizes” two of the key predictions of the existing literature on auctions with 

budget constraints. First, realized efficiency is no longer expected to be greater in the first-price 

than in the second-price auction. Second, revenues are no longer expected to be higher in the 

first-price than in the second-price auction. 

The efficiency prediction was broadly confirmed in our experiments. The experimental 

principals chose to constrain approximately the same sets of bidder types in each auction format 

and, as a result, we were unable to reject that the measures of realized efficiency were equal. 

This finding is especially important in that, in many auction environments where budget 

constraints are likely to be most important (e.g., in spectrum auctions), the seller’s stated 

objective is efficiency, not revenue maximization. 

Meanwhile, the prediction of revenue equivalence was rejected in our experiments: the first-

price auction generated significantly higher revenues than the second-price auction. However, 

this came about for a different reason than in the literature with exogenous budget constraints. In 

the existing literature, the higher revenues resulted from budgets that were the same, for different 

auction formats. In our experiments with endogenous budget constraints, the higher revenues 

resulted from the principals setting higher budgets than in the equilibrium solutions, both with 

second-price and first-price formats. Bids higher than the risk-neutral Nash equilibrium are 

typically observed in laboratory experiments—see footnote 2. The selection of a budget limit is 

effectively the principal’s submission of a bid in the auction. Thus, the setting of budget limits 

higher than the equilibrium solutions is, in effect, another version of the overbidding 

phenomenon that is pervasive throughout experimental auctions. 

Our experimental design yielded sharp conclusions as to the endogeneity of budget 

constraints in auctions: if budget limits are allowed to be chosen, then higher limits will be 

chosen in second-price than in first-price formats. Our experimental results also generally 
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supported the notion that budget constraints need not alter the efficiency rankings of different 

auction formats. However, our experimental design did not explore the sources of overbidding 

and it is not well suited for identifying what motivated the setting of higher-than-equilibrium 

budgets. This is an interesting question for future research. 
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Appendix 

DERIVATION OF EQUILIBRIUM 

Let  represent the valuation of the bidder,  represent the valuation of the principal, and  

represent the signal received by the principal. The distributions of these random variables in the 

experiment are:  

∼ 0,100 	; 

∼ 0, 	; and 

∼ 0, 	. 

The relevant density functions are:  

1
100

	,			0 100	; and 

| 	,			0 	. 

Second-Price Auction 

Let  be the bidder’s unconstrained choice of bid in the second-price auction. It is a 

weakly dominant strategy in this environment for the bidder to set . 

Let  be the budget set by the principal. Since the bidder’s unconstrained choice is the 

identity functions, the budget set by the principal is equivalently represented in terms of  

as ̂ ≡ . Also let the density of the opposing bids be given by . The 

principal’s objective is now: 

	|	 	 	 	|	 	 	 	. 

The first term represents the payoff in the event that the budget constraint does not bind, and 

the second is the payoff when the constraint does bind. The first order condition is:  
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̂ ̂ 		 	|	 	
/

0 

̂
/

0 

	 ̂
̂

/

0 

̂ | ̂ , 0 

	 ̂

2
̂ 0 

̂
2

	. 

For the second line, note that ̂  is a constant. Note that this implies that the principal’s 

optimal choice of budget does not depend on the distribution of opposing bids. In the third line, 

we are dividing by ̂ |	  to make the left side a conditional expectation. The final line is 

the principal’s equilibrium choice of ̂ , which in the second-price auction is also the 

equilibrium choice of budget constraint. To verify that this choice of ̂  maximizes the 

principal’s objective, notice that the sign of the principal’s first order condition is negative 

for  ̂ ̂  and positive for  ̂ ̂ . The constrained bid submitted by the bidder can be written 

as: 

, min ,  , 

which depends on both the bidder’s and the principal’s information.  

First-Price Auction 

Suppose that a type  bidder in a first-price auction wins with probability	  (assume for 

the moment that  is differentiable and increasing and let  be the corresponding 

density function), then a standard analysis concludes that the optimal choice of bid is given by 
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1
	 . 

This is the bidder’s unconstrained choice of bid. To analyze the constrained bidder’s choice, 

observe that  is nondecreasing and continuous, so a budget constraint  can be 

equivalently represented as a cutoff type, ̂ , defined by ̂ . Write the 

bidder’s objective in terms of a choice of type ′ as  

, , 

where the equality follows after integrating by parts. The derivative of this expression with 

respect to ′ is negative for ′  and positive for  ′ . It follows that a bidder who is 

restricted to setting 	 ̂  optimally sets  if 	 ̂  and ̂ , otherwise.  

