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Abstract This paper describes a general purpose method for solving convex optimiza-
tion problems in a distributed computing environment. In particular, if the problem
data includes a large linear operator or matrix A, the method allows for handling each
sub-block of A on a separate machine. The approach works as follows. First, we define
a canonical problem form called graph form, in which we have two sets of variables
related by a linear operator A, such that the objective function is separable across
these two sets of variables. Many types of problems are easily expressed in graph
form, including cone programs and a wide variety of regularized loss minimization
problems from statistics, like logistic regression, the support vector machine, and the
lasso. Next, we describe graph projection splitting, a form of Douglas–Rachford split-
ting or the alternating direction method of multipliers, to solve graph form problems
serially. Finally, we derive a distributed block splitting algorithm based on graph pro-
jection splitting. In a statistical or machine learning context, this allows for training
models exactly with a huge number of both training examples and features, such that
each processor handles only a subset of both. To the best of our knowledge, this is
the only general purpose method with this property. We present several numerical
experiments in both the serial and distributed settings.
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1 Introduction

We begin by defining a canonical form called graph form for convex optimization
problems. In graph form, we have two sets of variables x and y, related by y = Ax ,
where A is a linear operator, and an objective function that is separable across these
two sets of variables. We can think of the variables x as input variables and of y as
output variables, and the corresponding objective terms represent costs or constraints
associated with different choices of the inputs and outputs. This form arises naturally
in many applications, as we discuss in Sect. 2.

We then introduce an operator splitting method called graph projection splitting to
solve graph form problems. Its main characteristic is that it separates the handling of the
nonlinear objective terms from the handling of the linear operator A. The algorithm is
an operator splitting method that proceeds by alternating the evaluation of the proximal
operators of the objective terms with the projection of the input and output variables
onto the graph of the linear operator A. There are at least two major benefits of this
approach:

1. Re-use of computation. In many problems, there are trade-off or regularization
parameters that are provided exogeneously by the modeler. It is typically desirable
to solve the problem for many different values of the tuning parameters in order to
examine the behavior of the solution or performance of the model as the parameter
varies.

In graph projection splitting, if a direct method is used to solve the linear systems
in which A appears, the factorization of the coefficient matrix can be computed
once, cached, and then re-used across all these variations of the original problem.
This can enable solving k variations on the original problem in far less time than
it would take to solve k independent instances.

In fact, the factorization can be re-used across completely different problems, as
long as A remains the same. In a statistical context, this allows for fitting, e.g.,
multiple different classification models to the same dataset in far less time than
would be needed to fit the models independently.

2. Distributed optimization. In Sect. 4, we extend graph projection splitting to obtain
a distributed block splitting algorithm that allows each block of A to be handled
by a separate process or machine. This permits the method to scale to solve, in
principle, arbitrarily large problems by using many processes or computers. In a
statistical context, for example, A is the feature matrix, so block splitting allows for
decomposing parameter estimation problems across examples and features simul-
taneously. To the best of our knowledge, this is the first algorithm with this property
that is widely applicable. (For example, the distributed algorithms described in [1]
permit decomposing problems by either examples or features, but not both, while
other techniques often rely on A being very sparse.)
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Block splitting for distributed optimization 79

We discuss three classes of applications, at different levels of generality: cone
programming, parameter estimation problems in statistics and machine learning, and
intensity modulated radiation treatment planning. We also present a number of numer-
ical experiments and discuss implementation issues in detail.

2 Problem

Throughout this paper, we consider the problem

minimize f (y) + g(x)

subject to y = Ax,
(1)

with variables x ∈ Rn and y ∈ Rm , where f : Rm → R ∪ {+∞} and g : Rn →
R ∪ {+∞} are closed proper convex functions. We sometimes refer to x as the input
variables and to y as the output variables. Since f and g can take on extended values,
they can include (convex) constraints on y and x : If f or g is an indicator function of a
closed nonempty convex set, then the corresponding objective term simply represents
a constraint on y or x , respectively.

We call this problem type graph form because the variables x and y are constrained
to lie in the graph {(x, y) ∈ Rn+m | y = Ax} of the linear operator A. We emphasize
that here and throughout the paper, ‘graph’ refers to the graph of a function or operator,
not to graphs in the sense of graph theory.

2.1 Examples

A wide variety of convex optimization problems can be expressed in the form (1); we
describe some examples in this section.

Cone programming. If K is a convex cone, then the problem

minimize cT x
subject to Ax = b

x ∈ K,

(2)

is called a cone program in standard form. To express this in graph form, let

f (y) = I{b}(y), g(x) = cT x + IK(x),

where IC is the indicator function of the convex set C , i.e., IC (x) = 0 for x ∈
C , IC (x) = ∞ for x ̸∈ C . The term f (y) simply enforces y = b; the term g(x)

includes the linear objective cT x and the conic constraint x ∈ K.
When K is the nonnegative orthant Rn

+, the second-order cone Qn , or the semi-
definite cone Sn

+, the problem (2) is called a linear program (LP), second-order cone
program (SOCP), or semidefinite program (SDP), respectively. When K is a (Carte-
sian) product of these three cone types, it is called a symmetric cone, and (2) is
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called a symmetric cone program. A very wide variety of convex optimization prob-
lems can be expressed as symmetric cone programs; see, e.g., [2–5]. (Though the
algorithms we will discuss do not require K to be symmetric, we limit ourselves
to the symmetric case and refer to symmetric cone programs simply as cone pro-
grams.) See, e.g., [6] for a recent discussion of the use of ADMM for semidefinite
programming.

Regularized loss minimization. Many problems in statistics and machine learning are
naturally expressed in graph form. In regularized loss minimization, we fit a parameter
vector x by solving

minimize l(Ax − b) + r(x),

where l is a loss function and r is a regularization function. Here, A is a feature matrix
in which each row corresponds to a training example and each column corresponds to
a feature or predictor, and b is a response vector, i.e., A and b comprise the training
set. To express this in graph form, let

f (y) = l(y − b), g(x) = r(x). (3)

As an example, we obtain the lasso [7] by setting l(u) = (1/2)∥u∥2
2 and r(x) = λ∥x∥1,

where λ > 0 is a regularization parameter chosen by the modeler to trade off model
complexity with quality of fit to the training set. More generally, given a linear model
bi = aT

i x +vi , where ai is the i th feature vector and the noise terms vi are independent
with log-concave densities pi , the negative log-likelihood function is

l(Ax − b) =
m∑

i=1

li (aT
i x − bi ),

where li (u) = − log pi (−u). If r = 0, then the solution to this problem gives the
maximum likelihood estimate of x . If ri is the negative log prior density of xi , then the
solution is the maximum a posteriori (MAP) estimate. For example, the lasso corre-
sponds to MAP estimation of a linear model with Gaussian noise and a Laplacian prior
on the parameters. Thus we can carry out maximum likelihood and MAP estimation
in exponential families.

