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ABSTRACT: 
 
Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species 
that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies 
censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential 
solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on 
visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, 
and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected 
without errors, while for deer and wolves, 0–2 individuals per flight line were mistaken with ground elements or undetected. This 
approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These 
results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains 
limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce 
time and expertise requirements for such technology.  
 
 

1. INTRODUCTION 

Precise management of wildlife is often based on population 
density data (Skalski et al., 2005, Pierce et al., 2012, Williams 
et al., 2012). Aerial survey is generally used to census large 
animals over large areas; especially for remote or inaccessible 
areas (Siniff and Skoog, 1964; Caughley, 1977; Bodie et al., 
1995). However, during aerial surveys, observers have to locate, 
identify, and count wildlife in a very short time (Caughley, 
1974). Several methods have been developed to simplify the 
task for observers such as using several simultaneous observers 
(Bayliss and Yeomans, 1989; Marsh and Sinclair, 1989; Potvin 
et al., 1992 Cumberland, 2012), conducting circular flights 
(Floyd et al., 1979; Stoll et al., 1991; Wiggers and Beckerman, 
1993; Havens and Sharp, 1998), and using aerial photography 
(Garner et al., 1995; Naugle et al., 1996; Haroldson et al., 2003; 
Israel, 2011; Chabot and Bird, 2012; Franke et al., 2012). 
 
Terrestrial camera traps have been used for multispecies 
detection for several years but results are presently limited by 
sampling design and data processing biases (Topler et al., 2008; 
Ahumada et al., 2013; Burton et al., 2015). Until now, there are 
no standardized methods to detect several species 
simultaneously using aerial surveys. Multispecies detection can 
be useful to study species that coexist spatially in order to 
reduce survey costs (Bayliss and Yeomans, 1989) and to better 
understand ecological processes (Burton et al., 2015). However, 
this practice is too demanding for aerial observers who already 
need considerable focus to detect single species.  
 
Multispectral aerial imagery is useful for species detection 
because information is permanently recorded and can be 
analyzed repeatedly after the census (Terletzky et al., 2012). 
Furthermore, the use of unmanned aerial vehicles (UAV) to 
acquire imagery provides very high spatial and temporal 

resolutions difficult to access with other acquisition platforms 
(e.g., satellite, airplane, helicopter, etc.) (Eisenbeiβ, 2009; 
Whitehead et al., 2014). Very high spatial resolution provides a 
high level of details which allows differences in characteristics 
between species to be distinguished. High temporal resolution 
allows to conducting censuses in favorable observation 
windows (i.e., weather, phenology) that can be narrow and 
highly inconstant. 
 
Until now, very few studies have tested the combined use of 
UAV, multispectral imagery, and image processing for 
multispecies detection. This combination was successfully 
tested on one species by Chrétien et al. (2015). They developed 
an approach to detect and count white-tailed deer (Odocoileus 
virginianus) by applying a multicriteria object-based image 
analysis (MOBIA) on visible and thermal infrared imagery 
acquired by UAV. Thus, the main objective of the present study 
was to adapt and evaluate the performance of this approach for 
detecting and counting simultaneously several large mammal 
species in a controlled environment.  
 

2. STUDY SITE 

The study was conducted at the Falardeau Wildlife Observation 
and Agricultural Interpretive Centre (Centre d'observation de la 
faune et d'interprétation de l'agriculture de Falardeau) in Saint-
David-de-Falardeau (Québec, Canada). This center welcomes 
several species of mammals, birds, and reptiles in separate 
enclosures with a known number of individuals (figure 1). The 
aim of this project was to detect 4 American bison (Bison bison) 
including 1 calf, 6 fallow deer (Dama dama), 5 gray wolves 
(Canis lupus), and 3 elks (Cervus canadensis) (figure 2). The 
tree vegetation within the enclosures of fallow deer and gray 
wolves consists mainly of birch (Betula sp.). No vegetation is 
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present within the enclosures of American bison and elk, except 
for a few isolated trees. 

