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Two-photon transport through a waveguide coupling to a whispering-gallery resonator containing
an atom and photon-blockade effect
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We investigate the two-photon transport through a waveguide side coupling to a whispering-gallery-atom
system. Using the Lehmann-Symanzik-Zimmermann reduction approach, we present the general formula for
the two-photon processes including the two-photon scattering matrices, the wave functions, and the second
order correlation functions of the outgoing photons. Based on the exact results of the second order correlation
functions, we analyze the quantum statistics behaviors of the outgoing photons for two different cases: (a) the
ideal case without the intermodal coupling in the whispering-gallery resonator; and (b) the case in the presence
of the intermodal coupling which leads to more complex nonlinear behavior. In the ideal case, we show that
the system consists of two independent scattering pathways, a free pathway by a cavity mode without atomic
excitation, and a “Jaynes-Cummings” pathway described by the Jaynes-Cummings Hamiltonian of a single-mode
cavity coupling to an atom. The presence of the free pathway leads to two-photon correlation properties that are
distinctively different from the standard Jaynes-Cummings model, in both the strong and weak-coupling regime.
In the presence of intermodal mixing, the system no longer exhibits a free resonant pathway. Instead, both the
single-photon and the two-photon transport properties depend on the position of the atom. Thus, in the presence
of intermodal mixing, one can in fact tune the photon correlation properties by changing the position of the atom.
Our formalism can be used to treat resonator and cavity dissipation as well.
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I. INTRODUCTION

Recently, the whispering-gallery-atom system has inspired
a lot of interest [1–11], owing to its broad applications in the
studies of quantum optics. A schematic of such a systemis
shown in Fig. 1, where a waveguide is side coupled to a
whispering-gallery resonator, which then couples to a two-
level system. In the experimental study of this system [2–4], the
two-level system can be either a quantum dot [2], or an actual
atom [3]. Here, we will refer to such a two-level system as
an “atom.”These experiments have measured the transmission
properties of such a waveguide-resonator-atom system under
weak light excitation, and have demonstrated quantum effects
including antibunching and photon-blockade effects.

The experimental progress on this system, in turn, moti-
vated several recent theoretical studies. Srinivasan and Painter
analyzed this system under the excitation of a weak coherent
state input [12], and obtained transmission and coherence
properties through a numerical procedure with a truncated
number-state basis for the photons in the resonator [5]. Shen
and Fan calculated analytically the transmission properties
of such a resonator system with an input of a single-photon
Fock state [6,7]. Subsequently, the single-photon transports in
the whispering-gallery system have been extensively studied
[8–11].

In this paper, we study the two-photon transport property of
this system shown in Fig. 1. While the response of the system
under weak coherent-state input yields much information
about its nonclassical properties, we note that one important
goal of integrated quantum optics is to process quantum states.
Therefore, it is important to study such a system with the
input of nonclassical states, such as the Fock state, as well. In
addition, in contrast to the study of the transport properties of

a single photon [13–18], the studies of two-photon transports
provide important information [19–28] about atom-induced
photon-photon interaction that is absent in the single-photon
Hilbert space.

Our work provides contributions to the literature of cavity
quantum electrodynamics (QED) [29,30]. Unlike the stan-
dard Jaynes-Cummings (JC) system where a two-level atom
couples to a single-cavity mode [31], the whispering-gallery
resonator supports two modes, both of which may couple to
the atom. The simultaneous presence of both modes results in
transport and correlation properties that can be significantly
different as compared to the standard single-mode JC system
[6,7]. One of our contributions here is to illustrate, in the
two-photon Hilbert space, the connection and the difference
of the present system from the standard Jaynes-Cumming
system.

The paper is organized as follows. In Secs. II and III, we
review the model Hamiltonian and our theoretical approach
based on the Lehmann-Symanzik-Zimmermann (LSZ) reduc-
tion formula in quantum field theory [32]. This approach
results in an exact formula for the scattering matrix of the
system in multiphoton subspace. In Sec. IV, we present the
exact analytical results, including the single-photon transmis-
sions and the wave functions for the two outgoing photons.
Based on the general analytical results, we analyze the very
distinct quantum statistics behaviors of the outgoing photons
for two different cases of the strong coupling case in Secs. V
and VI. Section V considers the ideal case in the absence
of intermodal coupling in the whispering-gallery resonator.
Section VI analyzes the effect of intermodal coupling which
leads to more complex nonlinear behavior. In Sec. VII, the
results are summarized with some remarks and outlooks.

063818-11050-2947/2013/87(6)/063818(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.063818


T. SHI AND SHANHUI FAN PHYSICAL REVIEW A 87, 063818 (2013)

e

g

kr
kl

b a

e

g

krrk kl

b a

FIG. 1. (Color online) The schematics for the system: The blue
(left) and red (right) arrows denote the two whispering-gallery modes,
which interact with the atom and the waveguide.