In classification problems, the loss function is sometimes written as a function of
the margin bi (aT

i x). In this case, we can let f (y) = ∑m
i=1 li (bi yi ). For example, if

li (u) = (1−u)+ (where (·)+ = max{0, ·}) and r(x) = λ∥x∥2
2, we recover the support

vector machine. For background on this formulation, see, e.g., [1, §8.1].

Intensity modulated radiation treatment planning. Many design and planning prob-
lems have the form (1), with x representing an action or design, y representing an
outcome or result, and y = Ax giving our (linear) model of how the action maps to
a result. The functions f and g express the constraints or costs associated with the
outcome or action.
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Block splitting for distributed optimization 81

Here, we describe one typical example that we revisit throughout the paper. In
intensity modulated radiation treatment planning (IMRT) [8,9], radiation is delivered
to a patient with the goal of killing or damaging the cells in a tumor while carrying out
minimal damage to other tissue. The radiation is delivered in beams, each of which has
a known pattern; the intensity of each beam can be adjusted up to a given maximum
level. The variable x j is the intensity of beam j , and yi is the radiation dosage delivered
to voxel i in the exposure area; the constraint y = Ax relates the beam intensities to
the delivered dosages. The coefficients in A depend on the geometry of the beam and
possibly the patient (when scattering is taken into account). The goal is to find beam
intensities that deliver a sufficient dosage to voxels in the tumor, but not too high a
dosage to voxels outside the tumor. This cannot be achieved perfectly, so the choice
involves trade-offs between these two goals.

To formulate a typical IMRT problem in graph form, we let g be the indicator
function of [0, I max]n , where I max is the maximum possible beam intensity, so the
term g(x) simply expresses the constraints 0 ≤ xi ≤ I max. The objective is expressed
in f as

f (y) = wT (dmin − y)+ + vT (y − dmax)+,

where dmin
i is the target minimum dosage for the voxel i, dmax

i is the target maximum
dosage for the voxel i , and w and v are positive weights chosen (by a radiation
oncologist) to trade off dosage delivered to the tumor with damage to other tissue. A
simple choice for the target dosages would be dmin

i = dmax
i = 0 for a voxel not in the

tumor, and dmin
i = α, dmax

i = ∞ for a voxel in the tumor, where α is a dosage level
high enough to damage or kill tumor cells.

3 Graph projection splitting

3.1 Operator splitting

We now describe a standard operator splitting method known as the alternating direc-
tion method of multipliers (ADMM) or Douglas–Rachford splitting [1] for the generic
convex constrained minimization problem

minimize ϕ(z)
subject to z ∈ C,

where ϕ is closed proper convex and C is closed nonempty convex. The algorithm is

zk+1/2 := proxϕ(zk − z̃k)

zk+1 := #C(zk+1/2 + z̃k)

z̃k+1 := z̃k + zk+1/2 − zk+1,

(4)

where k is an iteration counter, #C denotes (Euclidean) projection onto C, and

proxϕ(v) = argmin
x

(
ϕ(x) + (ρ/2)∥x − v∥2

2

)
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is the proximal operator of ϕ with parameter ρ > 0 [10]. We suppress the dependence
on ρ to lighten notation. It is important to note, however, that while the algorithm will
converge with any choice of ρ, the choice can affect its rate of convergence.

We emphasize that while ADMM algorithms can take many forms, the particular
form used here is key to the subsequent discussion. This algorithm splits the handling
of the objective function ϕ (which happens in the first step) and the handling of the
constraint set C (which happens in the second step). The third step, which is called the
dual update step, coordinates the two other steps, resulting in convergence to a solution
of the original problem. This algorithm is guaranteed to converge to optimality (when
a solution exists); see [1, §3.2], for details.

There are many variations on the basic algorithm described here, including varia-
tions in the order of the proximal and projection steps, over-relaxation, and varying
the proximal parameter ρ in each step. All of these, which are surveyed in [1, §3.4],
can be employed in what follows, but we limit our discussion to the simplest case.

3.2 Algorithm

Applying the algorithm above to (1), with z = (x, y) and ϕ(z) = f (y) + g(x), yields

xk+1/2 := proxg(xk − x̃ k)

yk+1/2 := prox f (yk − ỹk)

(xk+1, yk+1) := #A(xk+1/2 + x̃ k, yk+1/2 + ỹk) (5)

x̃ k+1 := x̃ k + xk+1/2 − xk+1

ỹk+1 := ỹk + yk+1/2 − yk+1,

where #A denotes projection onto {(x, y) ∈ Rn+m | y = Ax}. We typically initialize
all the variables to zero.

We refer to #A as a graph projection operator because it projects onto the graph of
the linear operator A, and to (5) as the graph projection splitting algorithm as a result.
Graph projection can be seen to be a linear operator that can be expressed explicitly
as

[
c
d

]
#→

[
I AT

A −I

]−1 [
I AT

0 0

] [
c
d

]
, (6)

as shown in Appendix A, where we also describe several methods that can be used
to implement graph projection efficiently. Briefly, when a direct method is used to
evaluate graph projection, we can cache the matrix factorizations involved, a simple
but important technique we refer to as factorization caching. After the first iteration,
subsequent graph projections can be carried out using only forward-solve and back-
solve steps, which can be much faster than the original factorization.

Because of the way the form of ADMM in Sect. 3.1 applies to graph form problems,
the objective terms f and g never interact directly with the matrix A. This implies
that we can solve multiple graph form problems with the same matrix A but different
f and g more quickly than solving them all independently, because they can all re-
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Block splitting for distributed optimization 83

use the same cached factorization used to evaluate !A. In the context of machine
learning, for example, this applies whenever we wish to fit two different models to the
same dataset (either completely different models or versions of the same model with
different settings of the regularization parameters). In IMRT, this permits the radiation
oncologist to evaluate results quickly under different choices of the weights wi . In
general, this is very useful whenever there are parameters in the problem that need to
be tuned by hand or via an external procedure like cross-validation.

