Foundations and Trends® in Optimization
Vol. 1, No. 1 (2014) 1-72

© 2014 S. Boyd, M. Mueller, B. O’Donoghue, n‘w

Y. Wang
DOI: 10.1561/2400000001 the essence of knowledge

Performance Bounds and Suboptimal Policies for
Multi-Period Investment

Stephen Boyd Mark T. Mueller
Stanford University Cambridge, MA
boyd@stanford.edu mark.t.mueller@mac.com

Brendan O’Donoghue Yang Wang

Stanford University Stanford University

bodonoghue850gmail.com yang10240gmail . com

Contents

Introduction 2
1.1 Overview 2
1.2 Priorand related work 5)
1.3 Outline 8
Stochastic Control Formulation

2.1 Model 9
2.2 Stage cost function 13
2.3 Post-trade constraints L. 13
2.4 Transaction and position costs 18
2.5 Quadratic and QP-representable stage cost 21
Optimal Policy 22
3.1 Dynamic programming 22
3.2 Quadraticcase 23
3.3 No transaction cost case 25
Performance Bounds 27
4.1 Bellman inequalities 27
42 LMl conditions. 28
43 Summary 29

Approximate Dynamic Programming

5.1 Basicidea
5.2 Quadratic approximate dynamic programming
5.3 ADP based on quadratic underestimators . .

6 Model Predictive Control
6.1 Policy
6.2 Implementation
6.3 Interpretation as an ADP policy
6.4 Truncated MPC

7 Numerical Examples
7.1 Problemdata
7.2 Computation
7.3 Performance bounds and policy performance .
7.4 Simulation results and trajectories
7.5 Robustness to model parameters
7.6 Robustness to return distribution

8 Conclusions

Appendices

A Expectation of Quadratic Function

B Partial Minimization of Quadratic Function

C S-Procedure

D LMI Sufficient Condition for Bellman Inequality

E No-Trade Region

References

30
30
31
32

33
33
34
35
36

38
38
40
42
44
46
47

50

54

55

57

59

61

63

65

Abstract

We consider dynamic trading of a portfolio of assets in discrete periods
over a finite time horizon, with arbitrary time-varying distribution of
asset returns. The goal is to maximize the total expected revenue from
the portfolio, while respecting constraints on the portfolio such as a
required terminal portfolio and leverage and risk limits. The revenue
takes into account the gross cash generated in trades, transaction costs,
and costs associated with the positions, such as fees for holding short
positions. Our model has the form of a stochastic control problem with
linear dynamics and convex cost function and constraints. While this
problem can be tractably solved in several special cases, such as when
all costs are convex quadratic, or when there are no transaction costs,
our focus is on the more general case, with nonquadratic cost terms
and transaction costs.

We show how to use linear matrix inequality techniques and
semidefinite programming to produce a quadratic bound on the value
function, which in turn gives a bound on the optimal performance.
This performance bound can be used to judge the performance ob-
tained by any suboptimal policy. As a by-product of the performance
bound computation, we obtain an approximate dynamic programming
policy that requires the solution of a convex optimization problem, of-
ten a quadratic program, to determine the trades to carry out in each
step. While we have no theoretical guarantee that the performance of
our suboptimal policy is always near the performance bound (which
would imply that it is nearly optimal) we observe that in numerical
examples the two values are typically close.

S. Boyd, M. Mueller, B. O’Donoghue, Y. Wang. Performance Bounds and
Suboptimal Policies for Multi-Period Investment. Foundations and Trends® in
Optimization, vol. 1, no. 1, pp. 1-72, 2014.

DOI: 10.1561,/2400000001.

1

Introduction

1.1 Overview

In this paper we formulate the discrete-time finite horizon time-varying
multi-period investment problem as a stochastic control problem. By
using state variables that track the value of the assets, instead of more
traditional choices of states such as the number of shares or the fraction
of total value, the stochastic control problem has linear (but random)
dynamics. Assuming that the costs and constraints are convex, we ar-
rive at a linear convex stochastic control problem.

This problem can be effectively solved in two broad cases. When
there are no transaction costs, the multi-period investment problem
can be reduced to solving a set of standard single-period investment
problems; the optimal policy in this case is to simply rebalance the
portfolio to a pre-computed optimal portfolio in each step. Another
case in which the problem can be effectively solved is when the costs
are quadratic and the only constraints are linear equality constraints. In
this case standard dynamic programming (DP) techniques can be used
to compute the optimal trading policies, which are affine functions of
the current portfolio. We describe these special cases in more detail in
§3.3 and §3.2. The problem is also tractable when the number of assets

1.1. Overview 3

is very small, say two or three, in which case brute force (numerical)
dynamic programming can be used to compute an optimal policy.

Most problems of interest, however, include significant transaction
costs, or include terms that are not well approximated by quadratic
functions. In these cases, the optimal investment policy cannot be
tractably computed. In such situations, several approaches can be used
to find suboptimal policies, including approximate dynamic program-
ming (ADP) and model predictive control (MPC). The performance of
any suboptimal policy can be evaluated using Monte Carlo analysis,
by simulation over many return trajectories. An obvious practical (and
theoretical) question is, how suboptimal is the policy? In this paper we
address this question.

Using linear matrix inequality (LMI) techniques widely used in con-
trol system analysis and design [18, 35, 80], we construct a (numerical)
bound on the best performance that can be attained, for a given prob-
lem. The method requires the construction and solution of a semidefi-
nite program (SDP), a convex optimization problem involving matrix
inequalities. We can compare the bound on performance with the per-
formance attained by any suboptimal policy; when they are close, we
conclude that the policy is approximately optimal (and that the per-
formance bound is nearly tight). Even when the performance bound
and suboptimal policy performance are not close, we at least have a
bound on how suboptimal our suboptimal policy can be.

The performance bound computation yields a quadratic approxima-
tion (in fact, underestimator) of the value functions for the stochastic
control problem. These quadratic value function approximations can be
used in an ADP policy, or as the terminal cost in an MPC policy. While
we have no a priori guarantee that the gap between the performance
bound and the performance of the ADP policy will always be small,
simulations show that the ADP and MPC policies achieve performance
that is often nearly optimal.

Our methods for computing the performance bound, as well as
implementing the ADP and MPC suboptimal policies, rely on (nu-
merically) solving convex optimization problems, for which there are
efficient and reliable algorithms available [20, 72, 77, 73, 102]. The per-

4 Introduction

formance bound computation requires solving SDPs [20, 95|, which can
be done using modern interior-point cone solvers such as SeDuMi or
SDPT3 [88, 92, 94]. Parser-solvers such as CVX or YALMIP [40, 58]
allow the user to specify the SDPs in a natural high-level mathematical
description form, greatly reducing the time required to form and solve
the SDPs. The SDPs that we solve involve T" matrices of size n x n,
where n is the number of assets, and T is the trading period hori-
zon. These SDPs can be challenging to solve (depending on n and T,
of course), using generic methods; but this computation is done once,
off-line, before trading begins.

Evaluating the ADP suboptimal policy in each period (i.e., deter-
mining the trades to execute) requires solving a small and structured
convex optimization problem with (on the order of) n scalar variables.
Solving these problems using generic solvers might take seconds, or
even minutes, depending on the problem size and types of constraints
and objective terms. But recent advances have shown that if the solver
is customized for the particular problem family, orders of magnitude
speed up is possible [64, 65, 63, 62, 99]. This means that the ADP
trading policies we design can be executed at time scales measured in
milliseconds or microseconds for modest size problems (say, tens of as-
sets), even with complex constraints. In addition, the trading policies
we design can be tested and verified via Monte Carlo simulation very
efficiently. For example, the simulation of the numerical examples of the
ADP policies reported in this paper required the solution of around 50
million quadratic programs (QPs). These were solved in a few hours
on a desktop computer using custom solvers generated by CVXGEN,
a code generator for embedded convex optimization [64].

Evaluating the MPC policy also requires the solution of a structured
convex optimization problem, with (on the order of) nT variables. If
a custom solver is used, the computational effort required is approxi-
mately T times the effort required to evaluate the ADP policy. One ma-
jor advantage of MPC is that it does not require any pre-computation;
to implement the ADP policy, we must first solve a large SDP to find
the approximate value functions. MPC can thus directly incorporate
real-time signals such as changes in future return statistics.

1.2. Prior and related work 5

1.2 Prior and related work

Portfolio optimization has been studied and used for more than 60
years. In this section our goal is to give a brief overview of some of
the important research in this area, focussing on work related to our
approach. Readers interested in a broader overview of the applications
of stochastic control and optimization to economics and finance should
refer to, e.g., [1, 34, 45, 76, 90, 104].

Single-period portfolio optimization

Portfolio optimization was introduced by Markowitz in 1952 [61]. He
formulated a single period portfolio investment problem as a quadratic
optimization problem with an objective that trades off expected return
and variance. Since this first work, many papers have extended the sin-
gle period portfolio optimization framework. For example, Goldsmith
[38] is one of the first papers to include an analysis of the effect of
transaction costs on portfolio selection. Modern convex optimization
methods, such as second-order cone programming (SOCP), are applied
to portfolio problems with transaction costs in [57, 56]. Convex opti-
mization methods have also been used to handle more sophisticated
measures of risk, such as conditional value at risk (CVaR) [82, 50].

Dynamic multi-period portfolio optimization

Early attempts to extend the return-variance trade-off to multi-period
portfolio optimization include [91, 71]. One of the first works on multi-
period portfolio investment in a dynamic programming framework is
by Merton [68]. In this seminal paper, the author considers a problem
with one risky asset and one risk-free asset; at each continuous time in-
stant, the investor chooses what proportion of his wealth to invest and
what to consume, seeking to maximize the total utility of the wealth
consumed over a finite time horizon. When there are no constraints or
transaction costs, and under some additional assumptions on the in-
vestor utility function, Merton derived a simple closed-form expression
for the optimal policy. In a companion paper [84], Samuelson derived
the discrete-time analog of Merton’s approach.

6 Introduction

Constantinides [26] extended Samuelson’s discrete-time formulation
to problems with proportional transaction costs. In his paper, Constan-
tinides demonstrated the presence of a convex ‘no-trade cone’. When
the portfolio is within the cone the optimal policy is not to trade; out-
side the cone, the optimal policy is to trade to the boundary of the
cone. (We will see that the policies we derive in this paper have sim-
ilar properties.) Davis and Norman [29] and Dumas and Lucian [33]
derived similar results for the continuous-time formulation. In [28], the
authors consider a specific multi-period portfolio problem in continu-
ous time, where they derive a formula for the minimum wealth needed
to hedge an arbitrary contingent claim with proportional transaction
costs. More recent work includes [93, 23, 24]; in these the authors de-
velop affine recourse policies for discrete time portfolio optimization.

Log-optimal investment

A different formulation for the multi-period problem was developed by
Kelly [49], where it was shown that a log-optimal investment strategy
maximizes the long-term growth rate of cumulative wealth in horse-
race markets. This was extended in [21] to general asset returns and
further extended to include all frictionless stationary ergodic markets
in [3] and [27]. More recently, Iyengar [44] extended these problems to
include proportional transaction costs.

Linear-quadratic multi-period portfolio optimization

Optimal policies for unconstrained linear-quadratic portfolio problems
have been derived for continuous-time formulations by Zhou and Li
[103], where the authors solve a continuous-time Riccati equation to
compute the value function. In [53] this was extended to include a long-
only constraint. Skaf and Boyd [87], and Gérleanu and Pederson [37],
point out that the multi-period portfolio optimization problem with
linear dynamics and convex quadratic objective can be solved exactly.
For problems with more complex objective terms, such as proportional
transaction costs, Skaf and Boyd use the value functions for an associ-
ated quadratic problem as the approximate value functions in an ADP

1.2. Prior and related work 7

policy. In [43] the authors formulate a multi-period portfolio problem
as a linear stochastic control problem, and propose an MPC policy.

Optimal execution

An important special case of the multi-period problem is the optimal
execution problem, where we seek to execute a large block of trades
while incurring as small a cost as possible. Bertsimas and Lo [16] model
price impact, in which trading affects the asset prices, and derive an
optimal trading policy using dynamic programming methods. Almgren
and Chriss [4] address the optimal execution problem, including volatil-
ity of revenue. They show that the optimal policy can be obtained with
additional restrictions on the price dynamics.

Performance bounds

In problems for which an optimal policy can be found, the optimal per-
formance serves as a (tight) bound on performance. The present paper
focuses on developing a numerical bound on the optimal performance
for problems for which the optimal policy cannot be found.