II. MODEL SETUP

The system in Fig. 1 is described by the Hamiltonian [6,7]

H = HW + Hwg + Hhyb. (1)

Here,

HW =
∑
k>0

kr
†
k rk −

∑
k<0

kl
†
klk (2)

describes photons propagating in the waveguide. rk (r†k ) and lk

(l†k) are the annihilation (creation) operators of right-moving
and left-moving photons, respectively. The right-moving
photons have momentum k > 0, and the left-moving photons
have momentum k < 0 . Here, one linearizes the waveguide
dispersion relation around the operating frequency. The group
velocity can then be taken to be unity by a rescaling of the
corresponding operator. A detailed derivation that justifies this
Hamiltonian with the linearized dispersion can be found in
Ref. [6].

In Eq. (1)

Hwg = �|e〉〈e| + ωc(a†a + b†b) + hb†a + h∗a†b

+ σ+(gaa + gbb) + H.c. (3)

describes the two-level system, the resonator, and the inter-
action between them under the rotating-wave approximation.
In Eq. (3), a and b are the annihilation operators for the two
counterrotating modes in the resonator. h is the strength of
intermodal coupling between these two modes and is typically
induced by surface roughness on the resonator. The atom
supports a ground state |g〉 and an excited state |e〉 with
a transition frequency �. ga (gb) is the coupling constant
between mode a (b) and the atom, and σ+ = |e〉〈g|.

In Eq. (1),

Hhyb = 1√
L

∑
k

(VRr
†
ka + VLl

†
kb + H.c.) (4)

describes the coupling between the waveguide and the res-
onator. Here, we adopt a box-normalization scheme with L

being the length of the waveguide, and VR (VL) is the coupling
strength between the right-moving (left-moving) photon in
the waveguide and the mode a (b) in the whispering-gallery
system. The waveguide-cavity coupling results in a cavity loss
rate �tot = �R + �L, where �R,L = |VR,L|2 being the decay
rates of the two whispering-gallery modes to the waveguide,
respectively. We ignore all other possible loss mechanisms.

We end this section by briefly commenting on various
experimental aspects that are related to the Hamiltonian of
Eq. (1). As a representative example, the experiment in
Refs. [2–4] has ωc ∼ � ∼ 106 GHz. The resonator linewidth
�tot/2π = 0.1 to 10 MHz. The atom-resonator coupling con-
stant |gi |/2π (i = a,b) can reach 1 MHz to 10 GHz. We quote
these numbers to provide a rough sense of the parameters
involved here. The theory does not depend on such a detailed
choice of parameters. We will consider both the strong
coupling regime, where |gi | � �tot , and the weak coupling
regime, where |gi | � �tot .

In the experiment in Ref. [3] the intermodal mixing has
a strength of |h|/2π = 1 to 100 MHz. The phase of the h

depends on the detail of the surface roughness and typically
cannot be controlled in an experiment. On the other hand, the
relative phase of ga and gb depends on the position of the atom,
which can be controlled experimentally [6,7]. Since the size
of the whispering-gallery mode is at least a few wavelengths,
the relative phase of ga and gb can vary anywhere between 0
and 2π .

III. OVERVIEW OF THE THEORETICAL APPROACH

We solve the single- and two-photon scattering matrix (S
matrix) for the Hamiltonian in Eq. (1) using the LSZ approach.
This approach has been discussed in detail in Refs. [23,24].
Here we only provide a brief summary of those aspects that
are relevant for subsequent discussions.

The single-photon and two-photon S matrices read

Sp;k = δkp + iTp;k (5)

and

Sp1p2;k1k2 = Sp1k1Sp2k2 + Sp2k1Sp1k2 + iTp1p2;k1k2 , (6)

respectively, where k (p) is the momentum of the incident
(outgoing) single photon, and k1, k2 (p1, p2) are the momenta
of two incident (outgoing) photons. The right- and left-moving
photons have the positive and negative momenta, respectively.
Here, the T -matrix element Tp1,...,pn;k1,...,kn

≡ T[p;k] has the
form

iT[p;k] = lim
ωkj

→kj ,

ωpj
→pj

(2π )nG[p;k](ωp,ωk)∏n
j=1[G0(ωkj

,kj )G0(ωpj
,pj )]

. (7)

In Eq. (7), G0(ω,k) = i/(ω − εk + i0+) is the free propagator
of a single photon with εk = |k| being the dispersion relation
of the waveguide.

