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Abstract

This paper shows how to recursively calculate analytic first and
second derivatives of the likelihood function generated by a popular
version of a discrete-choice, dynamic programming model, allowing for
a dramatic decrease in computing time used by derivative-based esti-
mation algorithms. The derivatives also are very useful for finding the
exact maximum of the likelihood function, for de-bugging complicated
program code, and for estimating standard errors.
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1 Introduction

This paper shows how to calculate the analytic derivatives of the likelihood
function with respect to model parameters for a class of discrete-choice dy-
namic programming models. The model is one where the stochastic com-
ponent of utility depends on an iid extreme value (temporal) term (Rust
(1987)) and an individual-specific (permanent) component (Heckman and
Singer (1984)). This structure has been used by Van Der Klaauw (1996),
Arcidiacono, Sieg and Sloan (2007), and Liu, Mroz and Van der Klaauw
(2004).

We can think of several reasons having these derivatives is important.
First, these dramatically reduce the number of function evaluations and
computation time necessary to estimate the model. For example, suppose
our model contains 30 parameters. For each candidate for the parameters,
most maximization methods require the value of the function and the first
derivatives. If we use (the more accurate) two-sided derivatives, this involves
61 function evaluations in total, while one-sided derivatives require 31 func-
tion evaluations. Using analytic first derivatives requires the equivalent of
only two function evaluations (i.e. one for the function, and one for the
derivatives), drastically cutting the computer time used at each iteration.
This saving of computer time is especially important for the estimation of
structural models, which is one of the few remaining areas in empirical work
where computational demands restrict the type of models we can estimate.

Analytical first and second derivatives also aid in calculating the stan-
dard errors of parameter estimates. Standard practice in structural esti-
mation is to use minus the outer product of the gradient using numeric
derivatives to obtain an estimate of the second derivative matrix. Having
analytic first and second derivatives improves on this in two ways. First,
having these allows one to obtain a sandwich estimator that is robust to
non i.i.d. sampling schemes. Second, while numerical derivatives are very
close to the true derivatives for most parameter vectors, they can be quite
different close to the optimum.1 Thus, the outer product of the gradient
based on numeric first derivatives may provide relatively noisy estimates of
the outer product of the analytic first derivatives.

Third, analytic first and second derivatives can be useful in debugging
complicated programs to estimate structural models. For example, if nu-
meric and analytic derivatives (calculated away from the optimum) are quite

1We have found this to be true in previous applications. The reason seems to be because
the true derivatives are zero at the optimum, so the error in the numeric derivatives
becomes large relative to the magnitude of the true derivatives near an optimum.
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close, one can be quite confident that both the first derivatives subroutine
and the function subroutine are programmed correctly. Moreover, if the
derivatives do not agree for certain parameters, one often will find the pro-
gramming error by focusing on these parameters. Alternatively, if the an-
alytic second derivatives and the numeric derivatives of the analytic first
derivatives agree, one can be reasonably certain that the first derivative
subroutine and the second derivative subroutine are correct. Fourth, having
analytic second derivatives can help one obtain an optimum of a relatively
flat likelihood function since it enables one to use a second derivative max-
imization routine such as GRADX (Goldfeld, Quand, Trotter). Fifth, ana-
lytical first derivatives can help one get closer to the actual optimum, which
is important for standard errors. Here the idea is that as one approaches
the optimum, numeric first derivatives become increasingly noisy estimates
of the analytic first derivatives, and thus convey less useful information for
maximization than analytic derivatives.

The paper proceeds as follows. Section 2 outlines the widely-used model
we consider. Section 3 generates the likelihood function for our model.
We note that the value of the likelihood can be obtained (recursively) in
closed form. In Section 4 we consider the analytic first derivatives of the log
likelihood, and show that they can be obtained recursively with a similar
order of complexity to that for obtaining the value of the likelihood function.
In Section 5 we show that analytic second derivatives can be obtained in a
similar fashion. Section 6 concludes the paper.

