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This paper presents two sets of conditions under which a sole owner of a renewable 
resource stock who maximize s a nonlinear benefit function would find it more profitable to 
harvest the stock to extinction than follow a continuous harvesting strategy. When the 
minimum viable resource stock is positive, extinction is optimal as long as the initial resource 
stock is sufficiently small, regardless of the discount rate. When the minimum viable resource 
stock is zero and the discount rate exceeds the growth potential of the species extinction is 
optimal for sufficiently small initial stocks. 0 1988 AC&IICC PXSS, IIIC. 

1. INTRODUCTION 

Much of the literature on the management of a renewable resource by a single 
owner is concerned with the effect of a high discount rate on the profitability of 
extinction. When the discount rate exceeds the maximum growth rate of the species 
the resource is said to be submarginal and extinction is usually more profitable than 
continuous harvesting [l, 21. By contrast, a discount rate below the growth potential 
of the species usually implies that the resource is safe from extinction.2 In a 1977 
paper Tracy Lewis and Richard Schmalensee [3, Proposition 91 show that extinction 
is optimal for certain recruitment functions even if the discount rate is below the 
growth potential of the species. Specifically, if there is a critical population below 
which net births are negative, extinction will be optimal for small initial stocks. 
Their proof of this result, however, is incorrect. 

This paper provides a correct proof of Lewis and Schmalensee’s extinction 
theorem and shows that the result also holds when the recruitment function exhibits 
critical depensation; i.e., when the function has an initial convex segment usually 
associated with a minimum viable population. Following this we prove a result for 
the case in which the minimum viable population is zero. In this case the extinction 
theorem no longer holds, and the resource is not in danger of extinction at low 
interest rates. Extinction is optimal, however, for some initial stocks if the discount 
rate exceeds the growth potential of the species. 

These results are proved using the model of Lewis and Schmalensee, which is 
presented, for convenience, in Section 2. Section 3 contains the proof of the 
Lewis-Schmalensee extinction theorem. The effect of the discount rate on extinc- 
tion is examined in Section 4. 

‘In writing this paper I have benefitted from discussions with Tracy Lewis and William R. Porter. 
‘The growth potential of the species is defined to be the rate of change in net births as the resource 

stock approaches the minimum viable population. 
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2. THE MODEL 
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The problem facing the manger of a fishery is to choose a time path of harvesting, 
H(r), and a terminal date, T, to m  aximize the present discounted value of net 
benefits from fishing 

V= i*[B(H(t),S(t)) - F]emP’dt. 

Equation (1) is maximized subject to a constraint on the rate of growth of the stock, 
s, 

s’ = s(W ) - H(t), (2) 

and to the constraints 

H(r) > 0, S(T) > 0, S(0) = So. (3) 

In (1) F  represents a fixed cost associated with fishing, such as the cost of 
locating fish, and is incurred only if H(t) > 0. 

Instantaneous benefits from fishing are assumed to be a strictly concave function 
of the harvest rate and the stock and are assumed bounded from above. In addition, 
the benefit function has the following properties: 

B(0, S) = 0, s >, 0; B,@, S) = 0, s 2 0; 

B&H, 9 ’ 0, B&H, 9 ’ 0, H,S > 0; 

3H, such that B(H,,, So) > F. 

As Lewis and Schmalensee show, the preceding assumptions imply that marginal 
benefits from harvesting are positive when the rate of harvest is zero, 

B,(O , S) ’ 0, s > 0. 

We shall also assume that marginal benefits are finite; i.e., the resource is not 
essential for survival. 

The natural rate of growth of the fish is given by g(S), which is zero at stocks S 
and S, 

s(s) = SW = 0, S>S>O. 

We assume that g(S) is strictly concave in the interval (S, S) and that it is 
nonpositive for stocks below the m inimum viable population, S. A final assumption 
is that the discount rate is smaller than the slope of the recruitment function at ,S, 

P < g,(S). 
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The necessary conditions for (1) to have a maximum subject to (2) and (3) yield 
the differential equations [3, p. 5381 

li = X[p - g,(S)] - B,(H(h, S), S) = G”(X, S) (4) 

i = g(S) - H(h, S) = GS(h, S), (5) 

which have multiple equilibria in the interval [S, $1. 
Following Lewis and Schmalensee, paths that approach equilibria of the system 

will be calledlcontinuous harvesting paths. Because these paths are confined to the 
interval [S, S] the conditions of [4, Theorem l] are satisfied. Any continuous 
harvesting path satisfying the necessary conditions is therefore optimal among the 
class of infinite horizon paths. 