 
Figure 1. Study area: Enclosures at the Falardeau Wildlife 
Observation and Agricultural Interpretive Centre in Saint-
David-de-Falardeau, Québec, Canada. Blue enclosure: 
American bison (Bison bison), Green enclosure: elks (Cervus 
canadensis), Orange enclosure: fallow deer (Dama dama) and 
Purple enclosure: grey wolves (Canis lupus). Flight lines (FL; 
red lines), ground targets () and observers (binocular symbol) 
are indicated. 
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Figure 2. Studied species. A. American bison (Bison bison); B. 
elks (Cervus canadensis); C. fallow deer (Dama dama); and D. 
grey wolf (Canis lupus). © L.-P. Chrétien, E. Gavelle 
 
 

3. MATERIAL AND METHODS 

3.1 Data acquisition system 

Data acquisition was performed using a system consisting of a 
VTOL (vertical take-off and landing) UAV (Responder, ING 
Robotic Aviation; table 1; figure 3) equipped with the Tau640 
(FLIR Systems) and D7000 (Nikon Inc.) sensors (table 2). 
Visible and thermal infrared images were acquired 
simultaneously aboard the UAV. The GPS/INS data from the 
UAV were not available for image georeferencing considering 
their exclusive use by the autopilot system. 
 

Table 1. UAV specifications and flight limitations 
 
Specifications  
Vehicle type VTOL helicopter 
Length 1328 mm 
Height 408 mm 
Main blade length 690 mm 
Main blade diameter 1562 mm 
Tail rotor diameter 281 mm 
Weight (with motor) 2.83 kg 
Flying weight Max 12 kg 
Maximum forward speed 80 km/hr 
Endurance Up to 20 minutes 
Battery two 6-cell Lithium Polymer 
IMU accuracy N/A 
GPS accuracy Horizontal : ± 2 m 

Vertical : ± 1 m 
Flight limitations  
Maximum wind speed 30 km/hr 
Minimum visibility 1 600 m 
Minimum ceiling 150 m AGL 
Maximum flight altitude 300 m AGL 
 

Table 2. Sensors specifications 
 
Specifications Tau640 D7000* 

Sensor type Uncooled VOx 
microbolometer 

Sony IMX071 
CMOS  

Spectral range Thermal infrared  
(7.5–13.5 µm) 

Visible  
(0.40–0.75 µm) 

Processor N/A Expeed 2 
Sensor size 10.88x8.70 mm 23.6x15.7 mm 
Focal length 19 mm 38 mm 
Shutter speed N/A 1/500–1/160 
ISO sensitivity N/A 800 
Aperture f/1.25 f/6.3–f/11 
Field of view (FoV) 32°x26° 35°x23° 
Size 44x44x30 mm 132x105x166 mm 
Weight 80 g 1270 g 
Image size 640 x 480 pixels  

(0.3 MP) 
4928 x 3264 pixels  

(16 MP) 
Ground sampling 
distance (GSD) **  

5.4 cm/pixel 0.8 cm/pixel 

Radiometric resolution 8-bit 12-bit 
Footprint**  34.42x25.82 m 37.28x24.69 m 
Signal output Analog 

Digital***  
Digital 

File format ASF (NTSC 
30Hz video) ***  

NEF/RAW 

* with the AF-S DX Nikkor 18-105 mm f/3.5-5.6G ED VR lens (Nikon Inc.); **  At 
an altitude of 60 m; ***  Digital recording with an analog to digital converter 
PV500 EVO (Lawmate) 
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Figure 3. Ground control station and unmanned aerial vehicle 
used in this study (Responder, ING Robotic Aviation). 

