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  Peter B.   Catrysse     *          and   Shanhui   Fan      

 Routing of Deep-Subwavelength Optical Beams and 
Images without Refl ection and Diffraction Using Infi nitely 
Anisotropic Metamaterials  
     Figure  1 .     Refl ectionless, diffraction-free routing with zero bend radius of 
a deep-subwavelength beam and shadow at the interface between two 
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 Media that are described by extreme electromagnetic param-
eters, such as very large or very small permittivity or perme-
ability, have generated signifi cant basic physics interest and 
applications in recent years. Notable examples include epsilon-
near-zero materials, [  1  ,  2  ]  ultralow-refractive-index materials, [  3  ]  
and ultrahigh-refractive-index materials. [  4–7  ]  Many photonic 
structures, including waveguides, lenses, and photonic bandgap 
materials, benefi t greatly from the large index contrast provided 
by such media. [  8  ,  9  ]  

 In this paper we discuss media with infi nite anisotropy, by 
which we mean that the permittivity (permeability) is infi nite 
in one direction and fi nite in the other directions. As a specifi c 
case, we consider a uniaxial anisotropic medium with a permit-
tivity tensor:

 
¯̄ε = ε

( )
ε⊥ 0 0

00
00 ε⊥
εz

0
 
 (1)   

where   ε   0  is the permittivity of vacuum, while   ε   ⊥  and   ε  z   are the 
(relative) transverse and longitudinal permittivities. If   ε  z    →   ∞  
and   ε   ⊥  is fi nite, the medium is infi nitely anisotropic. We use an 
infi nitely anisotropic permittivity tensor to control transverse 
magnetic (TM) polarization. The control of transverse electric 
polarization using an infi nitely anisotropic permeability tensor 
can be developed in a similar fashion. Previously, we showed 
effi cient light transport in deep-subwavelength apertures fi lled 
with infi nitely anisotropic media for both polarizations. [  10  ]  Here, 
we point out some of the opportunities that exist for controlling 
light at the nanoscale using infi nitely anisotropic media by them-
selves. While diffraction-free propagation of deep-subwavelength 
beams and images has been shown, [  11–13  ]  we demonstrate in this 
work that the interfaces between two infi nitely anisotropic media 
with different orientations enable complete deep-subwavelength 
beams to bend sharply (with zero bend radius) and without any 
refl ections. This unusual behavior opens up new possibilities 
for routing of deep-subwavelength beams and images. 

 The paper is organized as follows. Firstly, we show 
numerically refl ectionless, diffraction-free routing of a deep-
subwavelength beam and shadow using fi rst-principles 
wileyonlinelibrary.com © 2013 WILEY-VCH Verlag G
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electromagnetic-fi eld simulations based on a fi nite-difference 
time-domain (FDTD) method. [  14  ]  Next, we account for this 
remarkable behavior analytically. Finally, we demonstrate how 
to achieve an infi nite anisotropy using a metamaterial design 
that can be implemented with existing materials over a sub-
stantial bandwidth. 

 In our numerical simulations, we consider TM polarization 
( E x  ,  H y  ,  E z  ) for two media with infi nite anisotropy, medium 
1 with   ε   ⊥   =  4 and   ε  z    =  1  ×  10 10  (approximating   ε  z    →   ∞ ) and 
medium 2 with   ε   ⊥   =  4 and   ε  x    =  1  ×  10 10 , which form a 45 °  inter-
face. The propagation is in the  z -direction (⊥ defi nes the trans-
verse  xy -plane) in the fi rst medium and it is in the  x -direction 
(⊥ defi nes the transverse  yz -plane) in the second medium. 
 Figure    1   shows the magnetic fi eld  |  H y   |  for a deep-subwavelength 
mbH & Co. KGaA, Weinheim