G[p;k](ωp,ωk) =
∫ n∏

j=1

[
dtj dt ′j

2π

]
G[p;k](t′,t)

×
n∏

j=1

[exp(iωpj
t ′j − iωkj

tj )] (8)

is the Fourier transform of the exact Green function
G[p;k](t′,t). Such a Green function can be determined
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as

G[p;k](t′,t)

= (−)nδ2n ln Z[ηk,η
∗
k ]

δη∗
f,p1

(t ′1) · · · δη∗
f,pn

(t ′n)δηf,k1 (t1) · · · δηf,kn
(tn)

∣∣∣∣ ηf,k=0
η∗

f,k=0

,

(9)

where

Z[ηk,η
∗
k ] =

∫
D[field] exp(iSc + iSex) (10)

is the generating functional in the path integral formalism.
Here,

∫
D[field] denotes the path integral over all fields in the

system, Sc is the action of the system, and

Sex =
∑
f =r,l

∫
dt

∑
k

[η∗
f,k(t)fk(t) + H.c.] (11)

describes the external sources ηf,k(t) that injects photons into
the waveguide.

Based on the formalism as outlined above, in the next
section we show the exact analytical results for the single-
photon and two-photon scattering processes.

IV. ANALYTIC RESULTS FOR ONE- AND
TWO-PHOTON S MATRICES

In this section, the S matrices are obtained by LSZ
reduction, which leads to the exact results of the single-photon
transmission and the second order correlation functions of the
two outgoing photons.

A. Single-photon transport

For the single-photon case, using the T -matrix element (7),
the Green function (9), and the generating functional (10), we
obtain

Sp;k = Tkδp,k + Rkδp,−k, (12)

where

Tk = 1 − i|VR|2〈0|a 1

k − Heff
a†|0〉 (13)

and

Rk = −iVLV ∗
R〈0|b 1

k − Heff
a†|0〉 (14)

are the transmission and reflection coefficients, respectively.
Here,

Heff = �|e〉〈e| +
(

ωc − i
�R

2

)
a†a +

(
ωc − i

�L

2

)
b†b

+hb†a + σ+(gaa + gbb) + H.c., (15)

is the effective Hamiltonian. Without loss of generality, we
consider �R = �L ≡ �. We notice that the excitation number
N = |e〉〈e| + a†a + b†b commutes with Heff . Thus, for single-
photon scattering, in the single-excitation subspace as spanned
by the basis {|e〉|0〉a|0〉b,|g〉|1〉a|0〉b,|g〉|0〉a|1〉b}, we represent

the effective Hamiltonian as

H
(1)
eff =

⎛
⎜⎝

� ga gb

g∗
a ωc − i �

2 h∗

g∗
b h ωc − i �

2

⎞
⎟⎠ . (16)

Using Eq. (16), the single-photon reflection and transmis-
sion coefficients can be determined as

Rk = −iVLV ∗
R

D(k)
[gag

∗
b + h(k − �)] (17)

and

Tk = 1 − i�

D(k)

[
(k − �)

(
k − ωc + i

�

2

)
− |gb|2

]
, (18)

respectively. Here, we define

D(k) =
(

k − ωc + i
�

2

)[
(k − �)

(
k − ωc + i

�

2

)
− G2

+

]
− g∗

agbh − g∗
bgah

∗ − |h|2(k − �), (19)

and

G+ =
√

|ga|2 + |gb|2. (20)

The results (17) and (18) accord with that obtained in
Refs. [6,7].

Equations (17) and (18) are applicable in the absence of in-
trinsic atomic or cavity dissipation. In the presence of intrinsic
dissipations, the reflection and transmission probabilities |Rk|2
and |Tk|2 are obtained by substitutions � − iγa and ωc − iγc

for � and ωc in Eqs. (17) and ((18) ), where γa and γc are the
intrinsic decay rates of the atom and the cavity, respectively.

B. Two-photon transport

In the subsection, we derive the exact formula for the
scattering wave functions and the second-order correlation
functions of two outgoing photons by the LSZ reduction
approach. By evaluating Eqs. (7), (9), and (10), we obtain
the S-matrix elements in the two-photon Hilbert space:

S
(R)
p1p2;k1k2

= Rk1Rk2 (δp1,−k1δp2,−k2 + δp1,−k2δp2,−k1 )

− i
V 2

LV ∗2
R

2π
δp1+p2,−k1−k2Up1p2;k1k2 (21)

and

S
(T)
p1p2;k1k2

= Tk1Tk2 (δp1,k1δp2,k2 + δp1,k2δp2,k1 )

− i
|VR|4
2π

δp1+p2,k1+k2Wp1p2;k1k2 (22)

for two reflected photons and two transmitted photons. In
Eqs. (21) and (22),

Up1p2;k1k2 = F1(p1,p2; k1,k2) + F1(p1,p2; k2,k1)

+F1(p2,p1; k1,k2) + F1(p2,p1; k2,k1) (23)

and

Wp1p2;k1k2 = F2(p1,p2; k1,k2) + F2(p1,p2; k2,k1)

