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Information graphics (such as bar charts and line graphs) play a vital role in many
multimodal documents. The majority of information graphics that appear in popular media
are intended to convey a message and the graphic designer uses deliberate communicative
signals, such as highlighting certain aspects of the graphic, in order to bring that message
out. The graphic, whose communicative goal (intended message) is often not captured by the
document’s accompanying text, contributes to the overall purpose of the document and cannot be
ignored. This article presents our approach to providing the high-level content of a non-scientific
information graphic via a brief textual summary which includes the intended message and the
salient features of the graphic. This work brings together insights obtained from empirical studies
in order to determine what should be contained in the summaries of this form of non-linguistic
input data, and how the information required for realizing the selected content can be extracted
from the visual image and the textual components of the graphic. This work also presents a
novel bottom–up generation approach to simultaneously construct the discourse and sentence
structures of textual summaries by leveraging different discourse related considerations such as
the syntactic complexity of realized sentences and clause embeddings. The effectiveness of our
work was validated by different evaluation studies.

1. Introduction

Graphical representations are widely used to depict quantitative data and the relations
among them (Friendly 2008). Although some graphics are constructed from raw data
only for visualization purposes, the majority of information graphics (such as bar charts
and line graphs) found in popular media (such as magazines and newspapers) are
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Figure 1
Graphic conveying a maximum bar.

constructed to convey a message. For example, the graphic in Figure 1 ostensibly is
intended to convey that “The United States has the highest number of hacker attacks
among the countries listed.” The graphic designer made deliberate choices in order to
bring that message out. For example, the bar representing the United States is high-
lighted with a different color from the other bars and the bars are sorted with respect to
their values instead of their labels so that the bar with the highest value can be easily
recognized. Such choices, we argue, are examples of communicative signals that graphic
designers use. Under Clark’s definition (1996), language is not just text and utterances,
but instead includes any deliberate signal (such as gestures and facial expressions) that
is intended to convey a message; thus an information graphic is a form of language.

In popular media, information graphics often appear as part of a multimodal
document. Carberry, Elzer, and Demir (2006) conducted a corpus study of information
graphics from popular media, where the extent to which the message of a graphic is
also captured by the text of the accompanying document was analyzed. One hundred
randomly selected graphics of different kinds (e.g., bar charts and line graphs) were
collected from newspapers and magazines along with their articles. It was observed
that in 26% of the instances, the text conveyed only a small portion of the graphic’s
message and in 35% of the instances, the text didn’t capture the graphic’s message
at all. Thus graphics, together with the textual segments, contribute to the overall
purpose of a document (Grosz and Sidner 1986) and cannot be ignored. We argue that
information graphics are an important knowledge resource that should be exploited,
and understanding the intention of a graphic is the first step towards exploiting it.

This article presents our novel approach to identifying and textually conveying
the high-level content of an information graphic (the message and knowledge that one
would gain from viewing a graphic) from popular media. Our system summarizes this
form of non-linguistic input data by utilizing the inferred intention of the graphic de-
signer and the communicative signals present in the visual representation. Our overall
goal is to generate a succinct coherent summary of a graphic that captures the intended
message of the graphic and its visually salient features, which we hypothesize as being
related to the intended message. Input to our system is the intention of the graphic
inferred by the Bayesian Inference System (Elzer, Carberry, and Zukerman 2011), and
an XML representation of the visual graphic (Chester and Elzer 2005) that specifies the
components of the graphic such as the number of bars and the heights of each bar. Our
work focuses on the generation issues inherent in generating a textual summary of a
graphic given this information. The current implementation of the system is applicable
to only one kind of information graphic, simple bar charts, but we hypothesize that the
overall summarization approach could be extended to other kinds of graphics.
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In this article, we investigate answers to the following questions: (1) Among all
possible information that could be conveyed about a bar chart, what should be included
in its summary? (2) How should the content of a summary be organized into a coherent
text? (3) How should the text structure be best realized in natural language? Given the
intended message and the XML representation of a graphic, our system first determines
the content of the graphic’s summary (a list of propositions) by applying the content
identification rules constructed for that intended message category. Our system then
produces a coherent organization of the selected content by applying a bottom–up
approach which leverages a variety of considerations (such as the syntactic complexity
of the realized sentences and clause embeddings) in choosing how to aggregate informa-
tion into sentence-sized units. The system finally orders and realizes the sentence-sized
units in natural language and generates referring expressions for graphical elements
that are required in realization.

The rest of this article is structured as follows. Section 2 discusses related work
on summarization of non-linguistic input data and describes some natural language
applications which could benefit from summaries generated by our work. Section 3
outlines our summarization framework. Section 4 is concerned with identifying the
propositional content of a summary and presents our content-identification rules that
specify what should be included in the summary of a graphic. Section 5 describes
our bottom–up approach, which applies operators to relate propositions selected for
inclusion, explores aggregating them into sentence-sized units, and selects the best orga-
nization via an evaluation metric. Section 6 presents our sentence-ordering mechanism,
which incorporates centering theory to specify the order in which the sentence-sized
units should be presented. Section 7 describes how our system realizes the selected
content in natural language. Particular attention is devoted to our methodology for
generating referring expressions for certain graphical elements such as a descriptor
of what is being measured in the graphic. Section 8 presents a user study that was
conducted to evaluate the effectiveness of the generated summaries for the purposes
of this research by measuring readers’ comprehension. Section 9 concludes the article
and outlines our future work.

2. Background

2.1 Related Work

There has been a growing interest in language systems that generate textual summaries
of non-linguistic input data (Reiter 2007). The overall goal of these systems, generally
referred to as data-to-text systems, is to enable efficient processing of large volumes
of numeric data by supporting traditional visualisation modalities and to reduce
the effort spent by human experts on analyzing the data. Various examples of data-
to-text systems in the literature include systems that summarize weather forecast
data (Goldberg, Driedger, and Kittredge 1994; Coch 1998), stock market data (Kukich
1983), and georeferenced data (Turner, Sripada, and Reiter 2009).

One of the most successful data-to-text generation research efforts is the SumTime
project, which uses pattern recognition techniques to generate textual summaries of
automatically generated time-series data in order to convey the significant and inter-
esting events (such as spikes and oscillations) that a domain expert would recognize
by analyzing the data. The SumTime-Mousam (Somayajulu, Reiter, and Davy 2003)
and SumTime-Turbine (Yu et al. 2007) systems were designed to summarize weather
forecast data and the data from gas turbine engines, respectively. More recently, the
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project was extended to the medical domain. The BabyTalk (Gatt et al. 2009) project
produces textual summaries of clinical data collected for babies in a neonatal intensive
care unit, where the summaries are intended to present key information to medical staff
for decision support. The implemented prototype (BT-45) (Portet et al. 2009) generates
multi-paragraph summaries from large quantities of heterogeneous data (e.g., time
series sensor data and the records of actions taken by the medical staff). The overall
goal of these systems (identifying and presenting significant events) is similar to our
goal of generating a summary that conveys what a person would get by viewing an
information graphic, and these systems contend with each of the generation issues we
must face with our system. Our generation methodology, however, is different from the
approaches deployed in these systems in various respects. For example, BT-45 produces
multi-paragraph summaries where each paragraph presents first a key event (of highest
importance), then events related to the key event (e.g., an event that causes the key
event), and finally other co-temporal events. Our system, on the other hand, produces
single-paragraph summaries where the selected propositions are grouped and ordered
with respect to the kind of information they convey. In addition, BT-45 performs a
limited amount of aggregation at the conceptual level, where the aggregation is used
to express the relations between events with the use of temporal adverbials and cue
phrases (such as as a result). Contrarily, our system syntactically aggregates the selected
propositions with respect to the entities they share.

There is also a growing literature on summarizing numeric data visualized via
graphical representations. One of the recent studies, the iGRAPH-Lite (Ferres et al.
2007) system, provides visually impaired users access to the information in a graphic via
keyboard commands. The system is specifically designed for the graphics that appear
in “The Daily” (Statistics Canada’s main dissemination venue) and presents the user
with a template-based textual summary of the graphic. Although this system is very
useful for in depth analysis of statistical graphs and interpreting numeric data, it is
not appropriate for graphics from popular media where the intended message of the
graphic is important. In the iGRAPH-Lite system, the summary generated for a graphic
conveys the same information (such as the title of the graphic, and the maximum and
minimum values) no matter what the visual features of the graphic are. The content of
the summaries that our system generates, however, is dependent on the intention and
the visual features of the graphic. Moreover, that system does not consider many of the
generation issues that we address in our work.

Choosing an appropriate presentation for a large amount of quantitative data is
a difficult and time-consuming task (Foster 1999). A variety of systems were built to
automatically generate presentations of statistical data—such as the PostGraphe sys-
tem (Corio and Lapalme 1999; Fasciano and Lapalme 2000), which generates graphics
and complementary text based on the information explicitly given by the user such
as the intention to be conveyed in the graphic and the data of special interest to the
user. The content of the accompanying text is determined according to the intention
of the graphic and the features of the data. Moreover, the generated texts are intended
to reinforce some important facts that are visually present in the graphic. In this re-
spect, the generation in PostGraphe is similar to our work, although the output texts
have a limited range and are heavily dependent on the information explicitly given
by the user.

2.2 Role of Graphical Summaries in Natural Language Applications
2.2.1 Accessibility. Electronic documents that contain information graphics pose chal-
lenging problems for visually impaired individuals. The information residing in the
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text can be delivered via screen reader programs but visually impaired individuals are
generally stymied when they come across graphics. These individuals can only receive
the ALT text (human-generated text that conveys the content of a graphic) associated
with the graphic. Many electronic documents do not provide ALT texts and even in the
cases where ALT text is present, it is often very general or inadequate for conveying the
intended message of the graphic (Lazar, Kleinman, and Malarkey 2007).

Researchers have explored different techniques for providing access to the in-
formational content of graphics for visually impaired users, such as sound (Meijer
1992; Alty and Rigas 1998), touch (Ina 1996; Jayant et al. 2007), or a combination
of the two (Kennel 1996; Ramloll et al. 2000). Unfortunately, these approaches have
serious limitations such as requiring the use of special equipment (e.g., printers and
touch panels) or preparation work done by sighted individuals. Research has also
investigated language-based accessibility systems to provide access to graphics (Kurze
1995; Ferres et al. 2007). As mentioned in Section 2.1, these language-based systems
are not appropriate for graphics in articles from popular media where the intended
message of the graphic is important. We hypothesize that providing alternative access
to what the graphic looks like is not enough and that the user should be provided
with the message and knowledge that one would gain from viewing the graphic. We
argue that the textual summaries generated by our approach could be associated with
graphics as ALT texts so that individuals with sight impairments would be provided
with the high-level content of graphics while reading electronic documents via screen
readers.

2.2.2 Document Summarization. Research has extensively investigated various techniques
for single (Hovy and Lin 1996; Baldwin andMorton 1998) and multi-document summa-
rization (Goldstein et al. 2000; Schiffman, Nenkova, andMcKeown 2002). The summary
should provide the topic and an overview of the summarized documents by identifying
the important and interesting aspects of these documents. Document summarizers
generally evaluate and extract items of information from documents according to their
relevance to a particular request (such as a request for a person or an event) and address
discourse related issues such as removing redundancies (Radev et al. 2004) and ordering
sentences (Barzilay, Elhadad, and McKeown 2002) in order to make the summary more
coherent.

It is widely accepted that to produce a good summary of a document, one must
understand the document and recognize the communicative intentions of the author.
Summarization work primarily focuses on the text of a document but, as mentioned
earlier, information graphics are an important part of many multimodal documents
that appear in popular media and these graphics contribute to the overall commu-
nicative intention of the document. We argue that document summarization should
capture the high-level content of graphics that are included in the document, because
information graphics often convey information that is not repeated elsewhere in the
document. We believe that the summary of a graphic generated by our system, which
provides the intended message of the graphic and the information that would be
perceived with a casual look at the graphic, might help in summarizing multi-modal
documents.1

1 Our colleagues are currently investigating how the findings from this work can be used in
communicating the content of multimodal documents.
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3. System Overview

Figure 2 provides an overview of the overall system architecture. The inputs to our
system are an XML representation of a bar chart and the intended message of the chart;
the former is the responsibility of a Visual Extraction System (Chester and Elzer 2005)
and the latter is the responsibility of a Bayesian Inference System (Elzer, Carberry, and
Zukerman 2011). Given these inputs, the Content Identification Module (CIM) first
identifies the salient and important features of a graphic that are used to augment its
inferred message in the summary. The propositions conveying the selected features and
the inferred message of the graphic are then passed to the Text Structuring and Aggre-
gation Module (TSAM). This module produces a partial ordering of the propositions
according to the kind of information they convey, and aggregates them into sentence-
sized units. The Sentence OrderingModule (SOM) then determines the final ordering of
the sentence-sized units. Finally, the Sentence Generation Module (SGM) realizes these
units in natural language, giving particular attention to generating referring expressions
for graphical elements when appropriate. In the rest of this section, we briefly present
the systems that provide input to our work and describe the corpus of bar charts
used for developing and testing our system. The following sections then describe the
modules implemented within our system in greater detail, starting from the Content
Identification Module.