Evaluating the proximal operators prox f and proxg involves solving convex opti-
mization problems, and so may seem to be onerous. In many applications, however, f
and g are simple or structured enough that their proximal operators can be evaluated
very efficiently, either via closed-form expressions or simple linear-time algorithms.
See [11, Chapter 6], for a discussion of many common examples of proximal operators
and efficient ways to evaluate them.

Finally, we note that the first two (proximal evaluation) steps in graph projec-
tion splitting can be executed independently in parallel; similarly, the dual update
steps can also be carried out in parallel. If in addition f or g is separable, i.e., is
a sum of functions of disjoint subsets of the variable components, then the proxi-
mal steps for f and g split into proximal steps for each subset of variables, which
can all be carried out in parallel (separability of f and g is discussed in detail in
Sect. 4.)

Stopping criterion. As discussed in [1, §3.3], the values

rk+1 = zk+1/2 − zk+1, sk+1 = −ρ(zk+1 − zk),

where zk+1/2 = (xk+1/2, yk+1/2) and zk = (xk, yk), can be viewed as primal and
dual residuals in the algorithm. We can use a termination criterion that requires that
both residuals are small, i.e.,

∥rk∥2 ≤ εpri and ∥sk∥2 ≤ εdual,

where εpri > 0 and εdual > 0 are feasibility tolerances for the primal and dual
feasibility conditions. These tolerances can be chosen using an absolute and relative
criterion, such as

εpri = √
n εabs + εrel max{∥zk−1/2∥2, ∥zk∥2},

εdual = √
n εabs + εrel∥ρ z̃k∥2,

where εabs > 0 is an absolute tolerance and εrel > 0 is a relative tolerance. A
reasonable value for the relative stopping criterion might be in the range of 10−2

to 10−4, depending on the application. The choice of absolute stopping criterion
depends on the scale of the typical variable values. We emphasize that this crite-
rion is not heuristic and refer the reader to [1, §3.3], for a more detailed theoretical
discussion.

Convergence in practice. Simple examples show that ADMM can be very slow
to converge to high accuracy. However, it is often the case that ADMM converges
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to modest accuracy—sufficient for many applications—within a few tens of itera-
tions. This behavior makes ADMM similar to algorithms like the conjugate gradi-
ent method, for example, in that a few tens of iterations will often produce accept-
able results of practical use. However, the slow convergence of ADMM also distin-
guishes it from algorithms such as Newton’s method (or, for constrained problems,
interior-point methods), where high accuracy can be attained in a consistent amount
of time. While in some cases it is possible to combine ADMM with a method for
producing a high accuracy solution from a low accuracy solution [12], in the gen-
eral case ADMM will be practically useful mostly in cases when modest accuracy is
sufficient.

Fortunately, for the types of large-scale problems that are our primary concern
here, this is typically the case. Also, in statistical and machine learning problems,
solving a parameter estimation problem to very high accuracy often yields little to no
improvement in actual prediction performance, the real metric of interest in applica-
tions. Indeed, in these fields, problems are often solved only to modest accuracy even
when it is possible to obtain high accuracy solutions.

We mentioned previously that we typically initialize the algorithm by setting all
variables to zero (this is the case for all the numerical experiments discussed later).
It has been shown elsewhere in the literature that ADMM-based methods are not
particularly sensitive to changes in the choice of starting point; see, e.g., [13] for a
discussion of extensive numerical experiments with ADMM.

4 Block splitting

4.1 Block partitioned form

We now build on the graph projection splitting algorithm to obtain a distributed block
splitting algorithm. Suppose that f and g are block separable, i.e.,

f (y) =
M∑

i=1

fi (yi ), g(x) =
N∑

j=1

g j (x j ),

where

y = (y1, . . . , yM ), x = (x1, . . . , xN ),

with yi ∈ Rmi , x j ∈ Rn j , so
∑M

i=1 mi = m and
∑N

j=1 n j = n. When all subvector
sizes are one, we say that f or g is fully separable.

We then partition A conformably with the partitioning of x and y, giving

A =

⎡

⎢⎢⎢⎣

A11 A12 · · · A1N
A21 A22 · · · A2N
...

...
. . .

...

AM1 AM2 · · · AM N

⎤

⎥⎥⎥⎦
,
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Block splitting for distributed optimization 85

where Ai j ∈ Rmi ×n j . In other words, if f and g are fully separable (down to the
component), then there is no restriction on partitioning. As a convention, i will index
block rows and j will index block columns. We can express the problem (1) in terms
of the variable components as

minimize
M∑

i=1
fi (yi ) +

N∑
j=1

g j (x j )

subject to yi =
N∑

j=1
Ai j x j , i = 1, . . . , M.

(7)

In some cases, either M = 1 or N = 1. We refer to these cases as column splitting
and row splitting, respectively.

The goal is to solve this block partitioned problem in a way that (a) allows for each
block Ai j to be handled by a separate process and (b) does not involve transfer of the
block matrices Ai j among processes.

4.2 Examples

Cone programming. Consider a symmetric cone program (2) with

K = K1 × · · · × KN .

The problem can then be written in the form (7), where fi is the indicator of
{bi } and g j (x j ) = cT

j x j + IK j (x j ). In other words, f is fully separable and g
is block separable conformably with the product structure of K, i.e., row split-
ting is always possible, but column splitting relies on K being a product cone. Put
another way, y can be arbitrarily split, but x must be split comformably with the
cones K j .

Regularized loss minimization. Here, A is the training data, so row splitting splits
the problem by examples, column splitting splits the problem by features, and block
splitting splits by both examples and features.

Typically, the examples are assumed to be statistically independent, so the loss
function l is fully separable and row splitting is straightforward. If the regular-
ization function r is, e.g., ℓ1 or squared ℓ2 loss, then it is also fully separable.
However, suppose r(x) is

∑N
j=1 ∥x j∥2, where x j ∈ Rn j . Here, the regularizer is

separable with respect to the partition (x1, . . . , xN ) but not fully separable (when
n j > 1). This extension of ℓ1 regularization is called the group lasso [14], or,
more generally, sum-of-norms regularization [15]. In this case, we can split the
columns of A conformably with the blocks of variables in the same regularization
group.