Consider now the class of paths for which T is finite. These will be called 
abandonment paths, and the subset of these for which S(T) < S will be termed 
extinction paths. Since harvesting ceases once total or marginal benefits become 
negative, the terminal stock along an abandonment path, .$ is the largest S for 
which 

B,(H, S) = 0 and B(H, S) < F. 

3. EXTINCTION WHEN 5 > 0 

It is now possible to prove Proposition 9 of Lewis and Schmalensee. Suppose that 
the terminal stock, $, is below the minimum viable population, _S. Then beginning 
at S, > S one can always find an extinction path-for example, the path B,(H,S) 
= O-which yields positive net benefits. Proposition 9 states that if S, is chosen 
sufficiently close to S the value of a continuous harvesting strategy beginning at S, 
will be less than the value of the extinction plan. 

To prove this result it suffices to show that the value of a continuous harvesting 
policy approaches 0 as the initial stock approaches 8. Formally, 

lim v(q)) = 0, 
G-5’ 

(6) 

where V(&,) denotes the value of an optimal continuous harvesting plan beginning 
at S,,. To prove (6) Lewis and Schmalensee use the fact that 

where k = S, - a. As they note, the second term in (7) goes to 0 as S, + S’. It is 
also true that V(‘(s) = 0 since there no feasible continuous harvesting strategy 
beginning at S. This, however, does not complete the proof since it is possible for 

lim v(s) > 0 
s-s+ 

if the value function has a jump discontinuity at 8. 
The alternative proof of (6) given below uses the following reasoning. In the 

neighborhood of S the resource is growing so slowly that the time required to get 
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from S,, to an arbitrary stock s” can be made as large as one pleases. If S is chosen 
arbitrarily, however, the profit associated with Scan be made arbitrarily small, and 
V(S,) can thus be made as small as one desires. 

Formally, let 0 = g,(S). Then, by the strict concavity of g(S), S G S G g, S can 
be bounded from above along a continuous harvesting path, 

s’ < g(s) < e(s - s), scs&7. (8) 
Let S(t) be measured as a deviation from S, 

c(t) = s(t) - s. 

Then by (8) 

which implies 

E(f) < E(O)e+ r(0) > 0. 

By setting 

E(O) < q/e*= 

it is clear that E(O) can be chosen small enough that e(T) < 7 for arbitrary -q > 0 
and T > 0. Thus one can always pick ,S, small enough that it takes an arbitrarily 
large time to reach an arbitrary stock S = q + S. 

By the properties of B(H, S) one can choose s” > S such that 

q&m, s”) = s 

for arbitrary J > 0. Since H(t) < g(S(t)) along a continuous harvesting path 
beginning at S,, and since B,(H, S) > 0, { places an upper bound on the instanta- 
neous benefits to be earned along the path from S, to s”.3 Thus 

Y(S,,) < d=Sp-@dt + e-W(S(T)), 

where S(T) denotes the stock attained at time T along an optimal continuous 
harvesting path. Since V( S( T)) -C cc the value of an optimal continuous harvesting 
plan can always be made arbitrarily small by appropriate choice of { and T and, 
hence , of S,. In particular, V(S,) can always be kept smaller than the value of an 
abandonment strategy beginning at S. We have thus proved 

PROPOSITION 1. In the model of Section 2 if 3 z s^ z 0 then there exists an 
S, > 8 such that extinction is optimal. 

Two points are worth noting about the proposition. First, positive fixed costs are 
not a necessary condition for Proposition 1. Indeed, if F is large the fish will be 

3This also assumes gs( S) > 0 which is true for all S in the neighborhood of S. 



68 M. L. CROPPER 

FIG. 1. Phase diagram when p > gs(_S) and 8 = 0. 

saved from extinction since it will not be profitable to drive the stock below S. 
Second, the proof of the proposition in no way depends on the shape of the 
recruitment function in the interval (0, S). Thus the proof holds for the strictly 
concave recruitment function used by Lewis and Schmalensee, which assumes 
g(0) -Z 0, as well as for recruitment functions which exhibit critical depensation. 

4. EXTINCTION WHEN S = 0 

When S = 0 Proposition 1 no longer holds since the value of an extinction plan 
beginning at S, also becomes arbitrarily small as S, approaches _S. This prompts 
one to ask in what circumstances extinction will occur when S = 0. Lewis and 
Schmalensee have shown that extinction is superior to continuous harvesting if fixed 
costs are sufficiently high. It can also be shown that extinction is optimal even if 
fixed costs are zero if the discount rate exceeds the growth potential of the species, 
P ’ g,(S). 