2 The Model

We assume there are I mutually exclusive, collectively exhaustive choices
that an individual chooses among over T periods of time.2

The temporal utility function at time t for alternative i is given by:

ui(s(t), θik, εit) = gi(s(t), θik) + εit. (1)

Here, gi() is a continuously differentiable function, s(t) is a state vector
(observed by the econometrician and the individual making the choices), θik
is a permanent heterogeneity term with K points of support (Heckman and
Singer (1984)), and εit is an extreme-value error term.

We assume the realization of θik is observed by the individual, but not
the econometrician. Associated with each point of support is an I-tuple of

2We assume T is finite. Of course, one can allow T to tend to infinity to approximate
arbitrarily closely an infinite horizon dynamic program.
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values.3 That is, let θ̄1 = (θ11, ..., θ1I), ... θ̄K = (θK1, ..., θKI) and Pr(θ̄ =
θ̄k) = Pk, (k < K) with Pr(θ̄ = θ̄K) = 1 −∑K−1

J=1 Pj . We assume the
econometrician seeks to estimate the θ̄k and their probabilities of occurring,
as well as the number of points of support, K.

The error term εit is a temporal shock to the utility of choosing alter-
native i in period t. It is assumed to be independent across alternatives
and time. The individual observes the current vector of these shocks, but
not future values. The econometrician observes neither. The probability
distribution function for each of these shocks is given by:

F (εit) = exp[−e−τ(εit+c/τ)]. (2)

That is, the εit are extreme-value errors.4 The number c is chosen so that
the errors are mean zero (i.e. c is Euler’s Constant).

Note that while εit is assumed to be additive in the temporal utility, θik
is only assumed to enter the temporal utility in a manner that will allow for
differentiability.

Given these assumptions, the value function in the final period, T , is:

V [s(T ), θ̄k, εT ] = max
i∈I
{gi(s(T ), θik) + εiT }, (3)

where εt is the vector of realized temporal shocks to utility in any period t.
Since the temporal shocks are extreme value, the expectation of this

(prior to observing εT ) is given by (Rust (1987)):

EV [s(T ), θ̄k, εT ] =
1
τ

ln[
∑

i∈I
eτgi(s(T ),θik)]. (4)

For any t < T we can recursively define the value function as:

V (s(t), θ̄k, εt) = max
i∈I
{gi(s(t), θik) + εit

+ βE[V (s(t+ 1), θ̄k, εt+1)|di(t) = 1]}.
(5)

Here, di(t) = 1 if and only if alternative i is chosen in period t (di(t) = 0
otherwise) and β ∈ (0, 1) is the discount factor. Note the above allows
s(t+ 1) to depend on choices made by the individual up to period t.

3Other methods of estimating the unobserved heterogeneity can easily be incorporated,
such as the one-factor loading structure, e.g. Eberwein, Ham, and LaLonde (1997).

4In the above, τ > 0 is a scale parameter. Generally, this will not be empirically
identified in a discrete-choice model and could be set to equal, say, one. We do not
normalize this since it may be necessary to adjust its value to avoid underflow or overflow
problems.
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Define the alternative specific value as:

Vi[s(t), θ̄k, εt] = gi(s(t), θik) + εit + βE[V (s(t+ 1), θ̄k, εt+1)|di(t) = 1]. (6)

And:

Ṽi[s(t), θk] = Vi[s(t), θ̄k, εt]− εit. (7)

Then:

EV (s(t), θ̄k, εt) =
1
τ

ln[
∑

i∈I
eτṼi(s(t),θ̄k)]. (8)

Thus, the value function can be calculated in closed form and is given
recursively by:

V (s(t), θ̄k, εt) = max
i∈I
{Ṽi(s(t), θ̄k) + εit}, (9)

where:

Ṽi(s(t), θ̄k) = gi(s(t), θik) + β{1
τ

ln[
∑

j∈I
eτṼj(s(t+1),θ̄k)]|di(t) = 1}. (10)

Noting the term to the right of β is zero for t = T this recursively defines
the value function for all states and all periods in closed form.