Intensity modulated radiation treatment planning. In the IMRT problem, both f and
g are fully separable, so x and y can be split into subvectors arbitrarily.
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4.3 Algorithm

Problem transformation. We first introduce MN new variables xi j ∈ Rn j and M N
variables yi j ∈ Rmi to reformulate (7) in the equivalent form

minimize
M∑

i=1
fi (yi ) +

N∑
j=1

g j (x j )

subject to x j = xi j , i = 1, . . . , M

yi =
N∑

j=1
yi j , i = 1, . . . , M

yi j = Ai j xi j , i = 1, . . . , M, j = 1, . . . , N .

Here, xi j can be viewed as the local opinion of the value of x j only using row block i ,
and yi j can be viewed as partial responses only using local information xi j and Ai j .

We then move the partial response constraints yi j = Ai j xi j into the objective:

minimize
M∑

i=1
fi (yi ) +

N∑
j=1

g j (x j ) +
M∑

i=1

N∑
j=1

Ii j (yi j , xi j )

subject to x j = xi j , i = 1, . . . , M

yi =
N∑

j=1
yi j , i = 1, . . . , M,

(8)

where Ii j is the indicator function of the graph of Ai j . The three objective terms now
involve distinct sets of variables, and the two sets of constraints involve distinct sets
of variables, which will simplify a number of computations in the sequel.

Algorithm. Applying the ADMM algorithm (4) to (8) gives

yk+1/2
i := prox fi

(yk
i − ỹk

i )

xk+1/2
j := proxg j

(xk
j − x̃ k

j )

(xk+1/2
i j , yk+1/2

i j ) := !i j (xk
i j − x̃ k

i j , yk
i j − ỹk

i j )

(xk+1
j , {xk+1

i j }M
i=1) := avg(xk+1/2

j + x̃ k
j , {xk+1/2

i j + x̃ k
i j }M

i=1)

(yk+1
i , {yk+1

i j }N
j=1) := exch(yk+1/2

i + ỹk
i , {yk+1/2

i j + ỹk
i j }N

j=1)

z̃k+1 := z̃k + zk+1/2 − zk+1,

where z̃ is the collection of all the dual variables corresponding to x j , yi , xi j , and
yi j ; !i j is graph projection for Ai j ; avg is elementwise averaging; and exch is an
exchange operator, defined below. By abuse of notation, we write avg as having mul-
tiple output arguments to denote that all these variables are set to the elementwise
average of the inputs, i.e., xk+1

i j = xk+1
j for i = 1, . . . , M .
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Block splitting for distributed optimization 87

The exchange projection exch(c, {c j }N
j=1) is given by

yi j : = c j +
(

c −
N∑

j=1
c j

)/
(N + 1) , yi := c −

(
c −

N∑
j=1

c j

)/
(N + 1) .

We will sometimes refer to avg and exch as consensus and exchange operators, respec-
tively, since they project onto the constraint sets for x j = xi j and yi = ∑

j yi j ,
respectively. See [1, §7], for background on the origin of these names.

Simplified algorithm. The form of the consensus and exchange projections, together
with the dual updates, can be used to obtain a simpler form for the algorithm:

yk+1/2
i := prox fi

(yk
i − ỹk

i )

xk+1/2
j := proxg j

(xk
j − x̃ k

j )

(xk+1/2
i j , yk+1/2

i j ) := !i j (xk
j − x̃ k

i j , yk
i j + ỹk

i )

xk+1
j := avg(xk+1/2

j , {xk+1/2
i j }M

i=1)

(yk+1
i , {yk+1

i j }N
j=1) := exch(yk+1/2

i , {yk+1/2
i j }N

j=1)

x̃ k+1
j := x̃ k

j + xk+1/2
j − xk+1

j

ỹk+1
i := ỹk

i + yk+1/2
i − yk+1

i

x̃ k+1
i j := x̃ k

i j + xk+1/2
i j − xk+1

j .

(9)

Here, the xk+1
i j and ỹi j variables have been eliminated. The solution can be obtained

via x⋆ = (xk+1/2
1 , . . . , xk+1/2

N ). See Appendix B for details on how to obtain this
simplified form from the original algorithm. In the sequel, we refer to (9) as the block
splitting algorithm.

4.4 Parallel implementation

Parallelism. Several of the steps in (9) can be carried out independently in parallel.
The first three steps can all be performed in parallel: Each of the M yk+1/2

i ’s, the N

xk+1/2
j ’s, and the M N (xk+1/2

i j , yk+1/2
i j ) pairs can all be updated separately. Similarly,

each of the N averaging and M exchange operations can be carried out independently
in parallel, and the final three steps can also be carried out independently in parallel.
Overall, the algorithm thus involves three distinct stages, each of which corresponds to
one of the three updates in ADMM. Intuitively, the avg and exch operations coordinate
the local variables to move towards the global solution.

Communication. We use a total of M N processes split across some number of
machines. For example, we may want each process on a separate machine, in which
case M N machines are required; alternatively, each process may use a distinct core,
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(a) Prox operators. (b) Computing Πi j .

(c) Consensus. (d) Exchange.

Fig. 1 Diagram of which nodes perform computations in which steps in each iteration. Red is x and blue
is y; the extra column on the right is for yi and the extra row at the bottom is for x j (square rather than
circular dots). The only omitted step, the dual update, splits completely (color figure online)

in which case multiple processes would run on the same machine. Only the averaging
and exchange steps require communication. The averaging step communicates within
each block column (but not across columns), and the exchange step communicates
within block rows (but not across rows). This is portrayed diagrammatically in Fig. 1.
The main collaborative component in computing both is summing a set of vectors, so
both can be implemented via reduce operations in parallel programming frameworks
like MPI; averaging involves N reduce steps run in parallel and exchange involves M
reduce steps.

Allreduce. The only communication step needed is computing the elementwise sum
of a set of vectors and depositing the result on each of a set of processes. This func-
tionality is provided by a function often referred to as Allreduce. Explicitly, sup-
pose each of m processes has a local copy of a variable x ∈ Rn . Then calling
Allreduce with argument x in each of the m processes will (efficiently) compute
the elementwise sum of the m copies of x and then deposit the result on each of
the m processes. The function Allreduce is a standard MPI primitive, but an imple-
mentation of Allreduce compatible with Hadoop clusters is also available in Vowpal
Wabbit [16].
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4.5 Block sparsity

Suppose an entire block Ai j is zero, i.e., that A is block sparse. In this case, we can use
a slightly modified problem transformation that introduces fewer auxiliary variables;
the approach can be viewed as a form of general form consensus [1, §7.2]. In other
words, each subsystem should handle only its block of data and only the subset of
variables that are relevant for that block of data. It is also possible to exploit other
types of structure at the block level, though we focus on this case here.