Brown and Smith [22] compute a bound on optimal performance
and derive a heuristic policy that achieves performance close to the
bound. Their bound is given by the performance of an investor with
perfect information about future returns, plus a clairvoyance penalty.

In [41], the authors construct an upper bound on a continuous time
portfolio utility maximization problem with position limits. They do
this by solving an unconstrained ‘fictitious problem’ which provides an
upper bound on the value function of the original problem.

In [70], the authors describe a class of linear rebalancing policies for
the discrete-time portfolio optimization problem. They develop several
bounds, including a bound based on a clairvoyant investor and a bound
obtained by solving an unconstrained quadratic problem.

Desai et al. [32] develop a bound for an optimal stopping problem,
which is useful in a financial context for the pricing of American or
Bermudan derivatives amongst other applications. The bound is de-
rived from a dual characterization of optimal stopping problems as
optimization problems over the space of martingales.

8 Introduction

1.3 Outline

We structure our paper as follows. In chapter 2 we formulate a general
multi-period investment problem as a linear convex stochastic control
problem, using somewhat nontraditional state variables, and give exam-
ples of (convex) stage cost terms and portfolio constraints that arise in
practical investment problems, as well as mentioning some nonconvex
terms and constraints that do not fit our model. In chapter 3 we review
the dynamic programming solution of the stochastic control problem,
including the special case when the stage costs are convex quadratic.
In chapter 4 we give our method for finding a performance bound in
outline form; the full derivations are pushed to appendices A-C. We
describe MPC in chapter 6. In chapter 7 we report numerical results
for several examples, using both ADP and MPC trading policies.

2

Stochastic Control Formulation

2.1 Model

Portfolio. We manage a portfolio of n assets over a finite time horizon,
which is divided into discrete time periods t = 0,1,...,7T, which need
not be uniformly spaced in real time. We let 2; € R"™ denote the port-
folio (or vector of positions) at time ¢, where (x); is the dollar value of
asset i at the beginning of time period ¢, with (z;); < 0 meaning a short
position in asset 4. For discussion on the relative merits of tracking the
value of the assets rather than the number of units of each asset see,
e.g., [46, 48, 47, 85]. The dollar value is computed using the current
reference price for each asset, which can differ from the current prices
in an order book, such as the bid or ask price; a reasonable choice is the
average of the bid and ask prices. We assume that the initial portfolio,
To, is given. One of the assets can be a risk-free or cash account, as in
a traditional formulation, but since we will be separately tracking cash
that enters and leaves the portfolio, this is not needed.

Trading. We can buy and sell assets at the beginning of each time
period. We let u; € R denote the dollar values of the trades: (us); > 0
means we buy asset i at the beginning of time period ¢ and (u;); < 0

9

10 Stochastic Control Formulation

means we sell asset ¢ at the beginning of time period t. We define the
post-trade portfolio as

xf:xt—i—ut, t=0,1,...,T,

which is the portfolio in time period t immediately after trading. For
future reference, we note that 17z, is the total value of the portfolio
(before trading), 17u; is the total cash we put into the portfolio to
carry out the trades (not including transaction costs, discussed below),
and 17z} is the total value of the post-trade portfolio, where 1 denotes
the vector with all entries one.

Investment. The post-trade portfolio is held until the beginning of
the next time period. The portfolio at the next time period is given by

i1 = Ry, t=0,1,...,T—1, (2.1)

where Ryy1 = diag(riy1) € R™" is the diagonal matrix of asset re-
turns, and 7,41 is the vector of asset returns, from period ¢ to period
t+ 1. The return 7,4, is of course not known at the beginning of period
t, so the choice of trades u; must be made without knowledge of ry41.
The dynamics (2.1) is linear (but unknown at time ¢); this is not the
case when other state variables are chosen, such as the number of shares
of each asset, or the fractional value of each asset in the portfolio.

Return model. We assume that 7, are independent random (vector)
variables, with known distributions, with mean and covariance

Er =7y, E(r—7)(r—7)" =%, t=1,...,T.

Our assumption of independence of returns in different periods means
that our formulation does not handle phenomena such as momentum
or mean-reversion, or more sophisticated models for variance such as
GARCH. The returns are typically nonnegative, but we will not use this
assumption in the sequel. Time variation of the return distribution can
be used to model effects such as predictable time variation in volatility,
or non-uniformly spaced time periods. We note for future use that the
total value of the portfolio after the investment period (or equivalently,

at the beginning of the next time period) is given by 172, | = rﬁ_lx;“.

2.1. Model 11

Trading policy. The trades are determined in each period by the trad-
ing policy ¢, : R" — R™

ut:¢t<xt)7 tZO,...,T.

Thus, at time ¢, the trades u; depend only on the portfolio positions
x¢. (For the problem we consider, it can be shown that there is no
advantage to including past state values, or past returns, in the trading
policy; see, e.g., [10, 13, 14].) For fixed ¢y, ..., ¢p, the portfolio and
trades xg, ...,z and ug, ..., ur become random variables. Since g is
given, we can assume that ¢g is a constant function.

Cash in. The amount of cash we put into the portfolio at the be-
ginning of time period t is given by ¢ (x¢,u), t = 0,...,T, where
:R" x R" - R U {oo} is a closed convex function we will describe
in detail in §2.2; it includes the gross cost of (or revenue from) trades,
transaction costs, and other costs associated with holding the portfolio.
We will refer to ¢;(x¢, u;) as the stage cost for period ¢, and —¢(x¢, uy)
as the revenue or income from the portfolio in time period t. We refer
to bp(xp,ur) as the terminal cost. Infinite values of ¢;(xy, u;) are used
to encode hard constraints on the portfolio, described in detail in §2.2,
such as leverage or risk limits or a required final portfolio.

Time variation in the stage cost functions can be used to model
many effects. Simple examples include handling terminal costs and con-
straints, and including a discount factor to take into account the time
value of the revenue in different periods. We can also model predictable
variation in transaction cost parameters, or enforce leverage or risk lim-
its that vary with time.

Objective. Our overall objective is the expected total cost,

T
J = EZ&(H?t,ut),
t=0
where the expectation is over the returns sequence ri,...,rr, and

ur = ¢¢(xy). (We assume the expectations exist.) Thus —J is the to-
tal expected revenue from the portfolio. If a discount factor has been

12 Stochastic Control Formulation

incorporated into the stage cost functions, —J is the expected present
value of the revenue stream.

Stochastic control. The optimal investment problem is to determine
a trading policy ¢¢, t =0, ..., T, that minimizes J, 7.e., maximizes the
expected total revenue. We let J* denote the optimal value of .J, and
we let ¢;, t =0,...,7T, denote an optimal policy. This is a stochastic
control problem with linear dynamics and convex stage cost. The data
for the problem is the distribution of r;, the stage cost functions ¢, and
the initial portfolio xg.

Our goal here is not to address the many technical conditions arising
in stochastic control (some of which can have ramifications in practical
problems). For example, the problem may be unbounded below, i.e.,
we can find policies that make the total expected revenue arbitrarily
negative, in which case J* = —oo. As another example, the optimal
value J* can be finite, but a policy that achieves the optimal value
does not exist. For discussion of these and other pathologies, and more
technical detail, see [10, 13, 14].

Real-time signals. Our model assumes that the return statistics (but
of course not the returns) are known ahead of time, over the whole
trading period. Indeed, we will see that the optimal trading policies,
as well as our suboptimal trading policies, depend on all values of 7;
and ;. Thus, our formal model does not allow for the use of real-
time signals in the return distribution model, i.e., the use of real-time
data, financial or non-financial, to update or predict the future return
distributions during the trading period.

Signals can be formally incorporated into the model, for example,
by assuming that the returns are independent, given the current signal
values. While much of what we discuss in this paper can be generalized
to this setting, it is far more complex, so we defer it to a future paper.
As a practical matter, however, we note that the trading algorithms we
describe can readily incorporate the use of signals, at least informally.
We simply re-compute the policies whenever our estimates of the future
return statistics change due to signals.

2.2. Stage cost function 13

2.2 Stage cost function

In this section we detail some of the possible forms that the stage cost
function can take. Its general form is

1Tu 4+ Yy(z,u) z+u €
o0 otherwise,

l(z,u) = {

where C; € R" is the post-trade portfolio constraint set, and)y :
R" x R®™ — R is a cost, with units of dollars, for period t. We assume
that ¢; and C; are closed convex, with C; nonempty. The term 17w
is the gross cash we put into the portfolio due to the trades, without
transaction costs. The term 1 (z, u) represents any additional amount
we pay for the portfolio and trades. The post-trade constraint set C;
will capture constraints on the post-trade portfolio. We will refer to vy
as the transaction cost function, even though it can also include terms
related to positions. The transaction cost)y is typically nonnegative,
but we do not need to assume this in the sequel; we intepret —y (¢, us)
as additional revenue when 1, (x, u;) is negative.

2.3 Post-trade constraints

The post-trade constraint set (or more simply, the constraint set) C;
defines the set of acceptable post-trade portfolios. Since C; is nonempty,
it follows that for any value of x;, we can find a u; for which

x;r:act—i—utect.

We impose explicit constraints only on the post-trade portfolio x;",
and not on the portfolio itself. One reason is that we have control
over the post-trade portfolio, by buying and selling (i.e., through u;);
whereas the (pre-trade) portfolio z; is determined by the (random)
return r; in the previous period, and is not directly under our control.
In many cases a constraint on the post-trade portfolio implies a similar
constraint on the portfolio, with some reasonable assumption about the
return distribution (such as nonnegativity). For example, if we impose
a nonnegativity (long-only) constraint on ;" and the returns are always
nonnegative, then the portfolio values x; are also nonnegative.

14 Stochastic Control Formulation

We now describe examples of portfolio constraints that are useful
in practice; we can of course impose any number of these, taking C; to
be the intersection.

Position limits. The portfolio may be subject to constraints on the
post-trade positions, such as minimum and maximum allowed positions
for each asset:

x]rtnin S CL'?_ S x;’naxj
min

and x™Max

where the inequalities are elementwise and x are given
(vectors of) minimum and maximum asset holdings, given in dollars.
For this constraint C; is a box in R". One special case is z;” > 0, which
means our (post-trade) portfolio can include only long positions. This
corresponds to C; = R}, where R is the set of nonnegative reals.

Position limits can also be expressed relative to the total portfolio
value; for example,

xf < (1T:v;r)at,

with oy € R™ with positive entries, requires the value in asset ¢ does
not exceed the fraction (o); of the total portfolio value. This constraint
is convex, with C; a polyhedron.

Some simple position limits that are not convex, and so cannot be
used in our model, include minimum nonzero positions, or the restric-
tion that assets are held in integer multiples of some block size (such
as 100 shares).

Total value minimum. We can require that the post-trade portfolio

maintain minimum total value v{"", which is the constraint 17z;” >

(say,
because of a very unfavorable return in the last period), we are required

v When the pre-trade portfolio value falls 172; below v™®
to put cash into the portfolio to bring the total value back up to vy,
Several other portfolio constraints described below indirectly impose
a minimum post-trade portfolio value, typically, zero. This constraint
corresponds to C; being a halfspace.

Terminal portfolio constraints. The simplest terminal constraint is

s term is a given portfolio, i.e., Cr = {z**™}. (This

zy = '™ where g™

2.3. Post-trade constraints 15

constraint is the same as fixing the last trade to be up = %™ — zp.)

In this case our multi-period trading problem is the optimal execution
problem: We seek the policy that starts from the given initial portfolio
at t = 0, achieves the given final (post-trade) portfolio at ¢ = T', while
minimizing expected cost. When z is nonzero and z'*™ = 0, the
problem is to ‘unwind’ the positions xg, i.e., to cash out of the market
over the given period, maximizing expected revenue. When xy = 0 and
x'™ is some given portfolio, the problem is to make investments over
the period to achieve a desired portfolio, at minimum cost. A special

term — () which means the trading starts and ends with

case is xg = T
no holdings.

Short position and leverage limits. In the simplest case we impose a
fixed limit on the total short position in the post trade portfolio:

1 () < 5,

where (z)_ = max(—=z,0) and Sj** > 0 is the maximum allowed total
short position. This constraint is convex (in fact, polyhedral), since the
lefthand side is a piecewise linear convex function.

We can also limit the total short position relative to the total value
of the post-trade portfolio:

17 (@) < mdTay, (2.2)

where 7; > 0, sets the maximum ratio of total short position to total
portfolio value. This constraint is convex (in fact, polyhedral), since the
lefthand side is a piecewise linear convex function, and the righthand
side is a linear function of ac;r This limit requires the total post-trade
value to be nonnegative; for n; = 0 it reduces to a long-only constraint.