3 The Likelihood

Each observation will consist of vectors s̄ and d̄ which give, respectively, s(t)
and i such that di(t) = 1 for t ∈ {1, 2, ..., N} where N ≤ T is the number
of periods observed. Since the temporal shocks are extreme value, for any
point of support, k, of the heterogeneity distribution, the likelihood of the
observation is given by:

L(s̄, d̄|θ̄k) =
N∏

t=1

∑
i∈I di(t)e

τṼi(s(t),θ̄k)

∑
j∈I eτṼj(s(t),θ̄k)

. (11)

The overall likelihood for an individual is then given by:

L(s̄, d̄) =
∑

k∈K
PkL(s̄, d̄|θ̄k). (12)

5



In practice one would parameterize Pk = eγk/
∑
eγj with γK = 0 and esti-

mate the γ’s instead of the P ’s.
The above gives (recursively) the likelihood (and thus the log-likelihood)

in closed form.

4 Analytic First Derivatives of the Log Likelihood

This section shows how to derive the derivatives of the likelihood with re-
spect to the parameters being estimated. We first focus on a generic pa-
rameter λ1 which influences one or more of the functions gi(s(t), θik) and
assume the derivatives of these functions with respect to λ1 are known (λ1

can be one of the elements of some θ̄k). This will be true for virtually any
empirical specification.

From (11) the log-likelihood for any point of support, k, of the unob-
served heterogeneity is:

ln[L(s̄, d̄|θ̄k)] =
N∑

t=1

[τ
∑

i∈I
di(t)Ṽi(s(t), θ̄k)− ln(

∑

j∈I
eτṼj(s(t),θ̄k))]. (13)

Using this, we have:

∂ lnL(s̄, d̄|θ̄k)
∂λ1

= τ

N∑

t=1

{
∑

i∈I
[di(t)− zi(s(t), θ̄k)]∂Ṽi(s(t), θ̄k)

∂λ1
}, (14)

where:

zi(s(t), θ̄k) =
eτṼi(s(t),θ̄k)

∑
j∈I e

τṼj(s(t),θ̄k)
. (15)

Thus, to get the derivatives of the likelihood function, we need the deriva-
tives of the Ṽi. Note that:

Ṽi(s(T ), θ̄k) = gi(s(T ), θik), (16)

so we have:

∂Ṽi(s(T ), θ̄k)
∂λ1

=
∂gi(s(T ), θik)

∂λ1
. (17)

For t < T :
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Ṽi(s(t), θ̄k) = gi(s(t), θik) + β[
1
τ

ln(
∑

j∈I
eτṼj(s(t+1),θ̄k))|di(t) = 1]. (18)

Then:

∂Ṽi(s(t), θ̄k)
∂λ1

=
∂gi(s(t), θik)

∂λ1

+ β[
∑

j∈I
zj(s(t+ 1), θ̄k)

∂Ṽj(s(t+ 1), θ̄k)
∂λ1

|di(t) = 1].
(19)

Thus, one can build the derivatives of the Ṽi recursively working back-
ward from the end of the planning horizon in much the same way as value
functions are calculated.

The strategy to calculate the derivatives is as follows. Use (17) and
(19) to calculate the derivatives of the Ṽi at each state point that could be
reached. Having calculated these, next use them to calculate (14) along the
observed path of the state and choices for the individual. The derivative of
the likelihood for the individual is then:

∂L(s̄, d̄)
∂λ1

=
∑

k∈K
PkL(s̄, d̄|θ̄k)∂ lnL(s̄, d̄|θ̄k)

∂λ1
. (20)

The derivative of the log likelihood is thus:

∂ lnL(s̄, d̄)
∂λ1

=
1

L(s̄, d̄)
∂L(s̄, d̄)
∂λ1

. (21)

The derivatives, written out in closed form, would be hopelessly compli-
cated. But, as the above shows, calculating these recursively is on a similar
order of complexity as calculating value functions recursively.

If we estimate the parameters γk defined above, it is easy to show that:

∂Pk
∂γq

= [1(q = k)− Pk]Pq, (22)

where 1() is the indicator function and equals 1 if its argument is true, zero
otherwise. Then:

∂L(s̄, d̄)
∂γq

=
∑

k∈K

∂Pk
∂γq

L(s̄, d̄|θ̄k), (23)
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and the derivatives of the log likelihood are obtained by dividing by the
likelihood.