+F2(p2,p1; k1,k2) + F2(p2,p1; k2,k1). (24)

063818-3



T. SHI AND SHANHUI FAN PHYSICAL REVIEW A 87, 063818 (2013)

Here, we define

F1(p1,p2; k1,k2)

= 〈0|b 1

−p1 − H
(1)
eff

b
1

k1 + k2 − H
(2)
eff

a† 1

k2 − H
(1)
eff

a†|0〉

+ 1

−p1 − k1
〈0|b 1

−p1 − H
(1)
eff

a†b
1

k2 − H
(1)
eff

a†|0〉 (25)

and

F2(p1,p2; k1,k2)

= 〈0|a 1

p1 − H
(1)
eff

a
1

k1 + k2 − H
(2)
eff

a† 1

k2 − H
(1)
eff

a†|0〉

+ 1

p1 − k1
〈0|a 1

p1 − H
(1)
eff

a†a
1

k2 − H
(1)
eff

a†|0〉, (26)

where H
(1)
eff is defined in Eq. (16). In the two-

excitation subspace as spanned by the basis {|g〉|2〉a|0〉b,
|e〉|1〉a|0〉b,|g〉|1〉a|1〉b, |e〉|0〉a|1〉b, |g〉|0〉a|2〉b}, we represent
the effective Hamiltonian

H
(2)
eff =

⎛
⎜⎜⎜⎜⎜⎜⎝

2α
√

2g∗
a

√
2h∗ 0 0√

2ga α + � gb h∗ 0√
2h g∗

b 2α g∗
a

√
2h∗

0 h ga α + �
√

2gb

0 0
√

2h
√

2g∗
b 2α

⎞
⎟⎟⎟⎟⎟⎟⎠

, (27)

where α = ωc − i�/2. In general, direct evaluation of
Up1p2;k1k2 and Wp1p2;k1k2 can be rather complicated. However,
there are cases where Up1p2;k1k2 and Wp1p2;k1k2 can be obtained
exactly in a compact form. We will discuss such examples in
the next section.

The Fourier transformations of matrix elements (21) and
(22) result in wave functions of the two reflected or transmitted
photons:

ψR(x1,x2) = 1

4π

∫
dp1dp2S

(R)
p1p2;k1k2

eip1x1+ip2x2

= 1

2π
e−iExc

[
Rk1Rk2 cos(
kx)

+ 1

2
V 2

LV ∗2
R

∫
d
p

2πi
ei
pxUp1p2;k1k2

]
(28)

and

ψT(x1,x2) = 1

4π

∫
dp1dp2S

(T)
p1p2;k1k2

eip1x1+ip2x2

= 1

2π
eiExc

[
Tk1Tk2 cos(
kx)

+ 1

2
|VR|4

∫
d
p

2πi
ei
pxWp1p2;k1k2

]
, (29)

respectively. Here, we define the total momentum E = k1 +
k2 = p1 + p2, the relative momenta 
k = (k1 − k2)/2 and

p = (p1 − p2)/2, as well as the center of mass coordinate
xc = (x1 + x2)/2 and the relative coordinate x = x1 − x2.
Because Up1p2;k1k2 and Wp1p2;k1k2 are both even functions of 
p ,
ψR(x1,x2) and ψT(x1,x2) are invariant under the permutation
x1 ←→ x2, as required since photons are bosons. From now
on, we only focus on the wave functions for x > 0.

The integral in Eqs. (28) and (29) can be evaluated by
analyzing the analytic properties of the matrix elements
Up1p2;k1k2 and Wp1p2;k1k2 . These matrix elements exhibit three
poles pl = E/2 − αl on the upper half plane, where αl is
the eigenvalue of H

(1)
eff with l = 1,2,3. Here, notice that the

eigenvalues of H
(2)
eff do not contribute to the poles in Up1p2;k1k2

and Wp1p2;k1k2 , because they only associate with the total
energy E, as shown in Eqs. (25) and (26), and we consider
here an incident two-photon state with a fixed total energy.
The residue theorem then leads to the wave functions

ψR(x1,x2) = 1

2π
e−iExc

[
Rk1Rk2 cos(
kx)

+ 1

2
V 2

LV ∗2
R

∑
l

Respl
Up1p2;k1k2e

iplx

]
(30)

and

ψT(x1,x2) = 1

2π
eiExc

[
Tk1Tk2 cos(
kx)

+1

2
|VR|4

∑
l

Respl
Wp1p2;k1k2e

iplx

]
, (31)

where Respl
W (U )p1p2;k1k2 denotes the residue of the function

W (U )p1p2;k1k2 at (p1 − p2)/2 = pl .
From the two-photon wave functions, the second-order

correlations functions for the reflected and transmitted photons
can be obtained as

g
(2)
R (τ ) = 〈ψR|l†(x)l†(x + τ )l(x + τ )l(x)|ψR〉

|〈ψR|l†(x)l(x)|ψR〉|2 ,

(32)

g
(2)
T (τ ) = 〈ψT|r†(x)r†(x + τ )r(x + τ )r(x)|ψT〉

|〈ψT|r†(x)r(x)|ψT〉|2 ,

where r(x) [l(x)] is the Fourier transformation of rk (lk).
Equation (32) can be simplified to yield g(2)

s (τ ) = |ψs(x +
τ,x)|2/ ∫

dy|ψs(x,y)|2, where s denote “R and “T. Therefore,
our theoretical results on the two-photon wave functions can be
compared to the experimental measurement of second-order
correlation functions for this system.