 The bidder’s behavior allows us to write the principal’s objective in terms of the choice 

of ̂  as 

	|	 ̂ ̂ 	 	|	 	 	.
/

 

Plugging in for  this becomes: 

	 	|	

̂ 	 	 	|	 	
/

	. 

As with the second price auction, the solution for ̂  does not depend on  and is actually 

the same as ̂ : 

̂
2

		. 

Summarizing, if the probability of a type  bidder winning is , then the bidder optimally 

bids min ,  . In a symmetric equilibrium, the bid functions are the same for each 



25 
 

bidder and the winner is the bidder with the higher value of min , . The distribution of 

min ,  determines . We find 

2 ln
2
100 100

	. 

This function is differentiable and increasing as was originally assumed. This makes the 

unconstrained bid function 

4 3 2 ln 2
100

4 2 2 ln 2
100

2
. 

Proposition 1.A: The equilibrium in the first-price auction with budget constraints is the 

unique equilibrium with increasing and differentiable budget functions.  

PROOF OF PROPOSITION 1.A 

Suppose that there exists another (possibly asymmetric) equilibrium in this model with the 

property that the budget functions ( ) are increasing and differentiable in the principals’ 

signals. Each pair of budget functions leads to a unique equilibrium being played between the 

bidders. This follows from two results in Maskin and Riley (2003). First, their Lemma 2 shows 

that bidders best response functions are nondecreasing in the range of potentially winning bids, 

which implies that budget functions can be equivalently thought of in terms of cutoff types 

( ̂ )). We can then think of the auction as occurring between two bidders with types 

min , ̂ , 1,2. Proposition 1 in Maskin and Riley (2003) then implies that the 

equilibrium of this auction is unique. So if the principals both used the budgets prescribed in the 

equilibrium derived in this paper there is only one bidding equilibrium in the auction game.   

Therefore, if there exists another equilibrium with increasing, differentiable budget functions, 

both budget functions must differ from the one derived above. Suppose that in such an 

equilibrium a type  bidder’s probability of winning is ∗ . The argument in the previous 

section implies that in this case the principal’s optimal choice of cutoff type is , which is a 



26 
 

contradiction. The critical observation is that the principal’s optimal choice of cutoff type does 

not depend on the equilibrium being played in the subsequent auction. 

PROOF OF PROPOSITION 1 

Suppose the principals choose a cutoff type strategy according to ̂ , where in 

equilibrium ∗ 5/8 in both auction formats, and let the distribution of  ≡ min ,  

be given by  with  being the distribution of the order statistic. Finally, denote the 

equilibrium unconstrained bid function derived above by ∗
∗

	 ∗ . Then the 

experimental expected revenue in the first-price auction ( ) and the second-price auction 

( ) with principals following a strategy ̂  and the computerized bidders following the 

corresponding equilibrium unconstrained bid functions can be written as: 

∗ 	 								and										 	 		. 

In the formulas above, note that the integral limits are determined by the strategy of the 

principal, i.e.  ̂   and the integrands are determined by the bid functions of the 

computerized bidders who follow the equilibrium unconstrained bid functions, i.e. ∗  in FP 

and value bidding in SP. As the theory shows, with ∗ the two expressions are equal. Also, 

using a standard revenue equivalence argument we have:  

	 	, 

where  is defined analogously to ∗ . So the first-price auction raises more revenue 

when ∗ if and only if: 

∗ 	 	 	  

⟺ ∗ 	 0	. 

In fact, for ∗ and all 0, ∗ , so that the above expression holds. We 

calculate: 
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1
2 1

2 2 2 1 ln x
100α

2
	. 

So:  

∗ 1
1

8 2 ln 2
125

2
	. 

Therefore:  

∗ 0 

⟺
2 1

2 2 2 1 ln 100

1

8 2 ln 2
125

 

⟺ 16 10 2 2 1 ln
8
5

	, 

which holds for ∈ , . Note that for  the bidder is never constrained.  
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TABLES AND FIGURES 

Table 1. Random Effects Estimates of the Budget 
Standard errors are in parenthesis 

Variable 
With Human 

Bidders 

With 
Computerized 

Bidders 
Constant 3.215 0.329 
  (3.888) (2.135) 
FP -3.673 0.187 
  (5.499) (3.019) 
Signal 0.749*** 0.932*** 
  (0.014) (0.013) 
FP*Signal -0.310*** -0.528*** 
  (0.019) (0.018) 
N 2,000 4,000 

* Statistically significant at the 5% level. ** Statistically significant at 1% level. *** Statistically 
significant at the 0.1% level. 