Figure 2
System architecture.
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3.1 Visual Extraction System

The Visual Extraction System (Chester and Elzer 2005) analyzes a graphic image (visual
image of a bar chart) and creates an XML representation specifying the components
of the graphic, such as the height and color of each bar, any annotations on a bar, the
caption of the graphic, and so forth. The current implementation handles vertical and
horizontal bar charts that are clearly drawn with specific fonts and no overlapping
characters. The charts can have a variety of textual components such as axis labels,
caption, further descriptive text, text inside the graphic, and text below the graphic.
The current system cannot handle 3D charts, charts where the bars are represented by
icons, or charts containing texts at multiple angles, however.

3.2 Bayesian Inference System for Intention Recognition

The Bayesian Inference System (Elzer, Carberry, and Zukerman 2011) treats an informa-
tion graphic as a form of language with a communicative intention, and reasons about
the communicative signals present in the graphic to recognize its intendedmessage. The
system is currently limited to simple bar charts and takes as input the XML representa-
tion of the chart produced by the Visual Extraction System described previously.

Three kinds of communicative signals that appear in bar charts are extracted from a
graphic and utilized by the system. The first kind of signal is the relative effort required
for various perceptual and cognitive tasks. The system adopts the AutoBrief (Kerpedjiev
and Roth 2000) hypothesis that the graphic designer chooses the best design to facilitate
the perceptual and cognitive tasks that a viewer will need to perform on the graphic.
Thus, the relative effort for different perceptual tasks serves as a communicative signal
about what message the graphic designer intended to convey (Elzer et al. 2006). The
second and third types of communicative signals used in the system are salience and
the presence of certain verbs and adjectives in the caption that suggest a particular
message category. The presence of any of these three kinds of communicative signals
are entered into a Bayesian network as evidence. The top level of the network captures
one of the 12 message categories that have been identified as the kinds of messages that
can be conveyed by a bar chart, such as conveying a change in trend (Changing Trend)
or conveying the bar with the highest value (Maximum Bar). The system produces as
output the hypothesized intended message of a bar chart as one of these 12 message
categories, along with the instantiated parameters of the message category, in the form
of a logical representation such as Maximum Bar(first bar) for the graphic in Figure 1
and Increasing Trend(first bar, last bar) for the graphic in Figure 3a.

3.3 Corpus of Graphics

We collected 82 groups of graphics along with their articles from 11 different magazines
(such as Newsweek and Business Week) and newspapers. These groups of graphics
varied in their structural organization: 60% consisted solely of a simple bar chart (e.g.,
the graphic in Figure 1 on Page 2) and 40% were composite graphics (e.g., the graphic
in Figure 8a in Section 7.1.1) consisting of at least one simple bar chart along with
other bar charts or other kinds of graphics (e.g., stacked bar charts or line graphs). We
selected at least one simple bar chart from each group and our corpus contained a total
of 107 bar charts. The Bayesian Inference System had an overall success rate of 79.1% in
recognizing the correct intended message for the bar charts in our corpus using leave-
one-out cross-validation (Elzer, Carberry, and Zukerman 2011).
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Figure 3
(a) Graphic conveying an increasing trend. (b) Graphic conveying the ranking of all bars.

In the work described in this article, we only used the bar charts whose intended
message was correctly recognized by the Bayesian Inference System and associated each
chart with the inferred message category. Here, our intent is to describe a generation
approach that works through a novel problem from beginning to end by handling a
multitude of generation issues. Thus, using bar charts with the perfect intention is
reasonably appropriate within the scope of the present work. For each bar chart, we
also used the XML representation that was utilized by the Bayesian Inference System.
Slightly less than half of the selected bar charts were kept for testing the system per-
formance (which we refer to as the test corpus), and the remaining graphs were used
for developing the system (which we refer to as the development corpus). Because the
number of graphics in the development corpus was quite limited, we constructed a
number of bar charts2 in order to examine the effects of individual salient features
observed in the graphics from the development corpus. These graphs, most of which
were obtained by modifying original graphics, enabled us to increase the number of
graphics in the development corpus and to explore the system behavior in various new
cases.

4. Content Identification Module (CIM)

Our ultimate goal is to generate a brief and coherent summary of a graphic. Identifying
and realizing the high-level informational content of a graphic is not an easy task,
however. First, a graphic depicts a large amount of information and therefore it would
be impractical to attempt to provide all of this information textually to a user. Second, a
graphic is chosen as the communication medium because a reader can get information
from it at many different levels. A casual look at the graphic is likely to convey the
intended message of the graphic and its salient features. At the same time, a reader
could spend much more time examining the graphic to further investigate something
of interest or something they noticed during their casual glance.

In order to address the task of identifying the content of a summary, we extend
to simple bar charts the insights obtained from an informal experiment where human
participants were asked to write a brief summary of a series of line graphs with the
same high-level intention (McCoy et al. 2001). The most important insight gained from

2 The graphics that we constructed were not used in any of the evaluation experiments with human
participants described throughout this article.
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this study is that the intended message of a graphic was conveyed in all summaries no
matter what the visual features of the graphic were. It was observed that the participants
augmented the intended message with salient features of the graphic (e.g., if a line
graph is displaying an increasing trend and the variance in that trend is large, then
the variance is salient) and that what was found salient depended on the graphic’s
intended message. Because the participants generated similar summaries for a par-
ticular graphic, we hypothesize that they perceived the same salient features for that
graphic. Although the set of features that might be salient is the same for different
graphics sharing the same underlying intention, the differences observed between the
summaries generated for different graphics with the same intention can be explained
by whether or not the features are salient in those graphics. The fact that the summaries
did not include all information that could be extracted from the graphic (such as
the value of every point in a line graph) but only visually salient features, correlates
with Grice’s Maxim of Quantity (1975) which states that one’s discourse contribution
should be as informative as necessary for the purposes of the current exchange but not
more so.

To extend these observations to constructing brief summaries of bar charts, we
hypothesize that (1) the intended message of the bar chart should form the core of
its textual summary and (2) the most significant and salient features of the bar chart,
which are related to its intended message, should be identified and included in that
summary. The inferred intended message of a bar chart serves as a starting point for
our content identification approach. In the rest of this section, we first describe a series
of experiments that we conducted to identify what constitutes the salient features of
a given bar chart and in which circumstances these features should be included in its
textual summary. We then present the content identification rules that were constructed
to automatically select appropriate content for the summary of a bar chart.

4.1 Experiments

We conducted a set of formal experiments to find patterns between the intended mes-
sage of a graphic, salient visual features of the displayed data, and the propositions
selected for inclusion in a brief summary. We identified the set of all propositions
(PROPALL) that capture information that we envisioned someone might determine
by looking at a bar chart. This set included a wide variety of pieces of information
present in a bar chart and contained propositions common to all bar charts as well
as propositions which were applicable only to some of the message categories. The
following is a subset of the identified propositions. In this example, Propositions 1–4
are common to all bar charts; in contrast, Propositions 5–8 are only present when the
bar chart is intended to convey a trend:

� The labels of all bars (Proposition 1)

� The value of a bar (Proposition 2)

� The percentage difference between the values of two bars (Proposition 3)

� The average of all bar values (Proposition 4)

� The range of the bar values in the trend (Proposition 5)

� The overall percentage change in the trend (Proposition 6)
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� The change observed at a time period (Proposition 7)

� The difference between the largest and the smallest changes observed in
the trend (Proposition 8)

Some propositions, which we refer to as open propositions, require instantiation
(such as Propositions 2, 3, and 7 given here) and the information that they convey varies
according to their instantiations.3 In addition, the instantiation of an open proposition
may duplicate another proposition. For example, if the Proposition 3 is instantiatedwith
the first and the last bars of the trend, then the information conveyed by that proposition
is exactly the same as Proposition 6.

To keep the size of the experiment reasonable, we selected 8 message categories
from among the 12 categories that could be recognized by the Bayesian Inference Sys-
tem; these categories were the onesmost frequently observed in our corpus and could be
used as a model for the remaining message categories. These categories were Increasing
Trend, Decreasing Trend, Changing Trend, Contrast Point with Trend, Maximum Bar,
Rank Bar, Rank All, and Relative Difference. In the experiments, we did not use the
categoriesMinimumBar (which can bemodeled viaMaximumBar), Relative Difference
with Degree (which can be modeled via Relative Difference), Stable Trend (which was
not observed in the corpus), and Present Data (which is the default category selected
when the system cannot infer an intended message for the graphic).

For each message category, we selected two to three original graphics from the
development corpus, where the graphics with the same intended message presented
different visual features. For example, we selected two graphics conveying that a par-
ticular bar has the highest value among the bars listed, but only in one of these graphics
was the value of the maximum bar significantly larger than the values of the other bars
(such as the graphic in Figure 1). In total, 21 graphics were used in the experiments and
these graphics covered all selected intended message categories. Because the number of
propositions applicable to each message category was quite large, 10–12 propositions
were presented for each graphic. Each graphic was presented to at least four partici-
pants. Overall, the experiments covered all selected intended message categories and
all identified propositions.

Twenty participants, who were unaware of our system, participated in the experi-
ments. The participants were graduate students or recent Ph.D. graduates from a variety
of departments at the University of Delaware. Each experiment started with a brief
description of the task, where the participants were told to assume that in each case
the graphic was part of an article that the user is reading and that the most important
information depicted in the graphic should be conveyed in its summary. They were also
told that they would be given an information graphic along with a sentence conveying
the intended message of the graphic and a set of propositions, and would be asked to
classify these additional propositions into one of three classes according to how impor-
tant they felt it was to include that proposition in the textual summary:4 (1) Essential:
This proposition should be included in the brief textual summary, (2) Possible: This
proposition could be included in the brief textual summary but it’s not essential, and (3)
Not Important: This proposition should not be included in the brief textual summary.

3 We used open propositions in order to keep PROPALL within a manageable size.
4 The participants were also asked to instantiate the open propositions that they classified as Essential or
Possible.
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4.2 Analysis

To analyze the experiment’s results, we first assigned a numeric score to each
class indicating the level of importance assigned by the participants: Essential = 3,
Possible = 1, Not-important = 0. We then calculated an “importance level” (IL) for each
proposition with respect to a particular graphic, where the importance level estimates
how important it is for that proposition to be included in the graphic’s summary.
The importance level of a proposition was computed by summing the numeric
scores associated with the classes assigned by the participants. For example, if three
participants classified a proposition as Essential and two participants as Possible, the
importance level of that proposition in the graphic was (3× 3) + (2× 1) = 11. In cases
where a proposition (Prop A) and an instantiated open proposition which conveyed
the same information were classified by a participant into different classes for the same
graphic, the classification of the proposition that came earlier in the presentation was
used in computing the importance level of Prop A.

Given these computed scores, we needed to identify which propositions to con-
sider further for inclusion in a summary. Because there was a divergence between
the sets of propositions that were classified as essential by different participants, we
decided to capture the general tendency of the participants. For this purpose, we
defined majority importance level as a ranking criteria, which is the importance level
that would be obtained if half of the participants classify a proposition as essential.
For example, the majority importance level would be (6× 3)/2 = 9 if there were six
participants. We classified a proposition as a highly rated proposition if its importance
level was equal to or above the majority importance level.5 The propositions that were
classified as highly rated for the graphics with a message category formed the set of
highly rated propositions that should be considered for inclusion for that message
category.

We had to ensure that the propositions presented to the participants (PROPALL)
actually covered all information that is important enough to include in the summary of
a bar chart. Thus, for each graphic, we also asked participants if there was anything else
they felt should be included in the brief summary of the graphic. We received only a
few isolated suggestions such as a proposition conveying what type of a curve could fit
the trend. Moreover, these suggestions were not common among the participants, and
nothing was mentioned by more than one participant (indeed most did not make any
suggestions). Thus, we concluded that these suggestions were not appropriate for the
textual summary of a bar chart.

4.3 Content Identification Rules for Message Categories

Using the importance level scores, we needed to identify the subset of the highly rated
propositions that should be included in the textual summary in addition to the graphic’s
intended message. For each message category, we examined the similarities and the
differences between the sets of highly rated propositions identified for the graphics

5 The reason behind assigning particular scores (3,1,0) to the classes is to guarantee that a proposition will
not be selected as a highly rated proposition if none of the participants thought that it was essential.
Assume k participants classified a proposition (Prop A). The majority importance level of this proposition
(MIL(Prop A)) is �(3× k)/2�. A proposition is classified as highly rated if its importance level (IL(Prop A))
is equal to or greater than the majority importance level (IL(Prop A) ≥MIL(Prop A)). If all of the
participants classified the proposition as Possible, the IL(Prop A) is 1× k, which is less than MIL(Prop A).
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associated with that message category, related these differences to the visual features
present in these graphics, and constructed a set of content identification rules for
identifying propositions to be included in the summary of a graphic from that message
category. If a proposition was marked as highly rated for all graphics in a particular
message category, then its selection was not dependent on particular visual features
present in these graphics. In such cases, our content identification rule simply states that
the proposition should be included in the textual summary for every graphic whose
inferred message falls into that message category. For the other propositions that are
highly rated for only a subset of the graphics in a message category, we identified a fea-
ture that was present in the graphics where the proposition was marked as highly rated
and was absent when it was not marked as highly rated, and our content identification
rules use the presence of this feature in the graphic as a condition for the proposition
to be included in the textual summary. In addition, we observed that a highly rated
proposition for a message category might require inclusion of another proposition for
realization purposes. For example, in the Rank All message category, the proposition
indicating the rank of each bar was identified as highly rated and thus could be included
in the textual summary. Because the rank of a bar cannot be conveyed without its label,
we added the proposition indicating the label of each bar to the content identification
rule containing the rank proposition, although this extra proposition was not explicitly
selected by the participants for inclusion. Notice that these steps—identifying features
that distinguish one subset of graphs from the other and identifying propositions that
need to be included for realizing other propositions—make it difficult to use machine
learning for this task. In our case the number of possible features that can be extracted
from a graphic is very large and it is difficult to know which features from among
those may be important/defining in advance. In addition, the number of graphics in
our development corpus is too small to expect machine learning to be effective.

