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ABSTRACT: 
 
A new generic pushbroom sensor model for high-resolution satellite images is presented. The sensor orbit and attitudes are modelled 
by splines. In order to determine the parameters of the orbit and attitude splines, direct observations for the satellite orbits and 
attitudes that are provided by the data vendors in metadata files are considered. As these direct observations are usually 
contaminated by systematic errors, the pushbroom sensor model also requires a correction model for these systematic errors. 
Unfortunately, the definitions of file formats and model parameters provided by the vendors are usually different and sometimes not 
compatible with a sensor model based on a perspective transformation. Our new sensor model is designed to be applicable to a large 
variety of sensors. Vendor-specific definitions are mapped to the definitions of our sensor model during data import. A rigorous 
model is employed for compensating systematic errors in the orbit and attitude data. In this paper, we present the sensor model and 
describe the way the vendor-specific definitions are mapped to the definitions of the new sensor model for Quickbird, SPOT 5 and 
ALOS/PRISM. First results for the correction of systematic errors will be given for Quickbird and SPOT 5 for test sites in 
Melbourne and Bhutan.  
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1. INTRODUCTION 

In order to exploit the full metric potential of high-resolution 
satellite imagery, it is necessary to develop appropriate sensor 
models. Nowadays most high-resolution optical satellite sensors 
are pushbroom scanners. For some of these sensors, camera 
replacement models with a set of rational polynomial 
coefficients (RPCs) are provided by the vendors. It has been 
shown that no loss in accuracy is to be expected when bias-
corrected RPCs are used for georeferencing (Fraser & Hanley, 
2003). However, not all vendors provide RPCs, and alternative 
models such as affine projection are not always applicable (e.g. 
for large image scenes or in mountainous terrain). In such cases, 
a sensor model that is more closely related to the physical 
reality of the imaging process has to be used. 
 
A pushbroom scanner delivers a perspective image with 
individual exterior orientation parameters for each image line. 
These exterior orientation parameters are highly correlated and 
can be replaced by time-dependant models for the platform 
position and attitude angles. In the past a wide range of 
pushbroom sensor models with different intricacy have been 
developed. These sensor models differ both in the way that 
platform orbits and attitudes are modelled and in the models 
used for the correction of systematic errors. Some use simple 
curves for modelling the orbits, e.g. circles (Westin, 1990) or 
ellipses (Fritsch & Stallman, 2000), (Dowman & Michalis, 
2003). Another strategy for modelling the imaging process is to 
assume the whole image to be one perspective image whose 
exterior orientation is modelled by the six parameters of a rigid 
motion. The difference between this simplified model and the 
actual imaging process is modelled by additional parameters. 
For instance, the method described by Konecny et al. (1987), 

which uses eight such additional parameters, has been applied 
to images from IKONOS and QuickBird (Jacobsen & Passini, 
2003) and SPOT 5/HRS (Jacobsen, 2004). More generic sensor 
models use piecewise polynomial functions to model the sensor 
trajectory and attitudes. For instance, Poli (2005) uses second 
order piecewise polynomial functions. Her model is very 
general, but it requires observations of the orbit positions and 
attitudes to make its parameters determinable. Such 
observations are often provided by the satellite vendors in 
metadata files. Despite the fact that the sensor geometry is the 
same for all pushbroom scanners, the formats and definitions of 
these metadata are not always compatible. For instance, Poli 
(2005) reports relatively poor accuracies achieved for SPOT 5 
data because the SPOT 5 metadata do not explicitly contain 
information about the interior orientation of the camera.  
 
This paper presents a new generic pushbroom sensor model. It 
is the result of a comprehensive analysis of the models used by 
various vendors and should be applicable to a variety of 
pushbroom scanners. The vendor-specific definitions are 
mapped to the general model when the metadata are imported. 
The orbit and attitudes are modelled by cubic splines. The 
parameters of the sensor model are initialised from the metadata 
provided by the vendors. These parameters can be used directly 
(direct georeferencing). As they are contaminated by systematic 
errors, development of a model for the correction of these errors 
was also needed. The parameters of this correction model can 
be estimated in a least squares adjustment if a small number of 
ground control points (GPCs) is available. In this paper, we will 
present the new sensor model, the model used for the correction 
of systematic errors, and the way the vendor-specific definitions 
are mapped to the definitions of our model for QuickBird, 
SPOT 5, and ALOS PRISM. We will also present first results of 



 

systematic error correction for QuickBird and SPOT 5 for test 
sites in Melbourne and Bhutan. 
 