 
3.2 Data acquisition 

A total of one flight including six flight lines (figure 1) was 
conducted between 1040 and 1055 hr on 6 November 2012 
under a Special Flight Operating Certificate (SFOC) issued by 
Transport Canada (Reference Number: 5105-01 RDIMS 
7899416). During this flight, the altitude above ground level 
was 60 m and cruise speeds ranged from 18 to 35 km/hr 
depending on the wind and UAV orientation. The resulting 
images had a ground sampling distance (GSD) of 0.8 cm/pixel 
in the visible and 5.4 cm/pixel in thermal infrared. 
 
The day before the flight, 22 ground targets were installed in 
open areas close to access roads (figure 1) and were located 
using a GeoXHTM GPS (Trimble) with an accuracy of 10 to 30 
cm. These targets were used for imagery georeferencing. 
Different colors and materials were used for these targets based 
on their spectral properties in the visible and thermal infrared 
ranges. Among these targets, 5 of them served as control points 
to validate that the images were correctly georeferenced. 
 
Ground data observations were collected to validate the 
detection of animals by the image processing. These data were 
collected by 3 observers distributed near enclosures (figure 1). 
Each observer noted the position of each individual during the 
UAV flight over the enclosure. This information was used to 
map the position of individuals for comparison with the 
elements detected by image processing so as to evaluate the 
performance of the classification. 
 
3.3 Data processing 

Data preprocessing of visible images and thermal infrared video 
was performed to obtain a georeferenced mosaic (figure 4; see 
Chrétien et al. (2015) for more details). A total of 3 flight lines 
were analyzed over the 6 lines acquired. Three flight lines were 
rejected due to a position outside the study area (FL1), a lack of 
overlapping between images (FL5), and a flight interruption due 
to low batteries (FL6). The other flight lines were mosaicked 
and analyzed separately and independently in order to reduce 
detection errors related to potential animal movements between 
lines. 
 
For each mosaic, a multicriteria object-based image analysis 
(MOBIA) was performed using eCognition Developer 8.7 
(Trimble) according to the following steps: 

- multiresolution segmentation (Trimble, 2011) with a scale 
parameter of 150, a color/shape and a regularity/compactness 
of 0.9/0.1 and 0.5/0.5 respectively;  

- preclassification based primarily on spectral criteria to detect 
all potential animals;  

- merger of these objects to create superobjets;  
- sequential classification to identify each targeted species by 

adapting at each iteration the species-specific threshold values 
for the spectral, geometric, and contextual criteria. Elements 
that have not been assigned to a species were tagged as false 
positives and excluded after the end of all iterations. 

 

 
 
Figure 4. Multispecies detection including data acquisition, 
preprocessing, and multicriteria object-based image analysis 
(MOBIA) 
 
Individuals were counted based on the ratio between the size of 
each area detected and the approximate size of the largest 
individual recorded in the literature for the targeted species 
(Nowak, 1999; Feldhamer et al., 2003). 
 
3.4 Validation of the classification 

For each classification and each species, a binary error matrix 
with the polygon as the minimum mapping unit was calculated 
(Congalton and Green, 2009). Validation polygons used for the 
“species” class came from ground data collected during flights. 
Polygons for the “non–animal” class were identified by visual 
interpretation of environmental elements (e.g., deciduous, 
coniferous, snow, ground targets, feeding troughs, etc.). The 
validation of the classification was carried out by comparing the 
dominant class in each polygon (> 50%) and the class identified 
in the field. 
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4. RESULTS 

The MOBIA did not perform perfectly to detect and classify all 
individuals per species (figure 5). Bison and elks were all 
detected and classified while for fallow deer and wolves, 
between 0 to 1 individual per flight line was wrongly classified 
as landscape elements such as bare soil (table 3). Moreover, for 
fallow deer and wolves, between 0 and 2 individuals per flight 
line were not detected. 
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Figure 5. Examples of the classification results for the MOBIA 
with the visible and thermal infrared imagery. Orange. 
American bison (Bison bison); Red. fallow deer (Dama dama); 
Magenta. grey wolves (Canis lupus); and Green. elks (Cervus 
canadensis). 
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Figure 6. Other species present (magenta). Left. ostrich 
(Struthio camelus); Center. coyote (Canis latrans); and Right. 
Black bear (Ursus americanus). © L.-P. Chrétien, CGQ 
 