The following are glosses of two partial sets of representative content identification
rules. The first set is applicable to a graphic conveying an increasing trend and the
second set is applicable to a graphic conveying the rankings of all bars present in the
graph:

� Increasing Trend message category:6

1. If (message category equals ‘increasing trend’) then
include(proposition conveying the rate of increase of the trend):
Include the proposition conveying the rate of increase of the trend

2. If (message category equals ‘increasing trend’) and
notsteady7(trend) then include(proposition conveying the
period(s) with a decrease):8

If the trend is not steady and has variability, then include the proposition
indicating where the trend varies

6 The “notsteady” function returns true if its argument is not a steady trend; the “value” function returns
the values of all members of its argument; the “greaterthan” function returns true if the left argument is
greater than the right argument; the “withinrange” function returns true if all members of its left
argument are within the range given by its right argument; the “average” function returns the average of
the values of all members of its argument.

7 A trend is unsteady if there is at least one period with a decrease in contrast with the increasing trend.
8 The inclusion of propositions whose absence might lead the user to draw false conclusions is consistent
with Joshi, Webber, and Weischedel’s (1984) maxim, which states that a system should not only produce
correct information but should also prevent the user from drawing false inferences.
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3. If (message category equals ‘increasing trend’) and (value(last bar)
greaterthan (3*value(first bar))) then include(proposition
conveying the overall percentage increase in the trend):
If the overall percentage increase in the trend is significantly large, then
include the proposition conveying the percentage increase in the trend

� Rank All message category:

1. If (message category equals ‘rank all’) then include(propositions
conveying the label and the value of the highest bar):
Include the propositions conveying the label and the value of the
highest bar

2. If (message category equals ‘rank all’) and (value(all bars)
withinrange ((0.7*average(all bars)),(1.3*average(all bars)))) then
include(proposition indicating that the bar values vary slightly):
If the values of bars are close to each other, then include the proposition
indicating that the bar values vary slightly

3. If (message category equals ‘rank all’) and (not(value(all bars)
withinrange ((0.7*average(all bars)),(1.3*average(all bars))))) then
include(propositions conveying the label and the value of the
lowest bar):
If the values of bars are not close to each other, then include the
propositions conveying the label and the value of the lowest bar

We defined the conditions of all content identification rules as a conjunction of one
or more expressions where some expressions required us to determine threshold values
to be used for comparison purposes. For example, we observed that the proposition
conveying the overall percentage change in the trend was marked as highly rated
only for graphics which depicted a significant change in the trend. We handled this
situation for graphics with an increasing trend by defining the third content identi-
fication rule (shown earlier) where we needed to set the lowest threshold at which
an overall increase observed in a trend can be accepted as significantly large. For
setting such threshold values, we examined all graphs in the development corpus
to which the corresponding content identification rule is applicable (i.e., the graphs
associated with the message category for which the rule is defined) and used our
intuitions about whether the proposition captured by the rule should be selected for
inclusion in the summaries of these graphs. We set the threshold values using the
results obtained from group discussions such that the final setting classified all of
the original graphics the way the participants did in the experiments described in
Section 4.1.

When the content identification rules constructed for the Increasing Trend message
category are applied to the bar chart in Figure 3a, the following pieces of information
are selected for inclusion in addition to the intended message of the graphic:

� The rate of increase of the trend, which is slight

� The small drop observed in the year 1999

� The overall percentage increase in the trend, which is 225%
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When the content identification rules constructed for the RankAll message category
are applied to the bar chart in Figure 3b, the following pieces of information are selected
for inclusion in addition to the intended message of the graphic:

� The label and the value of the highest bar, which is Army with 233,030

� The label and the value of the lowest bar, which is Other defense agencies
with 100,678

� The label and the ranking of each bar:9 Army is the highest, Navy is the
second highest, Air Force is the third highest, and Other defense agencies
is the lowest

4.4 Evaluation of the Content Identification Module

We conducted a user study to assess the effectiveness of our content identification
module in identifying the most important information that should be conveyed about
a bar chart. More specifically, the study had three goals: (1) to determine whether the
set of highly rated propositions that we identified for each message category contains
all propositions that should be considered for inclusion in the summaries of graphics
with that message category; (2) to determine how successful our content identification
rules are in selecting highly rated propositions for inclusion in the summary; and (3)
to determine whether the information conveyed by the highly rated propositions is
misleading or not.

Nineteen students majoring in different disciplines (such as Computer Science and
Materials Science and Engineering) at the University of Delaware were participants
in the study. These students neither participated in the earlier study described in Sec-
tion 4.1 nor were aware of our system. Twelve graphics from the test corpus (described
in Section 3.3) whose intended message was correctly identified by the Bayesian Infer-
ence System were used in the experiments. Once the intended message was recognized,
the corresponding content identification rules were executed in order to determine the
content of the graphic’s summary. Prior to the experiment, all participants were told
that they would be given a summary and that it should include the most important
information that they thought should be conveyed about the graphic. Each participant
was presented with three graphics from among the selected graphics such that each
graphic was viewed by at least four participants. For each graphic, the participants
were first given the summary of the graphic generated by our approach and then shown
the graphic. The participants were then asked to specify if there was anything omitted
that they thought was important and therefore should be included in the summary. In
addition, the participants were asked to specify whether or not they were surprised
or felt that the summary was misleading (i.e., whether the bar chart was similar to
what they expected to see after reading its summary). Note that our summaries with
relatively few propositions are quite short. Thus our evaluation focused on determin-
ing whether anything of importance was missing from the summary or whether the
summary was misleading. In the experiments, we did not ask the participants to rate

9 This piece of information is selected by a rule defined for the Rank All message category not shown in the
bulleted list on the previous page.
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the content of summaries on a numeric scale in order to restrict them to evaluating only
the selected content as opposed to its presentation (i.e., the organization and realization
of the summary).

Feedback that we received from the participants was very promising. In most of
the cases (43 out of 57 cases), the participants were satisfied with the content that our
approach selected for the presented bar charts. There were a number of suggestions for
what should be added to the summaries in addition towhat had already been conveyed,
and in a couple of these cases, we observed that a highly rated proposition which was
not selected by the corresponding content identification rule was contrarily suggested
by the participants. There was no consensus in these suggestions, however, as none
was made by more than two participants. Some of the participants (3 out of 19) even
commented that we provided more information than they could easily get from just
looking at the graphic. In addition, a few participants (2 out of 19) commented that,
in some graphics, they didn’t agree with the degree (e.g., moderate or steep) assessed
by our approach for differences between bar values (e.g., the rate of change of the
trend), and therefore they thought the summary was misleading. Because there wasn’t
any common consensus among the participants, we didn’t address this very subjective
issue. Overall, we conclude that the sets of highly rated propositions that we identified
contain the most important information that should be considered for inclusion in the
summaries of bar charts and that our system effectively selects highly rated propositions
for inclusion when appropriate.

5. Text Structuring and Aggregation Module (TSAM)

A coherent text has an underlying structure where the informational content is pre-
sented in some particular order. Good text structure and information ordering have
proven to enhance the text’s quality by improving user comprehension. For example,
Barzilay, Elhadad, and McKeown (2002) showed that the ordering has a significant
impact on the overall quality of the summaries generated in theMULTIGEN system. Al-
though previous research highlights a variety of structuring techniques, there are three
prominent approaches that we looked to for guidance: top–down planning, application
of schemata, and bottom–up planning.

In top–down planning (Hovy 1988, 1993; Moore and Paris 1993), the assumption is
that a discourse is coherent if the hearer can recognize the communicative role of each
of its segments and the relation between these segments (generally mapped from the
set of relations defined in rhetorical structure theory (RST; Mann and Thompson 1987).
The discourse is usually represented as a tree-like structure and the planner constructs
a text plan by applying plan operators starting from the initial goal.

In the TEXT system (McKeown 1985), a collection of naturally occurring texts
were analyzed to identify certain discourse patterns for different discourse goals, and
these patterns were represented as schemas which are defined in terms of rhetorical
predicates. The schemas both specify what should be included in the generated texts
and how they should be ordered given a discourse goal. Lester and Porter (1997)
used explanation design packages, schema-like structures with procedural constructs
(for example, the inclusion of a proposition can be constrained by a condition), in
the KNIGHT system, which is designed to generate explanations from a large-scale
biology knowledge base. Paris (1988) applied the idea of schemata in the TAILOR
system to tailor object descriptions according to the user’s level of knowledge about
the domain.
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Marcu (1998) argued that text coherence can be achieved by satisfying local con-
straints on ordering and clustering of semantic units to be realized. He developed a
constraint satisfaction based approach to select the best plan that can be constructed
from a given set of textual units and RST relations between them, and showed that
such bottom–up planning overcomes the major weakness of top–down approaches
by guaranteeing that all semantic units are subsumed by the resulting text plan. The
ILEX system (O’Donnell et al. 2001), which generates descriptions for exhibits in a
museum gallery, utilizes a similar bottom–up planning approach (Mellish et al. 1998)
where the best rhetorical structure tree over the semantic units is used as the text
structure.

Because our content identification rules identify a set of propositions to be con-
veyed, it appears that a bottom–up approach that ensures that all propositions will be
included is in order. At the same time, it is important that our generated text adheres to
an overall discourse organization such as is provided by the top–down approaches.
Because of the nature of the propositions (the kinds of rhetorical relations that can
exist between propositions in a descriptive domain are arguably limited [O’Donnell
et al. 2001]), however, a structure such as RST is not helpful here. Thus, the top–down
planning approach does not appear to fit. Although something akin to a schema might
work, it is not clear that our individual propositions fit into the kind of patterns used
in the schema-based approach. Instead we use what can be considered a combination
of a schema and a bottom–up approach to structure the discourse. In particular, we
use the notion of global focus (Grosz and Sidner 1986) and group together proposi-
tions according to the kind of information they convey about the graphic. We define
three proposition classes (message-related, specific, and computational) to classify the
propositions selected for inclusion in a textual summary. The message-related class
contains propositions that convey the intended message of the graphic. The specific
class contains the propositions that focus on specific pieces of information in the
graphic, such as the proposition conveying the period with an exceptional drop in a
graphic with an increasing trend or the proposition conveying the period with a change
which is significantly larger than the changes observed in other periods in a graphic
with a trend. Lastly, propositions in the computational class capture computations or
abstractions over the whole graphic, such as the proposition conveying the rate of
increase in a graphic with an increasing trend or the proposition conveying the overall
percentage change in the trend. In our system, all propositions within a class will
be delivered as a block. But we must decide how to order these blocks with respect
to each other. In order to emphasize the intended message of the graphic (the most
important piece of the summary), we hypothesize that the message-related propositions
should be presented first. We also hypothesize that it is appropriate to close the textual
summary by bringing the whole graphic back into the user’s focus of attention (Grosz
and Sidner 1986) (via the propositions in the computational class). Thus, we define an
ordering of the proposition classes (creating a partial ordering over the propositions)
and present first the message-related propositions, then the specific propositions, and
finally the computational propositions. Section 6 will address the issue of ordering the
propositions within these three classes.

5.1 Representing Summary Content

First we needed to have a representation of content that would provide us with the
most flexibility in structuring and realizing content. For this we used a set of basic
propositions. These were minimal information units that could be combined to form
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the intended message and all of the propositions identified in our content identification
rules. This representation scheme increases the number of aggregation and realization
possibilities that could be explored by the system, which is described in the next
subsection. We defined two kinds of knowledge-base predicates to represent the basic
propositions:

(1) Relative Knowledge Base: These predicates are used to represent the basic
propositions which introduce graphical elements or express relations
between the graphical elements.

(2) Attributive Knowledge Base: These predicates are used to represent the
basic propositions which present an attribute or a characteristic of a
graphical element.

Each predicate contains at least two arguments and we refer to the first argument
as the main entity and the others as the secondary entities. The main entity of each
predicate is a graphical element and the secondary entities are either a string constant
or a graphical element. Some of the graphical elements that we used in this work are as
follows:

� graphic: “the graphic itself”

� trend: “the trend observed in the graphic”

� descriptor: “a referring expression that represents what is being measured
in the graphic”10

� bar(x): “a particular bar in the graphic”
1 <= x <= n where n = number of bars in the graph

� all bars: “all bars depicted in the graphic” bset = {bar(x) | 1 <= x <= n}

� period(x,y): “a period depicted in the graphic” 1 ≤ x < n and 1 < y ≤ n

� change(x,y): “ the change between the values of any two bars”
1 ≤ x < n and 1 < y ≤ n

� all changes: “changes between all pairs of bars of the graphic”
cset = {change(x, y) | 1 ≤ x < n, 1 < y ≤ n}

� trend period: “the period over which the trend is observed”

� graph period: “the period which is depicted by the graphic”

� trend change: “the overall change observed in the trend”

Table 1 presents sample instantiations of a subset of the predicates that we defined
for this work along with a possible realization for each instantiation. Although the
number of arguments in Relative Knowledge Base predicates (predicates 1 to 15) varies,

10 How that referring expression is extracted from the text associated with the graphic is described in
detail in Section 7.1. For example, the descriptor identified by our system for the graphic in Figure 4
is the dollar value of net profit.
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Table 1
Sample instantiations and possible realizations of a subset of our predicates.