Let M j and Ni be the sets of indices of nonzero blocks in block column j and block
row i , respectively. In other words, |M j | = M if block column j has no zero blocks,
and |Ni | = N if block row i has no zero blocks. We assume that each M j and Ni is
nonempty, since otherwise A itself has zero rows or columns.

The problem (1) can be written

minimize
M∑

i=1
fi (yi ) +

N∑
j=1

g j (x j )

subject to yi = ∑
j∈Ni

Ai j x j , i = 1, . . . , M.

Introducing auxiliary variables xi j and yi j , the problem can then be written

minimize
M∑

i=1
fi (yi ) +

N∑
j=1

g j (x j ) +
M∑

i=1

∑
j∈Ni

Ii j (xi j , yi j )

subject to x j = xi j , i = 1, . . . , M, j ∈ Ni ,

yi = ∑
j∈Ni

yi j , i = 1, . . . , M,

where Ii j is defined as above. This means that we only introduce auxiliary variables
xi j and yi j for each nonzero block Ai j , rather than M N many as before. The consensus
constraint x j = xi j now only constrains the xi j for each nonzero block in column j to
equal x j , and the exchange constraint only requires the nonzero yi j in a given block
row to sum to yi .

The resulting algorithm looks the same as before, but there are fewer arguments to
the averaging and exchange operators. In particular, for fixed j , the averaging operator
only averages together |M j |+1 rather than M +1 entries, and for fixed i , the exchange
operator only aggregates |Ni | + 1 rather than N + 1 entries.

5 Numerical experiments

In this section, we report numerical results for several examples. The examples are
chosen to illustrate a variety of the ideas discussed above, including caching matrix fac-
torizations for re-use of computation across iterations and multiple problem instances,
using iterative solvers for the updates, and using block splitting to solve distributed
problems. The implementations are written to be as simple as possible, with no special
implementation-level optimization or tuning.
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In the serial cases, we compare solving a problem with graph projection splitting
to solving the problem with CVX [17], a MATLAB-based parser-solver for convex
optimization. CVX reformulates a given problem into a symmetric cone program
amenable to solution by interior-point solvers like SeDuMi [18] and SDPT3 [19].

All the experiments other than the distributed examples were run on a machine with
one (quad-core) Intel Xeon E3-1270 3.4 GHz CPU and 16 GB RAM running Debian
Linux. The examples were run with MATLAB version 7.10.0.499. Unless otherwise
specified, all the serial examples were run with εabs = 10−4, εrel = 10−2, and ρ = 1.
More details on the distributed example are provided in Sect. 5.2.

5.1 Cone programming

We implement a symmetric cone solver based on (5), where

f (y) = I{b}(y), g(x) = cT x + IK(x).

The proximal operators of f and g are

prox f (v) = b, proxg(v) = #K(v − c/ρ).

Projection onto a product cone K = K1 × · · · × KN involves projecting the relevant
components onto each Ki ; expressions for the individual projections are in [11, §6.3].

Since CVX is able to reformulate a wide range of convex optimization problems as
symmetric cone programs, we implement our solver as a (MATLAB-based) backend
to CVX and, to provide a point of reference, provide similar results for SeDuMi, an
interior-point solver. We emphasize, however, that the two are not really compara-
ble: ADMM is a first-order method intended to provide solutions of low to medium
accuracy, while the interior-point method implemented in SeDuMi is second-order
and is capable of returning high-accuracy solutions reliably. For this reason, we omit
SeDuMi’s iteration counts in Table 1; though they are all in the 20–40 iteration range,
the iteration counts are not comparable to the ADMM ones.

ADMM will mainly be of interest in the large-scale or distributed setting or in
cases where solutions of low to medium accuracy suffice. For a thorough discussion
of using ADMM for semidefinite programming, see [6], which also discusses some
cone program-specific modifications to the basic method that are out of scope here.

We discuss two examples; the results are summarized in Table 1. The solu-
tion accuracy relative to SeDuMi is summarized in Table 2. The ‘error in p⋆’ is
the relative error in objective value attained, treating the SeDuMi solution as the
truth, and the infeasibility is the relative primal infeasibility of the ADMM solution,
measured by

∥Ax⋆ − b∥2

1 + ∥b∥1
.
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Table 1 Summary of timings for single block cone programs

m n ρ SeDuMi ADMM

Huber 1,000 200 1 1.16 s 0.54 s (162 iters)

Huber 1,500 800 1 18.69 s 5.25 s (161 iters)

Matrix fractional 50 10 10 0.71 s 1.65 s (747 iters)

Matrix fractional 200 100 100 29.55 s 310.39 s (5,484 iters)

Table 2 Relative solution
accuracy for single block
cone programs

m n Error in p⋆ Infeasibility

Huber 1,000 200 4.2e−3 4.0e−3

Huber 1,500 800 4.0e−4 5.8e−3

Matrix fractional 50 10 1.5e−3 2.8e−2

Matrix fractional 200 100 5.1e−2 6.1e−3

The attained values of these two metrics depend on εabs, εrel, and ρ. For these exam-
ples, we used tolerance settings of εabs = 10−4 and εrel = 10−3. We note that while
we used generic ADMM stopping criteria here, if one is really interested in cone pro-
gramming in particular, it can be worthwhile to use cone program-specific stopping
criteria instead; see, e.g., [6, §3.4].

In these examples, unlike some of the later experiments, the matrix A is typically
very sparse. In addition, while the original form of these problems is unconstrained,
they are transformed into and solved as constrained cone programs.

The Huber fitting problem is

minimize ϕhuber(Ax − b),

with variable x ∈ Rn and problem data A ∈ Rm×n, b ∈ Rm , where

ϕhuber(x) =

⎧
⎨

⎩
∥x∥2

2 ∥x∥2 ≤ 1

2∥x∥2 − 1 ∥x∥2 ≥ 1.

CVX transforms this problem into a (dual) constrained cone program with m + 7
variables, n+5 equality constraints, and a cone constraint with K = R4

+×Qm+1×S2
+.

(We note that we could also solve the original unconstrained problem directly with
graph projection splitting, using f (y) = ϕhuber(y − b) and g = 0.)