The method has also simultaneously and distinctly detected and 
classified the four targeted species: 0–3 elks, 0–4 bison, 2–4 
wolves, and 2–4 fallow deer per flight line (table 3). The results 
showed no confusion for interspecies identification. 
Furthermore, other species (i.e., non-targeted species) were 
present on the acquired images such as 1 ostrich (Struthio 
camelus), 3 coyotes (Canis latrans), and 3 black bears (Ursus 
americanus) (figure 6). Since the choices of criteria and 
parameters have not been selected to specifically identify these 
species, none of these individuals were classified with the 
MOBIA. 
 
Table 3. Classification results for each flight line using the 
MOBIA with the visible and thermal infrared imagery. 
 

Species 
Flight-
Line n° 

Detected1 Real2 Detectable3 Present4 

2 4 4 4 4 
3 4 4 4 4 Bison 
4 0 0 0 0 
2 3 2 2 2 
3 0 0 2 2 

Fallow 
deer 

4 3 3 4 4 
2 4 3 3 3 
3 4 3 4 4 Wolves 
4 3 2 2 2 
2 3 3 3 3 
3 3 3 3 3 Elks 
4 0 0 0 0 

1 Detected: Number of objects or groups of pixels in the “species” class obtained 
following the classification 
2 Real: Number of individuals correctly classified among those detected in (1) 
3 Detectable: Total number of individuals that can be detected in the flight line 
excluding those that were hidden by the canopy or other visual obstructions  
4 Present: Total number of deer present 

 
5. DISCUSSION 

5.1 Image acquisition and preprocessing 

Several factors during the flight campaign affected the quality 
of the acquired images and their preprocessing. An average 
wind speed of 19 km/hr, parallel to flight lines, caused yaw, 
pitch, and roll movements as well as irregular speed of the 
UAV. These flight conditions require more work from 
stabilization mechanisms, which increase the energy 
consumption. Thus, a decrease of the UAV endurance was 
observed.  
 
This flight instability due to wind conditions led to an image 
forward overlap between 5% and 38% (figure 7) instead of a 
theoretical overlap of 57%. This lower performance reduced the 
ability of image processing procedures to perform an effective 
image registration. For better results, it is recommended 
according to Aber et al. (2010) to have a minimum forward 
overlap of 60% and 70% when wind factors are considered. 
 
Finally, these roll, pitch, and yaw effects also had a direct 
impact on image quality by deflecting sensors from nadir. In 
this study, yaw effects were prevailing (figure 7). Several 
methods can correct these complex distortions such as 
parametric georeferencing using GPS/INS data, geometric 
correction with ground control point, image stitching, etc. 
However, most of these methods were unsuccessful or 
unavailable in this study. The use of a reference mosaic was the 
only functional option to correct the imagery in this project. 
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Figure 7. Georeferenced images from flight line n°3 (FL 3). 
Left: visible imagery. Right: thermal infrared imagery. 
 
5.2 Species analysis 

The MOBIA on visible and thermal infrared imagery was 
effective for detecting and counting different large mammal 
species. However, fallow deer and wolves were more difficult to 
identify than bison and elks. A minimum of four classification 
criteria using visible characteristics were necessary to identify 
bison and elks whereas it took 2 and 3 criteria using the visible 
as well as 6 and 4 additional criteria based on the thermal 
infrared to identify fallow deer and wolves respectively. 
 