In the presence of intrinsic atomic or cavity dissipation,
Eqs. (30) and (31) remain valid, provided that we substitute
� − iγa and ωc − iγc for � and ωc in Up1p2;k1k2 and Wp1p2;k1k2 .

C. Spectrum of the whispering-gallery-atom system

For this system, its transport properties are closely related to
the spectrum of the resonator coupling to the atom. Therefore,
in this section we provide a brief discussion of the spectrum
of the resonator-atom Hamiltonian Hwg as defined in Eq. (3).
We consider two separate cases:

Case (a). As seen in Eq. (3), the whispering-gallery res-
onator by itself supports a clockwise and a counterclockwise
rotating mode, both coupled to the atom. However, assuming
that either

h = 0, (33)

or

h 
= 0, and
gb

ga

= ±e−iθh , (34)

063818-4



TWO-PHOTON TRANSPORT THROUGH A WAVEGUIDE . . . PHYSICAL REVIEW A 87, 063818 (2013)

ω c

+G

+2G

ω c

+G

ω c

h

ω c

2h

ω c

ω c

     one 

excitation

   space

     two

excitation

    space

    g 0

(a) (b) (c)

g

FIG. 2. (Color online) The schematics for the energy spectra of
the whispering-gallery-atom system, where � is taken as unity. (a)
h = 0; (b) h = 2eiθh , and gb/ga = e−iθh ; (c) h = 5i and gb/ga = 1.
(a) and (b) correspond to the effective single mode case, and (c)
corresponds to the two mode case. In all panels, thin blue lines at
the bottom represent the ground state. Red dashed lines represent a
free mode without atomic excitation. Notice that it forms a linear
spectrum. Green dotted lines represent a mode that consists of one
excitation in the free mode, and one excitation in the JC mode. Solid
blue lines represent all other modes.

it is then possible to form a linear superposition of these modes
that is decoupled from the atom. In Eq. (34), θh = arg h is the
phase of h. In either case, the resonator-atom Hamiltonian can
be rewritten as:

Heff = �|e〉〈e| + ωAA†A + ωBB†B + (G+σ+A + H.c.),

(35)

where the operators A = (gaa + gbb)/G+ and B = (g∗
ba −

g∗
ab)/G+. For the case described by Eq. (33), we have ωA =

ωB = ωc − i�/2. For the case described by Eq. (34), we have
ωA = ωc − i�/2 ± |h| and ωB = ωc − i�/2 ∓ |h|.

It follows from Eq. (35) that the mode B is decoupled
form the atom, while mode A couples to the atom through the
standard JC Hamiltonian

HJC = �|e〉〈e| + ωAA†A + (G+σ+A + H.c.). (36)

For subsequent discussion, we refer to mode A as the “JC
mode” and mode B as the “free mode,”respectively.

The spectrum of the Hamiltonian (35) is displayed in
Fig. 2(a) for the case h = 0, and in Fig. 2(b) for the case when
h 
= 0, and gb/ga = ±e−iθh . In either case, due to the very
different nature of modes A and B, for the incident photons
with energy on resonance with modes A and B, the outgoing
photons must exhibit very different statistics behaviors, which
could be investigated by the second order correlation functions
g(2)

s (τ ).
Case (b). When neither conditions in Eq. (33) nor Eq. (34)

are satisfied, we can no longer form a linear superposition
of the two whispering-gallery modes that decouples with
the atom. The energy spectrum, shown in Fig. 2(c), is more
complicated.

In the next two sections, we study the photon transmissions
for the cases (a) and (b), respectively. In case (a), the atom
effectively couples only to one of the two modes of the
resonator, below we refer to this case as an “effective single-

mode case.”In contrast, for case (b) the atom couples to both
modes, and below we refer to this case as a “two-mode case.”

V. RESULTS FOR THE EFFECTIVE SINGLE-MODE CASE

In this section, we present transport properties of a single
photon and two photons, for the effective single-mode case
as discussed in Section III C, where the resonator supports
a photon mode that is decoupled from the atom. For the
numerical results in this and the next section, we normalize all
quantities that have the dimension of energy with respect to �,
the waveguide-resonator coupling rate. Also, we choose ωc as
the origin of the energy axis.