 

2. A GENERIC PUSHBROOM SENSOR MODEL 

2.1 Coordinate Systems  

To model the transformation process between image and object 
space, different coordinate systems need to be defined. First of 
all, we define the object coordinate system as a three 
dimensional right-handed, earth-centred Cartesian coordinate 
system [XECS]. Depending on the satellite vendor, the object 
coordinate system can be an International Terrestrial Reference 
System (ITRS), WGS84, or any other earth centered system.  
 
Next we introduce an orbital coordinate system [XO]. This is a 
time-dependant system with the origin defined by the satellite 
position S(t) at time t. We define the axes of this system so that 
the ZO-axis is parallel to S(tc), where tc is the acquisition time at 
the scene centre. The YO-axis is orthogonal to both S(tc) and the 
velocity vector at time tc, V(tc). XO completes the right handed 
orbital system. Thus, for reasons to be explained below, for all 
times t, the orbital coordinate system is just shifted along with 
S(t) and is therefore only tangential at the scene centre. The unit 
vectors XO,YO,ZO of the axes of the orbital coordinate system 
can be computed according to Equation 1: 
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The platform coordinate system is fixed to the satellite. The 
transformation between the platform and the orbit systems is a 
time-dependant rotation that can be parameterized by the three 
angles (roll, pitch, yaw). The relation between the three 
coordinate systems introduced so far can be seen in Figure 1. 
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Figure 1.  Coordinate systems [XECS], [XO] and [XP]. 

 
Inside the satellite body, the camera coordinate system [XC] has 
its origin in the projection centre C. The XC-axis is parallel to 
the CCD array and the YC-axis is parallel to the focal plane. The 
ZC-axis completes the right handed system. The relation 
between the camera and the platform system is given by the 
time-constant camera mounting parameters. 
 
The framelet coordinate system [XF] is shifted relative to the 
camera system so that its origin is the centre of the leftmost 
pixel of the CCD array, but it is not rotated. The actual image 
observations (xF,yF) are taken in the framelet coordinate system. 
 

As the satellite passes over the earth’s surface, the CCD array 
records one image line after the other. These lines are 
concatenated to an image data file. The image file coordinate 
system [XI] is a system defined by the rows and columns of the 
image data file. Thus, xI is identical to xF (and corresponds to 
the column index of the digital image). The coordinate yI (the 
row index) is used to compute the time t at which that image 
line was recorded, so that yF is actually 0 at time t. Figure 2 
shows the relationship between the second group of coordinate 
systems and the platform system. 
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Figure 2.  Coordinate systems [XP], [XC], [XF] and [XI]. 

 
2.2 Transformations 

The sensor model has to describe the transformation relating the 
position of a point PECS = (XECS, YECS, ZECS)T in the object 
coordinate system to the position of its projection pI = (xI, yI,0)T 
in the image file coordinate system. Measuring an image point 
pI immediately delivers the corresponding point pF in the 
framelet coordinate system: 
 
 pF = (xF, yF, zF)T = (xI, 0, 0)T     (2) 
 
The coordinate yI is used to compute the time t at which the 
image line containing the point was recorded:  
 
  t = t0 + Δt · yI     (3) 
 
In Equation 3, t0 is the acquisition time of the first image line, 
and Δt is the acquisition time per image line. These parameters 
are usually provided by the vendor in metadata files. Each 
image line is a central projection of the earth surface recorded 
at time t. Let the position of the projection centre in the framelet 
coordinate system be cF = (xF

C, yF
C, f)T. Its components are 

usually referred to as the parameters of inner orientation: (xF
C, 

yF
C) are the coordinates of the principal point and f is the focal 

length. The camera coordinates of the image point are pC = pF – 
cF. The object point has to be situated on a straight line through 
the projection centre, and pC gives the direction from the 
projection centre to the object point in the camera coordinate 
system. Thus, the relationship between the object point PC in 
the camera coordinate system and the image point pF in the 
framelet coordinate system can be described as follows: 
 
 PC = (XC, YC, ZC)T = λ · (pF – cF + δx)    (4) 
 
In Equation 4, λ is a scale factor describing the position of PC 
along the image ray, and δx is a vector describing corrections 
for systematic errors. In the current version, δx comprises 
correction terms for velocity aberration (Digital Globe, 2006) 
and atmospheric refraction (Noerdlinger, 1999), but in the 
future it will be expanded to also model the camera distortion. 