Three factors could explain these results: 
(1) Fallow deer and wolves have cryptic fur allowing them to 
better conceal themselves in their environment than bison and 
elks. Therefore, they have a higher probability of being 
confused with the elements of the environment. In this study, 
deer and wolves were confused in the visible and thermal 
infrared spectra with rocks. This observation is also supported 
by Garner et al. (1995), Franke et al. (2012), and Chrétien et al. 
(2015) who observed that thermal emission of rocks and some 
parts of the forest floor can be similar to wildlife during clear 
days. 
 
(2) The body size of animals can also influence their detection 
rate. Large species are more likely to be detected in comparison 
with small ones (Caughley, 1974). For example, deer and 
wolves have an average total length of 1.30–1.75 m and 1.27–
1.64 m respectively, compared to 2.20–2.50 m and 2.10–3.90 m 

for elks and bison (Nowak, 1999; Feldhamer et al., 2003). Thus, 
deer and wolves being smaller, they can be harder to detect. No 
studies have explored the size limits for detecting wildlife. 
However, Chrétien et al. (2015) showed that spatial resolution 
of imagery has an impact on the detection rate of white-tailed 
deer using the MOBIA. This approach was more efficient at 
very high spatial resolution (i.e., 0.8 cm) compared to coarser 
resolutions. Therefore, considering that the choice of an optimal 
spatial resolution is related to the body size of animals 
(Woodcock and Strahler, 1987), it can be hypothesized that the 
spatial resolution used in this study was suboptimal for the body 
sizes of fallow deer and wolves. 
 
(3) The detection rate for a species varies depending on the 
composition of the environment. Wildlife visibility decreases 
with the increase of vegetation density due to the visual 
obstruction between individuals and the observer. This could 
lead to an underestimation of the population size (LeResche and 
Rausch, 1974; Caughley et al., 1976; Samuel et al., 1987; 
Bayliss and Yeomans, 1989). In this study, a larger canopy was 
present in the fallow deer and wolves enclosures compared to 
bison and elk enclosures. This could explain the lower detection 
rate obtained for fallow deer and wolves. Some authors (Bayliss 
and Yeomans, 1989; Franke al., 2012) suggest to define for 
each species a detection rate for each habitat and to apply a 
correction factor accordingly. Furthermore, the use of dens by 
wolves is another element that could affect detection rates of 
this species; although this situation did not occurred in this 
study. This underlines the importance of taking into account the 
ecology of each species before performing a multispecies 
survey. 
 
These three factors represent research avenues to explore to 
better understand and control elements that influence the 
detection rate of each species. 
 
5.3 Multispecies analysis with the MOBIA 

The MOBIA seems appropriate for multispecies detection of 
large wildlife. This approach has not only demonstrated its 
ability to detect multiple species, but also its adaptability to 
specifically target species of interest for the wildlife manager 
and to ignore those that are not targeted. Each detected species 
has its own set of classification thresholds.  
 
The MOBIA approach is more efficient than pixel-based ones to 
detect wildlife (Chrétien et al., 2015). The cognitive approach 
used by the MOBIA is based on physical and contextual 
characteristics of the species (e.g., hue/fur color, thermal 
contrast with its environment). Thus, an object (or group of 
pixels) is more informative than a pixel alone because it does 
not only provide the spectral information, but also the geometric 
and contextual informations. 
 
Furthermore, unlike pixel-based approaches, the number of 
individuals present in an image has little or no effect on the 
MOBIA accuracy due to its sequential approach. It allows for 
example to indicate the absence of individuals whereas pixel-
based approaches usually require training sites (i.e., requiring 
the presence of individuals) to initiate or finalize the 
classification process. 
 
Although the MOBIA gave promising results in this project, it 
would be interesting to test the generalization potential of this 
approach in a variety of environments and weather conditions. 
Additionally, this approach should be tested to detect 
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taxonomically related species or morphologically similar 
species (e.g., white-tailed deer and red deer (Cervus elaphus)). 
 