media with infi nite anisotropy.  |  H y   |  is shown for a transverse magnetically 
polarized ( E x  ,  H y  ,  E z  ) beam propagating vertically down ( +  z -direction) and 
bending 90 °  left ( +  x -direction) at a 45 °  media interface (dashed white 
line). The fi elds are obtained with an exact fi nite-difference time-domain 
(FDTD) method for a uniaxial anisotropic medium with   ε  z    =  1  ×  10 10 ,   ε   ⊥   =  
4 (above the dashed white line) and one with   ε  x    =  1  ×  10 10 ,   ε   ⊥   =  4 (below 
the dashed white line). The shadow results from a 50 nm-wide perfect 
electrical conductor (PEC) particle with square cross-section (represented 
by the white outline) which is illuminated by the beam from the top.  
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beam with a wavelength   λ    =  1.55  μ m when it is incident from 
medium 1 (above the dashed white line) onto medium 2 (below 
the dashed white line). The beam has a Gaussian transverse 
profi le (150 nm full-width half-maximum), propagates from 
top to bottom ( +  z -direction) in medium 1, illuminates a 50 nm-
wide, perfect electrical conductor (PEC) particle with square 
cross-section (represented by the white outline), and forms a 
perfect shadow behind the particle. When the beam and the 
shadow encounter the interface (dashed white line), they both 
make a sharp 90 °  bend to the left ( +  x -direction) with zero bend 
radius and without any refl ections.  

 Figure  1  demonstrates unambiguously that an interface 
between two infi nitely anisotropic media allows for refl ec-
tionless, diffraction-free routing of complete deep-subwave-
length beams and shadows. We note that the particle refl ects 
the central part of the beam while allowing the tails of the 
beam to propagate unperturbed. As a result, we see a strong 
standing-wave pattern for the central part of the transverse 
fi eld profi le in front of the particle and a perfect shadow in 
the center of the transverse fi eld profi le behind the particle. 
The standing-wave pattern and the shadow are each 50 nm 
wide and they are defi ned with geometrical precision. There 
are no diffraction effects during propagation and transmis-
sion at the interface observed in Figure  1  despite the deep-
subwavelength dimensions of the beam ( <   λ  /10) and the 
shadow ( <   λ  /30). 

 We now account for these numerical results analytically and 
describe the electromagnetic properties of interfaces between 
two media with infi nite anisotropy that give rise to them. Firstly, 
we provide a brief discussion of beam propagation in a single 
medium with infi nite anisotropy. 

  Diffraction-Free Propagation of a Deep-Subwavelength Beam 
and Shadow With Arbitrary Shape:  For a wave  E ( r )  =   E  0 exp 
( i   k   ·   r ) propagating in a uniaxial anisotropic medium with per-
mittivity tensor  ̄̄ε  , given by  Equation 1 , we have  |  k  |  2   =   k  2   z    +   k  ⊥  2  
and  ω2

/
c2 = k2

z

/
ε⊥ + k2

⊥
/
εz    (the latter describes a constant 

frequency contour for fi xed   ω  ).  k z   and  k  ⊥  are the longitudinal 
(propagation in  z -direction) and transverse ( xy -plane) wave 
vector components, respectively.  k z   needs to be real for propa-
gating waves. In the case of infi nite anisotropy (  ε  z    →   ∞ ), this 
becomes:

 
ω2

c2
= k2

z

ε⊥
  (2)     

 Equation 2  is independent of  k  ⊥  (i.e., propagating waves can 
take on any  k  ⊥  value). Such a medium does not limit transverse 
wave vectors and, hence, supports deep-subwavelength beams. 
 Equation 2  also implies that waves with different  k  ⊥  propagate 
with the same  k z   (i.e., they accumulate the same phase upon 
propagation over a distance  z ), which prevents beam diffrac-
tion. The propagation velocity meanwhile is controlled by the 
transverse permittivity   ε   ⊥  and is nonzero. An infi nitely aniso-
tropic medium (  ε  z    →   ∞ ) therefore allows diffraction-free propa-
gation with fi nite velocity for beams of arbitrary shape and size. 
It is important to realize that  Equation 2  refers to fully three-
dimensional beam propagation since  k  ⊥  refers to transverse 
wave vector components in the full transverse  xy -plane. Wave 
vector components are not limited by the medium in both 
transverse dimensions and propagate with the same  k z   for a 
© 2013 WILEY-VCH Verlag GAdv. Mater. 2013, 25, 194–198
given frequency. Hence, this medium allows for diffraction-free 
propagation of three-dimensional beams with deep-subwave-
length confi nement in both transverse dimensions. 