A. Single-photon transport

For this effective single-mode case, the single-photon
reflection coefficient (14) can be rewritten as

Rk = −i
�gag

∗
b

G2+

[
k − �

(k − �)(k − ωA) − G2+
− 1

k − ωB

]
, (37)

in which the first and second terms describe the contributions
from the JC mode and the free mode, respectively. We show the
single-photon reflection and transmission probabilities |Rk|2
and |Tk|2 in Fig. 3.

Figures 3(a) and 3(b) correspond to the strong coupling case
where � � G+. In Fig. 3(a), we choose h = 0, � = ωc, and
|ga| = |gb|. There are three peaks in the reflection spectrum.
The peak in the center of the spectrum corresponds to the free
mode B. Two other peaks correspond to the JC modes in the
single-excitation subspace.

In Fig. 3(b), we choose � = ωc + |h| and gb/ga = e−iθh .
The reflection spectrum again exhibits three peaks. The central
peak again corresponds to the free mode. Compared to the free
mode in Fig. 3(a) at the frequency ωc, here the frequency of the
free mode is shifted to ωc − |h| due to the intermodal coupling.
The other two peaks correspond to the two JC modes.

In Fig. 3(c), we consider the weak coupling case. The
transmission spectrum exhibits a single dip, and the reflection
spectrum exhibits a single peak, at the atomic frequency.

Based on these results, we conclude that the single-photon
transport consists of two independent scattering processes, i.e.,
the scattering by the JC modes, which have atomic excitation,
and by the free mode that is decoupled from the atom.

B. Two-photon transport

For this effective single-mode case, straightforward calcu-
lations of Eqs. (25) and (26) lead to the analytic results

Up1p2;k1k2 = −2g∗2
b g2

a(E − ωA − �)∏
s=±(E − λ2s)

× (E − 2�)(E − 2ωA) − 4G2
+∏

s=±
∏

i=1,2(ki − λ1s)(pi + λ1s)
(38)

and

Wp1p2;k1k2 = −2|ga|4(E − ωA − �)∏
s=±(E − λ2s)

× (E − 2�)(E − 2ωA) − 4G2
+∏

s=±
∏

i=1,2(ki − λ1s)(pi − λ1s)
. (39)
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FIG. 3. (Color online) Single-photon transmission (red dashed curve) and reflection (blue solid curve) spectra for the effective single-mode
case. All quantities with energy dimensions are normalized to �, and δk is the detuning between the incident photon and ωc : (a) h = 0,
|ga| = |gb| = 5, and � = ωc; (b) |h| = 2, |ga| = |gb| = 5, gb/ga = e−iθh , and the detuning � − ωc = 2 between the atom and the cavity; and
(c) h = 0, |ga | = |gb| = 0.3, and � = ωc.

Here, λ1± and λ2± are the eigenvalues of HJC in the single-
and two-excitation subspaces [24]. Together with Eqs. (38)
and (39), it follows from Eqs. (30) and (31) that the wave
functions of the reflected and transmitted photons are

ψR(x1,x2) = e−iExc

2π

[
Rk1Rk2 cos(
kx) − V 2

LV ∗2
R g∗2

b g2
aF (x)

]
(40)

and

ψT(x1,x2) = eiExc

2π
[Tk1Tk2 cos(
kx) − |VR|4|ga|4F (x)],

(41)

respectively, where we define

F (x) =
∑

s s(E − 2λ1s)ei( E
2 −λ1−s )|x|∏

s=±[(E − λ2s)
∏

i=1,2(ki − λ1s)](λ1+ − λ1−)
.

(42)

The second-order correlation

g
(2)
R (τ ) =

∣∣∣∣1 − V 2
LV ∗2

R g∗2
b g2

aF (τ )

R2
E/2

∣∣∣∣
2

(43)

of the two reflected photons is obtained by applying Eq. (32)
to the wave functions determined from Eq. (40).

We note that Up1p2;k1k2 and Wp1p2;k1k2 , i.e., the two-photon
correlated scattering, have contributions only from the JC
modes. The free mode does not contribute to the functions of
Up1p2;k1k2 and Wp1p2;k1k2 . Nevertheless, the presence of such a
free mode does strongly influence the transport properties. And
as a result, the two-photon correlation properties are different
in this system as compared to the case of the standard JC
model analyzed in [24,27]. Below, using Eqs. (38), (39), and
(43), we highlight such differences in both the strong and the
weak coupling regimes.

C. Strong Coupling Case

Using the closed-form analytic results of the previous
section, we now consider the two-photon transport properties,
for the strong-coupling cases corresponding to the systems
shown in Figs. 3(a) and 3(b).