1 shows(graphic,trend)
The graphic shows a trend

2 focuses(graphic,bar(3))
The graphic is about the third bar

3 covers(graphic, graph period)
The graphic covers the graph period

4 exists(trend,descriptor)
The trend is in the descriptor

5 has(trend,trend period)11

The trend is over the trend period
6 starts(trend period,“2001”)

The trend period starts at the year 2001
7 ends(trend period,“2010”)

The trend period ends at the year 2010
8 ranges(descriptor,“from”,“20 percent”,trend period)

The descriptor ranges from 20 percent over the trend period
9 hasextreme(descriptor,“largest”,change(3,4),period(3,4))

The descriptor shows the largest change between the third and the fourth bars
10 averages(descriptor,all bars,“55.4 billion dollars”)

The descriptor for all bars averages to 55.4 billion dollars
11 comprises(descriptor,trend change,trend period)

The descriptor comprises a trend change over the trend period
12 occurs(change(2,3),period(2,3))

A change occurs between the second and the third bars
13 hasdifference(change(1,5),bar(1),bar(5),descriptor)

A difference is observed between the descriptor of the first bar and that of the fifth bar
14 observed(all changes,“every”,interval,trend period)

Changes are observed every interval over the trend period
15 presents(descriptor,bar(3),“12 percent”)

The descriptor for the third bar is 12 percent
16 hasattr(trend change,“type”,“increase”)

The trend change is an increase
17 hasattr(change(2,3),“degree”,“moderate”)

The change is of degree moderate
18 hasattr(change(2,3),“amount”,“70 dollars”)

The change amount is 70 dollars
19 hasattr(trend change,“percentage amount”,“22 percent”)

The trend change percentage amount is 22 percent
20 hasattr(all changes,“rate”,“slight”)

Changes are slight changes

all Attributive Knowledge Base predicates (encoded as hasattr) consist of three argu-
ments, where the first argument is the graphical element being described, the second
is an attribute of the graphical element, and the third is the value of that attribute
(predicates 16 to 20).12

11 Notice that the graphical element trend period in 5 is the main entity in 6 and 7. These all might be
combined using the And operator to produce the realization The trend starts at the year 2001 and ends
at the year 2010.

12 Because all Attributive Knowledge Base predicates have the same form, the amount and unit of a change
are represented as a single string which is derived from the textual components of the graphic (such as
70 dollars in Predicate 18).
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Figure 4
Graphic conveying a decreasing trend.

For example, consider how the propositions given in Section 4.1 can be represented
with the predicates shown in Table 1. Some of those propositions require a single
predicate. For example, the proposition conveying the value of a bar (Proposition 2)
can be represented via the predicate “presents” (Predicate 15) and the proposition
conveying the average of all bar values (Proposition 4) via the predicate “aver-
ages” (Predicate 10). On the other hand, some propositions require more than one
predicate. For example, the proposition conveying the overall percentage change
in the trend shown in Figure 4 (Proposition 6) can be represented via the predi-
cates “comprises(descriptor,trend change,trend period)” (Predicate 11), “starts(trend
period,“1998”)” (Predicate 6), “ends(trend period,“2006”)” (Predicate 7), “hasattr(trend
change,“type”,“decrease”)” (Predicate 16), and “hasattr(trend change,“percentage
amount”,“65 percent”)”(Predicate 19). The same set of predicates can be used to rep-
resent the overall amount of change in the trend by replacing the constant “percentage
amount” with the string “amount” in Predicate 19.

As is shown by the possible realizations included in Table 1, each basic proposition
can be realized as a single sentence. Although we determined a couple of different
ways (i.e., simple sentences) of realizing each basic proposition, our current imple-
mentation always chooses a single realization (which we refer to as “the realization
associated with the proposition”) and the main entity is always realized in subject
position.13

5.2 Aggregating Summary Content

The straightforward way of presenting the informational content of a summary is to
convey each proposition as a single sentence while preserving the partial ordering of
the proposition classes. The resultant text would not be very natural and coherent,
however. Aggregation is the process of removing redundancies during the generation
of a more concise and fluent text (Shaw 1998; Dalianis 1999). Aggregation (typically
syntactic aggregation [Reiter and Dale 2000]) has received considerable attention
from the NLG community (McKeown et al. 1997; O’Donnell et al. 2001; Barzilay and
Lapata 2006), and has been applied in various existing generation systems such as the
intelligent tutoring application developed by Di Eugenio et al. (2005). Our aggregation
mechanism works to combine propositions into more complex structures. It takes

13 We leave it as a future work to explore how different realizations for a proposition, including ones
where the main entity is not in subject position, can be utilized by our approach.
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advantage of the two types of predicates (Relative Knowledge Base and Attributive
Knowledge Base predicates) and the shared entities between predicates. In order to
relate propositions and explore syntactically aggregating them, our mechanism treats
each proposition as a single node tree which can be realized as a sentence and attempts
to form more complex trees by combining individual trees via four kinds of operators
in such a way so that the more complex tree (containing multiple propositions) can still
be realized as a single sentence. The first operator (Attribute Operator) works only on
propositions with an Attributive Knowledge Base predicate and essentially identifies
opportunities to realize such a proposition as an adjective attached to a noun object
in the realization of another proposition. The remaining three operators, which do
not work on propositions with an Attributive Knowledge Base predicate, introduce
new nodes corresponding to operational predicates (And, Same, and Which) with a
single entity into the tree structures. Two of these operators (And Operator and Which
Operator) work on trees rooted by a proposition with a Relative Knowledge Base or an
And predicate. These operators look for opportunities for VP conjunction and relative
clauses, respectively. The third operator (Same Operator) works on trees rooted by a
proposition with a Relative Knowledge Base predicate and identifies opportunities for
NP conjunction. Although each predicate is associated with a unique realization in the
current implementation, none of these operators depend on how the corresponding
predicates or the entities in those predicates are realized.

Having defined the operators we next had to turn to the problem of determining
how these operators should be applied (e.g., which combinations are preferred). The
operators we defined are similar to the clause-combining operations used by the SPoT
sentence planner (Walker, Rambow, and Rogati 2002; Stent, Prasad, and Walker 2004;
Walker et al. 2007) in the travel planner system AMELIA. In AMELIA, for each of
the 100 different input text plans, a set of possible sentence plans (up to 20 plans)
were generated by randomly selecting which operations to apply according to assumed
preferences for operations. These possible sentence plans were then rated by two judges
and the collected ratings were used to train the SPoT planner. Although we greatly
drew from the work on SPoT as we developed our aggregation method, we chose
not to follow their learning methodology. In the SPoT system, some of the features
were domain- and task-dependent and thus porting to a new domain would require
retraining. In addition, the judgments of the two raters were collected in isolation and
it is unclear how these would translate to the task situation the texts were intended
for. Although this methodology was innovative and necessary for SPoT because of
the large number of possible text plans, we chose to select the best text plan on the
basis of theoretically informed complexity features balancing sentence complexity and
number of sentences. Because our text plans are significantly more constrained, it is
possible to enumerate each of them and choose the one that best fits our rating cri-
teria.14 This has the added benefit of better understanding the complexity features by
evaluating the resulting text. In addition, our method would be open to both upgrad-
ing the selection criteria and adding further aggregation operators without requiring
retraining.15

14 Although in our implementation we do enumerate all plans before the rating criteria are applied to select
the best one, it is in principle possible to generate the text plans in an order that would allow maximizing
the scoring functions without first enumerating all possibilities. This is left for future work.

15 Such modifications and additions need to be empirically evaluated with empirical data, however.
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Operator: Attribute Operator
Gloss: This operator attaches a single node tree that consists solely of a proposition with
an Attributive Knowledge Base predicate, as a direct subchild of a node N with a Relative
Knowledge Base predicate in another tree, if the main entity of the Attributive Knowledge Base
predicate is an entity (main or secondary) for the proposition at node N.
Input: T1 and T2
Constraints:
1. (pred(T1-root)==“hasattr”)
2. ((pred(T2-node)!=“hasattr”) ∧ (pred(T2-node)!=“And”) ∧
(pred(T2-node)!=“Which”))
3. ((main ent(T1-root)==main ent(T2-node)) ∨
(main ent(T1-root)==secondary ent(T2-node)))
Output: A modified T2 such that
1. left child(T2-node)←T1
Glossary:
1. Tx-root: the root node of tree Tx
2. Tx-node: any node in tree Tx (including Tx-root)
3. pred(Tx-node): the predicate at Tx-node
4. left/right child(Tx-node): the leftmost/rightmost child of Tx-node
5. main/secondary ent(Tx-node): the main/secondary entity of the proposition at Tx-node
6. !=: not equal, ==: equal, !: not,←: assign

Operator: And Operator
Gloss: This operator combines two trees if the propositions at their root share the same main
entity. A proposition containing an And predicate with the same main entity forms the root of
the new tree and the trees that are combined form the immediate descendents of this root.
Input: T1 and T2
Constraints:
1. ((pred(T1-root)!=“hasattr”) ∧ (pred(T2-root)!=“hasattr”))
2. !((pred(T1-root)==“And”) ∧ (pred(T2-root)==“And”))
3. (main ent(T1-root)==main ent(T2-root))
Output: a new tree T3 where the root node has two immediate children such that
1. pred(T3-root)←“And” ∧main ent(T3-root)←main ent(T1-root)
2. left child(T3-root)←T1 ∧ right child(T3-root)←T2

Operator:Which Operator
Gloss: This operator attaches a tree (Tree A) as a descendent of a node N in another tree (Tree B)
via a Which predicate, if the main entity of the proposition at the root of Tree A is a secondary
entity for the proposition at node N of the other tree (Tree B). That particular entity forms the
main entity of the Which predicate. Thus, Tree A will be an immediate child of the node with
the Which predicate and the node with the Which predicate will be an immediate child of node
N in Tree B.
Input: T1 and T2
Constraints:
1. ((pred(T1-root)!=“hasattr”)∧(pred(T2-node)!=“hasattr”))
2. (main ent(T1-root)==secondary ent(T2-node))
Output: A modified T2 via the addition of a new node (Node x) with a single immediate child
such that
1. pred(Node x)← “Which” ∧main ent(Node x)←main ent(T1-root)
2. right child(T2-node)←Node x ∧ left child(Node x)←T1
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Operator: Same Operator
Gloss: This operator combines two trees if the propositions at their root contain the same
predicate but the main entities of these predicates are different. A proposition with a Same
predicate forms the root of the new tree, and the trees that are combined form the descendents
of this root. Since the descendents of the new tree have different main entities, the main entity of
the Same predicate is some unique element not occurring elsewhere in the tree. For instance, in
our implementation this element is obtained by appending a unique number, which isn’t used
in another Same predicate in the current forest, to the term random (such as random0).
Input: T1 and T2
Constraints:
1. ((pred(T1-root)!=“hasattr”)∧(pred(T2-root)!=“hasattr”) ∧
(pred(T1-root)!=“And”) ∧ (pred(T2-root)!=“And”) ∧
(pred(T1-root)!=“Same”) ∧ (pred(T2-root)!=“Same”))
2. (pred(T1-root)==pred(T2-root))
3. (main ent(T1-root)!=main ent(T2-root))
Output: a new tree T3 where the root node has two immediate children such that
1. pred(T3-root)←“Same” ∧main ent(T3-root)← a unique element
2. left child(T3-root)←T1 ∧ right child(T3-root)←T2

In our work, we thus developed a method that would choose a text plan on prin-
cipled reasoning concerning the resulting text. In particular, we looked to balance sen-
tence complexity and the number of sentences in the generated text. Moreover, whereas
such a method was not applicable in the case of SPoT (because of the significantly larger
set of operators with few constraints resulting in potential text plans too numerous to
evaluate), our work differs in several aspects that make it reasonable to generate all
text plans and apply an evaluation metric. First, our system has a small number of
aggregation operators and all operators cannot be applied to all kinds of predicates (e.g.,
the Attribute Operator cannot be applied to the Relative Knowledge Base predicates).
Second, the number of possible sets of basic propositions that our system needs to
organize is significantly lower than the number of possible text plans that the SPoT
planner needs to consider. Finally, although it is not practical in SPoT to list all possible
sentence plans that might be generated for a particular text plan (since the possibilities
are too great), generating all possible combinations of propositions in a proposition class
(such as message related class) is practical in our work. This is due to the fact that the
number of basic propositions in each class is fairly small (e.g., usually between 5 to
15 propositions) and that the nature of the operators and constraints that we put on
their application enable us to prune the space of possible combinations. Some of these
constraints are: (1) The And Operator produces only one complex tree from a pair of
trees and it cannot combine two trees if both trees have a proposition with an And
predicate at their roots (thus we limit the number of conjuncts in a conjoined sentence
to three at most16), and (2) the Attribute Operator produces only one complex tree in
cases where a single node tree (Tree A) can be attached as a direct subchild of more than
one node in another tree (Tree B); the parent of Tree A is the first such node found by
preorder traversal of Tree B.