 One interesting property of a medium with infi nite anisot-
ropy, as pointed out by Catrysse and Fan, [  10  ]  is that all modes 
propagating inside the medium are purely transverse electro-
magnetic (TEM) modes. For TM polarization, we have in gen-
eral ( E x  ,  H y  ,  E z  ). The magnetic fi eld is always transverse along 
the  y  direction. The Poynting vector of each  k  ⊥  is always in the 
 z  direction; therefore, we must have  E z    =  0. Hence, all waves 
in this medium are truly TEM waves with  

(
E0,

√
ε⊥ E0, 0

)
  . 

We also observe that the impedance matching necessary to 
couple into this medium from the outside involves trans-
verse permittivity only. Since   ε   ⊥  is fi nite, it can be matched to 
the surrounding medium so that no refl ections occur at the 
interface. [  10  ]  

  Refl ectionless Routing or Manipulation of a Deep-Subwave-
length Beam:  We consider now two media with infi nite anisot-
ropy (i.e.,   ε    z 1   →   ∞  in a fi rst medium and   ε    z 2   →   ∞  in a second 
medium), and assume further that  z  1  and  z  2  are not coaligned 
( Figure    2  a). The propagation in each individual medium is 
along  z  1  and  z  2  only, and the in-plane electric fi elds are fi xed 
along ⊥ 1  and ⊥ 2 , respectively. We consider that directions  z  1  
and  z  2  make angles   θ   1  and   θ   2  with the interface. In a common 
co-ordinate system with the ⊥-axis defi ned parallel to the inter-
face, the wave fi elds are  

(
E0 cos θ1, E0

√
ε⊥1, −E0 sin θ1

)
   and 

 
(
E0 cos θ2, E0

√
ε⊥2, −E0 sin θ2

)
  , where   ε   ⊥1  and   ε   ⊥2  are the trans-

verse permittivities in the respective media. It is easily verifi ed 
that the wave impedance ( E x  / H y  ) in each medium is the same 
when:

  
√

ε⊥1 cos θ2 = √
ε⊥2 cos θ1   (3)    

 As soon as  Equation 3  is satisfi ed, the two media are imped-
ance-matched and there are no refl ections at the interface. Since 
the direction of propagation and the fi elds are pinned down 
inside each medium, this applies to any plane wave irrespec-
tive of its transverse wave vector. By extension, it also applies to 
any collection of waves with arbitrary transverse wave vectors. 
Any beam is therefore also perfectly impedance-matched when 
 Equation 3  holds, and passes through the interface without 
refl ections. While a refl ectionless interface has been noted 
before between two conventional anisotropic media, [  15  ]  our 
original contribution here consists of demonstrating that inter-
faces between infi nitely anisotropic media allow for refl ection-
less routing of completely diffraction-free deep-subwavelength 
beams and images. By choosing   ε   ⊥1   =    ε   ⊥2  and   θ   1   =   −   θ   2   =  45 ° , for 
example, we create an impedance-matched interface for deep-
subwavelength beams that supports 90 °  zero-radius bending 
and thus sharp routing of such beams without any refl ections. 
We note that  Equation 3  is very general and provides a condi-
tion that allows for zero-radius bending of deep-subwavelength 
beams at any arbitrary angle. 