 

Table 2. Random Effects Estimates of the Cutoff Function 
Standard errors in parentheses 

 Variable With Computerized Bidders 
Constant 0.400 
  (2.427) 
FP -0.269 
  (3.433) 
Signal 0.929*** 
  (0.157) 
FP*Signal 0.017 
  (0.022) 
N 4,000 

* Statistically significant at the 5% level. ** Statistically significant at 1% level. *** Statistically 
significant at the 0.1% level. 
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Table 3. Bids in SP auctions with human bidders 

 Actual Bid 
< 

Actual Budget 

Actual Bid 
= 

Actual Budget 

# of 
Observations 

Eqm. Unconstrained 
Bid<Actual Budget 

257 (86%) 41 (14%) 298 

Eqm. Unconstrained 
Bid Actual Budget 

125 (18%) 577 (82%) 702 

 

Table 4. Bids in FP auctions with human bidders 

 Actual Bid 
< 

Actual Budget 

Actual Bid 
= 

Actual Budget 

# of 
Observations 

Eqm. Unconstrained 
Bid<Actual Budget 

317 (83%) 66 (17%) 383 

Eqm. Unconstrained 
Bid Actual Budget 

180 (29%) 437 (71%) 617 

 

Table 5. Efficiency in the treatments with human bidders 

 

 First-Price 
First-Price 

Equilibrium 
Second-Price 

Second-Price  
Equilibrium 

Rate of efficient 
allocations 

0.850 
(0.021) 

0.874 
(0.010) 

0.804 
(0.023) 

0.874 
(0.010) 

Realized surplus 
0.946 

(0.008) 
0.961 

(0.003) 
0.923 

(0.012) 
0.961 

(0.003) 

Standard errors of session means are in parentheses. 

 

Table 6. Efficiency in the control treatments 

 First-Price 
First-Price 

Equilibrium 
Second-Price 

Second-Price  
Equilibrium 

Rate of efficient 
allocations 

0.863 
(0.017) 

0.852 
(0.007) 

0.855 
(0.009) 

0.852 
(0.007) 

Realized surplus 
0.952 

(0.008) 
0.955 

(0.002) 
0.950 

(0.003) 
0.955 

(0.002) 

  Standard errors of session means are in parentheses. 
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Table 7. Seller Revenue 

 First-Price 
First-Price 

Equilibrium 
Second-Price 

Second-Price 
Equilibrium 

Average Revenue 
with Human Bidders 

24.332 
(0.658) 

17.043 
(0.173) 

18.061 
(0.402) 

16.956 
(0.363) 

Average Revenue 
with Computerized 
Bidders 

23.15 
(1.064) 

16.653 
(0.194) 

18.81 
(0.875) 

16.648 
(0.192) 

  Standard errors of session means are in parentheses  
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Figure 1. Budgets in First- and Second-Price Auctions with Human Bidders. 
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Figure 2. Timing of the Principal-Bidder Game 
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Figure 3. Budgets in First- and Second-Price Auctions with Computerized Bidders. 



36 
 

 

Figure 4: First-Price Budget Function and Linear Approximation (δ = 2/5) 

 

Figure 5a. Density of (budget/signal) in 
experiments with Human Bidders 

Figure 5b. Density of (budget/signal) in 
experiments with Computerized Bidders 
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Figure 6. Empirical CDFs of Bids
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INSTRUCTIONS FOR FIRST-PRICE SEALED-BID AUCTIONS 

(Online appendix: not intended for publication) 

Thank you for being part of our research. Various research foundations have provided funds for 

this research. This is an experiment in the economics of market decision making. The instructions are 

simple and, if you follow them carefully and make good decisions, you may earn a considerable amount 

of money which will be paid to you in cash at the end of the experiment.  

All values in the experiment will be in terms of Experimental Currency Unit (ECU). At the end of 

the experiment, we will convert your total earnings in the session to US$.  

 In this experiment, you will participate in a sequence of auctions. There will be 5 

practice periods and 25 real periods. You will be paid only for the real periods. 

 At the beginning of the session, you will be assigned to one of the two types: A and B. 