Our implementation first generates all possible text plans for the propositions
within each class (message-related, specific, and computational). Each text plan is
represented as a forest where each tree in the forest represents a sentence. Initially,
each proposition class is treated as a forest consisting of all single node trees in that
class (initial candidate forest), and the operators are applied to that forest in order
to produce new candidate forests for the proposition class. Anytime two trees in a

16 We set this limit in order to avoid sentences that are too complex to comprehend.
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Figure 5
A candidate forest for each proposition class.

candidate forest are combined via an operator, a new candidate forest is produced;
the new candidate forest is added to the existing set of candidate forests, thereby
increasing the number of candidate forests. Within each class, our approach first applies
the And Operator to all possible pairs of trees in the initial candidate forest, which
produces new candidate forests. The Same Operator is then applied to all possible
pairs of trees in each candidate forest. Similarly, the Which Operator and the At-
tribute Operator are applied to trees in the candidate forests produced earlier. The
result of this aggregation is a number of candidate forests with one or more trees
(each using different aggregation) for each of the proposition classes. For example,
Figure 5 shows one candidate forest that can be constructed for each proposition class
by applying these operators to the propositions selected for the graphic in Figure 4,
where each forest resulting from the aggregation consists of a single tree.17 In this
example, the Attributive Knowledge Base predicates (*) are attached to their parents
by the Attribute Operator, the nodes containing And predicates (**) are produced
by the And Operator, and the Which predicates (***) are produced by the Which
Operator.

17 The nodes represented with black circles correspond to the individual predicates. These individual
predicates within each class form the single node trees upon which the operators work.
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5.3 Evaluating a Text Structure

Different combinations of operators produce different candidate forests in each propo-
sition class and consequently lead to different realized text with a different complexity
of sentences. The set of candidate forests for each proposition class must be evaluated
to determine which one is best. Our objective is to find a forest that would produce
text which stands at a midpoint between two extremes: a text where each proposition
is realized as a single sentence and a text where groups of propositions are realized
with sentences that are too complex. Our evaluation metric to identify the best forest
leverages different considerations to balance these extremes. The first two criteria are
concerned with the number and syntactic complexity of sentences that will be used to
realize a forest. The third criteria takes into consideration how hard it is to comprehend
the relative clauses embedded in these sentences. The insights that we use in selecting
the best forest (e.g., balancing semantic importance, overall text structure, aggregation,
and readibility due to sentence complexity) represent our novel contributions to the
text structuring and aggregation literature. The theory that underlies our evaluation
metric (i.e., what it is we are balancing in the generation) is widely applicable to other
data-to-text generation domains because it uses general principles from the literature
and has the potential to be improved.

5.3.1 Sentence Complexity. Each tree (single node or complex) in a forest represents a
set of propositions that can be realized as a single sentence. Our aggregation rules
enable us to combine these simple sentences into more complex syntactic structures.
In the literature, different measures to assess syntactic complexity of written text and
spoken language samples have been proposed, with different considerations such as
the right branching nature of English (Yngve 1960) and dependency distance between
lexemes (Lin 1996). We apply the revised D-level sentence complexity scale (Covington
et al. 2006) as the basis of our syntactic complexity measure. The D-level scale measures
the complexity of a sentence according to its syntactic structure and the sequence in
which children acquire the ability to use different types of syntactic structures. The
sentence types with the lowest score are those that children acquire first and there-
fore are the simplest types. Eight levels are defined in the study, some of which are
simple sentences, coordinated structures (conjoined phrases or sentences), non-finite
clause in adjunct positions, and sentences with more than one level of relative clause
embedding.

Among the eight levels defined in that study, the levels of interest in our work
are simple sentences, conjoined sentences, sentences with a relative clause modifying
the object of the main verb, non-finite clauses in adjunct positions, and sentences
with more than one level of embedding. However, the definition of sentence types at
each level is too general. For example, the sentences There is a trend and There is a
trend in the dollar value of net profit over the period from the year 1998 to the year 2006
are both classified as simple sentences with the lowest complexity score under the
D-level classification. We argue that although these sentences have a lower complexity
than the sentences with higher D-level scores, their complexities are not the same. We
make a finer distinction between sentence types defined in the D-level classification
and use the complexity levels shown in Table 2. For example, according to our clas-
sification, a simple sentence with more than one adjunct or preposition has a higher
complexity than a simple sentence without an adjunct. We preserve the ordering of
the complexity levels in the D-level classification. For example, in our classification,
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Table 2
Our syntactic complexity levels.

Complexity Syntactic Form

Level 0 Simple sentence with up to one prepositional phrase or adjunct
Level 1 Simple sentence with more than one prepositional phrase or adjunct
Level 2 Conjoined sentence (two simple sentences—Level 0 or 1)
Level 3 Conjoined sentence (more than two simple sentences—Level 0 or 1)
Level 4 Sentence with one level of embedding

(relative clause that is modifying object of main verb)
Level 5 Non-finite clause in adjunct positions
Level 6 Sentence with more than one level of embedding

Levels 0 and 1 correspond to the class of simple sentences in the D-level classification
and have a lower complexity than Levels 2 and 3, which correspond to the class of
coordinated structures with a higher complexity than simple sentences in the D-level
classification.

Each basic proposition in our system can be realized as a simple sentence containing
at most one prepositional phrase or adjunct.18 Each single node tree with a Relative or
Attributive Knowledge Base predicate at its root has the lowest syntactic complexity
(Level 0) in this classification.

Themost straightforwardway of realizing amore complex tree would be conjoining
the realizations of subtrees rooted by a proposition with an And or a Same predicate,
embedding the realization of a subtree rooted by a proposition with a Which predicate
as a relative clause, and realizing a subtree that consists solely of a proposition with
an Attributive Knowledge Base predicate as an adjective or a prepositional phrase.
For example, the tree rooted by shows(graphic,trend) in Figure 5 can be realized as
The graphic shows a decreasing trend, which is in the dollar value of net profit and is over
the period, which starts at the year 1998 and ends at the year 2006. The resultant text
is fairly complicated, however, and a more sophisticated realization would likely
lead to a lower syntactic complexity score. We defined a number of And predicate
and Which predicate complexity estimators to look for realization opportunities in
a complex tree structure so that a syntactic complexity score which is lower than
what the most straightforward realization would produce can be assigned to that tree.
These estimators compute the syntactic complexity of a complex tree by examining
the associated realizations of all aggregated propositions in that tree in a bottom–up
fashion. Because the complex trees that are rooted by a proposition with a Same
predicate would always be realized as a conjoined sentence (Level 2), we did not define
complexity estimators for this kind of predicate.

The And predicate complexity estimators check whether or not the realizations
of two subtrees rooted by a proposition with an And predicate can be combined into
a simple sentence (Level 1), or a conjoined sentence which consists of two independent
sentences (Level 2) if one of the subtrees is rooted by a proposition with an And
predicate. For example, the And predicate estimators can successfully identify the

18 In the current implementation, there is a single realization associated with each basic proposition with
the main entity in subject position.
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following realization opportunities (based on the representations of the sentences as
propositions):

� The period starts at the year 1998. AND The period ends at the year 2006.
can be combined into:
The period is from the year 1998 to the year 2006. (Level 1)

� The trend is in the dollar value of net profit. AND The trend is over the period
from the year 1998 to the year 2006. can be combined into:
The trend is in the dollar value of net profit over the period from the year 1998
to the year 2006. (Level 1)

� The dollar value of net profit ranges from 2.77 billion dollars over the period.
AND The dollar value of net profit ranges to 0.96 billion dollars over the
period. AND The dollar value of net profit shows the largest drop of about
0.56 billion dollars between the year 2000 and the year 2001. can be
combined into:19

The dollar value of net profit ranges from 2.77 to 0.96 billion dollars over the
period and shows the largest drop of about 0.56 billion dollars between the
year 2000 and the year 2001. (Level 2)

The Which predicate complexity estimators check whether a tree rooted by a
proposition with a Which predicate can be realized as a simple adjunct or a prepo-
sitional phrase attached to the modified entity rather than a more complex relative
clause (which could increase the complexity level). For example, the Which predicate
estimators can successfully identify the following realization opportunities (based on
the representations of the sentences as propositions):

� The trend is over the period.WHICH The period is from the year 1998 to the
year 2006. can be realized as:
The trend is over the period from the year 1998 to the year 2006. (Level 1)

� The graphic shows a trend.WHICH The trend is in the dollar value of net profit
over the period from the year 1998 to the year 2006. can be realized as:
The graphic shows a trend in the dollar value of net profit over the period from
the year 1998 to the year 2006. (Level 1)

In our generation approach, multiple realizations for each proposition can be incor-
porated by defining new complexity estimators in addition to the estimators that are
used in the current implementation. Defining such estimators, which will not change
the task complexity or the underlying methodology, would add to the generalizability
of our approach.

19 In this case, the single node trees that correspond to the propositions conveying the range of the trend
form the immediate descendents of a tree rooted by a proposition with an And predicate, and that tree
with the And predicate at its root and the tree corresponding to the proposition conveying the largest
drop constitute the immediate descendents of a tree rooted by another proposition with an And
predicate.
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5.3.2 Relative Clause Embedding. In cases where a tree rooted by a proposition with a
Which predicate cannot be realized as a simple adjunct or a prepositional phrase, it will
be realized by a relative clause. In the D-level classification, the complexity of a sentence
with an embedded clause is determined according to the grammatical role (subject
or object) of the entity that is modified by that clause, not the syntactic complexity
or position (center-embedded or right-branching) of the clause in the sentence. For
instance, a sentence with a complex center-embedded relative clause modifying an
object receives the same syntactic complexity score as a sentence with a simple right-
branching relative clause modifying an object. As argued in the literature, however,
center-embedded relative clauses are more difficult to comprehend than corresponding
right-branching clauses (Johnson 1998; Kidd and Bavin 2002). To capture this, our
evaluation metric for identifying the best structure penalizes Which predicates that
will be realized as a relative clause based on the clause’s syntactic complexity and
position in the sentence (which we refer to as “comprehension complexity of a relative
clause”). For example, the following sentences receive different scores by our evaluation
metric with respect to clause embedding; the first one with a right-branching clause
(simpler) has a lower score than the second sentence with a center-embedded clause
(more complex):

� The graphic shows a decreasing trend over the period from the year 1998
to the year 2006 in the dollar value of net profit, which is 2.7 billion dollars
in the year 1999.

� The graphic shows a decreasing trend in the dollar value of net profit, which is
2.7 billion dollars in the year 1999, over the period from the year 1998 to the
year 2006.

The embedded clause (Level 0) in the first of the following sentences has a lower
syntactic score than the clause (Level 2) embedded in the second sentence. Because
our evaluation metric takes into consideration both the syntactic complexity of an
embedded clause and its position in the sentence, the first sentence receives a lower
score than the second sentence.

� The graphic shows a decreasing trend in the dollar value of net profit, which is
2.7 billion dollars in the year 1999, over the period from the year 1998 to the
year 2006.

� The graphic shows a decreasing trend in the dollar value of net profit, which is
2.7 billion dollars in the year 1999 and is 2.58 billion dollars in the year 2000,
over the period from the year 1998 to the year 2006.

5.3.3 Evaluation Metric. Our evaluation metric takes three criteria into account: the
number of sentences that will be used to realize a forest, the syntactic complexities of
these sentences, and the comprehension complexities of the embedded relative clauses.
Our metric evaluates the overall score of a candidate forest by summing the normalized
scores that the forest receives with respect to each criteria. The score of a forest (e.g.,
Forest A) is calculated as follows:

score(A) = nm1(sentence(A))+ nm2(complexity(A))+ nm3(clause(A)) (1)
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where:20

sentence(A): stands for the number of sentences that will be used to realize forest A
and equals the number of trees in that forest.

complexity(A): stands for the overall syntactic complexity of forest A and equals the
sum of the complexities of sentences that will be used to realize that forest.

clause(A): stands for the overall comprehension complexity of all relative clauses
in sentences used for realizing forest A and equals the sum of the comprehension
complexities of all clauses. The comprehension complexity of a relative clause equals
the product of its syntactic complexity and its position in the sentence, which is equal
to 2 if it is a center-embedded clause and is equal to 1 if it is a right-branching clause.

Consider, for example, the forest shown in Figure 6. Because the forest contains a
single tree, it receives a score of 1 for the sentence criteria. The syntactic complexity score
of the sentence that will be used to realize that tree is computed in a bottom–up fashion
as follows. The lowest syntactic complexity score (Level 0) is assigned to all leaf nodes,
and all inner nodes that only have single node trees with anAttributive Knowledge Base
predicate as descendents (as shown in Figure 6). Each of the remaining inner nodes is
then assessed with a syntactic complexity score once the complexity scores for all of
its descendents are computed (i.e., once the best realization possibility with the lowest
syntactic complexity for each descendent tree is determined). If an inner node contains
a proposition with an And predicate, its syntactic complexity score is computed via
the And predicate complexity estimators. Similarly, the Which predicate complexity
estimators are used to compute the syntactic complexity scores for all inner nodes with
aWhich predicate. The syntactic complexity score for the parent node of a tree rooted by
a proposition with aWhich predicate is computed based on whether or not that tree will
be realized as a relative clause (as indicated by the complexity score of the root node of
that tree). The forest shown in Figure 6 receives a score of 4 for the complexity criteria,
which is equal to the syntactic complexity score assigned to the parent node of the tree.
In Figure 6, only the tree rooted by Node 4 will be realized as a relative clause. Because
that relative clause, which receives a syntactic complexity score of 2, will be realized
as a center-embedded clause, the forest shown in Figure 6 receives a score of 4 for the
clause criteria.