 We now calculate the transmission and refl ection at the 
interface between these two media for an arbitrary set of prin-
cipal-axis orientations (i.e., for an arbitrary set of   θ   1  and   θ   2 ). By 
applying conservation of the parallel wave vectors and enforcing 
the continuity of the tangential electric and magnetic fi elds, we 
obtain the following exact analytic expressions for the transmit-
tance and refl ectance:
195wileyonlinelibrary.commbH & Co. KGaA, Weinheim
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     Figure  2 .     a) Interface between two media with infi nite anisotropy along dif-
ferent directions. The directions  z  1  in medium 1 (  ε    z 1   →   ∞ , top) and  z  2  in 
medium 2 (  ε    z 2   →   ∞ , bottom) make angles   θ   1  and   θ   2  with the interface. The 
geometry and angles are shown on the left-hand side. The constant frequency 
contour diagrams in the respective media are shown on the right-hand side 
(medium 1 at the top and medium 2 at the bottom). b,c) Transmittance 
at an interface between two media with infi nite anisotropy along different 
directions. The transmittance for any combination of   θ   1  and   θ   2  ranging from 
 − 90 °  to 90 °  is shown. The respective media have: b)   ε    z 1   →   ∞ ,   ε   ⊥1   =  4 and 
  ε    z 2   →   ∞ ,   ε   ⊥2   =  4, and c)   ε    z 1   →   ∞ ,   ε   ⊥1   =  4 and   ε    z 2   →   ∞ ,   ε   ⊥2   =  12.  
 

T = 4
√

ε⊥1ε⊥2 cos θ1 cos θ2(√
ε⊥1 cos θ2 + √

ε⊥2 cos θ1

)2 ,

R =
(√

ε⊥1 cos θ2 − √
ε⊥2 cos θ1

)2

(√
ε⊥1 cos θ2 + √

ε⊥2 cos θ1

)2
  (4)    

 A detailed derivation of these equations can be found in the 
Supporting Information. 

  Equation 4  resembles the Fresnel formulae for an interface 
between two isotropic dielectric media. [  16  ]  Unlike the regular 
Fresnel formulae, however,   θ   1  and   θ   2  depend on the orientation 
of the media with respect to the interface (i.e., the expressions 
here are independent of the transverse wave vector of the inci-
dent beam). The transmittance and refl ectance therefore do not 
vary with the transverse wave vector of the beam once the media 
orientations are chosen. We conclude from  Equation 4  that the 
interface becomes impedance-matched and transmits without 
refl ections ( T   =  1 and  R   =  0) when  

√
ε⊥1 cos θ2 = √

ε⊥2 cos θ1  . 
This result also confi rms the impedance analysis we carried out 
above. 

 Figure  2 b,c show the transmittance through an interface 
between two media with infi nite anisotropy as a function of the 
angles   θ   1  and   θ   2 . In Figure  2 b, the media are characterized by 
the same transverse permittivity (i.e.,   ε    z 1   →   ∞ ,   ε   ⊥1   =  4 and   ε    z 2   →  
 ∞ ,   ε   ⊥2   =  4, respectively). Since   ε   ⊥1   =    ε   ⊥2  in this case, we observe 
perfect transmittance when   θ   2   =   ±   θ   1 . Figure  2 c shows the trans-
mittance for an interface between two infi nitely anisotropic 
media with different transverse permittivities (  ε    z 1   →   ∞ ,   ε   ⊥1   =  
4 and   ε    z 2   →   ∞ ,   ε   ⊥2   =  12). It confi rms that perfect transmission 
holds very generally for any chosen orientation of the media 
given that  Equation 3  is satisfi ed. It is important to note that the 
transmittance maps in Figure  2 b,c remain unchanged when the 
transverse wave vector of the incident wave is changed. These 
are universal maps for waves (and beams) irrespective of their 
transverse wave vector. 

  Design of Metamaterials with Infi nite Anisotropy:  Simultaneous 
fi nite transverse permittivity and infi nite longitudinal permit-
tivity are hard to fi nd in naturally occurring materials, but can 
be achieved with a metamaterial design. For TM polarization,   ε  z   
 →   ∞  can be obtained, for instance with a one-dimensional (1D) 
periodic structure (period  a ) comprising two alternating layers 
(in the  z -direction) that have positive and negative permittivity, 
respectively ( Figure    3  a inset). [  5  ,  12  ]  When the thickness of each 
layer is much smaller than the operating wavelength, such a 
metamaterial homogenizes to an effective medium with:

  