The two-photon background fluorescence BR =
|VR|4|VL|4|Up1p2;k1k2 |2/4π2 of the reflected photons are

shown in Fig. 4. BR displays a single peak at 
k = 
p = 0
when the total energy of the incident photons approaches
2Reλ1± [Figs. 4(a) and 4(b)], while the two-photon
background fluorescence splits into four peaks when the
total energy of the incident photons deviates from 2Reλ1±
[Figs. 4(c) and 4(d)].

In general, the background fluorescence peaks when one of
the incident or outgoing photons has an energy that coincides
with a single-excitation eigenstate [24]. Examining Eqs. (38)
and (39), we see that the poles occur at 
k = ±(E/2−Reλ1s)
and 
p = ±(E/2−Reλ1s). Thus, one might expect eight
peaks in the background fluorescence spectra in the general

FIG. 4. (Color online) The two-photon background fluorescence
for the effective single-mode case. All quantities with a dimension of
energy are normalized with respect to �: (a) the system parameters
are the same as those in Fig. 3(a), and the detuning E − 2ωc = −14;
(b) the system parameters are the same as those in Fig. 3(b), and the
detuning E − 2ωc = −10; (c) the system parameters are the same
as those in Fig. 3(a), and the detuning E − 2ωc = 13; and (d) the
system parameters are the same as those in Fig. 3(b), and the detuning
E − 2ωc = 17.
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FIG. 5. (Color online) The second order correlation functions of
two reflected photons for the effective single-mode case. The two
incident photons have the same energy E/2. All quantities with a
dimension of energy are normalized with respect to �, and the system
parameters for the left and the right panels are the same as those in
Figs. 3(a) and 3(b), respectively. In (a) and (b), the second order
correlation function and the reflection coefficient are depicted by the
solid and dashed curves, respectively. (c) The solid (black) and dashed
(blue) curves denote g

(2)
R (τ ) for E/2 − ωc = ±7 (a single photon

being resonant with the JC mode) and E/2 − ωc = 0 (a single photon
being resonant with the free mode), respectively. (d) The solid (black)
and blue (dashed) curves denote g

(2)
R (τ ) for E/2 − ωc = −5,9 (a

single photon being resonant with the JC mode) and E/2 − ωc = −2
(a single photon being resonant with the free mode), respectively.

case. However, four of these poles turn out to have very
small residues, resulting in the presence of only four peaks
in Figs. 4(c) and 4(d).

In Fig. 5, we plot the second-order correlation (43) for
the two reflected photons. Here, we consider the same two
systems in Fig. 3, and assume that the two incident photons
have the same single-photon energy of E/2. Because F (0)
has the poles at E/2 = λ2±/2 and λ1±, the Fig. 5(a) shows
the two peaks at λ2±/2 and two valleys at λ1±. In Fig. 3,
we saw that the systems exhibit strong resonant reflection for
a single photon, when the single-photon energy is resonant
with either the JC modes or the free modes. However, in
the presence of two incident photons, the statistics of the
outgoing photons at these resonances are very different. As
we see in Fig. 5, when the single-photon energy coincides
with the energy of one of JC modes, e.g., E/2 − ωc ∼ −7
in Fig. 5(c) and E/2 − ωc ∼ −5 in Fig. 5(d), we observe
pronounced antibunching behavior with g

(2)
R (0) < g

(2)
R (τ ) � 1,

and therefore a strong photon-blockade effect. On the other
hand, neither the super-Possonian or the sub-Possonian light is
generated when the single-photon energy coincides with that of
the free mode, e.g., E/2 − ωc ∼ 0 in Fig. 5(c) and E/2 − ωc ∼
−2 in Fig. 5(d). We emphasize that this behavior, that different
resonances in the single-photon spectrum have very different
correlation behaviors, is unique in the whispering-gallery

resonator system, and certainly does not occur in the standard
JC model in the strong-coupling regime.

The presence or absence of the photon-blockade effect at the
different resonances is closely related to the energy spectrum
that we analyzed in Figs. 2(a) and 2(b). Since the free mode B is
decoupled from the atom, its energy spectrum E = n(ωc ∓ |h|)
is linear. Thus, there is no photon-blockade effect when the
incident photon is resonant with the free mode. On the other
hand, the spectrum of the JC mode is highly nonlinear. Thus,
while a single photon on resonance with one of the JC modes is
reflected, two such photons can not be simultaneously reflected
since the total energy is off resonance in the two-excitation
subspace.

D. Weak coupling case

In this section, we consider the photon-blockade effect in
the weak coupling regime. For this purpose, we choose the
same system as in Fig. 3(c), where the single-photon trans-
mission spectrum exhibits a single dip located at the atomic
resonance frequency. We consider two incident photons, both
on resonance with the atom.