To prove this it is convenient to examine the phase diagram of the system when 
~>g,(S)andF=S=O(Fig.l).Whenp>g,(_S)thelociA=OandS=Oneed 
not intersect; however, if an intersection does occur the first equilibrium will be an 
unstable node. To establish this, note that the A-intercept of s = 0 must occur at 
the A for which H(X,O) = 0. The intercept of i = 0, however, must occur at a 
lower X since (5) is satisfied only if H > 0. Thus 3 = 0 must first intersect h = 0 
from above. The directions of motion implied by (4)-(5)4 guarantee that the first 
equilibrium is an unstable node [2, p. 1921. It is now possible to prove 

PROPOSITION 2. when p > g,(S) and S = F = 0, an extinction policy is optimal 
for all 0 < S, < ST. 

The proof consists of showing (i) that no continuous harvesting plan beginning at 
0 c S,, < SF satisfies the necessary conditions; and (ii) that an extinction plan 
exists for each S,, E (0, ST) that does satisfy the necessary conditions. By the strict 
concavity of the benefit and recruitment functions such a plan must be optimal [4, 
Theorem 11. 

4Since aG’/ah = p - gs(S) - BHsHx > 0, i > 0 above h = 0 and ,i c 0 below. Similarly 
aGs/ah = -HA > 0, guaranteeing that s’ > 0 to the right of s = 0 and s <: 0 to the left. 
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To demonstrate (i) note that any continuous harvesting path beginning in the 
interval (0, ST) must enter region II of the diagram where h > 0 and s’ > 0. Such a 
path cannot be optimal by Proposition 4 of Lewis and Schmalensee since X is a 
decreasing function of S along an optimal continuous harvesting path. 

To show that an optimal extinction path exists consider first the case in which 
9 = 0 and i = 0 do not intersect. Under the assumptions of the proposition the 
necessary conditions imply that an optimal extinction path must terminate at the 
point (0, h*) where $ = 0 intersects the h-axis. The slope of the path satisfying (4) 
and (5) is infinite at this point, hence the path must approach (0, A*) from below the 
locus 3 = 0.’ By continuity and the directions of motion in Fig. 1 this path must lie 
below s’ = 0 and above i = 0 in the interval (0, ,!?). Hence for any 0 < S,, < g an 
extinction path satisfying the necessary conditions exists. 

Now consider the case of at least one equilibrium. In this situation paths 
radiating from the unstable node (Sr, A?) must cross the s = 0 locus vertically. 
Since there are an infinite number of these paths there must be one which passes 
through the point (0, X*) and thus satisfies the necessary conditions. 

5. DISCUSSION 

This paper has presented two sets of conditions under which the manager of a 
renewable resource would find it more profitable to mine the resource stock than to 
harvest it. 

The first condition occurs when there is a critical population below which net 
births are negative. For initial stocks that are only slightly higher than the minimum 
viable population the time required to build the stock up to a level where substantial 
profits are earned is so great that an extinction strategy yields higher discounted 
benefits. The importance of this result is that extinction can be more profitable than 
continuous harvesting even if marginal fishing costs become infinite as the stock 
approaches zero and even if the discount rate is low. All that is necessary for 
extinction to be more profitable is that the initial stock be close to the minimum 
viable population and that it be profitable to harvest some members of the species 
below this level. 

The second condition under which extinction is more profitable than continuous 
harvesting is when the discount rate exceeds the maximum growth rate of the 
species. If the resource is slow-growing and if the initial stock is small, it is not 
profitable to let the stock reach a steady state. This parallels Clark’s finding [l; 2, 
p.621 that extinction is optimal at high discount rates when net benefits are a linear 
function of the harvest rate. The difference in the nonlinear case is that the 
optimal&y of extinction depends on the initial stock as well as on the discount rate. 
In Fig. 1, for example, if the initial stock is to the right of SF the optimal path 
proceeds to the nearest saddlepoint and the resource is safe from extinction. A high 
discount rate, therefore, need not imply that extinction is optimal if it is accompa- 
nied by a high initial stock. 

The general conclusion to be drawn from this paper is that in a model in which 
benefits are a nonlinear function of the harvest rate and in which the growth 

‘Any path satisfying (4)-(5) has slope dh/dS = GA(h, S)/Gs(X, S), which approaches infinity as 
GS(X, S) approaches zero. 
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function is not purely compensatory the discount rate plays a less important role in 
determining the profitability of extinction than it does in a linear model with a 
compensatory growth function. In the model examined here it is the size of the 
initial stock that is crucial to the optimality of extinction. A stock that is near the 
minimum viable level, possibly as the result of open access harvesting, is in danger 
of extinction if profit m aximization is the goal of resource management. 
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