ε⊥ = f ε1 + (1 − f ) ε2,

εz = ε1ε2

(1 − f ) ε1 + f ε2
,   (5)   

where   ε   1  ( > 0) and   ε   2  ( < 0) are the relative permittivities of the 
layer materials, while  f  and 1  −   f  are the fractions of the total 
volume occupied by each layer. [  16  ]  In  Equation 5 ,   ε  z    →   ∞  when 
(1  −   f )  ε   1   +   f ε   2   =  0. This system therefore has infi nite anisotropy 
with:

 
ε⊥ = ε1 + ε2,

εz → ∞
  (6)   
mbH & Co. KGaA, Weinheim Adv. Mater. 2013, 25, 194–198
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     Figure  3 .     Refl ectionless, diffraction-free routing with zero bend radius of deep-subwavelength beams using interfaces between metamaterials with very 
large anisotropy. a) Interface geometry in which metamaterial 1 (background) consists of horizontal layers, and metamaterial 2 (parallelogram-shaped 
region) is made up of vertically oriented layers. The inset shows the metamaterial geometry consisting of a 1D periodic structure (period  a ) and two 
alternating layers (  ε   1   >  0 and   ε   2   <  0) in the direction of propagation. b,c) The real part of the magnetic-fi eld distribution for propagating top-hat beams 
(100 nm wide) with uniform phase across the beam (b) and a   π   phase shift in the middle of the beam (c). The dashed red line shows the location of 
each beam excitation.  

100 nm

(a) Hymax

Hymin

z
x

0

ε2<0
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a

(b) (c)y
when  f = ε1

/
(ε1 − ε2)    (note that  f  is a positive value between 

0 and 1). 
 In the Supporting Information, we include further details 

on how this very large anisotropy is designed over a substan-
tial bandwidth. We also confi rm the homogenization argument 
by band-diagram analysis based on rigorous electromagnetic 
calculations for periodicities  a   < 20 nm. Here instead, we show 
a practical design based on existing materials to illustrate that 
the novel effects we predict can be achieved with standard plas-
monic and dielectric materials. Specifi cally, we demonstrate 
refl ectionless, diffraction-free routing of deep-subwavelength 
optical beams inside metamaterials designed based on the 
aforementioned principles. For this demonstration, we employ 
a fi nite-difference frequency-domain (FDFD) method to solve 
Maxwell’s equations. [  17  ]  This allows us to describe materials 
using measured permittivities at the operating wavelength 
(  λ    =  620 nm), thus directly taking into account material disper-
sion as well as loss. We defi ne a 45 °  interface geometry com-
prising two metamaterials to demonstrate sharp bending and 
routing with zero bend radius. Each metamaterial consists of 
a 1D periodic structure with alternating layers of   ε   1   =  12 (cor-
responding to the permittivity of Al 0.6 Ga 0.4 As at 620 nm) and 
  ε   2   =   − 10.06  +  0.82 i  (corresponding to the permittivity of Au 
at 620 nm). [  18  ,  19  ]  The volume fractions of these layers are 0.55 
and 0.45 for a periodicity  a   =  10 nm. This metamaterial design 
achieves   ε  z    >  250 and   ε   ⊥   =  2 and therefore very large anisot-
ropy. Figure  3 a shows the interface geometry. Metamaterial 1 
(background) consists of horizontal layers, while metamaterial 
2 (region outlined by the parallelogram) is made up of vertically 
© 2013 WILEY-VCH Verlag GAdv. Mater. 2013, 25, 194–198
oriented layers. We excite a TM polarized beam inside meta-
material 1 (at dashed red line in Figure  3 b,c) with a 100 nm 
wide transverse top-hat profi le and uniform phase (Figure  3 b, 
inset) as well as with a   π   phase shift in the middle of the beam 
(Figure  3 c, inset). Figure  3 b,c show the real part of the magnetic-
fi eld distribution for each beam as it propagates. We clearly 
observe diffraction-free propagation in the vertical  z -direction 
inside metamaterial 1, a refl ectionless 90 °  zero-radius bend at 
the fi rst 45 °  interface (dashed white line), diffraction-free prop-
agation in the horizontal  x -direction inside metamaterial 2, and 
a refl ectionless 90 °  zero-radius bend at the second 45 °  interface 
(dashed white line). 