5 Analytic Second Derivatives

In this section we derive the analytic second derivatives of the log likelihood.
Let λ1 and λ2 be parameters of the model. Differentiating (21) with respect
to λ2 yields:

∂2 lnL(s̄, d̄)
∂λ2∂λ1

=
1

L(s̄, d̄)
∂2L(s̄, d̄)
∂λ2∂λ1

− 1
L(s̄, d̄)2

∂L(s̄, d̄)
∂λ1

∂L(s̄, d̄)
∂λ2

. (24)

We have already shown how to derive all the terms in (24) except the mixed
partial, so we need only derive these to complete this section.

If λ1 = γq and λ2 = γs, then differentiating (23), using (22) yields:

∂2L(s̄, d̄)
∂γs∂γq

=
∑

k∈K
[1(q = k)

∂Pq
∂γs
− Pq ∂Pk

∂γs
− Pk ∂Pq

∂γs
]L(s̄, d̄|θ̄k). (25)

If λ1 = γq and λ2 /∈ {γ1, ..., γK−1}, differentiate (23) to get:

∂2L(s̄, d̄)
∂λ2∂γq

=
∑

k∈K

∂Pk
∂γq

∂L(s̄, d̄|θ̄k)
∂λ2

. (26)

The only remaining case is λ1, λ2 /∈ {γ1, ..., γK−1}. Using (20):

∂2L(s̄, d̄)
∂λ2∂λ1

=
∑

k∈K
PkL(s̄, d̄|θ̄k){∂ lnL(s̄, d̄|θ̄k)

∂λ2

∂ lnL(s̄, d̄|θ̄k)
∂λ1

+
∂2 lnL(s̄, d̄|θ̄k)

∂λ2∂λ1
}.

(27)

Again, we have shown how to calculate all terms except the mixed partial.
Differentiating (14) we get:

∂2 lnL(s̄, d̄|θ̄k)
∂λ2∂λ1

= τ
N∑

t=1

{
∑

i∈I
[(di(t)− zi(s(t), θ̄k))∂

2Ṽi(s(t), θ̄k)
∂λ2∂λ1

− ∂zi(s(t), θ̄k)
∂λ2

∂Ṽi(s(t), θ̄k)
∂λ1

]}.
(28)
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From the definition of zi(s(t), θ̄k):

∂zi(s(t), θ̄k)
∂λ2

= τzi(s(t), θ̄k)
∑

j∈I
[1(j = i)− zj(s(t), θ̄k)]∂Ṽj(s(t), θ̄k)

∂λ2
. (29)

To complete the derivation, we need the mixed partial on the right-hand
side of (28). Differentiating (19) we have:

∂2Ṽi(s(t), θ̄k)
∂λ2∂λ1

=
∂2gi(s(t), θik)

∂λ2∂λ1
+

β{
∑

j∈I
[
∂zj(s(t+ 1), θ̄k)

∂λ2

∂Ṽj(s(t+ 1), θ̄k)
∂λ1

+

zj(s(t+ 1), θ̄k)
∂2Ṽj(s(t+ 1), θ̄k)

∂λ2∂λ1
]|di(t) = 1}.

(30)

Note that the term to the right of β is zero when t = T , so we can calculate
this directly at T . But then we can calculate this for T−1 and, by backward
induction, for all t. This completes the derivation of the analytic second
derivatives.

6 Conclusion

In this paper we show how to recursively calculate analytic first and second
derivatives for a popular specification of a structural discrete choice model.
Obtaining these derivatives is no more difficult than recursively calculating
the value of the likelihood function. Our approach will drastically reduce
the computing and debugging time necessary for estimation routines for this
model that use derivatives. Our approach also makes it easier to get closer
to the exact optimum of the function. Finally, our approach will also aid in
obtaining asymptotic standard errors for parameter estimates of the model,
independently of whether one uses a derivative based algorithm to estimate
the model.
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