 Your type is fixed throughout the experiment. 

 A single good will be auctioned off in each period. 

 

Matching in Each Period 

In each period, each type A subject will be randomly matched with a type B subject and form a 

team of two. Then each team will be randomly matched with another team of two subjects and then 

two teams will participate in an auction. You will never know whom you are matched. You will not be 

matched with the same group of subjects in any two consecutive periods.  

 Each team consists of a type A and a type B subjects.  

 Each team participates in an auction to obtain an auctioned good.  

 Two teams participate in an auction. 

Values  

For Type A subjects: 

At the beginning of each period, each type A subject privately observes her maximum possible value 

(MAX VALUE) for the auctioned good. MAX VALUE is a number randomly selected from the interval 

[0,100] and rounded to the nearest cent. Each number is equally likely.  The MAX VALUEs of the two 
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type A subjects in two teams that are participating in the same auction are independently determined 

and most likely different.  

Type A subject does not know her exact VALUE for the good at the time of decision making.  All she 

knows is that her VALUE is a number contained in the interval [0, MAX VALUE]. Therefore, her VALUE is 

at minimum zero and cannot exceed her MAX VALUE. Again, any number between 0 and her MAX 

VALUE is equally likely.  For example, let’s say a type A subject receives a MAX VALUE of 45.32. Then her 

VALUE is uniformly distributed on interval [0, 45.32] and it can be any number less than or equal to 

45.32. Let’s say her VALUE is 21.00. This means that if her team obtains the good at the end of the 

period, she will receive 21.00 ECU from us. 

  For Type B Subjects: 

  Each Type B subject knows the true value of her Type A teammate. Each Type B subject’s value 

for obtaining the good is 2.5 times her Type A teammate’s value. 

Type B’s Value = 2.5 x Type A’s Value 

Auction  

Each auction occurs in two stages. In the first stage only the Type A subjects will be active. In the 

second stage, only the Type B subjects are active. Specifically,  

Stage 1:  

 Each Type A only observes her MAX VALUE. Her true value is something less than this 

MAX VALUE. 

 Each Type A subject decides on a CAP which is the maximum amount she allows her 

type B teammate to bid.  

Stage 2: 

 Each Type B observes the exact value of the good for herself.  

 Each Type B also observes the CAP decided on by her Type A teammate. 

 Each Type B subject decides on how much she wants to bid in behalf of her team in the 

auction. Type B subjects are not allowed to bid above the CAP.  The bid decided on is 

simply labeled BID. 
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 After both teams participating in the auction submit their BIDs, the one who has the 

highest BID obtains the good and pays her BID. In case of a tie, each of the two 

participants in the auction will receive the good with equal probabilities.  

 This is the end of the period. 

 

 The following table summarizes the progression of stages 

  Team 1  Team 2 

  Type A  Type B  Type A  Type B 

Stage 1  Sees: MAX VALUE 
Chooses: CAP 

  Sees: MAX VALUE 
Chooses: CAP 

 

Stage 2    Sees: CAP,VALUE 
Chooses: BID (  CAP) 

  Sees: CAP,VALUE 
Chooses: BID (  CAP) 

 

Earnings in a Period 

When your team obtains the good at the end of a period (if your BID is the highest), then you 

will receive your VALUE for the good and will pay the team’s BID. If your team does not obtain the good, 

you do not receive or pay any amount. In other words, your earnings in the current period are: 

Earnings = Your VALUE – Your BID       (If you obtained the auctioned good); 

 

Earnings = 0             (If you did not obtain the auctioned good). 

 

Recall that a Type B subject’s value is 2.5 times more than her Type A teammate. Moreover, at the time 

of decision making, each Type B subject knows her value. However, Type A subjects only know their 

maximum possible value but not their actual value. 

 

Sequence of Auctions: 

  When the current period is over, the next period will start. Each period, you will be randomly 

matched with a new teammate and participate in a new auction with a different opponent team. Your 

VALUE of the good in each period is independent of your VALUE in the previous periods. 
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Screens 

Below, there is an example of how Type A’s and Type B’s screens may look.  