 These numerical results show “ray-like” propagation of deep-
subwavelength beams inside a metamaterial with very large 
anisotropy implemented using existing materials. They also 
illustrate refl ectionless bending of deep-subwavelength beams 
with zero bend radius at the interface between two realizable 
metamaterials. In addition, they demonstrate deep-subwave-
length routing of beams modulated in amplitude or phase at 
the nanoscale. Since there is no loss of resolution due to diffrac-
tion during beam routing, they also indicate the ability to per-
form deep-subwavelength imaging using infi nitely anisotropic 
metamaterials with refl ectionless interfaces. The novel physics 
brought forth by the ideal case of infi nite anisotropy can there-
fore be realized in a practical metamaterial design with material 
loss included. We emphasize that these metamaterials enable 
deep-subwavelength confi nement in both transverse dimen-
sions (i.e., they allow diffraction- and refl ection-free control of 
fully three-dimensional beam propagation). 
197wileyonlinelibrary.commbH & Co. KGaA, Weinheim
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  We have shown that interfaces between two media with infi -

nite anisotropy can be impedance-matched for complete deep-
subwavelength beams, that they can enable refl ectionless routing 
with zero bend radius, and that this routing is entirely free from 
diffraction effects even when deep-subwavelength information 
is encoded on the beams. These unusual behaviors indicate an 
unprecedented possibility of using media with infi nite anisot-
ropy to manipulate beams with deep-subwavelength features, 
including complete images. To illustrate physical realizability, we 
demonstrated these behaviors in a realistic metamaterial design 
with very large anisotropy. Due to the planar geometry of our 
design, well-established planar nanofabrication techniques can 
be used to implement such metamaterials. This should allow for 
further experimentation. Hence, our approach opens the door to 
deep-subwavelength routing of information-carrying beams as 
well as far-fi eld imaging at the deep-subwavelength scale unen-
cumbered by the usual effects of diffraction and refl ection. 

  Experimental Section 
  Numerical Methods : The numerical experiments in this work were 

performed using fi rst-principles, full-fi eld electromagnetic calculations. 
For our demonstrations involving infi nitely anisotropic media, we 
employed an FDTD method. [  14  ]  The 2D simulation domain consisted of 
a rectangular grid with grid size set to 0.5 nm and was terminated by 
perfectly matched layer (PML) boundaries. Inside the domain, we defi ned 
a 45 °  interface geometry comprising two infi nitely anisotropic media 
(medium 1:   ε   ⊥   =  4 and   ε  z    =  1  ×  10 10 ; medium 2:   ε   ⊥   =  4 and   ε  x    =  1  ×  10 10 ). 
In all of the FDTD simulations, we assumed a continuous-wave excitation 
source with wavelength   λ    =  1.55  μ m. For our numerical demonstrations 
of a physically realizable metamaterial, we employed an FDFD approach 
to solve Maxwell’s equations. [  17  ]  In FDFD, the electromagnetic fi elds were 
obtained by solving a large sparse linear system. The simulation domain 
consisted of a 2D rectangular grid with the grid size set to 0.5 nm and 
terminated by PML boundaries. Inside the domain, we defi ned a 45 °  
interface geometry comprising two metamaterials. The metamaterials 
consisted of a 1D periodic structure with alternating layers of   ε   1   =  12 and 
  ε   2   =   − 10.06  +  0.82 i  (volume fractions were 0.55 and 0.45). The periodicity 
 a  was 10 nm along the vertical direction for the fi rst metamaterial and 10 
nm in the horizontal direction for the second metamaterial. In all of the 
FDFD simulations, we assumed a wavelength   λ    =  620 nm. 

   Supporting Information 
 Supporting Information is available from the Wiley Online Library or 
from the author. 
wileyonlinelibrary.com © 2013 WILEY-VCH Verlag G
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