The limit (2.2) can be written in several other ways, for example,
it is equivalent to

T Nt T
V@) < g (@)

where (x)4+ = max(z,0). In other words, we limit the ratio of the total
short to total long positions.

16 Stochastic Control Formulation

A traditional leverage limit, which limits the ratio of the total short
plus total long positions to the total assets under management, can be
expressed as

Il [l = 17 () - + 17 ()4 < LA,

where L; > 0 is the leverage limit, and A > 0 is the total value of the

assets under management. (As a variation on this, we can replace A
with A+ 172})

Sector exposure limits. We can include the constraint that our post-
trade portfolio has limited exposure to a set of economic sectors (such
as manufacturing, energy, technology) or factors (determined by sta-
tistical analysis of returns). These constraints are expressed in terms
of a matrix F, € R¥*™, called the factor loading matriz, that relates
the portfolio to a vector of k sector exposures: (Fiz;); is the sector
exposure to sector j. A sector exposure limit can be expressed as

min + max
st < Frxm < s,

where s/ and s"3% are (vectors of) given lower and upper limits on
sector exposures. A special case is sector neutrality, which is the con-
straint
(Fiz)); =0 (2.3)

(for sector j neutrality). Sector exposure limits are linear inequality
constraints, and sector neutrality constraints are linear equality con-
straints on ;"

Sector limits can also be expressed relative to the total portfolio
value, as in

Fab < 1Tz,

which limits the (positive) exposure in sector ¢ to no more than the
fraction (ay); of the total portfolio value.

Concentration limit. A concentration limit requires that no more

than a given fraction of the portfolio value can be held in some given

fraction (or just a specific number p) of assets. This can be written as
P

Z(:vt*)m < pg1taf,

i=1

2.3. Post-trade constraints 17

where 3; > 0, and the notation af;) refers to the ith largest element of
the vector a. The lefthand side is the sum of the p largest post-trade
positions, which is a convex function of :nz“ , and the righthand side
is a linear function, so this constraint is convex (in fact, polyhedral)
[20, §3.2.3]. This constraint implies that the post-trade portfolio has
nonnegative value.

Variance and standard deviation risk limits. We can limit the risk
in the post-trade portfolio, using the traditional measure of risk based
on variance of post-trade portfolio value over the next period, that is,
the variance given x; and wuy,

var(Vzp | 4f) = (o) Sz
This is a (convex) quadratic function of z;". A simple risk limit can
then be expressed as
(@) Sz <,

where 7y > 0 is a given maximum variance (with units of dollars
squared). This constraint is convex; in fact, the associated constraint
set is an ellipsoid.

The risk limit above is fixed (for each t). By working with the
standard deviation, we can develop risk limits that scale with total
portfolio value. This allows us to limit the risk (measured in standard
deviation, which has units of dollars) to some fraction of the post-trade
portfolio value,

1/2
()T Sepaa)2 = |15 af 2 < 0172,

where ¢; > 0 (and is unitless, since left and righthand sides have units of
dollars). These are convex constraints, in fact, second-order cone (SOC)
constraints [20, §4.4.2]. They are also homogeneous constraints; that is,
the allowed risk scales with the value of the post-trade portfolio. These
constraints require the post-trade portfolio value to be nonnegative.

More sophisticated risk limits. There are many risk measures that

are more sophisticated than variance, but are also convex in x;r , and

therefore fit into our framework. For example, suppose that we do not

18 Stochastic Control Formulation

know the return covariance matrix, but are willing to assume it lies in
the convex hull of a set of given covariance matrices X!, ..., %49, (We
can think of these as the return covariance under ¢ market regimes, or
under ¢ possible scenarios.) We can impose a constraint that limits our
return variance, under all such scenarios, as

(TS <y, i=1,...,q

The associated constraint set is the intersection of ellipsoids (and there-
fore convex).

Moving beyond quadratic risk measures, we can limit the expected
value of a function of period loss,

E(x(1Tzi1 — 7 af) | 2f) <,

where y : R — R is convex (and typically decreasing). For x(v) = v?

we recover quadratic risk; for y(v) = (v)?, this is downside quadratic
risk; for x(v) = (v — vp)_, it is related to conditional value at risk
(CVaR) [82, 5]. For such measures the constraint is convex, but not
easily handled; typically, one has to resort to Monte Carlo methods to
evaluate the risk measure, and stochastic optimization to handle them
in an optimization setting; see, e.g., [86, 9, 17, 79, 25].

2.4 Transaction and position costs

In this section we describe some of the possible forms that the transac-
tion (and position) cost function ¢ can take. Any number of the terms
below can be combined by simple addition, which preserves convexity.

Broker commission. When trades are executed through a broker, we
can be charged a commission for carrying out the trade on our behalf.
In a simple model this cost is proportional to the total trade volume,
which gives

wt(xtaut) — H?|Ut|,

where k¢ > 0 is the vector of commission rates, and the absolute value
is elementwise. When the commission rates are equal across assets, this

2.4. Transaction and position costs 19

reduces to ¢ (¢, ur) = Kel|uel|1, where k; > 0 is a scalar. A more general
form charges different rates for buying and selling:

be(we,ue) = (k™) (ue) 4 + (557 (ur) -,

b . . .
where x,;" and £§°!" are nonnegative vectors of buying and selling com-

mission rates. These are all convex functions.

Some broker commission charges, such as charging a flat fee for any
(nonzero) amount of trading in an asset, or offering a relative discount
for large orders, are nonconvex; see, e.g., [56] for methods for dealing
with these nonconvex terms using convex optimization.

Bid-ask spread. The prices at which we buy or sell an asset are differ-
ent, with the difference referred to as the bid-ask spread; the mid-price
is the average of the buy and sell prices. If we use the mid-price for each
asset as our reference price for converting shares held into our portfolio
vector x, this means that we sell each asset for a price lower than the
mid-price and buy each asset for a price higher than the mid-price. We
can model this phenomenon as an additional transaction cost of the
form
Y@, ue) = f@tT\Ut’,

where (k¢); is one-half the bid-ask spread for asset i. (This has the same
form as the broker commission described above.)

Price impact. When a large order is filled, the price moves against the
trader as orders in the book are filled. This is known as price impact.
A simple model for price-impact cost is quadratic,

¢t($taut) = Szui

where (s;); > 0, and the square above is elementwise. Many other
models can be used, such as a 3/2 power transaction cost, ¥ (xy, u) =
sT'|ug|?/2, or a general convex piecewise linear transaction cost, which
models the depth of the order book at each price level. These are all
convex functions of u;.

We are not modeling multi-period price impact, which is the effect
of a large order in one period affecting the price in future periods.

20 Stochastic Control Formulation

Borrowing/shorting fee. When going short, an asset must be bor-
rowed from a third party, such as a broker, who will typically charge a
fee for this service proportional to the value of the assets borrowed per
period. This gives the (convex) position cost

Uz, ue) = ¢f (x)—,

where (¢;); > 0 is the fee rate, in period ¢, for shorting asset i.
More generally we can pay a fee for our total short position, perhaps
as a default insurance policy premium. Such a cost is an increasing

convex function of 17 (z;")_, and is therefore also convex in z;.

Risk penalty. We have described risk limits as constraints in §2.3
above. We can also take risk into account as a real or virtual additional
charge that we pay in each period. (For example, the charge might
be paid to an internal risk management desk.) In this case f¢(x¢, uy)
is the risk-adjusted cost in time period t. Indeed, traditional portfolio
optimization is formulated in terms of maximizing risk-adjusted return
(the negative of risk-adjusted cost).

The traditional risk adjustment charge is proportional to the vari-
ance of the next period total value, given the current post-trade posi-
tion, which corresponds to

P, ue) = Mevar(1 @y |) = (o)) Seaf,

where A\; > 0 is called the risk aversion parameter. This traditional
charge is not easy to interpret, since \; has units of inverse dollars.
(The main appeal of using variance is analytical tractability, which is
not an issue when convex optimization beyond simple least-squares is
used.)

We can levy a charge based on standard deviation rather than vari-
ance, which gives

Ve (g, ur) =)\tHZtlﬁxer%

where in this case A\; > 0 is dimensionless, and has the interpretation of
standard deviation cost rate, in dollar cost per dollar standard devia-
tion. More generally, the charge can be any increasing convex function
of ||Z; flac;r |l2, which includes both the standard deviation and variance
charges as special cases. All such functions are convex.

2.5. Quadratic and QP-representable stage cost 21

2.5 Quadratic and QP-representable stage cost

Here we describe two special forms for the stage cost, for future use.

Quadratic. An important special case occurs when /¢; is (convex)
quadratic, possibly including linear equality constraints. This means
that the transaction cost is quadratic,

T T At Bt ag x
Yi(x,u) = (1/2) | u BtT Cy ¢ u |,
1 al’ ¢ dy 1
where
Ay By
=0
4 2]

(meaning, the matrix on the lefthand side is symmetric positive
semidefinite), and the constraint set is

Ct == {l’ ’ Gt{L‘ = ht}

When the stage cost has this form, we refer to the multi-period port-
folio optimization problem as being quadratic. The quadratic problem
is quite limited; it can include, for example, a terminal portfolio con-
straint, a quadratic risk penalty, and a quadratic transaction cost. The
other constraints described above yield a problem that is not quadratic.

QP-representable. We say the stage cost is QP-representable if ¢; is
convex quadratic plus a convex piecewise linear function, possibly in-
cluding linear equality and inequality constraints. Such a function can
be minimized by transformation to a QP, using standard techniques
(described, e.g., in [20, 72], and employed in convex optimization sys-
tems such as CVX [40], YALMIP [58], and CVXGEN [64]).

Many of the transaction cost terms and constraints described above
are QP-representable, including leverage limits, sector exposure lim-
its, concentration limits, broker fees, bid-ask spread, and quadratic
risk penalty. Quadratic and second-order cone risk limits are not QP-
representable, but can be represented as a second-order cone problem
(SOCP) [20, §4.4], [57].

3

Optimal Policy

3.1 Dynamic programming

In this section we briefly review the dynamic programming characteri-
zation of the solution to the stochastic control problem. For more detail,
see, e.g., [10, 13, 6, 83, 31, 69].

The (Bellman) value functions V; : R® — R, ¢t =0,...,7 + 1 are
defined by Vi1 = 0, and the backward recursion

Vt(ac):i%f(ﬁt(x,u)—f—EVtH(RtH(aB—Fu))), t=T,...,0, (3.1)

where the expectation is over the return r.y;. We can write this recur-
sion compactly as

Vi=TViy1, t=T,...,0, (3.2)
where T; is the Bellman operator, defined as
(Teh)(z) = inf (Cy(z, u) + E(Rip1(z 4 u))),

for h: R" — R.
An optimal policy can be expressed via the value functions as

¢i(x) € argmin (€ (2, u) + E Vip1 (R (z +), (3-3)

22

3.2. Quadratic case 23

and the optimal cost is given by
J* = Vb(l’g)

This general dynamic programming solution method is not a practi-
cal algorithm, since we do not in general have a method to represent V;,
let alone effectively carry out the expectation and partial minimization
operations. In the quadratic case (described below), however, the Bell-
man iteration can be explicitly carried out, yielding an explicit form
for V; and ¢;.

Monotonicity. For future use we note that the Bellman operator T;
is monotonic: for any f: R -+ R and g : R" — R,

f<g = Tif <Ty, (3.4)

where the inequalities are interpreted pointwise [10, 13].

Convexity. The value functions Vp,...,Vry1 are convex, which we
can show by a (backward) recursion. We first observe that Vp1; = 0 is
convex. We will show that the Bellman operators 7T; preserve convexity;
this will show that all V; are convex functions.

To show that the Bellman operator 7; preserves convexity, suppose
h is convex. Then, for fixed Ryi1, h(Rip1(x + w)) is a convex func-
tion of (z,u); since expectation preserves convexity, we conclude that
E h(Ry1(x + u)) is convex in (x,u). The stage cost ¢;(z,u) is convex,
so Ui (z,u) + Eh(Riy1(x 4+ u)) is convex in (z,u). Finally, partial min-
imization of this function (in this case, over u) preserves convexity, so
we conclude that T;h is convex. (For more on the convexity rules used
above, see, e.g., [20, Ch. 3].)

One implication of the convexity of V; is that evaluation of the
optimal policy (3.3) requires solving a convex optimization problem.

3.2 Quadratic case

When the problem is quadratic, .e., ¢; are quadratic functions plus
(possibly) linear equality constraints, we can effectively compute V;,

24 Optimal Policy

which are also (convex) quadratic functions. We give the argument in
general form here, with more detail given in the appendices.