If you are a Type A subject, you see your MAX VALUE. Remember that this is the highest amount 

your actual value can be. You DON’T know your actual value before the auction is over. You need to 

enter a CAP for your Type B teammate in the text box on your screen and click on SUBMIT.  
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If you are a Type B subject, you see your value for the good and the CAP that your Type A 

teammate decided on. After observing your value, you will enter your BID in the text box on your screen 

and click on SUBMIT. Your bid has to be less than or equal to your CAP. 
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The screen below shows the information that a Type A person will see at the conclusion of a 

period. It displays Type A’s MAX VALUE, VALUE and CAP. Then it shows the BID that the Type B 

teammate decided on. It will also give you the BID of your opponent team and calculates the winner, the 

price of the good and your payoff for the round. Note that much of the information about your 

opponent is hidden.  
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The next screen shows the information that a Type B person will see at the conclusion of a period. It 

displays Type B’s VALUE, CAP and BID. It will also give you the BID of your opponent team and calculates 

the winner, the price of the good and your payoff for the round. Again, much of the information about 

your opponent is hidden. 
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Example 

The tables below indicate all the MAX VALUEs, VALUEs and BIDs in an auction, and show the 

results for three different choices of a CAP. Recall that in the experiment Type A subjects will observe 

only their own MAX VALUEs and Type B subjects will observe their own VALUES. No subject will know 

the values received by the opponent team. 

1. 

  Team 1

 (YOU) 

Team 2 

Type A’s MAX VALUE (observed by Type A) 84.62 37.40 

Type A’s VALUE  56.40 8.08 

Type A’s CAP  5.00 20.50 

Type B’s VALUE  141.00 20.20 

Type B’s BID  5.00 9.03 

Received Item  No Yes 

Price  N/A 9.03 

Type A’s Payoff  0 ‐0.95 

Type B’s Payoff  0 11.17 

2. 

  Team 1

 (YOU) 

Team 2 

Type A’s MAX VALUE (observed by Type A) 84.62 37.40 

Type A’s VALUE  56.40 8.08 

Type A’s CAP  36.00 20.50 

Type B’s VALUE  141.00 20.20 

Type B’s BID  36.00 9.03 

Received Item  Yes No 
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Price  36.00 N/A 

Type A’s Payoff  20.40 0 

Type B’s Payoff  105.00 0 

3. 

  Team 1

 (YOU) 

Team 2 

Type A’s MAX VALUE (observed by Type A) 84.62 37.40 

Type A’s VALUE  56.40 8.08 

Type A’s CAP  70.00 20.50 

Type B’s VALUE  141.00 20.20 

Type B’s BID  59.44 9.03 

Received Item  Yes No 

Price  59.44 N/A 

Type A’s Payoff  ‐2.96 0 

Type B’s Payoff  81.56 0 

 

In all of the examples above, Type A of Team 2 (your opponent) observes a MAX VALUE of 37.40 

and she decides on a CAP of 20.50. Team 2’s BID is 9.03.  

Type A of Team 1 observes a MAX VALUE of 84.62.  Her true value (which she does not know at 

the time of decision making), is 56.40. Therefore, the value of the Type B subject of Team 1 is 141 

(2.5x56.40=141).  

Each of the three tables corresponds to different choices of CAP and BID for Team 1. In the first 

table, Type A chose a cap of 5.00 and Type B chose a BID of 5.00. 

In the first example the BIDs of two teams are 5.00 and 9.03. Since the highest bid (9.03) is 

submitted by Team 2, Team 2 obtains the good and pays its BID (9.03). In this period, the subjects in 

Team 1 earn zero, Type A of Team 2 earns 8.08 – 9.03 = ‐0.95 ECU, and Type B of Team 2 earns 20.20‐

9.03=11.17. Note that Type A of Team 2 loses money in this period because her Type B teammate is 

allowed to submit a bid that is higher than the Type A’s true value.  
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In the second example, everything is the same except Type A of Team 1 choses a higher CAP 

(36.00) and Type B chooses a higher BID (36.00). Now Team 1 receives the item. The price is equal to the 

BID (36.00), so Type A of Team 1’s payoff is 56.40 – 36.00 = 20.40 ECU and Type B of Team 1’s payoff is 

141.00‐36.00=105.00 ECU. 

In the third example, Type A of Team 1’s CAP is now 70.00, and Type B’s BID is now 59.44. The 

BIDs are 59.03 and 9.03. Team 1 receives the item for a price of 59.03, Type A’s payoff is 56.40 – 59.03 = 

‐2.96 ECU, and Type B’s payoff is 141.00‐59.03=81.97 ECU. 