We also consider a matrix fractional minimization problem, given by

minimize (Ax + b)T (I + Bdiag(x)BT )−1(Ax + b)

subject to x ≥ 0,
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with variable x ∈ Rn and problem data A, B ∈ Rm×n and b ∈ Rm . CVX transforms
this into a (dual) constrained cone program with (m +1)2 +n variables, n +1 equality
constraints, and a cone constraint with K = Rn

+ × Sm+1
+ . For example, if m = 200

and n = 100, this is a symmetric cone program with 20,401 variables, 101 equality
constraints, and K = R100

+ × S201
+ .

We can see from Table 1 that for some problems, this form of ADMM outperforms
SeDuMi, while for other problems, it can be far slower to produce a solution of
reasonable quality. There are a few points worth highlighting about this. First, if it
is possible to solve a given cone program serially using SeDuMi or an interior-point
method, it is usually best to do so; replacing SeDuMi is not our goal. Second, these
results depend greatly on the precise way in which ADMM is used to solve the problem,
and the one shown here is not ideal for serial solutions; see Wen et al. [6] for an example
of much better results with ADMM for cone programs. Finally, recall that the reason
we use this form of ADMM is solely because it is a stepping stone to block splitting,
which lets us solve (albeit with modest accuracy) large problems that cannot be solved
at all by traditional methods.

We mention that we have also tested this (general-purpose) cone solver on a
large variety of other problems from the CVX example library [20] and the results
shown here are representative; for brevity, we have highlighted the two examples
above, since their conic formulations have sufficiently complex constraints to be
interesting.

5.2 Regularized loss minimization

We solve several instances of the lasso in different regimes. Recall that in the lasso,

f (y) = l(y − b), g(x) = λ∥x∥1,

where l = (1/2)∥ · ∥2
2, and the proximal operators of these functions are simple

elementwise operations given in [11, §6.1.1 and §6.5.2].

Serial dense example. We first solve instances of the lasso serially using graph
projection splitting. We generate the data as follows. We first choose the entries of A ∈
R1,000×3,000 independently from a standard normal distribution and then normalize the
columns to have unit ℓ2 norm. A ‘true’ value x true ∈ Rn is generated with 10 nonzero
entries, each sampled from a N(0, 1) distribution. We emphasize that while x true is
sparse, the data matrix A is dense. The labels b are then computed as b = Ax true + v,
where v ∼ N(0, 10−3 I ), which corresponds to a signal-to-noise ratio ∥Ax true∥2

2/∥v∥2
2

of around 60.
We first discuss results for a MATLAB implementation of graph projection splitting.

Because the prox operators for the lasso are so efficient to evaluate, the bulk of the
work is in carrying out the graph projection, which we carry out using (11) because
m < n. We summarize some computational results in Table 3. They are in line with
our expectations: The interior-point method reliably converges in a small number of
iterations, but each iteration is much more expensive. Without caching the computation
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Table 3 Summary of timings
for single block dense lasso
example

εrel λ = 0.1 λ = 1

CVX (SeDuMi) – 134 s (16 iters) 113 s (13 iters)

Graph projection splitting 10−2 0.19 s (19 iters) 0.28 s (31 iters)

Graph projection splitting 10−4 0.29 s (38 iters) 0.40 s (54 iters)

of AAT , graph projection splitting took 18.5 s; while still much faster than CVX, this
underscores the benefit of being able to cache computations.

Regularization path. We now solve a sequence of lasso problems for ten different
values of the regularization parameter λ logarithmically spaced from 0.01λmax to λmax,
where λmax = ∥AT b∥∞ is the critical value of λ above which the solution of the lasso
problem is x⋆ = 0. In this case, we also set ρ = λ to solve each instance. This example
illustrates how the form of the graph projection splitting algorithm enables us to use
cached factorizations to solve different problems more quickly.

We use the same implementation as above, but with A ∈ R5,000×8,000 (substantially
larger problem instances). We compute AAT and the Cholesky factorization L of
I + AAT once, and then re-use these cached computations across all the solves. We
are able to solve the 10 instances in 22.5 s total. The computation of AAT and L took
5.4 s, and the solve times for the individual instances ranged from 1.18 s (14 iterations)
to 2.2 s (26 iterations). By comparison, solving the 10 instances without sharing A
and L across instances (but still caching them within each instance) takes 71.5 s. In
this setting, clearly, the vast majority of the time is spent computing AAT and L once
per instance. Finally, we note that 22.5 s is still substantially less time than needed to
solve a single problem instance with CVX.

Distributed example. We now solve three distributed instances of the lasso with
the block splitting algorithm. We implemented block splitting above as written (with
factorization caching) in C using MPI and the GNU Scientific Library linked against
ATLAS [21]; the computations were done on Amazon EC2. We used Cluster Compute
instances, which have 23 GB of RAM, two quad-core Intel Xeon X5570 ‘Nehalem’
chips, and are connected to each other with 10 Gigabit Ethernet. We used hardware
virtual machine images running CentOS 5.4. Each node had 8 cores, and all the
examples were run with a number of processes equal to the number of cores; for
example, the experiment with 40 cores was run with 40 processes spread across 5
machines. The data was sized so all the processes on a single machine could work
entirely in RAM. Each node had its own attached Elastic Block Storage (EBS) volume
that contained only the local data relevant to that machine, so disk throughput was
shared among processes on the same machine but not across machines. This is to
emulate a scenario where each machine is only processing the data on its local disk,
and none of the dataset is transferred over the network.

The results are summarized in Table 4. Here, the ‘factorization step’ refers to form-
ing Ai j AT

i j and factoring I + Ai j AT
i j once, and the ‘main loop’ refers to all the iterations

after the factorization has been cached. We take the Ai j to be dense 3,000 × 5,000
blocks and then set M and N as needed to produce problems at different scales. For
example, if M = 4 and N = 2, the total A matrix is 12,000×10,000 and contains 120
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Table 4 Summary of timings
for distributed lasso example

M × N 4 × 2 8 × 5 8 × 10

Nonzero entries 120M 600M 1.2B

Number of cores 8 40 80

Factorization time (s) 15 15 15

Iteration time (s) 0.05–0.15 0.05–0.15 0.05–0.15

Number of iterations 90 230 490

Main loop time (s) 10 27 60

Total time (s) 28 50 80

million nonzero entries. Again, we use M N processes spread across M N processor
cores to solve each problem instance. In general, larger problems do not necessarily
require more iterations to solve, so in some cases, it is possible that larger problems
can be solved with no increase in total solve time.