The argument is similar to that for convexity of Vi, with the at-
tribute ‘quadratic’ substituted for ‘convex’. We note that Vpyi is a
quadratic function, and we will show that the Bellman operators pre-
serve quadratic functions. It follows that all V; are quadratic. Moreover
we can explicitly compute the coefficients of the quadratic functions,
so the method can be implemented.

To show that the Bellman operator 7; preserves convex quadratic
functions, suppose h is convex quadratic. Then, for fixed Riy1,
h(Ri+1(x+u)) is a convex quadratic function of (z, u); since expectation
preserves convex quadratic functions, we conclude that E h(Ry41 (z+u))
is convex quadratic in (z,u). (To explicitly compute its coefficients re-
quires knowledge of 7,11 and >;11, but no other attribute of the return
distribution.) A detailed derivation, including fomulas for the coeffi-
cients, is given in appendix A.

The stage cost ;(z,u) is assumed convex quadratic (plus linear
equality constraints), so ;(x,u) +Eh(Ri+1(x+u)) is convex quadratic
in (x,u) (since convex quadratic functions are closed under addition).
Finally, partial minimization of a convex quadratic, possibly subject to
linear equality constraints, preserves convex quadratic functions, so we
conclude that 7;h is convex quadratic. See appendix B for a detailed
derivation, and explicit formulas for the coefficients.

The optimal trading policies require the minimization of a convex
quadratic function of (x,u) over u (possibly, with equality constraints).
The minimizer of a convex quadratic function of (x, u), subject to linear
equality constraints, can be expressed explicitly as an affine function of
x (see appendix B). Thus, the optimal trading policies have the form

¢;(CIJ) =Jwx+k, t=0,...,T, (35)

where J; € R™™ and k; € R" can be explicitly computed. (We can
without loss of generality take Jy = 0.) This is one of the few cases
for which the value functions (and hence, the optimal policy), can be
explicitly computed. The coefficients J; and k; in the optimal policy
depend on the coefficients in the stage cost functions ¢,, as well as 7,
and X, form=1¢,...,T.

3.3. No transaction cost case 25

3.3 No transaction cost case

Here we consider another special case in which we can solve the stochas-
tic control problem. Suppose that ¢ (z,u) is a function of x7 = z + u,
which we write (with some abuse of notation) as 1;(x1). In other words,
we exclude transaction costs (broker fees, bid-ask spread, and price im-
pact type terms); the only stage costs we have are functions of the
post-trade portfolio. (We have already assumed that the constraints
have this form.)
The stage cost then has the form

Ce(z,u) = 1T2T — 172 + 4y (2) + L(2T),

where I; is the indicator function of C;. The objective can then be
written as

J = E

M=

Ce(xe, up)
¢

I
=)

T
E (lTx;r + () + It(:cf)> — 1Tz — EZrth:r_l
t=1

I
M=

~
[e=]

T
= —1T20+ 3B (1 =) wf +) + L))
t=0
where we take 7741 = 0. Thus, our problem is equivalent to a stochastic
control problem with the modified stage cost

gt(z,u) =(1- Tt+1)Tx+ + ¢y (2) + L(2™),

which is a function only of 7 = x + u. This stochastic control problem
has an associated value function, which we denote by V, which satisfies
(3.1) with the modified stage cost function.

Using the modified stage cost, the minimization in the optimal pol-
icy (3.3) is over a function of . To minimize a function of z* = z+u
over u, we simply minimize the function over z™ to find =™, and
then take u = ™ — x. For the optimal policy (3.3), we conclude that

o7 (z4) = x* — x4, where z;* minimizes

(1= 7)) 2 + () + L) + E Vi (R af)

26 Optimal Policy

over x;". Moreover, the minimum value of this expression is independent
of x, which, together with (3.1), implies V; are constant functions. It
follows that we can find ;" as the minimizers of

(1- ml)Tﬂc? + Yu(xf) + L(xf).

Thus, an optimal policy can be found as follows. For ¢t = 0,...,T, we
solve the problems

minimize (1 — ?t+1)T$?_ + wt@?_)

subject to z;" € Cy, (36)

over variables xf , to determine optimal post-trade portfolios xzr *. An
optimal policy simply rebalances to these optimal post-trade portfolios:

Gi(x) =ai" —a

(which is an affine policy, of a special form). The optimal objective J*
is the sum of the optimal values of the problems (3.6) less the total
wealth of the initial portfolio, 17 .

The optimization problems (3.6) are single-stage portfolio problems,
which can be solved independently (in parallel). When the stage-cost
function is QP-representable, they reduce to QPs; for standard devia-
tion risk limits, they reduce to SOCPs.

In summary, when all stage costs are functions only of the post-
trade portfolio, the multi-period investment problem is readily solved
using standard single-period portfolio optimization. However, when
cost terms that depend on u are included in the model, such as broker
commission, bid-ask spread, or price-impact, the full stochastic control
formulation is needed. These are significant terms in most practical
multi-period investment problems, which provides the motivation for
developing a method for handling them.

4

Performance Bounds

Here we describe methods for computing a lower bound on the optimal
value J*, using techniques described in a recent series of papers [100,
97, 96, 75]. We describe the development of these bounds starting from
the high level ideas, and then proceed to lower level details.

These methods are based on finding a set of convex quadratic func-
tions thb that are underestimators of V4, i.e., satisfy V;lb < V4, where
the inequality means pointwise. It follows that

J® = ViP(20) < Vo(wo) = J%,
i.e., J® is a lower bound on J*. We let V! take the form
T
Pop T
V() =(1/2)] ¢ ! ,
where P; > 0.

4.1 Bellman inequalities

The quadratic underestimators are found as follows. We construct a set
of quadratic functions that satisfy the Bellman inequalities, [60, 42, 30],

VP <TVR, t=T,...,0, (4.1)

27

28 Performance Bounds

with V2| = 0 (¢f. the Bellman recursion equalities, given in (3.2)). By
monotonicity of the Bellman operator we get

VP < TrVity < TrVg = Vi
Continuing this argument recursively we see that
V<V, t=0,...,T+1,

i.e., thb are underestimators of V;.

4.2 LMI conditions

Now we explain how to obtain quadratic functions that satisfy the
Bellman inequalities (4.1). For simplicity, we describe the method when
iy is convex quadratic and C; has the representation

Co={z[g1(z) <0,...,95(x) <0, gsyr(x) =+ = gu(x) = 0}, (4.2)

where ¢g; : R" — R are convex quadratic constraint functions. (In
fact, after appropriate problem transformations, this includes all of the
transaction cost terms and constraints described in §2.2, except for the
more sophisticated risk bounds.)

The Bellman inequality (4.1) can be written as

VP (z) < 1Tu+y(z,u) + EVR (R (z +w), V(e +u) €Cr.

From appendix A we know that when thﬁl is convex quadratic,
E V% (Rip1(z + w)) is also convex quadratic, so

17w+ (2, u) + BV (R (4 w) — ViP(2) (4.3)

is quadratic in (x,u). Thus, the Bellman inequality (4.1) requires that
the quadratic function (4.3) be nonnegative on the set C;, which is
described by the set of quadratic inequalities (4.2).

A sufficient condition for a quadratic function to be nonnegative on
a set described by a set of quadratic inequalities can be obtained via
the S-procedure [18, §2.6.3], [20, §B.2], which results in a set of linear
matrix inequalities (LMIs) in the coefficients of V' (see appendix C
for details). If P, py, qi, t = 0,...,T + 1 satisfy these LMIs, then V}lb,

4.3. Summary 29

t =0,...,7 + 1 must satisfy the Bellman inequalities (4.1), and hence
are value function underestimators. We can then maximize our lower
bound on J*,

JP = VI (z0) = (1/2)2d Pozo + pEzo + qo

(which is a linear function of the coefficients of V), subject to these
LMIs. This is an SDP with variables P, py, q:, t =0,...,T + 1.

The details of this method, including a full derivation of the SDPs
involved, can be found in appendix D and [100, 97].

4.3 Summary

The method described in this chapter produces a (numerical) lower
bound on J*, the optimal value of the stochastic control problem, given
the problem data, i.e., the stage cost function and the first and sec-
ond moments of the return distributions. We note that while the per-
formance of any given policy can depend on higher moments of the
returns, our performance bound only depends on the first and second
moments. The method requires forming and solving an SDP, with on
the order of T" matrix variables of size n X n.

5

Approximate Dynamic Programming

5.1 Basic idea

Except for the special case when the problem is quadratic, described in
§3.2 above, it is usually impossible to compute (or even represent) the
value functions V;. A common alternative is to replace the value func-
tions appearing in (3.3) with approximate (or surrogate) value func-
tions V; : R” — R, which gives the ADP policy

2P (1) € argmin (Et(x,u) +EVi(Riy1(z + u))) , t=0,...,T.
' (5.1)
When V; = V;, the ADP policy is optimal; when Vi, = 0, the ADP
policy is the greedy policy, in which trades are chosen to minimize
the current stage cost, without regard for any impact on the future
(other than those contained in the current stage cost). When V; is con-
vex, evaluating the ADP policy requires solving a convex optimization
problem. We let J2 denote the cost achieved by the ADP policy.
A variety of methods, which we do not survey here, can be used
to choose approximate value functions (see, e.g., [15, 78, 54, 30]). The
goals in choosing approximate value functions V, are the following:

30

5.2, Quadratic approximate dynamic programming 31

e Fase of evaluation. The ADP policy should be easily evaluated,
i.e., the minimization over u in (5.1) should be easy to carry out.
For example, when the stage cost is QP-representable, and Vi
are convex quadratic, evaluation of the ADP policy reduces to
solving a QP, for which there are very efficient methods.

e Performance. The ADP policy should attain near-optimal per-
formance, i.e., J*P ~ J*. (A more modest goal is for the ADP
policy to obtain good performance, meaning J2I is not too much
larger than J*.) This would be the case if J2I is not much larger
than J', the lower bound computed using the methods of §4.

One simple and general method for obtaining approximate value func-
tions is to find the (exact) value functions for a quadratic problem that
approximates in some sense or relaxes the original problem, for exam-
ple, by ignoring portfolio constraints other than equality constraints,
as well as any part of the transaction cost that is not quadratic (such
as bid-ask spread). Then we use these value functions as approximate
value functions for the original problem.

5.2 Quadratic approximate dynamic programming

When the approximate value functions are convex quadratic,
E Vi(Riy1(z + u)) is a convex quadratic function, whose coefficients
can be explicitly computed, using 741 and X44q1. (This is shown in
appendix A.) Thus, evaluating the ADP policy in this case reduces
to solving a convex optimization problem, with an explicit objective
function that does not involve expectation over returns.

A further simplification occurs when the stage cost is QP-
representable. In this case, evaluation of the ADP policy reduces to
solving a QP, for which there are a number of effective methods, al-
ready mentioned above. It can be shown in this case that the ADP
policy is a piecewise affine function of the current portfolio x [8], i.e.,
it has the form

M) = Jix+ ki, zeRl,

where {R},..., RN} is a polyhedral partition of R™ (cf. the optimal

32 Approximate Dynamic Programming

policy for the quadratic case, given in (3.5)). This observation leads
to another method for implementing the ADP policy, called explicit
MPC or multi-parametric QP [51, 7]: We compute J}, ki, and (the in-
equalities that define) Ri explicitly, off-line. On-line, policy evaluation
requires two steps. First, the region ¢ containing the current portfolio
x¢ is determined; then the corresponding affine trading policy is ap-
plied. This method works well when the number of assets is small (say,
no more than around 5), but quickly becomes intractable for larger
portfolios, since N grows exponentially with n.

5.3 ADP based on quadratic underestimators

The quadratic underestimators VP found using the performance
bounding method described in chapter 4 are natural candidates for ap-
proximate value functions in ADP. Indeed, ADP policies using V; = 74
have been observed to perform well in many practical applications, in-
cluding variations on the multi-period portfolio optimization problem
considered here [97, 100].

Let us summarize what is required to evaluate this ADP policy.

e Performance bound computation. We solve an SDP to obtain J',
a lower bound on J*, as well as the (coeflicients of) quadratic
approximate value functions thb. This SDP involves around T
matrix variables of size n X n. This can be done off-line, before
the trading begins.

e On-line policy evaluation. In each period we solve a small QP,
with around n variables, which includes the current portfolio x4
in its data, to determine which trades to carry out.

The first task can involve substantial computation, but is carried out
off-line; the second task, which is carried out on-line in each trading
period, can be done very quickly.