In the current implementation, once the scores with respect to a criteria are com-
puted for each candidate forest, these scores (e.g., sentence(A)) are normalized with
respect to the maximum score (e.g., max(sentence(all forests))) by dividing each score
by the maximum of the computed scores. For instance, nm1(sentence(A)) is the nor-
malized score that the forest A receives with respect to the sentence criteria and is
equal to sentence(A)/max(sentence(all forests)). Thus, the normalized score that a forest
receives for each criteria is always between 0 and 1 and therefore each criteria has
an equal impact on the overall score of a forest.21 The normalized scores obtained
for a candidate forest are then summed to obtain the overall score for that forest. For
example, assume that three candidate forests, the first of which is shown in Figure 6,

20 The terms nm1, nm2, and nm3 stand for the normalized score of a given criteria.
21 The simplifying assumption of assigning equal weights to each criteria would be better optimized with

machine learning, as discussed in detail in Section 9.
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Figure 6
A forest containing a single tree.
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Table 3
Overall evaluation scores.

Sentence Complexity Clause Overall Score

First Forest 1(0.5) 4(1) 4(1) 2.5
Second Forest 1(0.5) 4(1) 2(0.5) 2
Third Forest 2(1) 3(0.75) 0(0) 1.75

are constructed from a set of propositions. One possible way of realizing the forest in
Figure 6 would be The graphic shows a decreasing trend in the dollar value of net profit,
which shows the largest drop of about 0.56 billion dollars between the year 2000 and the
year 2001, and shows the smallest drop of nearly 0.07 billion dollars between the year 1998
and the year 1999, over the period from the year 1998 to the year 2006. Suppose that the
second forest is similar to Figure 6 except that the children (Node 2 and Node 3) of
the And(trend) node are swapped.22 Suppose also that the third forest is similar to
Figure 6 except that the tree is decomposed into two trees, which are rooted by Node 1
and Node 5, respectively. The first tree rooted by Node 1 consists of the nodes marked
with (*) and the second tree rooted by Node 5 consists of the nodes marked with (**).
Table 3 shows the actual and the normalized scores (shown in parentheses) for each
forest with respect to each criteria, and the overall score assigned by our evaluation
metric.

The number of sentences (1) and the overall sentence complexity (Level 4) are the
same for the first and second forests. The third forest has more sentences (2) but lower
overall sentence complexity (Level 3) than the other two forests. The first forest has a
center-embedded relative clause and receives a score of 4 for the clause criteria: the
product of the complexity of the relative clause (2) and its position (2). On the other
hand, the second forest has a right-branching relative clause and receives a score of 2
for the same criteria: the product of the complexity of the relative clause (2) and its
position (1). The third forest doesn’t have an embedded clause and receives a score of 0
for the clause criteria.

5.4 Identifying the Best Text Structure

Our approach selects the forest which receives the lowest evaluation score as the best
forest that can be obtained from a set of input propositions. For example, according
to the scores shown in Table 3, the third forest, which could be realized as The graphic
shows a decreasing trend in the dollar value of net profit over the period from the year 1998
to the year 2006. The dollar value of net profit shows the largest drop of about 0.56 billion
dollars between the year 2000 and the year 2001 and shows the smallest drop of nearly 0.07
billion dollars between the year 1998 and the year 1999., would be selected as the best
among the three forests. The initial overall text structure of a brief summary con-
sists of the best forests identified for the message related, specific, and computational
classes.

As a final step, we check whether we can improve the evaluation of the overall
structure of the summary by moving trees (i.e., trees rooted by a Level-0 node such as

22 This swapping would cause the relative clause rooted by Node 4 to be a right-branching clause.
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And(descriptor) in Figure 5, Specific) or subtrees (i.e., trees rooted by a Level-1 node
with an And or a Relative Knowledge Base predicate such as hasextreme (descrip-
tor,“largest”,change(3,4),period(3,4)) in Figure 5, Specific) between the best forests for
the three proposition classes. For example, the best forest for the specific class might
contain a tree that conveys information about an entity introduced by a proposition
in the message related class. Moving this tree to the message related class and using an
operator to combine it with the tree introducing the entity might improve the evaluation
of the overall structure of the summary. For example, for the graphic in Figure 4, this
movement would allow our system to evaluate a structure where the tree rooted by the
specific proposition And(descriptor) (shown in Figure 5, Specific) is attached as a de-
scendent of the tree rooted by the message related proposition exists(trend,descriptor)
(shown in Figure 5,Message Related) via aWhich Operator.We explore all such possible
movements between best forests for the proposition classes (if any) and determine
the best overall text structure of the summary. To be consistent with the motivation
behind the initial groupings of the propositions, we do not allow movements out
of the message related class or any movement that will empty the computational
class.

5.5 Evaluation of the Text Structuring and Aggregation Module

Our text structuring and aggregation approach consists of several different components,
all of which contribute to the quality of the generated text. Our study focused on
whether or not our decisions with respect to these components contributed to the
perceived quality of the resultant summary: the organization and ordering (O) of
the content (partial ordering of the propositions within classes and classification of
the propositions), the aggregation (A) of the information into more complex tree struc-
tures (candidate forests constructed via operators), and the metric (E) used to evaluate
candidate forests that represent different possible aggregations of the informational
content.

We conducted an experiment with 15 participants (university students and gradu-
ate students) who were presented with six different summaries of twelve graphics from
the test corpus (described in Section 3.3). The participants neither participated in earlier
studies (described in Sections 4.1 and 4.4) nor were involved in this work. All presented
summaries were automatically produced by our generation approach. The participants
were not told how the presented summaries were produced (i.e., human-generated
or computer-generated), however. We focused on graphics with an increasing or a
decreasing trend, since these message categories exhibit the greatest variety of possible
summaries. For each of the graphics, the participants were given a set of summaries in
random order and asked to rank them in terms of their quality in conveying the content.
The summaries varied according to the test parameters as follows:23

� S O+A+E+: A summary that uses the ordering rules, the aggregation
rules, and receives the lowest (best) overall score by the evaluation
metric. This is the summary selected as best by the TSAMModule.

23 Although eight different summaries are logically possible with three different variables, we limited the
number to four (the second and the third in which exactly one of the components was turned off and the
fourth where all components were turned off) in order to keep the experiment within a manageable size.
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Table 4
Ranking of summary types.

Summary Type Best 2nd 3rd 4th

S O+A+E+ 65.6% 26.6% 6.7% 1.1%
S O+A+E- 16.7% 32.2% 33.3% 17.8%
S O-A+E+ 16.7% 30% 40% 13.3%
S O-A-E- 1% 11.2% 20% 67.8%

� S O+A+E-: A summary that uses the ordering and aggregation rules,
but does not receive the lowest overall score by the evaluation metric.
This is the summary that received the second lowest score.

� S O-A+E+: A summary where the propositions are randomly ordered,
but aggregation takes place, and it receives the lowest (best) overall
score by the evaluation metric.

� S O-A-E-: A summary consisting of single sentences that are randomly
ordered.

Table 4 presents the results of the experiment. It is particularly noteworthy that the
summary selected as the best by the Text Structuring andAggregationModulewasmost
often (65.6% of the time) rated as the best summary and overwhelmingly (92.2% of the
time) rated as one of the top two summaries. The table shows that omitting the eval-
uation metric (S O+A+E-) or omitting ordering of propositions (S O-A+E+) results in
summaries that are substantially less preferred by the participants. Overall, the results
shown in Table 4 validate our ordering, aggregation, and evaluation methodology.

6. Sentence Ordering Module (SOM)

With the use of different kinds of operators and an evaluation metric, our system
determines the partial ordering and the structure of sentences that will be used to realize
the selected content but doesn’t impose ordering constraints (final ordering) on the sen-
tences within each proposition class. To decide in which sequence the sentences should
be conveyed, we take advantage of the fact that each proposition has a defined main
entity, which will be realized in the subject position of the sentence that will be used to
realize the proposition. Identifying the subject of the realized sentences in advance al-
lows us to use centering theory (Grosz, Weinstein, and Joshi 1995) to generate a text that
is most coherent according to this theory.24 The theory outlines the principles of local
text coherence in terms of the way the discourse entities are introduced and discussed,
and the transitions between successive utterances in terms of the entities in the hearer’s
center of attention. Although some fundamental concepts of the theory, such as the
ranking of entities in an utterance, aren’t explicitly specified, various researchers have
applied centering theory to language generation (Kibble and Power 2004; Karamanis
et al. 2009) with different interpretations. In our work, each sentence is regarded as an

24 If this assumption is relaxed, then centering theory would not be appropriate for an ordering component.
In that case, a focusing theory such as McCoy and Cheng (1991), or Suri and McCoy (1994) could be used
to order the sentences to be realized.
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utterance. Following Brennan, Friedman, and Pollard (1987) and Grosz, Weinstein, and
Joshi (1995), we rank the entities with respect to their grammatical functions where the
entity in subject position is the most salient entity. When ordering sentences, we take
into account the preference order for centering transitions: continue is preferred over
retain, which is preferred over smooth shift, which is in turn preferred over rough shift.

For all message categories, the number of sentences in a proposition class would
be limited (less than five) even if all of the highly rated propositions identified for
that message category are selected for inclusion. Thus, a straightforward “generate and
test” strategy is appropriate for ordering sentences in our case. For each proposition
class, all possible orderings of the sentences within that class are generated. We assign
different numeric scores to each centering transition, where continue receives a score
of 3, and retain and smooth shift receive scores of 2 and 1, respectively. The rough shift
transitions are assessed a score of 0. For each candidate ordering, we sum the scores
for the kinds of transitions observed between consecutive sentences. The ordering that
receives the highest score is selected as the best ordering for that proposition class. First,
the best ordering of the sentences in the message related proposition class is selected.
The subject of the last sentence in that ordering is used as the backward-looking center
of the previous utterance when determining the best ordering of the sentences in the
specific proposition class. Similarly, the subject of the last sentence in the best ordering
for the specific class is used as the backward-looking center when identifying the best
ordering for the computational proposition class.

For graphics that depict a time period, we also utilize the time periods mentioned in
each conjunct of a conjoined sentence in order to specify in which order these conjuncts
will be conveyed in the realized text. If the time periods mentioned in each conjunct of
a conjoined sentence are different, these conjuncts are ordered such that the time period
in focus in the first conjunct subsumes or precedes the time period in focus in the second
conjunct. Consider how individual sentences in the following compound sentences are
ordered by our approach:

� The dollar value of net profit ranges from 2.77 to 0.96 billion dollars over the
period from the year 1998 to the year 2006 and shows the largest drop of about
0.56 billion dollars between the year 2000 and the year 2001.

� The dollar value of net profit shows the smallest drop of nearly 0.07 billion dollars
between the year 1998 and the year 1999 and shows the largest drop of about
0.56 billion dollars between the year 2000 and the year 2001.

Note that in the first conjoined sentence, the time period mentioned in the first con-
junct (from 1998 to 2006) subsumes the time period mentioned in the second conjunct
(between 2000 and 2001). On the other hand, in the second conjoined sentence, the time
period mentioned in the first conjunct (between 1998 to 1999) precedes the time period
mentioned in the second conjunct (between 2000 and 2001).

7. Sentence Generation Module (SGM)

To realize the summaries in natural language, we use the FUF/SURGE surface real-
izer (Elhadad and Robin 1999), which offers the richest knowledge of English syntax and
widest coverage among the publicly available realizers such as REALPRO (Lavoie and
Rambow 1997). The realization of the sentence-sized units requires referring expressions
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for certain graphical elements, however. Our system handles three different issues with
respect to referring expression generation:

� Generating a referring expression for the dependent axis. Information
graphics often do not label the dependent axis with a full descriptor of
what is being measured (which we call themeasurement axis descriptor).
In such a situation, a referring expression for this element must be
extracted from the text of the graphic. For example, to realize its summary,
a measurement axis descriptor (e.g., the dollar value of Chicago Federal Home
Loan Bank’s mortgage program assets) must be generated for the graphic in
Figure 7a, whose dependent axis is not explicitly labeled with the
descriptor.

� Generating a referring expression in order to refer to the bars on the
independent axis (e.g., the countries for the graphic in Figure 1). Such an
expression must be inferred from the bar labels or extracted from the text
of the graphic. This referring expression is often used in the summaries of
graphics in some message categories (e.g., Maximum Bar) that require
comparing a bar with others (e.g., distinguishing the bar with the
maximum value from all other bars).

� It was shown that people prefer less informative descriptions for
subsequent mentions of an entity (Krahmer and Theune 2002). In order to
generate more natural summaries, the syntactic forms of the subsequent
mentions of discourse entities should be constructed in a way that helps
text coherence.