5.3 Intensity modulated radiation treatment planning

Recall that in the IMRT problem, f is given by

f (y) = wT (dmin − y)+ + vT (y − dmax)+

and g is the indicator function of [0, I max]n . The proximal operator of f is given by

(
prox f (y)

)
i = yi − (yi − dmax

i )+ + (dmin
i − yi )+

+ (yi − dmax
i + vi/ρ)+ − (dmin

i − wi/ρ − yi )+

and the proximal operator of g is a simple projection that involves thresholding each
entry of the argument to lie in [0, I max]. Both prox operators are fully separable, and so
in principle they could be evaluated using the generic methods in [11, §6.1.4]; in any
case, each component can be evaluated independently in parallel, so these operators can
be evaluated in microseconds. As in the lasso example, then, the main computational
effort will be in evaluating the graph projection, and as before, factorization caching
provides substantial benefit. Indeed, in IMRT, the matrix often does not change across
trials because the same hardware configuration is used repeatedly.

We require tumor regions to have a minimum dose of 0.9 units of radiation and a
maximum dose of 1.5. Critical regions have a maximum dose of 0.1, while noncritical
regions have a maximum dose of 0.5. We chose the weights w = v = 1 to be uniform
for all pixels. There are 20 parallel beams directed through the slice every 18 degrees,
and the task is to adjust the beam strengths to minimize the total sum-of-violations in
the slice. The maximum beam strength is I max = 1. Here, m = 3, 969 and n = 400; the
matrix A is sparse, with 35,384 nonzero entries and a density of around 0.02. Figure 2
shows the radiation treatment plan solved using a standard cone solver compared to
the ADMM solver. The cone solver took 66.6 s (25 iterations) to solve, while the
ADMM solver completed in 0.5 s (153 iterations). As mentioned earlier, it would also
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Fig. 2 Radiation treatment results. Left CVX solution. Right ADMM solution

be possible to change the weights in the objective and re-solve even more quickly by
exploiting factorization caching and warm starting of the algorithm.

6 Conclusion

We introduced a canonical problem form called graph form, in which we have two
sets of variables x and y that are related by a linear operator A, such that the objective
function is separable across these two sets of variables. We showed that this form
arises naturally in many applications.

We then introduced an operator splitting method, graph projection splitting, to solve
graph form problems in such a way that the linear and nonlinear components of the
problem are handled separately. The main benefits of this approach are its amenability
to scaling to very large-scale distributed optimization problems and the way in which
it permits re-use of computation in handling the linear component.

There are some important issues not explored here. For example, it is not always
clear how best to partition A in practice. If f and g are fully separable, then in principle
one can have separate machines handling each component of A. Of course, this would
be extremely inefficient in practice, so it would be preferable to select larger blocks of
A to process on each machine, but it is not obvious how to select these. As a related
point, it is not obvious how to select which subset of rows and columns are best to
process together rather than on separate machines.

Sometimes a natural partitioning is clear. For example, if A is so large that dif-
ferent blocks are already stored (or even collected) on separate machines, then one
would likely just use this partitioning as given. In a machine learning problem, it
is useful to have each block contain independent subsamples of the dataset; in this
case, each local estimate of the parameters will be fairly close to the global solu-
tion even in the early iterations, and the method will converge to consensus more
quickly.
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Appendix A: Implementing graph projections

Evaluating the projection !A(c, d) involves solving the problem

minimize (1/2)∥x − c∥2
2 + (1/2)∥y − d∥2

2
subject to y = Ax,

with variables x ∈ Rn and y ∈ Rm .
This can be reduced to solving the KKT system

⎡

⎣
I 0 AT

0 I −I
A −I 0

⎤

⎦

⎡

⎣
x
y
λ

⎤

⎦ =

⎡

⎣
c
d
0

⎤

⎦ ,

where λ is the dual variable corresponding to the constraint y = Ax . Substituting
λ = y − d into the first equation and simplifying gives the system

[
I AT

A −I

] [
x
y

]
=

[
c + AT d

0

]
. (10)

Indeed, we can rewrite the righthand side to show that solving the system simply
involves applying a linear operator, as in (6):

!A(c, d) =
[

I AT

A −I

]−1 [
I AT

0 0

] [
c
d

]
.

The coefficient matrix of (10), which we refer to as K , is quasidefinite [22] because the
(1,1) block is diagonal positive definite and the (2,2) block is diagonal negative definite.
Thus, evaluating !i j involves solving a symmetric quasidefinite linear system. There
are many approaches to this problem; we mention a few below.

A.1 Factor-solve methods

Block elimination. By eliminating x from the system above and then solving for y,
we can solve (10) using the two steps

y := (I + AAT )−1(Ac + AAT d)

x := c + AT (d − y).
(11)
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If instead we eliminate y and then solve for x , we obtain the steps

x := (I + AT A)−1(c + AT d)

y := Ax .
(12)

The main distinction between these two approaches is that the first involves solving
a linear system with coefficient matrix I + AAT ∈ Rm×m while the second involves
the coefficient matrix I + AT A ∈ Rn×n .

To carry out the y-update in (11), we can compute the Cholesky factorization
I + AAT = L LT and then do the steps

w := L−1(Ac + AAT d)

y := L−T w,
(13)

where w is a temporary variable. The first step is computed via forward substitution,
and the second is computed via back substitution. Carrying out the x-update in (12)
can be done in an analogous manner.

When A is dense, we would choose to solve whichever of (11) and (12) involves
solving a smaller linear system, i.e., we would prefer (11) when A is fat (m < n) and
(12) when A is skinny (m > n). In particular, if A is fat, then computing the Cholesky
factorization of I + AAT costs O(nm2) flops and the backsolve (13) costs O(mn)

flops; if A is skinny, then computing the factorization of I + AT A costs O(mn2) flops
and the backsolve costs O(mn) flops. In summary, if A is dense, then the factorization
costs O(max{m, n} min{m, n}2) flops and the backsolve costs O(mn) flops.

If A is sparse, the question of which of (11) and (12) is preferable is more subtle,
and requires considering the structure or entries of the matrices involved.

LDLT factorization. The quasidefinite system above can also be solved directly
using a permuted LDLT factorization [22–24]. Given any permutation matrix P , we
compute the factorization

P K PT = L DLT ,

where L is unit lower triangular and D is diagonal. The factorization exists and is
unique because K is quasidefinite.