6

Model Predictive Control

In this chapter we describe certainty-equivalent model predictive con-
trol (MPC), another suboptimal policy for the multi-period investment
problem. MPC is a widely used and extensively studied suboptimal pol-
icy; see, e.g., [59, 67, 101, 39, 52, 36]. It can also be interpreted as an
ADP policy, with an appropriately defined approximate value function.

6.1 Policy

MPC is based on a simple idea. To determine u;, we replace all fu-
ture (unknown) returns with their mean values, 7., 7 =t +1,...,T.
This turns the stochastic control problem into a standard optimization
problem,

minimize Zzzt I+ (27, v7)
subject to z;11 = diag(Tr41)(2r +v,), 7=1t,....,T—1 (6.1)

Zt = Tt
with variables z,,v,, 7 = t,...,T. We solve this convex optimization
problem to obtain an optimal sequence of trades vf,...,v}_;. This

sequence is a plan for future trades over the remaining trading horizon,
under the (highly unrealistic) assumption that future returns will be

33

34 Model Predictive Control

equal to their mean values. The MPC policy takes u; = ¢™P¢(z;) = vy.
In other words, we execute the first trade in our planned sequence of
trades. At the next step, we repeat the process, starting from the new
portfolio ;1.

6.2 Implementation

Evaluating ¢™P¢(z;) requires solving the convex optimization problem
(6.1), which is an optimization problem with 2(7T'—¢t)n variables. Using a
generic optimization solver that does not exploit sparsity structure, the
computational effort required is order (7' — t)3>n3 flops (floating-point
operations). The MPC problem (6.1) can be more efficiently solved by
exploiting its structure. When the variables are appropriately ordered,
the linear equations that are solved in each step of an interior-point
method are block tri-diagonal, and can be solved with a computational
effort that grows linearly in T'—t. In this case, the overall computational
effort is order (T' — t)n3 flops. For details, see, e.g., [98, 66, 2, 81],
which describe implementations of the MPC policy for similar control
problems. Note that the cost of evaluating the MPC policy decreases
with increasing ¢, since later in the trading interval our planning is
done over a shorter horizon. The total cost of the T" evaluations of the
MPC policy, for t = 1,...,T, is order T?n? flops. In contrast, the total
cost of T evaluations of the ADP policy is order T'n> flops.

Comparison with quadratic ADP policy. We can compare the com-
putational cost of the MPC and ADP policies. The main difference is
that the ADP policy requires significantly more off-line computation,
while MPC is more expensive to evaluate on-line.

o Off-line pre-computation. The ADP policy requires solving a large
SDP to find the quadratic approximate value functions. This is
done off-line, before the trading policy is implemented on-line. In
contrast, MPC does not require any pre-computation. The only
computation that is required is solving (6.1), which is solved on-
line at every time step.

6.3. Interpretation as an ADP policy 35

e On-line policy evaluation. In ADP, after the quadratic approxi-
mate value functions have been computed, on-line evaluation re-
quires solving a QP with n variables. The computational effort
required is order n? flops. In contrast, evaluating the MPC policy
requires order (T'— t)n?® flops (assuming we exploit the sparsity
structure).

Signals. There are computational advantages to using MPC in cases
when (estimates of) future return statistics are updated in real-time,
using signals. In this case, the expected returns 7; are simply replaced
with the most recent return estimates. In contrast, for our quadratic
ADP policies, when return statistics are updated, the quadratic ap-
proximate value function must be re-computed, which requires solv-
ing a large SDP. Our ADP policies can be extended to handle some
real-time signals without re-solving the SDP, but the method is more
complicated, and is beyond the scope of this paper.

6.3 Interpretation as an ADP policy

Model predictive control is itself an ADP policy, and can be interpreted
as a special case of a method called rollout, a popular method in ap-
proximate dynamic programming [10, §6.4] [11, 12, 89]. In rollout, the
approximate value function is taken to be the cost achieved by a heuris-
tic policy called the base policy. In most cases, the cost achieved by the
base policy can only be evaluated via Monte Carlo simulation, i.e., by
‘rolling out’ possible sample paths.

In MPC, the base heuristic is an open loop policy, where we com-
pute an optimal sequence of trades starting from an initial portfolio,
assuming that the true returns are equal to their mean values 7. In
this base policy, the planned sequence of trades is executed without re-
course, i.e., the trades depend only on the initial portfolio. Evaluating
the cost achieved by this policy would require Monte Carlo simulation,
which is computationally intensive (We would need to evaluate the cost
achieved over a large number of return trajectories and average.)

Thus, in MPC a further simplification is to roll out only one return

36 Model Predictive Control

trajectory—the trajectory of mean returns. We can write the MPC
policy as

PP (@) = argmin (6(z,u) + VT (B (z +w)), t=0,...,T,

where V;"P¢(z) is the optimal value of the problem (6.1), starting from
x¢ = z at period t. We can see that MPC can be interpreted as an ADP
policy, with a relatively complex approximate value function (given as
the optimal cost of a convex optimization problem).

For more details on interpretations of MPC, and connections to
approximate dynamic programming and rollout, see [11, 12, 10, 13, 8].

6.4 Truncated MPC

The MPC policy described above plans a sequence of trades for the full
time interval t,...,T. A common variation is to look ahead a limited
number of steps, M, into the future. At each time ¢ we solve

minimize Y0PV (20, 0p) + VI (zegr)

subject to zr41 = diag(Fry1)(zr +v7), T=t,...,t+ M —1
zZt = Tt

with variables v, ..., verp—1, and 2, ..., ze a7 Here, M is the number
of steps of look-ahead, and V)7 is the terminal cost (to be chosen).
As with full look-ahead MPC, we take ¢;""“(z;) = v} and repeat the
process at the next time step, starting from the portfolio z;y;. For
t >T — M, we use the basic MPC policy (6.1).

An important parameter in this policy is the terminal cost V;tﬁ\r/? If
this cost is appropriately chosen, the truncated MPC policy is exactly
the same as the full look-ahead policy [8]. Common choices for terminal
costs are approximate value functions obtained via any approximate
dynamic programming method.

The idea in truncated MPC is to trade off on-line and off-line com-
putation. If the number of steps of look-ahead M is large, we need a
less accurate approximate value function as our terminal cost, so less
off-line computation is needed. On the other hand, if we are willing
to spend a lot of time off-line computing a good approximate value

6.4. Truncated MPC 37

function, we can set M < T and save significant computational ef-
fort on-line. Thus, truncated MPC gives a family of policies that sit in
between (full look-ahead) MPC and ADP.

7

Numerical Examples

In this chapter, we present several numerical examples. We first de-
scribe the five problems we consider.

7.1 Problem data

All five examples use zero initial portfolio zyp = 0, and impose a zero
terminal portfolio constraint: xJTr = 0. The examples use the same re-
turn distribution; they differ only in the choice of stage cost function.
Our first example is a quadratic problem for which we can compute
the optimal policy exactly. The others use the same transaction cost
terms and differ only in the choice of constraints. All examples involve
n = 30 assets over a time horizon of 100 time steps, i.e., T = 99.

Return distribution. The returns r; are identically distributed with
log-normal distribution,

log 7y ~ N (1, 2),

where 1 and ¥ are the mean and covariance of the log return. The
return mean and covariance are then given by

7= exp(p+(1/2)diag(E)), i =Firj(expSij—1), i,j=1,...,n.

38

7.1. Problem data 39

The log return mean and covariance were chosen as follows. First
we chose the log return standard deviations (X;;)'/? from a uniform
distribution on [0,0.01]. We then formed ¥ using

where C' is a matrix of correlation coefficients chosen at random, with
entries varying from about —0.3 to +0.9. To form C' we generate a
matrix Z € R™" with all entries drawn from a standard Gaussian
distribution, then form Y = ZZ7 + ¢117, where ¢ > 0, and finally set

C = diag(Yy; /%, .. Y,/ diag(Y; 2, ..., Y, 2).

oo nn

We chose ¢ so that the entries of C' are in the range we desire. The
log return means p; were chosen from a A(0,0.032) distribution. The
resulting mean returns 7; ranged from 0.95 to 1.08; the asset standard
deviations ()2 ranged from 0.03 to 0.10.

Transaction cost. For simplicity we consider a transaction cost that
does not vary over time, i.e., ¥y = ¢ for t =0,...,T. For the quadratic
example, the transaction cost is

(e, ue) = sTuf + AN Saf,

which includes a quadratic transaction cost and a quadratic risk
penalty. For the other examples, the transaction cost is

Gl w) = (o) + /gl + T + A Saf

which includes a quadratic risk penalty, a quadratic transaction cost, a
shorting fee and an absolute term to model bid-ask spread and broker
commissions. The stage cost for the quadratic example is smaller than
the stage cost for the other examples, since the additional terms are
nonnegative. It follows that the optimal cost for the quadratic example
is a lower bound on the optimal cost for the other examples.

The parameter A\ was set to 0.5; s;, k;, and ¢; were sampled from
uniform distributions on [0, 1], [0,0.1] and [0, 0.05], respectively. These
choices resulted in each term giving a significant contribution to the
over all objective.

40 Numerical Examples

Constraint set. For all five examples we have a zero terminal portfolio
constraint, i.e., Cp = {0}. The quadratic case has no other constraints,
i.e., Cc =R"fort =0,...,T — 1. For the other four examples we take
one of the following constraints for t =0,...,7T — 1:

e Unconstrained: C; = R™.
e Long-only: C; = R}.
e Leverage limit: C; = {x | 17 (z)_ < n1Tz}, with n = 0.3.

e Sector neutral: C; = {z | Fz = 0}, with F € R®**"; the rows of F
are the eigenvectors associated with the two largest eigenvalues
of 3.

7.2 Computation

7.2.1 Cost evaluation and simulation

For the quadratic example, we can evaluate the optimal cost exactly, as
V0(0), as well as the (affine) optimal policy. For the other four problems
we use Monte Carlo simulation to compute (approximately) the objec-
tive value obtained by the ADP and MPC policies. For the quadratic
example, the estimate of objective obtained from Monte Carlo serves
as a consistency check. To evaluate the performance of the ADP policy
we ran 50000 Monte Carlo simulations for each example. Thus, Monte
Carlo simulation of each example required solving around 5 million
small QPs. To evaluate the performance of the MPC policy we ran
5000 Monte Carlo simulations for each example, which required solv-
ing 500000 larger MPC QPs. (Of course we could have reduced the
number of Monte Carlo samples we needed to take by using one of
the many variance reduction techniques, such as control variates or
importance sampling.)

Our sampling was sufficient to obtain around three significant fig-
ures of accuracy in our performance evaluations, as estimated by the
empirical variance in our estimates (reported below), and also veri-
fied experimentally by re-running the simulations with different initial

7.2. Computation 41

random number generator seed, which yielded numerical results that
agreed to three significant figures.

7.2.2 Convex optimization solvers

All computation was carried out on an Intel Xeon processor, with clock
speed 3.4GHz, running Linux.

We used CVX [40] to formulate the SDPs required to compute
the performance bounds, which in turn uses SeDuMi [88] to solve the
transformed SDPs. For reference, the SDP required to compute the
performance bound for the long-only example had 474100 variables
and 59096 constraints after transformation to a standard form SDP
and took about 24 minutes to solve. (An optimized solver for this type
of problem could have solved it much more quickly.)

To solve the QPs needed to evaluate ADP policies, we used CVX-
GEN [64] to generate fast custom solvers. The QP solved in each
time step to evaluate the ADP trading policy has 30 variables and 30
constraints; transformed into a standard form QP it has 90 variables
and 122 constraints. The CVXGEN generated solver (which is single
thread) solves such a problem in around 300us. (This computation time
could easily have been reduced by a factor of 3 or more using various
tricks for fast embedded solvers [64, 63, 62].) Thus, a simulation run
of 100 time periods requires about 30ms; running 50000 simulations in
series can be carried out in around 25 minutes. On the 8-core Xeon, the
5 million QPs are solved in slightly more than 3 minutes. (Using CVX,
this would have taken days.) Of course, the Monte Carlo simulations
are trivially parallelizable, and could easily have been carried out on &
processors with a speed-up of around k.

Evaluating the MPC policy required solving much larger QPs, be-
yond the size limits of CVXGEN. To solve these QPs quickly we used an
operator splitting technique known as the alternating direction method
of multipliers (ADMM) [19], specialized to the case of convex optimal
control, and described in full in [74]. The QPs to be solved to evaluate
the MPC policy are larger at earlier time periods and get progressively
smaller as we approach the final period. For example, the QP solved
at the first period for the long-only example has 18243 variables and

42 Numerical Examples

Example Lower bound ‘ ADP ‘ MPC ‘
quadratic -450.1 | -450.0 | -444.3
unconstrained -132.6 | -131.9 | -130.6
long-only -41.3 | -41.0 | -40.6
leverage limit -87.5 | -85.6 | -84.7
sector neutral -121.3 | -118.9 | -117.5

Table 7.1: Lower bound on performance, and ADP and MPC policy performance.