 

In order to transform PC to the platform system we apply the 
camera mounting parameters in the form of a rigid motion: 
 
 PP = (XP, YP, ZP)T = CM + RM · PC    (5) 
 
In Equation 5, the camera mounting parameters are the position 
CM of the projection centre in the platform system, and the 
rotation matrix RM describing the rotation from the camera 
system to the platform system. The platform and orbital systems 
are related by a time-dependant rotation: 
 

 PO = (XO, YO, ZO)T = RP(t) · PP    (6) 
 
The rotation matrix RP(t) is parameterised by three rotation 
angles (roll, pitch, yaw) changing with time, thus RP(t) = 
RP[roll(t), pitch(t), yaw(t)]. The continuous model for these 
three time-dependant angles will be described in Section 2.3. 
The time t used to evaluate the functions [roll(t), pitch(t), 
yaw(t)] is derived from Equation 3. 
 
Finally, the relationship between the object coordinates PECS 
and the orbit coordinates PO is described by a rigid motion with 
a time-constant rotation matrix RO and a time-dependant shift 
given by the satellite position S(t): 
 

 PECS = (XECS, YECS, ZECS)T = S(t) + RO · PO   (7) 
 
The columns of the rotation matrix RO are identical to the unit 
vectors of the orbital coordinate system as described by 
Equation 1. Hence there is a dependence on the acquisition time 
tC of the image centre: RO = RO(tC) = [XO(tC) YO(tC) ZO(tC)].  
The continuous model for S(t) will be described in section 2.3. 
 
A combination of Equations 4 to 7 yields the transformation 
equation relating the image point pF in the framelet coordinate 
to the object point PECS in the object coordinate system: 
 

PECS = S(t) + RO · RP(t) ·[CM +λ · RM · (pF – cF + δx)]   (8) 
 
Using μ = 1 / λ, the inverse transformation can be expressed as: 
 
pF = cF + μ · RM

T · {RP
T(t) · RO

T · [PECS – S(t)] – CM} – δx    (9) 
 
2.3 Modelling the Satellite Orbit and Attitudes 

The components X(t),Y(t),Z(t) of the satellite orbit S(t) and the 
rotation angles roll(t), pitch(t), yaw(t) by which the rotation 
matrix RP is parameterised are modelled by cubic splines, i.e., 
by cubic polynomial segments Spi

N( it ) with smooth transitions 
between segments i and i+1:  
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In Equation 10, i is the index of the spline segment, N is the 
parameter modelled by the spline (X, Y, Z, roll, pitch, or yaw), 
and (aN,0

i, a N,1
i, a N,2

i a N,3
i) are polynomial coefficients that have 

to be determined from observed orbit points or attitudes, 
respectively. Each polynomial Spi

N( it ) models the parameter N 
for a time interval [ti

0, ti
E] with ti

E = ti+1
0 being the time of 

transition between segments i and i+1. The intervals [ti
0, ti

E] are 
mapped to [ ] [ ]1,0,0 =E
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E
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interval limits, the two polynomials and their first and second 
derivatives have to be identical, which results in three constraint 
equations per inner node 00

1 =+it  with i  ≠ 0: 
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The satellite image vendors usually provide discrete orbit points 
and attitude observations with a time stamp. Some (but not all) 
vendors also provide information about the accuracy of these 
data. Let such an orbit point be (Xobs, Yobs, Zobs)T, recorded at 
time tobs. Then by using tobs, the segment i of the orbit splines 
that this point belongs to can be determined, and the 
relationship between the observed orbit coordinates and the 
orbit splines becomes  
 
 FX(Xobs, Yobs, Zobs, tobs) = Xobs + ΔX = Spi

X( obs
it ) 

 FY(Xobs, Yobs, Zobs, tob) = Yobs + ΔY = Spi
X( obs

it ) (12) 
 FZ(Xobs, Yobs, Zobs, tob) = Zobs + ΔZ = Spi

Z( obs
it ) 

 
In Equation 12, FX, FY, and FZ are functions modelling 
systematic errors in the observed orbit coordinates. We 
currently model perturbations to the observed orbit coordinates 
as a time-constant shift only. Thus, the vector (ΔX, ΔY, ΔZ)T 
describes a systematic shift of the system in which the observed 
orbit points are given relative to the object coordinate system. 
The more general notation of FX, FY, and FZ should indicate that 
in the future this model might be expanded, for instance by 
rotations or time-dependant terms. An analogous model is used 
for the attitudes. Perturbations in the observed rotation angles 
(rollobs, pitchobs, yawobs)T are modelled by time-constant offsets 
(Δroll, Δpitch, Δyaw)T, a model that might be expanded by 
time-dependant terms in the future. 
 