According to the general result (43), the second order
correlation function for the two reflected photons reads

g
(2)
R (τ ) = |1 − �2g2F (τ )|2, (44)

when the energy E/2 of each incident photon is resonant with
� = ωc. Using Eq. (44), we show g

(2)
R (τ ) for h = 0,ga = gb ≡

g = 0.3, and the changes of g
(2)
R (0) from the strong coupling

case to the weak coupling case in Fig. 6. It is clear that g
(2)
R (τ )

displays the manifest photon-blockade effects in the weak
coupling limit.

It has been shown in Ref. [27] that in a system with
a waveguide side coupled to a standard Jaynes-Cummings
model with a single-mode resonator, the system also exhibits a
photon-blockade effect in the weak-coupling limit. However,
in the system of Ref. [27], in the weak-coupling limit, the
single-photon transmission peaks at the atomic resonance
frequency, and photon blockade occurs for transmitted photons
when the two incident photons are on resonance with the atom.
In contrast, in the present case the photon blockade occurs
for reflected photons when the two incident photons are on
resonance with the atom. Thus, the presence of the free modes
in the whispering-gallery mode resonator system in fact has a

(a) (b)
τ g

0.3g =

(2) ( )Rg τ (2) (0)Rg

FIG. 6. (Color online) The second order correlation functions of
reflected photons, where � is taken as units: (a) the weak coupling
case g = 0.3; and (b) the change of g

(2)
R (0) from the strong coupling

case to the weak coupling case.
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FIG. 7. (Color online) The single-photon reflection and the
second order correlation functions, where � is taken as unity, |h| = 5,
θh = π/2, and other parameters are the same as those in Fig. 3(b):
(a) the single photon reflection; and (b) the second order correlation
functions ln g

(2)
R (0). Here, the black curves denote g

(2)
R (0) = 1.0.

very important consequence for the transport and correlation
properties of this system. The similar photon-blockade effects
in the weak coupling limit have also been found recently in
the bimodal system [33].

VI. RESULTS FOR THE TWO-MODE CASE

In this section, we use the general formula derived in
Sec. III to study the single- and two-photon transports for the
two-mode case. In the presence of the intermodal coupling,
i.e., h 
= 0, we see in Eq. (34) that except for a very special
choice of the relative phase of ga and gb, corresponding to
one special choice of atom position, in general one can not
form a photon mode that decouples from the atom. We define
θ0 = arg(gb/ga). The analytic results for the single-photon
intensity response function and the two-photon correlation
function depend only on θ0 + θh. Thus, in the numerical
results, without loss of generality we fix θh = π/2, and vary
θ0 from 0 to 2π .

In the two-mode case, where the atom couples to two-
photon modes, both the single-photon reflection [Fig. 7(a)],
and in the two-photon case, the statistics of the outgoing photon
[Fig. 7(b)] become dependent upon θ0, and hence the position
of the atom. Therefore, by controlling the position of the atom,
one can tune both the single-photon transport and two-photon
correlation properties.

Similar to the effective one-mode case, here with the choice
of parameters that place the system in the strong-coupling
regime, the single-photon reflection also exhibits three

0 5 10 15 20
0

1

τ

(a) (b)

−3

0

3

(2)ln (0)Rg
2

kR

15− 0 15

/ 2 cE ω−

FIG. 8. (Color online) The second order correlation functions
of two reflective photons, where |h| = 5, θh = π/2, θ0 = 0, and �

is taken as unity, (a) the solid and dashed curves denote ln g
(2)
R (0)

and the single-photon reflection, respectively; and (b) the solid
(black), dashed (blue), and dotted (red) curves denote the g

(2)
R (τ )

for the incident resonant energies E/2 − ωc = −7.39, 1, and 10.84,
respectively. Other parameters are the same as those in Fig. 3(b).

peaks [Fig. 8(a), dashed line]. Unlike the effective one-mode
case, however, here all three peaks exhibit the photon-blockade
effect. In Fig. 8(a), we plot g(2)(0) for the two reflected
photons, when two photons having the same energy E/2 are
incident upon the system. We see strong resonant behavior of
g(2)(0) at the energy corresponding to the three single-photon
eigenmodes. The g(2)(τ ) at these three energies are plotted
in Fig. 8(b), where we see a strong photon-blockade effect
with g(2)(0) � 1. In the two-mode case, all eigenmodes have
atomic excitation and hence contribute to correlated transport.

VII. CONCLUSION

In summary, in this paper we studied the two-photon
transport of the whispering-gallery-atom system by the LSZ
reduction approach. We considered the cases of systems with
or without intermodal mixing, and presented exact results on
the second-order correlation functions of the two reflected
photons, which exhibited the photon-blockade effect in both
the strong coupling and the weak coupling cases. We expect the
LSZ formalism may be developed to treat the photon-blockade
effect in other systems as well, including the optomechanical
system that was considered in [34–37].
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