9052 constraints (when converted to standard form). It requires about
88ms to solve this QP using ADMM; solving the same problem using
CVX takes more than 3 minutes.

7.3 Performance bounds and policy performance

The results are summarized in Table 7.1. The first column gives the
lower bound on performance computed using our method. The sec-
ond and third columns give the performance attained by the ADP and
MPC policies, respectively, estimated via Monte Carlo simulation. For
the quadratic example, the lower bound is the optimal performance;
the ADP policy is in fact the optimal policy, so the ADP performance
entry for the quadratic example serves as a check on our Monte Carlo
simulation (which is consistent with our estimate of Monte Carlo error
given below). In all cases we see that the policies are very nearly op-
timal, since the lower bound and performance obtained are very close.
In any practical sense, our ADP and MPC trading policies are optimal.

7.3.1 Monte Carlo error estimation

The empirical standard deviations for the ADP and MPC Monte Carlo
simulations are in Table 7.2. For the quadratic problem the positions
typically involve higher leverage than for the other problems, resulting
in total cost with higher variance. For the quadratic problem, the Monte
Carlo error standard deviation is estimated to be around 30/+/50000 =~
0.13 for the ADP simulations, and around 40/+/5000 ~ 0.6 for the

7.3. Performance bounds and policy performance 43

Example | ADP | MPC |
quadratic 30.9 40.3
unconstrained 9.6 9.9
long-only 7.1 7.2
leverage limit 9.8 9.9
sector neutral 8.9 9.9

Table 7.2: Empirical standard deviations of total cost for ADP and MPC Monte
Carlo simulations.

MPC simulations. For the others, it is estimated to be around 0.04 for
the ADP simulations and 0.14 for the MPC simulations. Re-running
the simulations with different random number generator seed yields
numerical results consistent with these error estimates.

7.3.2 Simpler methods

We also evaluated simpler policies for comparison. Our first simple
method was to ignore the transaction cost terms, which results in prob-
lems that can be solved exactly, as described in §3.3. Since the ignored
transaction cost terms are nonnegative, this gives a lower bound on
the performance, as well as a performance value (evaluated including
the transaction costs). The other simple method is to use the (ex-
act) value function for the quadratic example as an approximate value
function. Here too we get a lower bound, which is simply the optimal
performance for the quadratic example. Table 7.3 lists the lower bound
obtained by ignoring the transaction cost, the performance obtained
when the transaction cost is ignored, the lower bound attained by ig-
noring nonquadratic terms, and the performance obtained when the
quadratic value function is used in ADP. We can see that the bounds
obtained are quite poor, with the exception of the long-only example,
which is merely bad. Note in particular that these simpler policies re-
sult in positive objective value for all examples, meaning that they lose
money money on average; they are worse than not trading at all (i.e.,
taking u; = 0 for all ¢).

44 Numerical Examples

No transaction costs | No nonquadratic terms
Example bound | performance | bound performance
unconstrained -4405 2.1 x 10° -450.1 59.2
long-only -70.6 864.5 -450.1 162.3
leverage limit -241.4 4525 -450.1 219.5
sector neutral -4391 2.1 x 10% [-450.1 75.6

Table 7.3: Lower bounds and performance obtained by simpler policies, obtained
by ignoring transaction costs (first two columns), and by ignoring nonquadratic
terms (last two columns).

7.4 Simulation results and trajectories

In this section we give some more detail of the simulations, showing
typical and average trajectories of various quantities over the invest-
ment period. These simulations show that the problems are not simple,
that none of the stage cost terms is negligible, that the constraints are
indeed active, and that our ADP and MPC policies are not obvious.

Table 7.4 summarizes average values for various quantities over the
100 time steps and 50000 simulations under the ADP policy, for each
example. The quantities are: gross cash in 17wy, risk cost A(z;")T ¥ (z;"),
quadratic transaction cost s’u?, linear transaction cost s’ |u|, and
total long, short, and long-short positions. These numbers show that
each of the cost terms contributes to the overall objective (except in the
quadratic example). For the quadratic example, the stage cost does not
include a shorting fee or an absolute value transaction cost, so those
numbers are in parentheses; they are what we would have been charged,
had these stage cost terms been present.

To get an idea of the trajectories over the time horizon, Figure 7.3
shows several time trajectories for the leverage limit example under
the ADP policy. The lighter lines show 5 sample traces from the 50000
Monte Carlo simulations. The darker lines are the average (or in the
case of the leverage, the median) over all the runs. The upper left plot
shows the total value of the long and short positions (in blue and red,
respectively), and the upper right plot shows the leverage ratio. We
see that the leverage ratio saturates at the leverage limit, 7, which

7.4. Simulation results and trajectories 45

Example ‘ 17w, ‘ Mz T Sa) ‘ sTu? ‘ cl(xfh)_ ‘
quadratic -9.00 0.77 | 3.73 (4.93)
unconstrained | -3.82 0.29 | 1.03 0.96
long-only -0.86 0.32 | 0.08 0
leverage limit | -2.03 0.54 | 0.35 0.18
sector neutral | -3.71 0.19 | 1.02 1.07
Example | &"|u| | 17(z) 4 [17 () | (=] |1 |
quadratic (0.70) 164.16 168.76 | 332.92
unconstrained 0.22 80.93 47.76 | 128 .7
long-only 0.04 25.7 0 25.7
leverage limit 0.11 52.66 12.03 64.7
sector neutral 0.23 77.2 53.5 | 130.7

Table 7.4: Average of various quantities over all simulations under the ADP policy.

is 0.3 in this case. The middle left plot shows the gross cash in, and
the middle right plot shows cumulative net cash in. We can see that
(on average) we put money into the portfolio over the first 12 or so
steps; after that we derive income from the portfolio, and (of course)
cash out on the last step. The cumulative net cash at time T is our
performance, for which we have the lower bound of —87.5; this bound
is shown with a red dashed line. The bottom left plot shows the total
of the quadratic, absolute value, and shorting costs, which is relatively
large in the beginning (while we set up our portfolio) and the end
(when we cash out). The risk cost is shown in the bottom right plot.
This naturally grows as we invest in the portfolio, and then shrinks as
we cash out.

Figure 7.1 shows the distribution of total cost for the leverage limit
example under the ADP policy over the Monte Carlo simulations. The
mean of this distribution is the performance of the policy, shown as a
solid blue line; the lower bound is shown in red.

46 Numerical Examples

4000 [
I == Jower bound
3500 - _ = performance
3000 — b
2500 b
2000 - 1
1500 - B
1000 - b

500 - b

0
-130 -120 -110 -100 -90 -80 -70 -60 -50 -40

S o (T + (e, ur))
Figure 7.1: Histogram of total cost for the leverage limit example, with ADP policy.

7.5 Robustness to model parameters

Here we show that the performance of our policies is not very sensi-
tive to the return distribution parameters, even though our formula-
tion does not include explicit robustness requirements. We carry out
10 additional sets of 5000 Monte Carlo simulations for each example,
drawing the returns in each simulation from a log-normal distribution

with perturbed mean return Ffert. (We can think of 7, as our estimate

of the returns, and 77 " as the true mean return.)

The 10 perturbations were found as follows. We used log return
mean pPt = ;+6, where i is the log return mean used in development
of the ADP policy, and ; were sampled from a uniform distribution on
[—0.003, +0.003]. Since p; ~ N(0,0.03%), this perturbation amounts to
a change of log return means that ranges from around 1% to a factor
of 5, including cases in which the signs of y; and P are different. (A
few assets that are ‘winners’ under the assumed distribution become
‘losers” under the perturbed return statistics, and vice versa.) Thus,
the perturbation of the return distribution is not small.

Table 7.5 gives the worst performance values over the 10 perturbed
cases. These values are a bit worse than the nominal values, as ex-
pected, but quite respectable given the fairly large perturbation of the
return distribution. (The average performance values over the 10 per-
turbations are very close to the nominal performance values.)

7.6. Robustness to return distribution 47

l Example Nominal performance | Worst-case performance ‘
quadratic -450.0 -425.1
unconstrained -131.9 -123.4
long-only -41.0 -38.2
leverage limit -85.6 -80.3
sector neutral -118.9 -110.8

Table 7.5: ADP policy performance with perturbed return distribution.

Example Original | Heavy-tailed
quadratic -450.0 -450.6
unconstrained -131.9 -132.0
long-only -41.0 -41.0
leverage limit -85.6 -85.5
sector neutral -118.9 -118.8

Table 7.6: ADP policy performance with heavy-tailed return distribution.

7.6 Robustness to return distribution

Our performance bounds and policies depend only on the first and
second moments of the return distribution, whereas the performance
obtained by our policies can depend on higher order moments of the re-
turn distribution. In this section we demonstrate that the performance
obtained by our policies is not particularly sensitive to these higher or-
der moments, in particular, when the returns come from a distribution
with substantially larger tails than a log-normal.

We evaluated the performance of the ADP policy, with the returns
sampled from a heavy-tailed distribution with identical first and sec-
ond moments to the original log-normal distribution (so our numerical
bounds are unchanged). We generated the new returns as

log 71 N(p,S) wp. 0.8
&1 N (p2,108) w.p. 0.2

where p1, po and 33 were chosen so that the first and second moments
of 74 matched those of the original distribution. Intuitively, with prob-

48 Numerical Examples

Original distribution

0.5 1 1.5 2

Heavy-tailed distribution

0.5 1 1.5 2

Figure 7.2: A comparison of return distributions for the first asset.

ability 0.2 the system experiences a significant ‘event’ that typically
moves the asset prices much more drastically than usual.

Figure 7.2 compares the original and the heavy-tailed distribution
of the returns of the first asset. The average kurtosis, or fourth stan-
dardized moment, of the returns increased from 3.1 for the original dis-
tribution to 8.8 under our new distribution, indicating a distribution
with heavier tails. Table 7.6 summarizes the performance of the ADP
policy under the original and new heavy-tailed distribution for our five
examples. The performance of the policy under the new distribution
was evaluated via Monte Carlo with 5000 samples. The performance
under the heavy-tailed distribution was almost identical to, and in some
cases better than, the original performance.

7.6. Robustness to return distribution 49

T a6 AT
8 0.28
60
0.26
40
20 0.24
0 0.22
0 50 100 0 50 100
1Tut Zj—:o(lTU‘r +Y(xr,ur))
5 50
0
0
-50
-5 N
-100
-10 -150
0 50 100 0 50 100
5 kD g + T (xf) - + sTu? s Mz TSt
25
2 1
1.5
1 0.5
0.5
0 0
0 50 100 0 50 100
t t

Figure 7.3: Trajectories of various quantities for the leverage limit example under
the ADP policy.

8

Conclusions

In this paper we formulated the multi-period portfolio optimization
problem as a convex stochastic control problem with linear dynam-
ics. Our model captures many features of real multi-period portfolio
optimization problems, including limits on leverage, complex transac-
tion costs, and time-varying return statistics. (Features that are not
captured by our model include minimum allowed nonzero positions,
nonconvex transaction costs, price momentum, and multi-period price
impact.) Our formal model does not include the use of signals, i.e.,
on-line updating of the problem parameters during the trading period;
we discuss this below.

We used recently developed methods based on LMIs to compute
a performance bound—a specific number—for any particular multi-
period portfolio problem. This performance bound can be used as a
yardstick against which the performance of any policy can be judged.
As a by-product of the performance bound computation, we obtain a
quadratic approximation of the value functions, which can be used as
the approximate value functions in an ADP policy, or as a terminal
cost in an MPC policy. Both the ADP and MPC policies require the
solution of a convex optimization problem, typically a QP, to compute

50

51

the trades to be executed in each step.

We do not currently have an upper bound on how far our per-
formance bound will be from the performance of the ADP or MPC
policies. At the moment, all we can do is evaluate the bound, and the
performance of the ADP or MPC policies, for any particular multi-
period portfolio optimization problem, and subtract them to obtain a
gap. We would welcome a result that upper bounds the gap, based on
general features of the problem (such as dimensions, or type of stage
cost). Such a result would likely require further assumptions about the
stage costs and constraints; moreover, it would be unlikely to be sharp
enough to be of practical use.

In numerical examples, however, we have seen that the gap is very
small, which means that our ADP and MPC policies (and bounds) are
nearly optimal for the particular problem instances we consider. We
certainly do not claim that the gap will always be small; we merely
observe that it often is. Even for problem instances with a larger gap
(such as, say, a factor of two), the method seems to us to be very useful:
It provides a good (if not known to be nearly optimal) trading policy,
along with an upper bound on how suboptimal it can be (in this case,
a factor of two).