When the observed orbit points and attitudes are imported, the 
splines are initialised, and approximate values for the spline 
coefficients are determined. This is done by least squares 
adjustment, using Equation 12 as the original observation 
equations, but assuming that no systematic errors are present. 
The constraint Equations 11 are also considered. First, only one 
adjusting spline segment is used. If the rms error of the weight 
unit s0 of that adjustment exceeds a threshold, each spline 
segment is split into two segments of equal length. This 
procedure is iteratively applied until s0 is smaller than the 
threshold. Depending on the scene size, this will result in one or 
two segments for both the orbits and the attitudes.   
 
2.4 Adjustment and Correction of Systematic Errors 

It is the goal of the overall adjustment to determine the mapping 
parameters in the functional model described by Equation 9 
and, as far as the models for the orbits and attitudes are 
concerned, Equation 10 from the framelet and object 
coordinates of GCPs and from the observed orbit and attitude 
coordinates provided by the vendor. Least squares adjustment is 
based on the Gauss-Helmert model. This model assumes that 
the observations l, the corrections to these observations v, and 
the unknown parameters x are linked by constraint equations 
f(l+v, x) = 0, where f are functions describing the functional 
model of adjustment. Additionally, there may be constraint 
equations only affecting the unknowns, in the form h(x) = 0. 
The unknown parameters x are solved from the constraint 
equations by least squares adjustment. 
 
For the observed image points, the functional model is given by 
the combination of Equations 9 and 10. In Equation 9, the 



 

observations are the framelet coordinates pF. The camera 
mounting parameters will normally not be determinable at all, 
and they are kept constant. The corrections δx are applied to the 
image coordinates, but they are also constant in the adjustment. 
The interior orientation parameters might be determinable for 
scenes covering undulating terrain, but in the current version of 
the model they are considered constant, as is the rotation matrix 
RO. Only the polynomial coefficients aN,0

i, a N,1
i, a N,2

i, and a N,3
i 

of the splines modelling the three components of the orbit S(t) 
and the three angles by which RP(t) is parameterised have to be 
determined by adjustment. The positions PECS of the GCPs are 
also considered to be unknown. That means that the GCP 
coordinates are used as direct observations for the unknown 
object coordinates, and they will receive residuals.  The 
coefficients of polynomial coefficients of two neighbouring 
spline segments i and i + 1 are linked by Equations 11, which 
are introduced as constraint equations. For the direct 
observations for the orbit points, the combination of Equations 
10 and 12 provide the functional model. The observations in 
these equations are the orbit point coordinates (Xobs, Yobs, Zobs) 
or the observed rotation angles (rollobs, pitchobs, yawobs). The 
polynomial coefficients of the orbit and attitude splines are to 
be determined. With respect to the bias correction parameters 
(ΔX, ΔY, ΔZ and Δroll, Δpitch, Δyaw), the user can decide 
whether to consider them constant (and zero) or unknown. 
 
 

3. APPLICATIONS TO DIFFERENT SATELLITES 

3.1 QuickBird 

For QuickBird, the transformation parameters provided in the 
metadata file relate the object coordinates PECS of a point to its 
detector coordinates pD (Digital Globe, 2006). This coordinate 
system is defined in a similar way as the framelet coordinate 
system used in our model, but it is rotated by 90 degrees around 
the ZF-axis, thus xF = -yD and yF = xD or:  
 

  pD = RT
Z90 · pF    (13) 

 
The relation between PECS and pF according to Digital Globe 
(2006) can formally be written as: 
 
PECS = S(t) + RQ

T(t) ·[CMQ +λ · RMQ
T · (RC

T · RZ90
T · pF +  

            + pF
0 + δxQ)] (14) 

 
In Equation 14, the index Q denotes a QuickBird-specific 
definition of a parameter. Comparing Equations 8 and 14, we 
can observe several differences. First, there is no orbit 
coordinate system and thus no rotation matrix RO. The rotation 
matrices as defined in Digital Globe (2006) are transposed 
compared to those appearing in Equation 8, and RQ(t) and RMQ 
are parameterised by quarternions. The framelet coordinate 
system is not only rotated by RT