7.1 Measurement Axis Descriptor

Generation of referring expressions (noun phrases) is one of the key problems explored
within the natural language generation literature. There is a growing body of research
in this area that, given a knowledge base of entities and their properties, deals with

Figure 7
(a) Graphic from Business Week. (b) Graphic from Business Week.
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determining the set of properties that would single out the target entity (Dale and Reiter
1995; Krahmer, Van Erk, and Verleg 2003). More recently, the generation of referring
expressions has been proposed as a postprocessing technique to deal with the lack of
text coherence in extractive multidocument summarization (Belz et al. 2008). Nenkova
and McKeown (2003) developed a method to improve the coherence of a multidoc-
ument summary of newswire texts by regenerating referring expressions for the first
and subsequent mentions of people’s names where the expressions are extracted from
the text of the input documents according to a set of rewrite rules. The task that we
face is similar to this recent body of research in that contextually appropriate referring
expressions for certain graphical elements should be extracted from the text of the
graphic. At the same time, our task is more complex in some respects. First, it is often the
case that the required referring expression isn’t explicitly given as a single unit and thus
must be constructed by extracting and combining pieces of information from the text of
the graphic. Second, in some cases where the dependent axis is explicitly labelled with a
descriptor, it still needs to be augmented. We undertook a corpus study in order to iden-
tify how a measurement axis descriptor could be generated from the text of a graphic;
the results of the analysis form the basis for the heuristics and augmentation rules
we developed for generating the measurement axis descriptor for a graphic. In Demir,
Carberry, and Elzer (2009), we outlined this problem as generating a graphical element
required for realizing the intended message of a graphic and thoroughly described the
technical details of our approach. Here, however, we treat this particular aspect as a
novel text-to-text generation methodology which is combined with other data-to-text
approaches in a complete NLG system. Thus, our focus in this section is to highlight
a new way of using the text associated with images which has been earlier exploited
by various NLP tasks such as indexing and retrieval of images (Pastra, Saggion, and
Wilks 2003).

7.1.1 Corpus Analysis. Graphic designers generally use text within and around a graphic
to present information related to the graphic. We started our analysis by examining how
texts are distributed around each group of graphics. We observed that graphics (indi-
vidual or composite) contain a set of component texts that are visually distinguished
from one another by blank lines, by different fonts/styles, or by different directions
and positions in the graphic. Although the number of component texts present in a
graphic may vary, our analysis recognized an alignment or leveling of text contained in
a graphic, which we refer to as “text levels.”

We observed seven text levels which we refer to as Overall Caption, Overall
Description, Caption, Description, Dependent Axis Label, Text In Graphic, and Text
Under Graphic. Not every level appears in every graphic. Overall Caption and Over-
all Description apply to composite graphics that contain more than one individual
graphic (the graphics might be of different kinds) and refer to the entire collection
of graphics in the composite. In composite graphics, Overall Caption is the text that
appears at the top of the overall group and serves as a caption for the whole set (such
as Tallying Up the Hits in Figure 8a). In composite graphics, there is often another
text component placed under the Overall Caption but distinguished from it by a line
break or a change in font. This text component, if present, is also pertinent to all
individual graphics in the composite graphic and elaborates on them. We refer to such
text as the Overall Description (such as Yahoo once relied entirely on banner ads. Now it’s
broadened its business mix in Figure 8a). Caption and Description serve the same roles
for an individual graphic. For example, the Caption for the bar chart in Figure 8a is
Active Users and the Description is Registered users in millions. The Caption of Figure 8b
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Figure 8
(a) A composite graph from Newsweek.25 (b) Graphic from Business Week.

Table 5
Text levels in bar charts.

Text level Frequency of occurrence

Overall Caption 31.8% (∼34/107)
Overall Description 17.8% (∼19/107)
Caption 99.0% (∼106/107)
Description 54.2% (∼58/107)
Text In Graphic 39.3% (∼42/107)
Dependent Axis Label 18.7% (∼20/107)
Text Under Graphic 7.5% (∼8/107)

is A Growing Biotech Market but this graphic does not have a Description. There may be
a label on the dependent axis itself and we refer to it as Dependent Axis Label (such
as Revenues (in billions) in Figure 8b). In addition to the text levels described so far
which appear outside the borders of a graphic, we have observed that there is often
a text component residing within the borders of a graphic which we refer to as Text
In Graphic (such as U.S. Biotech Revenues, 1992–2001 in Figure 8b). Finally, Text Under
Graphic is the text under a graphic which usually starts with a marker symbol (such
as *) and is essentially a footnote (such as U.S. only, one available seat flown one mile, year
ending June 2002 in Figure 7b). Each Text Under Graphic has a referrer elsewhere that
ends with the same marker and that referrer could be at any text level of the graphic. A
graphic might have more than one Text Under Graphic but each is differentiated with
a different marker. For each of the 107 graphics in our corpus (described in Section 3.3),
the Visual Extraction System extracts these text levels from the graphical image of the
bar chart and inserts them into the graph’s XML representation. Table 5 lists the various
text levels, along with how often they appeared in the graphics in our corpus.

25 This figure displays two of the five individual graphs constituting the composite graphic that appeared in
Newsweek.
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Two annotators first analyzed each graphic in our corpus and determined a mea-
surement axis descriptor for the graphic; the annotators used both the information
residing within the text components of the graphic and the article, and commonsense
knowledge. All ideal descriptors were noun phrases or wh-phrases26 (such asWhat’s the
most important issue affecting voters’ vote? on a graphic depicting survey results). After the
descriptors were identified, we analyzed the graphics to see how the descriptors could
be generated from the text components of the graphic. We observed that an acceptable
measurement axis descriptor often cannot be extracted as a whole from a single text
level and instead must be put together by extracting pieces from one or several different
text levels; the pieces, though coming from a single level, might not be contiguous in that
level and still need to be melded into a coherent whole. In some cases, the information
is also retrieved from other graphics in the same composite or from the article’s text.
Our analysis has also led us to hypothesize that the ideal measurement axis descriptor
can be viewed as consisting of a core—a basic noun or wh-phrase from one text level
that is often augmented with text from another level (or in some cases, from text in the
accompanying article or other graphs in the same composite) to be more descriptive
and complete. For example, for the bar chart in Figure 8a, registered users is the core
of the ideal measurement axis descriptor which is Yahoo’s registered users. The core is
found in the Description and the augmentation to the core is found in the Overall
Description. When more than one text level is used, the text levels that contain pieces of
themeasurement axis descriptor also vary among the graphics.We observed thatmostly
text levels particular to a graphic (such as Text In Graphic and Description) contain the
pieces of the descriptor as opposed to the levels containing shared information (such
as Overall Description), and with the exception of Text Under Graphic, the ordering of
text levels in Table 5 forms a hierarchy of textual components, with Overall Caption
and Dependent Axis Label respectively at the top and bottom of the hierarchy, such that
the core generally appears in the lowest text level present in the graphic. During the
corpus analysis, we observed three ways in which a core extracted from one text level
was augmented with text from another text level:

� Expansion of the noun phrase: The nouns in the core of the descriptor
were replaced with a noun phrase at another text level which has the same
noun as its head. The replaced noun phrase appeared in a text level higher
in the precedence order than the text level at which the core appears.
Consider, for example, Figure 8b. The core of the descriptor is Revenues
(appearing in the Dependent Axis Label), which is reasonable enough
to be the core, but the noun Revenues should be replaced with U.S. Biotech
Revenues in order to be complete.

� Specialization of the noun phrase: The core was augmented with a
proper noun which specialized the descriptor to a specific entity.
Consider, for example, Figure 8a, which shows a composite graph where
individual graphics present different attributes of the same particular
entity (Yahoo). The ideal measurement axis descriptor of the bar chart
(Yahoo’s registered users) consists of the core registered users (appearing in
the Description) augmented with the proper noun Yahoo that appears in
the Overall Description.

26 Generally seen in graphics presenting the results of a survey.
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� Addition of detail: Text Under Graphic typically serves as a footnote to
give specialized detail about the graphic which is not as important as the
information given in other text levels. If the Text Under Graphic began
with a footnote marker, such as an asterisk, and the core was followed by
the same marker, then Text Under Graphic added detail to the core.
Consider, for example, Figure 7b, where unit costs is the core but the ideal
measurement axis descriptor (Unit costs, U.S. only, one available seat flown
one mile, year ending June 2002) also contains the information from the
Text Under Graphic.

7.1.2Methodology. First, preprocessing deletes the scale and unit indicators (phrases used
to give the unit and/or a scale of the values presented in the graphic), and the ontolog-
ical category of the bar labels (if explicitly marked by the preposition by) from the text
levels. Next, heuristics are used to identify the core of the measurement axis descriptor
by extracting a noun phrase or a wh-phrase from a text level of the graphic. Three kinds
of augmentation rules, corresponding to the three kinds of augmentation observed in
our corpus, are then applied to the core to produce the measurement axis descriptor.
If none of the augmentation rules are applicable, then the core of the descriptor forms
the measurement axis descriptor. Finally, if the measurement axis descriptor does not
already contain the unit of measurement (such as percent), the phrase indicating the unit
of measurement is appended to the front of the measurement axis descriptor.

For identifying the core of the measurement axis descriptor, we developed nine
heuristics that are dependent on the parses of the text levels. Two of these heuristics are
restricted to Dependent Axis Label and Text In Graphic, and the remaining heuristics
are applicable to all other text levels. The application of the heuristics gives preference
to text levels that are lower in the hierarchy and if a core is not identified at one text
level, the applicable heuristics are applied, in order, to the next higher text level in
the hierarchy. For example, suppose that the graphic contains only a Description and
a Caption and thus the first two heuristics are not applicable. The next seven heuristics
are first applied to the Description and then to the Caption. The following presents three
representative heuristics where the first two heuristics are applicable only to Dependent
Axis Label and Text In Graphic:27

� Heuristic-1: If the Dependent Axis Label consists of a single noun phrase
that is not a scale or unit indicator, that noun phrase is the core of the
measurement axis descriptor.

� Heuristic-2: If Text In Graphic consists solely of a noun phrase, then that
noun phrase is the core; otherwise, if Text In Graphic is a sentence, the
noun phrase that is the subject of the sentence is the core.

� Heuristic-6: If a fragment at the text level consists solely of a noun phrase,
and the noun phrase is not a proper noun, that noun phrase is the core.

Once the core is identified, augmentation rules are applied to fill out the descriptor.
For example, consider the graphic in Figure 8b where Heuristic-1 identifies Revenues
in Dependent Axis Label as the core. Because the core and the Text In Graphic, U.S.
Biotech Revenues, have the same head noun, the augmentation rule for expansion

27 All of the heuristics and augmentation rules can be found in Demir, Carberry, and Elzer (2009).
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produces U.S. Biotech Revenues as the augmented core. After adding a phrase for
the unit of measurement, the referring expression for the dependent axis becomes
The dollar value of U.S. Biotech Revenues. As another example, consider the graphic in
Figure 7b. Our work uses Heuristic-2 and the augmentation rule for adding detail.
After adding a phrase representing the unit of measurement, the referring expression
for the dependent axis becomes The cent value of unit costs (U.S. only, one way available seat
flown one mile, year ending June 2002). Finally, consider the graphic in Figure 8a, where
Heuristic-6 identifies the noun phrase registered users as the core.28 The augmentation
rule for specialization finds that Yahoo is the only proper noun in the text levels and
does not match a bar label, and forms Yahoo’s registered users. After adding a phrase
representing the unit of measurement, the referring expression for the dependent axis
becomes The number of Yahoo’s registered users.

In order to evaluate our approach, we constructed a distinct test corpus consisting
of 205 randomly selected bar charts from 21 different newspapers and magazines;
only six of these sources were also used to gather the corpus described in Section 3.3.
For each graphic, we used our approach to generate the referring expression for the
dependent axis. Finally, the resultant output and three baselines were evaluated by
two evaluators (Demir, Carberry, and Elzer 2009). The evaluation results showed that
our approach performs much better than any of the baselines for the 205 graphics in
the corpus. The detailed analysis of the results also showed that our methodology is
applicable to a wider range of sources in popular media.

7.2 Generating an Expression for Referring to All Bars

For some message categories (for example, Maximum Bar), the identification of the
ontological category for the bar labels results in better natural language than merely
using a generic expression; for example, compare the phrase among the countries listed
with the phrase among the entities listed in producing natural language text for the
message conveyed by the graphic in Figure 1. There are a number of different pub-
licly available ontologies such as WordNet Fellbaum (1998) and OpenCyc (2011). In
our work, we need a knowledge base that offers both the semantic relations between
words and general commonsense knowledge. For example, WordNet could not iden-
tify Jacques Chirac, a former president of France, whereas OpenCyc ontology contains
this information. Therefore, we use OpenCyc ontology version v0.7.8b to identify the
ontological categories of bar labels in our work. Our implemented system currently
finds the most specific category that is a common category for at least two of the bar
labels and identifies it as the ontological category.

Grice’s Maxim of Quantity (1975) states that one’s discourse contribution should be
as informative as necessary for the purposes of the exchange but not more so. If our
system were to enumerate all entities involved in a comparison message, the realization
of the inferred message might be lengthy and the enumeration of little utility to the
user. Thus we set a cut-off C, such that if the number of entities involved in a Maximum
Bar or Rank Bar message exceeds C, they are not enumerated but rather we use the
generated referring expression for all bars. The cut-off value is currently set to 5 in our
implemented system.