Our methods are easily implementable, thanks to recent advances
in convex optimization parser-solvers for solving complex SDPs, and
code generation tools for generating extremely fast solvers for policy
evaluation. In particular we rely on CVX, which calls SDP solvers Se-
DuMi or SDPT3, and CVXGEN, which is a code generation system
for QPs. Without these tools, a user would have to manually trans-
form the SDPs into standard form, and manually write custom solvers
for policy implementation (which would take days, if not months). In-
stead, CVX and CVXGEN allow us to formulate, solve, and implement
the policies with relatively little coding, and then carry out extensive
Monte Carlo simulation in no more than a few hours, using a standard
desktop computer.

We have focused specifically on QP representable problems in this
paper, but the same methods extend easily to general convex stage
costs and constraints. In fact, even when the problem is nonconvex,

52 Conclusions

we can still obtain suboptimal policies and performance bounds, via
simple relaxations and approximations. For the single period problem,
[56] outlines several approaches for handling nonconvex costs.

In our numerical examples, we have seen that our method is quite
robust to uncertainties; for instance, when we do not have an accurate
model for the return distribution. Robustness can also be directly in-
corporated into the stochastic control problem, in the computation of
the bounds and approximate value functions.

There are more sophisticated methods for both finding performance
bounds, as well as approximate policies, which we have not mentioned
in this paper [97, 75]. But these more advanced methods are not needed
for the examples considered, since the gap between policy performance
and lower bound is small.

We close by addressing again the issue of signals, which are not
part of our formal model. Incorporating signals in a formal model is
complicated, since it involves the joint distribution of returns and sig-
nals. Even if we did incorporate signals into our formal model, it is
not clear how much practical significance the optimal performance J*
would have, since in practice we would certainly not know very much
about the joint distribution of signals and returns. Incorporating sig-
nals into our formal model would break much of our analysis, including
our lower bound calculations based on Bellman inequalities.

On the other hand, it is easy to think of ways in which updated es-
timates of future problem data (i.e., stage costs and return statistics)
can be incorporated. For an MPC policy it is trivial to incorporate
changing estimates of future return statistics: We simply use the most
recently future return statistics estimates in the policy, as it is evalu-
ated. This approach has no additional computational cost. For an ADP
policy, we would need to re-do the policy synthesis whenever future es-
timates change, solving a new SDP to find new quadratic approximate
value functions.

Acknowledgments

We are very grateful to David Brown, Matt Kraning, and Neal Parikh
for helpful comments and suggestions, and to Joélle Skaf, whose un-
published manuscript [87] inspired some of the ideas in this paper. We
also thank an anonymous reviewer for suggesting that we address the
special case of no transaction costs.

53

Appendices

A

Expectation of Quadratic Function

In this appendix we show that when A : R" — R is a convex quadratic

function, say,
T
i1][]

with P > 0, so is g(z,u) = Eh(Riy1(x + w)). In fact, we will derive
explicit formulas for the coefficients of g,

T r A B a T
g(z,u)=(1/2) | u BT C ¢ u |, (A1)
1 al T d 1

that only require knowledge of the mean and covariance of ryyi. To
show that g has this form, we first observe that h(Ryy1(x + u)) is
- 4T

T [Riyq1 0 T
P R R 0
(1/2) | u Riyr 0 [; pH tOH B“ 1] u
1] | o 1 1 1
- -T -
x Ry 1PRiy1 Rip1PRiy1 Ripip x
= (1/2) | u Ry 1PRyyy Ry1PRyyy Rypap
1] | pTRi pTRiy1 q 1

55

56 Expectation of Quadratic Function

Taking expectation over R;;1 we see that ¢ has the form (A.1), with
A=B=C=ER1PRiy1 =P o (Si11 +Tr1Tip),

a=c=ERijp=poTi41, d=gq,

where o denotes the Hadamard (elementwise) product. This quadratic
function is convex, since P o (341 —i—ﬂHFtTH) = 0 (which follows from
the fact that the Hadamard product of symmetric positive semidefinite
matrices is positive semidefinite).

B

Partial Minimization of Quadratic Function

In this appendix we show that partial minimization of a quadratic func-
tion over some of its variables, subject to linear equality constraints,
results in a quadratic function in the remaining variables, whose coef-
ficients are readily computed. In addition, we will show that the mini-
mizer can be expressed as an affine function of the remaining variables,
whose coefficients are readily computed.

Suppose g : R" x R™ — R is a convex quadratic function,

T r A B a T
g(x,u) = (1/2) | u BT C ¢ u
1 al T d 1

Let us consider minimization of g over u, subject to Fx+ Gu = h, with
h € R*. (We assume that such a minimizer exists.) Let h(z) denote
the minimum value, as a function of .

Necessary and sufficient optimality (KKT) conditions are

5 I GE L)

where y € R¥ is a dual variable associated with the equality constraint.

l’

57

58 Partial Minimization of Quadratic Function
It follows that

HEEIHEHD

is a minimizer, where (-)' is the Moore-Penrose pseudo-inverse. (When
the KKT matrix is nonsingular, the pseudo-inverse becomes the inverse,
and the minimizer is unique.) This shows that u (a minimizer, or the

l’

minimizer when it is unique) is an affine function of x, which we can
write as
u=Jr+k.

Substituting this expression into g we find that h is (convex) quadratic,

C

S-Procedure

Let f;,i=0,..., M be (not necessarily convex) quadratic functions in
the variable x € R",

T
fi<w>=<1/2>[‘f] [IZ Z‘Hﬂ.

We seek a condition on the coefficients Py, pg, qo under which fy is non-
negative on the set defined by the quadratic inequalities and equalities

C=A{z| fix) 20,..., fr(z) 20, frsa(z) =" = fu(z) =0},

that is,
fo(z) >0, VzreCl. (C.1)

Condition (C.1) can be thought of as an infinite number of inequalities
in the coefficients P, p and ¢ (one for each x € C).

An obvious sufficient condition for (C.1) is the existence of
Ay A € Ry, A1, .o, A € R, for which

M
fo() =Y Nifi(x), Vo eR™
=1

59

60 S-Procedure

(This follows immediately, since the righthand side is nonnegative for
x € C.) This condition can be written as a linear matriz inequality

M
pO 40 i=1 pz q;
in the variables Py, po, qo, and Aq, ..., Ay (We also have nonnegativ-
ity constraints on Ay, ..., A,.) Thus, the S-procedure gives a sufficient

condition for (C.1) that involves a single LMI in the coefficients Py, po,
and qo, as well as the (multiplier) variables A1,..., A\y/.

D

LMI Sufficient Condition for Bellman Inequality

We can write a single Bellman inequality in the form
V<TVT,
which equivalent to
V(z) <1Tu+ (z,u) + EVT(R(z 4+ u)), (z+u)eC.

(Here we drop all time indices for notational simplicity.) We assume
that 1) is convex quadratic,
T

x A B a x
Y(x,u) = (1/2) | u BT C ¢ u |,

1 al T od 1

with
l 4Bl

BT C |~

The constraint set C defined by quadratic equalities and inequalities,
C={z]|q1(x) <0,...,9-(x) <0, grp1(x) =+ = gp(x) =0},

where

T
gl-(x)zu/z)[ﬂ [?T }{Hf] =1,

61

62 LMI Sufficient Condition for Bellman Inequality

We assume V and VT are convex quadratic,

T
ver = e 1] [0]

"] pt pT x
VHa) = <1/2>[1] [pg q*Hl]’

with
P >0, Pt =0.

Using the result in appendix A, we can write the Bellman inequality as

T T A B a T
(1/2) | u BT C ¢ u | >0, (z+u)ecC,
1 a & d 1
where

A = A+Pto(Z4+m7)—P
B B+ Pt o(Z+7)
C C+ P o(X+7)
a a+ptoF—p
¢ c+1+ptor
d = ¢"+d—q

We note that (the coefficients of) A, B, C, a, ¢ and d are affine functions
of (the coefficients of) V and V.

Applying the S-procedure (appendix C), a sufficient condition for
the Bellman inequality is the existence of A\1,..., A\, € R4, and arbi-
trary Ar41, ..., A\ € R for which

A B a M G; G; fi
BT C ¢ |=>N| G Gi fil. (D.1)
al e d| =t | fFofh o

This is an LMI in the coefficients P, p, ¢, P™, p™, ¢*, and A1, ..., .

E

No-Trade Region

We define the no-trade region for a policy ¢; in period t as the set of
portfolio values in which the policy does not trade:

Ni={z | ¢¢(x) = 0}.

In this appendix we observe that for the quadratic ADP policy, the
presence of linear transaction cost terms in the stage cost lead to N}
typically having nonempty interior.

For the ADP policy (5.1), A} is the set of portfolios x for which
u = 0 minimizes

gt(.%, U) + E‘A/t(RH_l(.%' + u))

When V is quadratic, the second term is convex quadratic, so we can
write it as
(1/2)(x + u)T Py(x + u) + pl (x + u)

where P, = 0. The necessary and sufficient condition for v = 0 to
minimize the function above is then

0 € 9uly(x,0) + Pz + py,

where 0, denotes the subdifferential with respect to u.

63

64 No-Trade Region

Now suppose that
Et(ajvu) = gt(l’,U) + ’iz(u)"r + KZ(’UJ)_,

where £, is differentiable in u for fixed z, ky > 0, ko > 0, and (for
simplicity) C; = R". In other words, the stage cost contains a linear
transaction cost term (with nonzero cost rates). The subdifferential of
the linear transaction cost term at u = 0 is the rectangle in R" given
by [—k—, k4], so the no-trade region is characterized by

— (Vuft(a:, 0) + Pz +pt) € [—k_,ky]. (E.1)

In this case, there is a simple interpretation for the no-trade region. We
interpret the lefthand side as the vector of marginal values of trading
the assets in period t; we do not trade when the marginal values are
smaller than the linear transaction cost rates.

When the lefthand side above (i.e., the marginal utility) is a con-
tinuous function of z, and its range intersects the open rectangle
(—k—, k4), we conclude that A} has non-empty interior.

Short-circuiting. We can use the characterization (E.1) of the no-
trade region to (sometimes) speed up the evaluation of ¢ (z;). We first
check if (E.1) holds; if so, we return u; = 0 as the optimal trade vector.
If not, we solve the convex optimization problem required to determine
the (nonzero) value of u;. This trick does not speed up the worst-case
time required to evaluate the policy, but it can reduce the average time
to evaluate it, if in many periods the policy does not trade. This can
be useful in simulations, for example.

References

1]
2]

J. Adda and R. Cooper. Dynamic economics: Quantitative methods and
applications. MIT Press, 2003.

M. Akerblad and A. Hansson. Efficient solution of second order cone
program for model predictive control. International Journal of Control,
77(1):55-77, January 2004.

P. Algoet and T. Cover. Asymptotic optimality and asymptotic equipar-
tition properties of log-optimum investment. The Annals of Probability,
16(2):876-898, April 1988.

R. Almgren and N. Chriss. Optimal execution of portfolio transactions.
Journal of Risk, 3(2):5-39, December 2001.

S. Basak and A. Shapiro. Value-at-risk-based risk management: Optimal
policies and asset prices. Review of Financial Studies, 14(2):371-405,
February 2001.

R. Bellman. Dynamic Programming. Dover Publications, 1957.

A. Bemporad and C. Filippi. Suboptimal explicit receding horizon con-
trol via approximate multiparametric quadratic programming. Journal
of Optimization Theory and Applications, 117(1):9-38, November 2004.

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit
linear quadratic regulator for constrained systems. Automatica, 38(1):3—
20, 2002.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization.
Princeton University Press, 2009.

65

66

[10]

[11]

[12]

References

D. Bertsekas. Dynamic Programming and Optimal Control: Volume 1.
Athena Scientific, 2005.

D. Bertsekas. Dynamic programming and suboptimal control: A survey
from ADP to MPC. FEuropean Journal of Control, 11(4-5):310-334,
October 2005.

D. Bertsekas. Rollout algorithms for constrained dynamic program-
ming. Technical report, Laboratory for Information and Decision Sys-
tems, MIT, 2005.

D. Bertsekas. Dynamic Programming and Optimal Control: Volume 2.
Athena Scientific, 2007.

D. Bertsekas and S. Shreve. Stochastic optimal control: The discrete-
time case. Athena Scientific, 1996.

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

D. Bertsimas and A. Lo. Optimal control of execution costs. Journal
of Financial Markets, 1(1):1-50, April 1998.

J. Birge and F. Louveaux. Introduction to Stochastic Programming.
Springer Series in Operations Research and Financial Engineering.
Springer, 1997.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matriz
Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics, 1994.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed op-
timization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3(1):1-
122, 2011.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge Uni-
versity Press, 2004.