Z90, but also by a rotation RT
C 

around the ZF-axis. Instead of the framelet coordinates cF of the 
projection centre, the coordinates pC

0 of the origin of the 
framelet coordinate system in the QuickBird camera system are 
given. Finally, the corrections δxQ are applied in the camera 
coordinate system. Equation 14 can be re-written as: 
 
PECS = S(t) + RQ

T(t) ·[CMQ +λ · RMQ
T · RC

T · RZ90
T · (pF +  

  + RZ90 · RC · pF
0 + RZ90 · RC · δxQ)] (15) 

 
A comparison of Equations 8 and 15 results in formulae for 
determinging cF and δx from the parameters given in the 
QuickBird metadata files: 

 cF = -RZ90 · RC · pF
0   (16) 

 δx = RZ90 · RC · δxQ   (17) 
 

The rotation matrix RQ
T(t) in Equation 14 rotates from the 

object coordinate system to a system whose Z-axis points to the 
target, i.e., that system is not a tangential one. The rotation 
matrix RMQ

T · RC
T · RZ90

T rotates into the camera coordinate 
system. We have to split RQ

T(t)  into two rotations, and we want 
the platform coordinate system to be close to a tangential 
system, which means that we cannot use the otherwise obvious 
identity RM = RMQ

T · RC
T · RZ90

T. Rather than that, we define 
the rotation matrix RP(t) to be equal to the identity matrix for 
the acquisition time tc of the image centre, thus RP(tc) = I. The 
matrix RO in Equation 8 is computed from the orbit positions 
and velocities at time tc. A comparison of Equations 8 and 15, 
which accounts for the overall rotation between the camera and 
the object coordinate systems being identical, yields for t = tc: 
 
RQ

T(tc) ·RMQ
T · RC

T · RZ90
T = RO · RP(tc) ·RM = RO · I ·RM (18) 

 

Thus the camera mounting rotation matrix RM can be computed 
from the parameters given in the QuickBird metadata files: 
 
 RM = RO

T · RQ
T(tc) ·RMQ

T · RC
T · RZ90

T (19) 
 

Using the shorthand pC = pF + RZ90 · RC · pF
0 + RZ90 · RC · δxQ, 

Equation 15 can be re-written as 
 
PECS = S(t) + RQ

T(t) · RQ(tc) · RO · [RO
T · RQ

T(tc) ·CMQ + 
 +λ · RO

T · RQ
T(tc) ·RMQ

T · RC
T · RZ90

T · pC] 
        = S(t) + RQ

T(t)·RQ(tc)·RO·[RO
T·RQ

T(tc)·CMQ+λ·RM·pc] (20) 
 
A comparison between Equations 8 and 20 delivers the 
remaining parameters in Equation 8: 
 
 CM= RO

T · RQ
T(tc) ·CMQ   (21) 

 RP(t) = RO
T · RQ

T(t) · RQ(tc) · RO ·  (22) 
 
Equation 22 has to be applied to each of the discrete data points 
provided for the satellite attitudes, and the angles rollobs(t), 
pitchobs(t), yawobs(t) derived from RP(t) are used in the 
adjustment. 
 
3.2 SPOT 5 

For SPOT 5, the definition of the transformation parameters 
provided in the metadata file relates the object coordinates PECS 
of a point to its navigation coordinates PPS (SPOT, 2002). The 
navigation coordinate system is related to our platform 
coordinate system by a rotation RT: 

              PSTP PRP ⋅= , 
⎟
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⎜
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⎛ −
=

100
001
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TR  (23) 

According to SPOT (2002), the relationship between PECS and 
PP can formally be written as: 
 

 PECS = S(t) + λ · ROS(t) · RPS(t) · RT
T · PP (24) 

 
There are two main differences to our definitions. First of all, 
there are two time-depended rotations. The rotation ROS(t) is 
computed in the same way as RO from the satellite orbit and 
velocity vectors, but individually for each time t. Using the 
definition for RO described in Section 2.2 and comparing 
Equations 8 and 24 results both in CM = 0 and in the following 
equation for computing RP(t) from the parameters provided in 
the SPOT 5 metadata files: 



 

 RP(t)= RO
T · ROS(t) · RPS(t) · RT

T  (25) 
 
The second major difference is the description of interior 
orientation parameters which are available only in an indirect 
way through the definition of two viewing angles ψx and ψy that 
are related to PPS by PPS=[-tan(ψy),tan(ψx),1]T (SPOT, 2002) 
and, thus, to PP= [tan(ψx), tan(ψy), -1]T as a geometrical 
positive. The angles ψx and ψy are provided for each pixel of 
the CCD array and define a bundle of rays between the 
projection centre and the pixel centres of the CCD array (Figure 
3). 
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Figure 3.  The bundle of rays given by the viewing angles. 