5.4 Advantages and limitations of image acquisition by 
UAVs 

UAVs represent a new accessible option to detect and count 
wildlife. Low altitude operations with manned aircrafts are 
relatively risky since they leave a small margin of error to the 
pilot. For wildlife biologists, manned aircraft crashes are the 
primary cause of work-related death (Wiegman and Taneja, 
2003; Jones IV et al., 2006). UAVs can be a safe alternative for 
the acquisition of census data.  
 
UAVs equipped with autopilots also have the ability to follow 
flight lines more precisely than manned aircraft (Hodgson et al., 
2010) allowing more accurate sampling patterns with straight 
and parallel flight lines. Separating flight lines by a precise 
distance between them can avoid double counting of individuals 
who move between each pass of the aircraft. 
 
Moreover, UAVs have a relatively low noise impact on wildlife 
(Jones IV et al. 2006, Chabot 2009). It reduces wildlife stress 
and prevents random behaviors (e.g., escape behaviour) which 
can cause blurry image acquisitions or errors in animal counting 
(Bartmann et al., 1986; Wiggers and Beckerman, 1993; Frid, 
2003). 
 
The time and costs required to operate UAVs (e.g., material, 
flight authorization and data acquisition, transportation, flight 
site preparation, etc.) and to process data can be relatively high. 
The use of UAVs in remote sensing also requires highly trained 
personnel to perform UAV operations and image processing. 
However, this multispecies approach has the potential to 
standardize and automate the detection and count which will 
reduce costs in the medium term. Moreover, a rapid 
technological progress in the fields of UAVs and image 
processing was observed in the past few years. An increased 
accessibility of this technology in the future can reasonably be 
predicted.  
 
The use of UAVs in wildlife studies is facing several 
limitations. UAVs cannot cover large areas compared to 
manned aircrafts used for traditional censuses. Three factors are 
responsible for these limitations: (1) Endurance and flight speed 
of these devices is limited and can only cover small areas. (2) 
Canadian regulation restricts flights to visual range. Operating 
UAVs out of visual range requires sense and avoid technology 
as well as real time communication with ground control station 
which is not adapted yet for civil UAVs (Gupta et al., 2013). (3) 
Data storage space onboard the UAV limits flights to relatively 
short distances. Advances in the field of onboard data 
processing and computer vision are expected to reduce these 
limitations in the short term. This limited coverage area remains 
very useful to census wildlife by targeting specific areas critical 
to the ecology of some species (e.g., calving grounds, wintering 
areas) or to simultaneously census species that coexist spatially 
(e.g., birds). 
 
As shown in this project, UAVs have some flight restrictions 
that impact the quality of the acquired data. Improving sensor 
parameterization is critical to increase the quality of images as 
well as the use of 3-axis gyro-stabilized gimbals (Aber et al., 
2010; Anderson and Gaston, 2013). This system is a rotating 
support which compensates for angular motions (i.e., roll, pitch, 
yaw) caused by the movement of the aircraft to maintain a 

stable angle at nadir (Jones, 2000). This equipment can reduce 
the effects of deformation and vibration on the images to 
perform more effective imagery selection and preprocessing. 
 

6. CONCLUSIONS AND FUTURE WORK 

The multicriteria object-based image analysis using very high 
spatial resolution visible and thermal infrared images acquired 
by a UAV is an efficient approach to detecting several species 
simultaneously. This method also demonstrated its potential to 
perform the census of a single targeted species using its own 
specific threshold values. However, more research is needed to 
improve the detection rate of each species. For example, the use 
of multiple spectral band combinations needs to be explored. 
These results open the way for the development of a 
reproducible and adaptable approach to other species.  
 
This project validates the potential of UAVs to acquire high 
quality imagery allowing the extraction of census data. 
However, the current Canadian regulation and the technology 
limit the coverage of study areas. Applications related to UAV-
based imagery will be closely related to UAV regulation and 
technology developments in the future. 
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