 

 

Total Payoffs 

At the beginning of today’s session both Type A and Type B subjects will receive an endowment 

of $8. The endowment is provided in order to cover any losses that you may make. Every period your 

earnings from that period are added to your initial endowment. At the end of today’s session you will 

receive your cumulative earnings —your earnings from 25 auctions plus your initial endowment. The 

conversion rate is $1 = 20 ECU for Type A and $1 = 80 ECU for Type B.  In addition to this sum, you will 

be paid a $7 participation fee. 

Are there any questions? 
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Practice Questions 

Please answer the questions below. The experiment will start after everybody answers all the 

questions correctly. Please feel free to ask questions. 

1. Suppose a Type A subject observes a MAX VALUE of 76.00ECU. What is her possible VALUE?  

a) any value from 0 to 100.00  

b) any value from 0 to 76.00 

c) any value from 0 to 76.00 but not 76.00 

d) any value from 0 to 100.00 but not 76.00 

 

2. Suppose a Type A subject entered 21.00 as the CAP. What are the possible BIDs that the Type B 

subject in her team can select? 

a) Any BID is possible. 

b) Any BID that is between 0 and Type B’s VALUE is possible. 

c) Any BID that is between 0 and Type A’s VALUE is possible. 

d) Any BID that is between 0 and the CAP is possible. 

 

3. Fill the table below 

  Team 1  Team 2 

MAX VALUE (observed by Type A)  43.00  37.40 

Type A’s VALUE  4.00  10 

Type A’s CAP  38.00  21.00 

Type B’s VALUE     

Type B’s BID  6.00  8.00 

Received Item     

Price     

Type A’s Payoff     

Type B’s Payoff     
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INSTRUCTIONS FOR FIRST-PRICE SEALED BID AUCTIONS (computerized bidders) 

(Online appendix: not intended for publication) 

Thank you for being part of our research. Various research foundations have provided funds for 

this  research. This  is an experiment  in  the economics of market decision making. The  instructions are 

simple and, if you follow them carefully and make good decisions, you may earn a considerable amount 

of money which will be paid to you in cash at the end of the experiment.  

All values in the experiment will be in terms of Experimental Currency Unit (ECU). At the end of 

the experiment, we will convert your total earnings in the session to US$.  

 In this experiment, we will run a sequence of auctions in which you will act as the buyer 

of a fictitious good. There will be 5 practice periods and 25 real periods. You will be 

paid only for the real periods. 

 A single good will be auctioned off in each period. 

 In each period, a computerized bidder will bid on behalf of you in the auction. We will 

tell you the bidding rule of the computerized bidder later in these instructions 

 If you do not limit your computerized bidder, it will place an UNCONSTRAINED BID 

which may be higher than the amount you would like it to bid. 

 Your task will be to determine a CAP, which is the maximum amount that you allow 

your computerized bidder to bid. 

 The computerized bidder’s ACTUAL BID is the lesser of its UNCONSTRAINED BID 

and the CAP. 

Matching in Each Period 

In each period, you will be randomly matched with another person in this room. You and that 

person will participate in the auction. You will never know who the other person is in your auction. You 

will not be matched with the same person in any two consecutive periods.  

Values  

At the beginning of each period, each person participating in the auction privately observes her 

maximum possible value (MAX VALUE) for the auctioned good. Your MAX VALUE is a number randomly 

selected from the interval [0,100] and rounded to the nearest cent. Each number is equally likely. Your 
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MAX VALUE and the MAX VALUE of the other person who participates in the same auction with you are 

independently determined.  

Your VALUE for the good is the amount of ECU the experimenter will give you if you receive the 

item at the end of the period. You do not know your exact VALUE for the good at the time of decision 

making.  All you know is that your VALUE is a number contained in the interval [0, MAX VALUE]. 

Therefore, your VALUE is at minimum zero and cannot exceed your MAX VALUE. Again, any number 

between 0 and your MAX VALUE is equally likely.  For example, let’s say you receive a MAX VALUE of 

45.32. Then your VALUE is uniformly distributed on interval [0, 45.32] and it can be any number less 

than or equal to 45.32. Let’s say your VALUE is 21.00. This means that if you get the good at the end of 

the period, you will receive 21.00 ECU from us. 

To reiterate, MAX VALUE is never higher than 100 and a VALUE is never higher than the 

corresponding MAX VALUE. Each person in an auction receives independent MAX VALUEs and 

independent VALUEs. Hence, your VALUE and MAX VALUE are most likely different from your 

opponent’s VALUE and MAX VALUE. 