L. Breiman. Optimal gambling systems for favorable games. In Proc.
4th Berkeley Symp. Math. Statist. Probab., volume 1, pages 65-78, 1961.

D. Brown and J. Smith. Dynamic portfolio optimization with trans-
action costs: Heuristics and dual bounds. Management Science,
57(10):1752-1770, October 2011.

G. Calafiore. Multi-period portfolio optimization with linear control
policies. Automatica, 44(10):2463-2473, October 2008.

References 67

[24] G. Calafiore. An affine control method for optimal dynamic asset alloca-
tion with transaction costs. STAM J. Control Optim., 48(4):2254-2274,
June 2009.

[25] G. Calafiore. Random convex programs. SIAM J. Optim., 20(6):3427—
3464, December 2010.

[26] G. Constantinides. Multiperiod consumption and investment behavior
with convex transaction costs. Management Science, 25(11):1127-1137,
November 1979.

[27] T. Cover. Universal portfolios. Mathematical Finance, 1(1):1-29, Jan-
uary 1991.

[28] J. Cvitani¢ and I. Karatzas. Hedging and portfolio optimization un-
der transaction costs: A Martingale approach. Mathematical Finance,
6(2):133-165, April 1996.

[29] M. Davis and A. Norman. Portfolio selection with transaction costs.
Mathematics of Operations Research, 15(4):676-713, November 1990.

[30] D. De Farias and B. Van Roy. The linear programming approach to
approximate dynamic programming. Operations Research, 51(6):850—
865, November 2003.

[31] E.Denardo. Dynamic Programming: Models and Applications. Prentice-
Hall, 1982.

[32] V. Desai, V. Farias, and C. Moallemi. Pathwise optimization for optimal
stopping problems. Management Science, June 2012.

[33] B. Dumas and E. Luciano. An exact solution to a dynamic portfo-
lio choice problem under transaction costs. The Journal of Finance,
46(2):577-595, June 1991.

[34] J. Dupacova, J. Hurt, and J. Stépan. Stochastic modeling in economics
and finance. Applied optimization. Kluwer Academic Publishers, 2002.

[35] L. El Ghaoui and S. Niculescu. Advances in linear matriz inequality
methods in control. Advances in design and control. STAM, 2000.

[36] C. Garcia, D. Prett, and M. Morari. Model predictive control: Theory
and practice. Automatica, 25(3):335-348, May 1989.

[37] N. Garleanu and L. Pedersen. Dynamic trading with pre-
dictable returns and transaction costs. Manuscript, available at
http://pages.stern.nyu.edu/~1lpederse/papers/DynamicTrading.pdf,
2011.

[38] D. Goldsmith. Transactions costs and the theory of portfolio selection.
Journal of Finance, 31(4):1127-39, September 1976.

68

[39]

[40]

[41]

[42]

[43]

References

G. Goodwin, M. Seron, and J. De Dond. Constrained control and esti-
mation. Springer, 2005.

M. Grant and S. Boyd. CVX: Matlab software for disciplined convex
programming, version 1.21. http://cvxr.com/cvx, April 2011.

M. Haugh, L. Kogan, and J. Wang. Evaluating portfolio policies: A
duality approach. Operations Research, 54(3):405-418, June 2006.

O. Hernandez-Lerma and J. Lasserre. Linear programming approxima-
tions for Markov control processes in metric spaces. Acta Applicandae
Mathematicae, 51:123-139, 1998.

F. Herzog, G. Dondi, and H. Geering. Stochastic model predictive con-
trol and portfolio optimization. International Journal of Theoretical

and Applied Finance, 10(2):203-233, 2007.

G. Iyengar and T. Cover. Growth optimal investment in horse race mar-
kets with costs. IEEE Transactions on Information Theory, 46(7):2675—
2683, November 2000.

K. Judd. Numerical Methods in Economics. The MIT Press, 1998.

Y. Kabanov. Hedging and liquidation under transaction costs in cur-
rency markets. Finance and Stochastics, 3(2):237-248, 1999.

Y. Kabanov, M. Résonyi, and C. Stricker. On the closedness of sums of
convex cones in L® and the robust no-arbitrage property. Finance and
Stochastics, 7(3):403-411, 2003.

Y. Kabanov and C. Stricker. The Harrison—Pliska arbitrage pricing
theorem under transaction costs. Journal of Mathematical Economics,
35(2):185-196, 2001.

J. Kelly. A new interpretation of information rate. IRFE Transactions

on Information Theory, 2(3):185-189, September 1956.

P. Krokhmal, J. Palmquist, and S. Uryasev. Portfolio optimization with
conditional value-at-risk objective and constraints. Journal of Risk,
4(2):11-27, 2002.

M. Kvasnica, P. Grieder, and M. Baoti¢. Multi-Parametric Toolbox
(MPT), 2004.
W. Kwon and S. Han. Receding Horizon Control. Springer-Verlag, 2005.

X. Li, X. Zhou, and A. Lim. Dynamic mean-variance portfolio selection
with no-shorting constraints. STAM J. Control Optim., 40(5):1540-1555,
January 2002.

References 69

[54]
[55]

[56]

[57]

B. Lincoln and A. Rantzer. Relaxing dynamic programming. [EEFE
Transactions on Automatic Control, 51(8):1249-1260, August 2006.

A. Lo and M. Mueller. Warning: Physics envy may be hazardous to
your wealth!, 2010.

M. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and
fixed transaction costs. Annals of Operations Research, 152(1):341-365,
July 2007.

M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of
second-order cone programming. Linear Algebra and its Applications,
284:193-228, November 1998.

J. Lotberg. YALMIP: A toolbox for modeling and optimization in Mat-
lab. In Proceedings of the CACSD Conference, 2004.

J. Maciejowski. Predictive Control with Constraints. Prentice-Hall,
2002.

A. Manne. Linear programming and sequential decisions. Management
Science, 6(3):259-267, April 1960.

H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77-91,
March 1952.

J. Mattingley and S. Boyd. Real-time convex optimization in signal
processing. IEEE Signal Processing Magazine, 23(3):50-61, June 2009.

J. Mattingley and S. Boyd. Automatic code generation for real-time
convex optimization. In D. P. Palomar and Y. C. Eldar, editors, Con-
vex optimization in signal processing and communications, pages 1-41.
Cambridge University Press, 2010.

J. Mattingley and S. Boyd. CVXGEN: A code generator for embedded
convex optimization. Optimization and Engineering, 13(1):1-27, 2012.

J. Mattingley, Y. Wang, and S. Boyd. Code generation for receding
horizon control. In IEEE Multi-Conference on Systems and Control,
pages 985-992, 2010.

J. Mattingley, Y. Wang, and S. Boyd. Receding horizon control: Auto-
matic generation of high-speed solvers. IEEE Control Systems Maga-
zine, 31(3):52-65, June 2011.

D. Mayne, J. Rawlings, C. Rao, and P. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789-814,
June 2000.

70

[68]

References

R. Merton. Lifetime portfolio selection under uncertainty: The
continuous-time case. The Review of Economics and Statistics,
51(3):247-257, August 1969.

S. Meyn and R. Tweedie. Markov chains and stochastic stability. Com-
munications and control engineering. Cambridge University Press, 2009.

C. Moallemi and M. Saglam. Dynamic portfo-
lio choice with linear rebalancing rules. Available at
http://www.columbia.edu/~ms3760/1linear.pdf, 2012.

J. Mossin. Optimal multiperiod portfolio policies. The Journal of Busi-
ness, 41(2):215-229, April 1968.

Y. Nesterov and A. Nemirovsky. Interior-Point Polynomial Methods in
Convex Programming. STAM, 1994.

J. Nocedal and S. Wright. Numerical Optimization. Springer, 1999.

B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting method for
optimal control. IEEE Trans. Autom. Control, 2013. To appear.

B. O’Donoghue, Y. Wang, and S. Boyd. Min-max approximate dynamic
programming. In Proceedings IEEE Multi-Conference on Systems and
Control, pages 424-431, September 2011.

H. Pham. Continuous-time stochastic control and optimization with fi-
nancial applications. Spinger Series in Stochastic modelling and applied
probability. Springer, 2009.

F. Potra and S. Wright. Interior-point methods. Journal of Computa-
tional and Applied Mathematics, 124(1-2):281-302, 2000.

W. Powell. Approxzimate dynamic programming: Solving the curses of
dimensionality. John Wiley & Sons, 2007.

A. Prékopa. Stochastic programming. Mathematics and its applications.
Kluwer Academic Publishers, 1995.

M. Rami and L. El Ghaoui. LMI optimization for nonstandard Riccati
equations arising in stochastic control. IEEE Trans. Autom. Control,
41(11):1666-1671, November 1996.

C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior
point methods to model predictive control. Journal of optimization
theory and applications, 99(3):723-757, November 2004.

R. Rockafellar and S. Uryasev. Optimization of conditional value-at-
risk. The Journal of Risk, 2(3):21-42, 2000.

References 71

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[94]

[95]

S. Ross. Introduction to Stochastic Dynamic Programming: Probability
and Mathematical. Academic Press, 1983.

P. Samuelson. Lifetime portfolio selection by dynamic stochastic pro-
gramming. Review of Economics and Statistics, 51(3):239-246, August
1969.

W. Schachermayer. The fundamental theorem of asset pricing under
proportional transaction costs in finite discrete time. Mathematical Fi-
nance, 14(1):19-48, January 2004.

A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on stochastic
programmaing: Modeling and theory. MPS-SIAM series on optimization.
Society for Industrial and Applied Mathematics, 2009.

J. Skaf and S. Boyd. Multi-period portfolio op-
timization with constraints and transaction costs.
http://www.stanford.edu/~boyd/papers/dyn_port_opt.html,
2008. Manuscript.

J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones. Optimization Methods and Software, 11:625—653,
1999. Software available at http://sedumi.ie.lehigh.edu/.

M. Sznaier, R. Suarez, and J. Cloutier. Suboptimal control of con-
strained nonlinear systems via receding horizon constrained control Lya-
punov functions. International Journal on Robust and Nonlinear Con-
trol, 13(3-4):247-259, March 2003.

C. Tapiero. Applied stochastic models and control for finance and in-
surance. Kluwer, 1998.

J. Tobin. The theory of portfolio selection. In F. Hahn and F. Brechling,
editors, The Theory of Interest Rates. Macmillan, 1965.

K. Toh, M. Todd, and R. Tiitiincii. SDPT3—A Matlab software package
for semidefinite programming, version 1.3. Optimization Methods and
Software, 11(1):545-581, 1999.

U. Topcu, G. Calafiore, and L. El Ghaoui. Multistage investments with
recourse: A single-asset case with transaction costs. In Proceedings of
the 47th Conference on Decision and Control, pages 2398-2403, Cancun,
Mexico, 2008.

R. Tiitinci, K. Toh, and M. Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical Programming, 95(2):189-217,
2003.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Re-
view, 38(1):49-95, 1996.

72

[96]

[97]

[100]

[101]

[102]
[103]

[104]

References

Y. Wang and S. Boyd. Performance bounds for linear stochastic control.
Systems & Control Letters, 58(3):178-182, March 2009.

Y. Wang and S. Boyd. Approximate dynamic
programming via iterated Bellman inequalities.
http://www.stanford.edu/~boyd/papers/adp_iter_bellman.html,
2010. Manuscript.

Y. Wang and S. Boyd. Fast model predictive control using online
optimization. IEEFE Transactions on Control Systems Technology,
18(2):267-278, March 2010.

Y. Wang and S. Boyd. Fast evaluation of quadratic control-Lyapunov
policy. IEEE Transactions on Control Systems Technology, 19(4):939—
946, July 2011.

Y. Wang and S. Boyd. Performance bounds and suboptimal policies for
linear stochastic control via LMIs. International Journal of Robust and
Nonlinear Control, 21(14):1710-1728, September 2011.

P. Whittle. Optimization Owver Time: Dynamic Programming and
Stochastic Control. John Wiley & Sons, 1982.

S. Wright. Primal-Dual Interior-Point Methods. STAM, 1997.

X. Zhou and D. Li. Continuous-time mean-variance portfolio selec-
tion: A stochastic LQ framework. Applied Mathematics €& Optimization,
42(1):19-33, 2000.

W. Ziemba and R. Vickson. Stochastic Optimization Models in Finance.
World Scientific, 2006.