 
Using the relationship between PP and the viewing angles 
defined above, and applying Equations 4 and 5 with δx = 0, 
yields the relationship between the viewing angles ψx and ψy 
provided in the SPOT 5 metadata files and the interior 
orientation cF and mounting rotation RM used in our model 
(Equation 8): 
 
 PP= [tan(ψx), tan(ψy), -1]T= ν · RM · (pF – cF)  (26) 
 
For each pixel of the CCD array, pF and PP are known. This 
means that the rotation angles by which RM is parameterised 
and cF can be computed by a spatial resection, using Equation 
26 as the basis for the functional model of the adjustment. 
However, as all the points lie on a straight line in the platform 
system, one rotation angle will not be defined. Parameterising 
RM by (roll, pitch, yaw), the angle roll (around the XF-axis) will 
not be determined. We set roll = 180o = const.  In order to 
eliminate the unknown scale parameter ν, the first and the 
second component of Equation 26 can be divided by the third. 
Thus, for each pixel of the CCD array we obtain two 
observation equations to determine the angles pitch and yaw of 
RM and the interior orientation parameters cF. We get a highly 
redundant system of equations that is solved by least squares 
adjustment. This adjustment is carried out when the SPOT 5 
metadata are imported. 
 
3.3 ALOS PRISM 

According to JAXA (2006), the transformation process between 
object and image space can be expressed by Equation 27: 
 
 PECS = S(t) + RA(t) ·[CM +λ · RM · (pF – cF + δx)] (27) 
 
This is very similar to Equation 8. The only difference is that 
there is only one rotation RA(t) relating the platform and object 
coordinate systems, and this rotation matrix is parameterised by 
quarternions. Computation of the rotation matrix RO described 
in Section 2.2, using the identity RO · RP(t) = RA(t), results in: 
 
  RP(t)= RO

T · RA(t)   (28) 

With ALOS PRISM, there is one speciality with respect to the 
framelet coordinate system. Depending on the viewing mode, 
either 4 or 6 CCD arrays are used to record the digital image. 
For basic imagery, one image data file per CCD array is 
provided. Figure 4 illustrates the configuration of 4 such CCD 
arrays. There is an individual framelet coordinate system for 
each CCD array. All parameters in the model in Equation 8 are 
identical for each of these framelet coordinates except the 
coordinates of the principal point (xF

C, yF
C): they differ by a 

constant offset, defined by the widths of the CCD arrays and the 
nominal overlap of 32 pixels. The import of the metadata for 
ALOS has not been implemented because the documentation of 
the binary metadata format appears incomplete, and precise 
information is difficult to obtain. Once it has been implemented, 
tests will show whether the nominal overlap can be trusted or 
whether it will be necessary to determine individual coordinates 
of the principal point and/or individual distortion parameters for 
each of the image data files. 
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Figure 4.  CCD array configuration of ALOS Prism 

 

 
 

4. EXPERIMENTS 

4.1 Test data 

For the testing of our model for SPOT 5, we used a pan-
chromatic image with 2.5 m resolution, covering an area of 60 x 
60 km2 in Bhutan. We determined 61 points using GPS, of 
which 7 were used as GCPs. The remaining 54 points were used 
as check points. The distribution of the points was not optimal 
due to the restricted accessibility of the terrain. Points were 
mainly located along roads on valley floors, with a few on 
passes, the overall height range being from 1200 m to 3800 m. 
The accuracy of the GPS coordinates was around ±0.2 m in 
planimetry and ±0.4 m in height. In order to test our model for 
QuickBird we used a pan-chromatic image of Melbourne 
covering an area of 18.7 x 18 km2 at 0.8 m resolution. For this 
test field, 32 points were determined using GPS with an 
accuracy of ±0.1 m in all coordinates. Of these points, 5 were 
used as control points and 27 as check points. Here we had a 
good point distribution in the scene centre, but no points at the 
periphery of the image. Many of the points are roundabouts, 
which were measured with an ellipse fitting technique both in 
object space as well as in image space. The terrain was flat with 
heights between 0 m and 80 m.  
 