Auction  

 Two persons participate in each auction. Each person is represented by a 

computerized bidder. 

 You observe your MAX VALUE for the current period. Your computerized bidder 

observes your true VALUE for the good.  

 After observing your MAX VALUE for the period, you need to decide the maximum 

amount that you will allow the computerized bidder to bid on your behalf. We call 

this amount your “CAP”.  

 You have been given two sheets explaining the bidding rule of your computerized 

bidder for each possible VALUE (unless you restrict it by a CAP). These two sheets 

provide you with the same information in two formats: one is a table, and one is a 

graph. The bids on the sheets are referred to as the computerized bidder’s 

UNCONSTRAINED BID. Please take a look at these sheets and confirm that when 

your VALUE is, for example, 22.00 ECU, the UNCONSTRAINED BID will be 

44.00. 
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 The computerized bidder’s ACTUAL BID is the lesser of its UNCONSTRAINED 

BID and the CAP: 

 

ACTUAL BID = minimum {UNCONSTRAINED BID , CAP}  

 

 After both your and the other player’s ACTUAL BIDs are submitted, the one who 

has the highest ACTUAL BID obtains the good and pays her ACTUAL BID. In case 

of a tie, each of the two participants in the auction will receive the good with equal 

probabilities.  

 This is the end of the period. 

 

Earnings in a Period 

If you obtain the good at the end of the period (if your ACTUAL BID is the highest), then you will 

receive your VALUE for the good and you will pay your ACTUAL BID. If you did not obtain the good, you 

do not receive or pay any amount. In other words, your earnings in the current period are: 

Earnings = Your VALUE – Your ACTUAL BID       (If you obtained the auctioned good); 

 

Earnings = 0             (If you did not obtain the auctioned good). 

 

  When the current period is over, the next period will start. Each period, you will be randomly 

matched with a new player and receive a new MAX VALUE. Therefore, your VALUE of the good in each 

period is independent of your VALUE in the previous periods. 
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Screens 

Below, there is an example of how your screen may look. On top of your screen there is an interactive 

tool. The tool shows your MAX VALUE for the current period. Remember that your VALUE can be any 

number between zero and your MAX VALUE, but you do not know what it is. However, your 

computerized bidder knows your VALUE and bases its UNCONSTRAINED BID on your VALUE. By sliding 

the little black square between zero and your MAX VALUE, you may see the UNCONSTRAINED BID of 

your computerized bidder for the corresponding VALUE. This tool provides you with the exact same 

information as you may learn from the UNCONSTRAINED BID table or graph that we have provided to 

you. Please use whichever tool that you prefer in order to understand how the computerized bidder 

bids unless it is restricted by a CAP. 

You need to enter your bidder’s CAP for this period in the text box on your screen and click on SUBMIT. 

Remember that your ACTUAL BID will be what your computerized bidder’s UNCONSTRAINED BID is 

unless you restrict it by a CAP, in which case it will be the lesser of the two numbers.  
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The screen below is an example of the results screen after the conclusion of one auction. It displays your 

true VALUE, the UNCONSTRAINED BID that corresponds to that value, and the ACTUAL BID. It will also 

give you the ACTUAL BID of your opponent and calculate the winner, the price of the item and your 

payoff for the round. Note that much of the information about your opponent is hidden.  
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Example 

The tables below indicate all the MAX VALUEs, VALUEs and UNCONSTRAINED BIDs in an auction, 

and show the results for three different choices of a CAP. Recall that in the experiment you will only 

observe your own MAX VALUE and will only know that your VALUE is not higher than your MAX VALUE. 

You will not know the MAX VALUE or VALUE of the other player. 

  Player 1 
 (YOU) 

Player 2 

MAX VALUE  84.62  37.40 

VALUE  56.40  8.08 

UNCONSTRAINED BID  59.44  9.03 

CAP  5.00  20.50 

ACTUAL BID  5.00  9.03 

Received Item  No  Yes 

Price  N/A  9.03 

Payoff  0  ‐0.95 

   

  Player 1 
 (YOU) 

Player 2 

MAX VALUE  84.62  37.40 

VALUE  56.40  8.08 

UNCONSTRAINED BID  59.44  9.03 

CAP  36.00  20.50 

ACTUAL BID  36.00  9.03 

Received Item  Yes  No 

Price  36.00  N/A 

Payoff  20.40  0 

 

  Player 1 
 (YOU) 

Player 2 

MAX VALUE  84.62  37.40 

VALUE  56.40  8.08 

UNCONSTRAINED BID  59.44  9.03 

CAP  70.00  20.50 

ACTUAL BID  59.44  9.03 

Received Item  Yes  No 

Price  59.44  N/A 

Payoff  ‐2.96  0 
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In all of the examples above, Player 2 (your opponent) observes a MAX VALUE of 37.40 and she 

decides on a CAP of 20.50. Player 2’s VALUE is 8.08 and therefore, her computerized bidder’s 

UNCONSTRAINED BID is 9.03. However, since 20.50 > 9.03, the ACTUAL BID of Player 2 is her 

UNCONSTRAINED BID. 