28 The preprocessing of this text level would remove In millions because it is a scale indicator.
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7.3 Subsequent Mentions of Discourse Entities

In the current implementation of the system, the syntactic form of a subsequent mention
of an entity is determined based on its salience status in the context. In particular, the
backward-looking center of an utterance29 is replaced with a less informative definite
noun phrase after a continue or a retain transition because the backward-looking cen-
ter remains the same in the latter utterance. In such cases, the definite noun phrase
is constructed by adding the demonstrative this or these to the front of the head
noun of the backward-looking center, such as these revenues for the phrase U.S. biotech
revenues.

7.4 Example Summaries

For the graphic in Figure 1, our system generates the following textual summary: The
graphic shows that United States at 32,434 has the highest number of hacker attacks among the
countries Brazil, Britain, Germany, Italy, and United States. United States has 5.93 times more
attacks than the average of the other countries.

For the graphic in Figure 3a, the following textual summary is generated: The graphic
shows an increasing trend in the dollar value of Lands’ End annual revenue over the period from
the year 1992 to the year 2001. The dollar value of Lands’ End annual revenue shows an increase
of nearly 225 percent. Except for a small drop in the year 1999, slight increases are observed
almost every year.

For the graphic in Figure 3b, our system generates the following summary: The
graphic compares the defense agencies army, navy, air force, and other defense agencies, which
are sorted in descending order with respect to the number of civilian employees. The number
of civilian employees is highest for army at 233,030 and is lowest for other defense agencies at
100,678.30

For the graphic in Figure 4, the following textual summary is generated: The graphic
shows a decreasing trend in the dollar value of net profit over the period from the year 1998 to the
year 2006. The dollar value of net profit ranges from 2.77 to 0.96 billion dollars over the period
from the year 1998 to the year 2006 and shows the largest drop of about 0.56 billion dollars
between the year 2000 and the year 2001. Slight decreases are observed almost every year.

For the graphic in Figure 8b, our system generates the following summary: The
graphic shows an increasing trend in the dollar value of U.S. Biotech Revenues over the period
from the year 1992 to the year 2001. Increasing slightly every year, the dollar value of U.S.
Biotech Revenues shows an increase of nearly 265 percent and ranges from 7.87 to 28.52 billion
dollars.

For the graphic in Figure 7a, the following textual summary is generated: In the year
2003, the graphic shows a much higher rise in the dollar value of Chicago Federal Home Loan
Bank’s mortgage program assets in contrast with the moderate increases over the period from the
year 1998 to the year 2002. The dollar value of Chicago Federal Home Loan Bank’s mortgage
program assets reaches to 94.23 billion dollars in the year 2003. The dollar value of these assets
in the year 2003 is nearly 49.1 times higher than that in the year 1998.

For the graphic in Figure 9, the following textual summary is generated: This graphic
is about American Express. The graphic shows that American Express at 255 billion dollars is

29 The backward-looking center of a current utterance is the most highly ranked entity of the previous
utterance that is realized in the current utterance.

30 The reason for saying that the defense agencies are sorted in decreasing order is not to enable the reader
to visualize the graphic but rather that it subsumes giving the ranking of each bar.
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Figure 9
Graphic conveying the rank of a bar.

the third highest with respect to the dollar value of total credit-card purchases per year among
the entities Visa, Mastercard, Discover, Diner’s Club, and American Express.

8. Evaluation of the Effectiveness of the Textual Summaries

The earlier user studies (Sections 4.4 and 5.5) demonstrated the effectiveness of our gen-
eration methodology in identifying and presenting the high-level content of bar charts.
The success of a generation system depends not only on the quality of the produced text,
however, but also on whether the text achieves the impact that it is intended to make on
readers (such as enabling readers to perform a task or changing their opinions in some
context). We conducted an evaluation study to measure how adequate and effective
the summaries generated by our system are for our purpose of providing the message
and high-level knowledge that one would gain from viewing a graphic. Specifically, we
were interested in (1) what amount of information is retained by a reader from reading
the summary generated by our system, (2) whether someone reading the summary
garners the most important knowledge conveyed by the graphic, and (3) whether the
knowledge gleaned from the summary is consistent with the actual graphic.

In this study, we used four graphics from the test corpus (described in Section 3.3)
with different intended messages. These graphics conveyed an increasing trend (i.e.,
Figure 3a), a decreasing trend, the rank of the maximum bar (i.e., Figure 1), and the
rank of a bar (i.e., Figure 9) among all bars. In the first part of the study, each of the
18 participants (graduate students) was first presented with the summaries generated
by our system for these graphics; the participants neither saw the original graphics
(the graphical images of the bar charts) nor were aware of our system and how the
summaries were generated. For each summary, the participants were asked to draw
the bar chart being described in that summary. Although enabling a reader to redraw
the graphic is not a goal of our work, comparing a reader’s mental representation
of the graphic with the actual graphic allows us to identify whether there are any
inconsistencies between knowledge gleaned from the summary and the content of the
actual graphic.

In the second part of the study, we asked three evaluators not involved in this re-
search to evaluate the drawings that we collected from the participants. The evaluators
were Ph.D. students from the University of Delaware (none of them were the authors
of this work) and had an overall knowledge about our summarization approach (i.e.,
what is intended to be conveyed in the summaries of graphics). The evaluators were
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first told that a set of participants were presented with brief summaries of bar charts
and asked to draw the corresponding bar charts based on the information presented
in those summaries. They were also told that each summary only conveyed what is
identified by our system as the most important information that should be conveyed
about the bar chart being described. The evaluators were presented with the graphical
images of the four bar charts used in the study (none saw the summaries presented in
the first part of the study) and the drawings collected from the participants, and then
asked to rate each drawing using the following evaluation scores:

� 5: The drawing is essentially the same as the original graphic

� 4: The drawing captures all important information from the original
graphic but requires some minor modifications

� 3: The drawing captures most of the important information from the
original graphic but is missing one significant piece of information

� 2: The drawing reflects some information from the original graphic but
requires major modifications

� 1: The drawing fails to reflect the original graphic

The average score that a drawing received from the evaluators ranged from 3 to 5.
The evaluators viewed the drawings drawn for the graphics with a trend more favor-
ably and assigned a score of 4 or more in most cases. For each graphic, we computed the
average score given by the evaluators to all drawings constructed from the summary
of that graphic (i.e., the average of the three scores given to each of the 18 drawings
drawn from the same summary). The graphics conveying an increasing (Figure 3a) and
a decreasing trend received a score of 4.22 and 4.63, respectively. The evaluators gave an
average score of 3.53 and 4.07 to the graphics which conveyed the rank of the maximum
bar (Figure 1) and the rank of a bar among all bars (Figure 9). Because we do not present
all features of a bar chart in its summary (such as all bar values), obtaining an average
score of less than 5 for all bar charts is not surprising.

We also asked the evaluators to specify a reason (i.e., what is missing or should be
changed) for the cases where they assigned a score of less than 4. Once we analyzed
their feedback for the drawings with a trend, we observed that missing values on
the dependent axis (i.e., tick mark labels) and missing measurement axis descriptors
(although given in the summaries) were the main reasons. We argue that presenting
tick mark labels is more appropriate for summaries that describe scientific graphics
(such as the summaries generated by the iGRAPH-Lite system [Ferres et al. 2007]) in
contrast to the summaries that we generate for conveying the high-level content of
a graphic. The evaluators indicated incorrect rankings of some bars as the reason for
giving lower scores to the drawings that present the rank of the maximum bar or the
rank of a bar among all bars; this is due to the fact that our summaries did not convey
the rankings and the values of all bars in those cases. Because the intention of the
corresponding graphics is to convey the rank of a single bar (not all bars), we argue that
our summaries facilitate the readers to get the main purpose of these graphics. Overall,
this study demonstrated that our summarization approach is effective in conveying
the high-level content of bar charts so as to enable readers to correctly understand the
main point of the graphic. We are planning to conduct future studies to explore the
effectiveness of our approach further, however. One possible evaluation could be asking
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a different set of participants to draw the bar charts that we used in this study by reading
their summaries produced by an appropriate baseline approach, and comparing the
scores that those new set of drawings received from the same three evaluators with our
current results. This evaluation will also allow us to determine whether the evaluators
judged our summarization approach favorably because they were aware of the overall
approach (i.e., brief summaries are generated by our system and these summaries do
not contain everything that can be conveyed by the corresponding bar charts).

Favorable results were also achieved when people with visual impairments were
presented with the brief summaries generated by our work in an interactive system
which also enabled the user to ask follow-up questions to learn more about about the
graphic. More on that system and study can be found in Demir et al. (2010).

9. Conclusion and Future Work

The majority of information graphics from popular media are intended to convey a
message that is often not captured by the text of the document. Thus graphics, along
with the textual segments, contribute to the overall purpose of a multimodal document
and cannot be ignored. The work presented in this article is the first to apply natural lan-
guage generation technology to provide themessage and high-level knowledge that one
would gain by viewing graphics from popular media via brief textual summaries. Our
summarization approach treats a graphic as a form of language and utilizes the inferred
intention of the graphic designer, the communicative signals present in the graphic, and
the significant visual features of the underlying data in determining what to convey
about that graph. Our approach uses a set of content identification rules constructed for
each intended message category of a bar chart in determining the content of the sum-
maries. The propositions selected for inclusion by these rules are organized into a text
structure by applying a novel bottom–up approach which leverages different discourse
related considerations such as the number and syntactic complexity of sentences and
clause embeddings that will be used for realization. Following the generation of refer-
ring expressions for certain graphical elements, the structure of a summary is realized
in natural language via a publicly available realizer. Three different evaluation studies
validated the effectiveness of our approach in selecting and coherently organizing the
most important information that should be conveyed about a bar chart, and enabling
readers to correctly understand the high-level knowledge of the graphic.

In addition to the application area, this article makes contributions to two broad
areas of research: data-to-text generation systems and text-to-text generation of referring
expressions. Here we have viewed the generation of a summary of an information
graphic as a data-to-text generation problem. Any data-to-text generation system must
solve several important problems: (1) out of all of the information in the data, extract
out that information that is important enough to be included in the text, (2) structure
the information so it can be realized as a coherent text, (3) aggregate propositions to
be conveyed in the text into more complex yet understandable sentence structures, (4)
order the resulting sentence structures so as to maintain text fluency, and (5) realize the
information as English sentences and generate appropriate referring expressions. Our
work has addressed each of these issues in a systematic fashion maintaining modularity
of system components and following a development methodology that includes human
input for making system decisions, and a thorough evaluation of each module as well
as final system evaluation.

Although the specific implementations that we developed are geared toward gen-
erating summaries of bar charts, the groundwork described in this article is currently
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being used by our own group to investigate summarizing other types of graphics (such
as line graphs and grouped bar charts) from popular media. A Bayesian system for
recognizing the intended message of line graphs has already been developed (Wu et al.
2010) and the work on constructing the content identification rules for line graphs is
under way (Greenbacker, Carberry, and McCoy 2011).

The module that generates referring expressions represents a sophisticated study of
text-to-text referring expression generation. Referring expression generation is a vibrant
field. Although the particular rules used for extracting an appropriate referring expres-
sion are unique to referring expressions for graphical elements inside an information
graphic (note: not just bar charts), the work has uncovered some rather interesting
properties in terms of extracting expressions from text which may generalize to other
domains as well. Our work is unique in that a full referring expression is pieced together
from text not directly referring to the item in question. In order to do this, we identified
text levels and rules for extracting the core expression along with potential important
modifiers. One can imagine this message carrying over to other types of data-to-text
activities as well as to more standard text-to-text generation problems.

In future work, we intend to build on the work reported here in several ways.
Corpus studies where human subjects tasked with writing brief summaries of graph-
ics (the kind of summaries that our system intends to generate) would be of great
potential in informing generation decisions that our system makes at different levels.
Moreover, experts with extensive knowledge of the domain or the targeted end users
were shown to be of greater supply to the development of manyNLG systems. Learning
from summaries written by subjects (especially expert writers) would be an exciting
area of future research. We also believe that our approach would benefit from these
corpus studies towards exploring how the fluency of the summaries can be further
improved particularly by reducing the occasional verbosity in order to achieve tex-
tual economy (Stone and Webber 1998). For example, these efforts might help us to
determine how measurement axis descriptors can be more appropriately phrased in
different situations. Improving the current evaluation metric for choosing a text plan is
also in our research agenda. We utilize three criteria in our evaluation metric for deter-
mining the best structure that can be obtained by applying the operators to the selected
propositions. In addition, each criteria (the number of sentences, the overall syntactic
complexity of sentences, and the overall comprehension complexity of all embedded
clauses) has the same impact on the selection process. We are considering conducting
more user studies in order to identify what other criteria should be taken into account
and how important each criteria should be in relation to all the others. Moreover,
exploring the broader applicability of the novel aspects of our work in other settings
is an interesting topic for future work. Finally, evaluating the utility of our theoretically
informed aggregation mechanism in comparison to or in conjunction with the more
surface-oriented mechanism of the SPoT system would be a promising area for further
research.

To our best knowledge, what kinds of summaries best serve the needs of visually
impaired individuals has not been throughly studied before. As mentioned in Sec-
tion 2.2.1, we believe that our summaries, once associated with graphics as ALT texts,
might be of help to these individuals while reading electronic documents via screen
readers. One fruitful research direction would be to present such individuals with our
summaries in real-time scenarios and to mine their informational and presentational
needs. Such a study would probably provide insights with regard to this question
and potentially lead to guidelines that human summarizers could follow in generating
summaries for people with visual impairments.
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