4.2 Results 

Table 1 presents the results of the estimation of the interior 
orientation and the camera mounting rotations for the SPOT 5 
image. The precision of the interior orientation is in the range of 
±2 pixel. The residuals of the adjustment are all below 0.05 
pixels, so that no additional parameters seem to be necessary. 
An analysis of the covariance matrix of the parameters shows a 
high correlation between yF

C and pitch.  



 

 xF
C  

[pixel] 
yF

C  
[pixel] 

f  
[pixel] 

Pitch  
[º] 

Yaw 
[º] 

Value 11618.5 -2994.9 332912.2 15.0675 89.9945
σ 1.6 2.0 1.8 3.1 10 -4 1.8 10 -4

 
Table 1.   Interior orientation and camera mount rotations for 

SPOT 5. σ: theoretical standard error.  
 
In order to assess the effectiveness of our adjustment model, we 
measured the image coordinates of both the GCPs and the 
check points in both test images. First, we back-projected all 
check-points to the images using the original parameters of our 
sensor model, i.e., those derived by mapping the vendor-
specific parameters to our model. We computed the RMS errors 
of the coordinate differences. These RMS errors show the 
accuracy achieved by direct georeferencing. We also carried out 
three different versions of adjustment, determining different 
groups of correction parameters. First, we determined only the 
orbit shift corrections. Second, only the attitude corrections, and 
third, both corrections were determined. The check points were 
back-projected to the images using the improved parameters, 
and the RMS errors of the coordinate differences were 
computed. The improvement in the RMS errors should show the 
effectiveness of the correction technique. For QuickBird, we 
also used the bias corrected RPC model for back-projection. 
 

 QuickBird [pixel] SPOT 5 [pixel] 
Correction X Y X+Y X Y X+Y 
None  9.53 14.68 12.38 1.57 11.10 7.93 
Shift 0.40 0.60 0.51 0.99 1.01 1.00 
Attitudes 0.42 0.68 0.56 1.03 0.99 1.01 
Orbit Shift + 
Attitudes 

0.39 0.64 0.53 0.96 0.96 0.96 

RPC 0.33 0.50 0.43 N/A N/A N/A 
 

Table 2.   RMS errors of the differences between back-
projected and measured check-point coordinates for 
different variants of systematic error correction. 
RPC: bias corrected RPCs. Number of GCPs / check 
points: 5 / 27(QuickBird), 7 / 54 (SPOT 5).  

 
Table 2 shows the results of these tests. The RMS error of 
coordinate for direct georeferencing is ±12.4 pixels for 
QuickBird and ±7.9 pixels for SPOT 5, thus clearly showing the 
importance of correcting the systematic errors in order to 
exploit the full metric potential of the imagery. Bias correction 
improves the results considerably. For the QuickBird scene, a 
RMS error of ±0.5 pixels shows that subpixel accuracy can be 
achieved for well-defined points. The bias corrected RPC 
parameters achieve a slightly better result. This indicates that 
our correction model can still be improved, e.g. by adding a 
rotation to the correction of the orbit path, or by adding time-
dependant terms to the attitude corrections. The results in Table 
2 are almost independent of the type of bias correction. This is 
caused by the fact that these parameters cannot be separated 
well using such a small number of GCPs. For SPOT 5, the RMS 
error is reduced to ±1 pixel by the bias correction. This is not 
quite as good as for QuickBird, but the check points in Bhutan 
were not as well defined as those in Melbourne, so that this 
larger RMS error is the result of the random measurement errors 
rather than of a remaining bias in the parameters of the sensor 
model.  

5. CONCLUSIONS 

A new generic pushbroom sensor model for high-resolution 
satellite images has been developed. The model should be 
applicable to most pushbroom scanners. In order to apply the 
model to images from a specific sensor, the vendor-specific 
parameterisation of the transformations has to be mapped to that 
used by our model. The way in which this can be achieved has 
been shown for QuickBird, SPOT 5 and ALOS PRISM. In the 
case of SPOT 5, this requires an initial adjustment to determine 
the interior orientation and the camera mount rotations. Also, a 
bias correction model has been implemented and tested. It was 
shown that by correcting the orbit shifts and attitudes using our 
model, an accuracy of ±1 pixel or better can be achieved for 
QuickBird and SPOT 5 imagery. 
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