Player 1 observes a MAX VALUE of 84.62. Each of the three tables corresponds to a different 

choice of CAP that Player 1 might have chosen. Player 1’s private VALUE is 56.40 (she does not observe 

this at the time of deciding on the CAP but her computerized bidder knows the VALUE). In the first table, 

Player 1 chose a cap of 5.00. If you check the provided bidding sheet, you will see that Player 1’s 

computerized bidder’s UNCONSTRAINED BID is 59.44. Since 5.00 < 59.44, the ACTUAL BID is 5.00. 

In the first example the ACTUAL BIDs are 5.00 and 9.03. Since the highest bid (9.03) is submitted 

by Player 2, Player 2 obtains the good and pays her ACTUAL BID (9.03). In this period, Player 1 earns zero 

and Player 2 earns 8.08 – 9.03 = ‐0.95 ECU. Note that Player 2 loses money in this period because the 

bidder is unconstrained and allowed to submit a bid that is higher than the true value.  

In the second example, everything is the same except Player 1 chose a higher CAP (36.00). Now 

the ACTUAL BIDs are 36.00 and 9.03 and Player 1 receives the item. The price is equal to her ACTUAL BID 

(36.00), so Player 1’s payoff is 56.40 – 36.00 = 20.40 ECU. 

In the third example, Player 1’s CAP is now 70.00. The ACTUAL BIDs are now 59.03 and 9.03. 

Player 1 receives the item for a price of 59.03, so her payoff is 56.40 – 59.03 = ‐2.96 ECU. 

  

Total Payoffs 

At the beginning of today’s session you will receive an endowment of 160 ECU which is provided 

in order to cover any losses that you may make. Every period your earnings from that period are added 

to your initial endowment. At the end of today’s session you will receive your cumulative earnings —

your earnings from 25 auctions plus your initial endowment. The conversion rate from ECU to dollars is 

$1 = 20 ECU.  In addition to this sum, you will be paid a $7 participation fee. 

Are there any questions? 



19 
 

Practice Questions 

Please answer the questions below. The experiment will start after everybody answers all the 

questions correctly. Please feel free to ask questions. 

 
1. Suppose your MAX VALUE is 76.00ECU. What is your possible VALUE?  

a) any value from 0 to 100.00  

b) any value from 0 to 76.00 

c) any value from 0 to 76.00 but not 76.00 

d) any value from 0 to 100.00 but not 76.00 

 
2. Suppose your MAX VALUE is 76.00 and you entered 21.00 as your CAP. Your computerized bidder 

observed your private VALUE of 69.00. What will your ACTUAL BID be? 

a) 69.00 

b) 21.00 

c) 54.00 

d) 76.00 

 
3. Suppose your MAX VALUE is 43.00 and you entered 38.00 as your CAP. Your computerized bidder 

observed your VALUE of 4.00. What will your ACTUAL BID be? 

a) 4.00 

b) 4.57 

c) 38.00 

d) 43.00 

 
4. Suppose Player 1’s ACTUAL BID is 26.15 and Player 2’s ACTUAL BID is 63.00. Who will obtain the good 

and what price the winner will pay? 

a) Player 1 wins and pays 26.15 

b) Player 1 wins and pays 63.00 

c) Player 2 wins and pays 63.00 

d) Player 2 wins and pays 26.15 

 
5. Suppose Player 1’s ACTUAL BID is 31.00 and Player 2’s ACTUAL BID is 24.00. Player 1’s VALUE for the 

good was 38, and Player 2’s VALUE was 46. What will be the earnings of each player from this period. 

a) Player 1 earns 7, Player 2 earns zero. 

b) Player 1 earns 7, Player 2 earns 22. 

c) Player 1 earns 14, Player 2 earns zero. 

d) Player 1 earns zero, Player 2 earns 22. 