Explicitly, this approach would involve the following steps. Suppose for now that
P is given. We then form P K PT and compute its LDLT factorization. In order to
solve the system (10), we compute

[
x
y

]
= PT L−T D−1L−1 P

[
c + AT d

0

]
, (14)

where applying L−1 involves forward substitution and applying L−T involves back-
ward substitution, as before; applying the other matrices is straightforward.

Many algorithms are available for choosing the permutation matrix; see, e.g., [25–
27]. These algorithms attempt to choose P to promote sparsity in L , i.e., to make the
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number of nonzero entries in L as small as possible. When A is sparse, the number
of nonzero entries in L is at least as many as in the lower triangular part of A, and the
choice of P determines which Li j become nonzero even when Ai j is zero.

This method actually generalizes the two block elimination algorithms given earlier.
In block form, the LDLT factorization can be written

L DLT =
[

L11 0

L21 L22

] [
D1 0

0 D2

] [
LT

11 LT
21

0 LT
22

]

=
[

L11 D1LT
11 L11 D1LT

21

L21 D1LT
11 L21 D1LT

21 + L22 D2LT
22

]

,

where Di are diagonal and L11 and L22 are unit lower triangular.
We now equate P K PT with the LDLT factorization when P is the identity, i.e.,

[
I AT

A −I

]
=

[
L11 D1LT

11 L11 D1LT
21

L21 D1LT
11 L21 D1LT

21 + L22 D2LT
22

]

.

Since I = L11 D1LT
11, it is clear that both L11 and D1 are the identity. Thus this

equation simplifies to

[
I AT

A −I

]
=

[
I LT

21

L21 L21LT
21 + L22 D2LT

22

]

.

It follows that L21 = A, which gives

[
I AT

A −I

]
=

[
I AT

A AAT + L22 D2LT
22

]

.

Finally, rearranging −I = AAT + L22 D2LT
22 gives that

I + AAT = −L22 D2LT
22.

In other words, L22 D2LT
22 is the negative of the LDLT factorization of I + AAT .

Now suppose

P =
[

0 I
I 0

]
.

Then PKPT is given by

P K PT =
[−I A

AT I

]
.

123



Block splitting for distributed optimization 99

Equating this with the block LDLT factorization above, we find that L11 = I, D1 =
−I , and L21 = −AT . The (2, 2) block then gives that

I + AT A = L22 D2LT
22,

i.e., L22 D2LT
22 is the LDLT factorization of I + AT A.

In other words, applying the LDLT method to P K PT directly reduces, for specific
choices of P , to the simple elimination methods above (assuming we solve those linear
systems using an LDLT factorization). If A is dense, then, there is no reason not to
use (11) or (12) directly. If A is sparse, however, it may be beneficial to use the more
general method described here.

Factorization caching. Since we need to carry out a graph projection in each iter-
ation of the splitting algorithm, we actually need to solve the linear system (10)
many times, with the same coefficient matrix K but different righthand sides. In this
case, the factorization of the coefficient matrix K can be computed once and then
forward-solve and back-solves can be carried out for each righthand side. Explicitly,
if we factor K directly using an LDLT factorization, then we would first compute
and cache P, L , and D. In each subsequent iteration, we could simply carry out the
update (14).

Of course, this observation also applies to computing the factorizations of I + AAT

or I + AT A if the steps (11) or (12) are used instead. In these cases, we would first
compute and cache the Cholesky factor L , and then each iteration would only involve
a backsolve.

This can lead to a large improvement in performance. As mentioned earlier, if A is
dense, the factorization step costs O(max{m, n} min{m, n}2) flops and the backsolve
costs O(mn) flops. Thus, factorization caching gives a savings of O(min{m, n}) flops
per iteration.

If A is sparse, a similar argument applies, but the ratio between the factorization
cost and the backsolve cost is typically smaller. Thus, we still obtain a benefit from
factorization caching, but it is not as pronounced as in the dense case. The precise
savings obtained depends on the structure of A.

A.2 Other methods

Iterative methods. It is also possible to solve either the reduced (positive definite)
systems or the quasidefinite KKT system using iterative rather than direct methods,
e.g., via conjugate gradient or LSQR.

A standard trick to improve performance is to initialize the iterative method
at the solution (xk−1/2, yk−1/2) obtained in the previous iteration. This is called
a warm start. The previous iterate often gives a good enough approximation to
result in far fewer iterations (of the iterative method used to compute the update
(xk+1/2, yk+1/2)) than if the iterative method were started at zero or some other default
initialization. This is especially the case when the splitting algorithm has almost con-
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verged, in which case the updates will not change significantly from their previous
values.

See [1, §4.3], for further comments on the use of iterative solvers, and various
techniques for improving speed considerably over naive implementations.

Hybrid methods. More generally, there are methods that combine elements of direct
and iterative algorithms. For example, a direct method is often used to obtain a pre-
conditioner for an iterative method like conjugate gradient. The term preconditioning
refers to replacing the system Ax = b with the system M−1 Ax = M−1b, where M
is a well-conditioned (and symmetric positive definite, if A is) approximation to A
such that Mx = b is easy to solve. The difficulty is in balancing the requirements of
minimizing the condition number of M−1 A and keeping Mx = b easy to solve, so
there are a wide variety of choices for M that are useful in different situations.

For instance, in the incomplete Cholesky factorization, we compute a lower tri-
angular matrix H , with tractable sparsity structure, such that H is close to the true
Cholesky factor L . For example, we may require the sparsity pattern of H to be the
same as that of A. Once H has been computed, the preconditioner M = H H T is used
in, say, a preconditioned conjugate gradient method. See [28,29] and [30, §10.3], for
additional details and references.

Alternatively, we may use a direct method, but then carry out a few iterations of
iterative refinement to reduce inaccuracies introduced by floating point computations;
see, e.g., [30, §3.5.3], and [31,32].

Appendix B: Derivations

Here, we discuss some details of the derivations needed to obtain the simplified block
splitting algorithm. It is easy to see that applying graph projection splitting to (8)
gives the original block splitting algorithm. The operators avg and exch are obtained
as projections onto the sets {(x, {xi }M

i=1) | x = xi , i = 1, . . . , M} and {(y, {y j }N
j=1 |

y = ∑N
j=1 y j }, respectively.

To obtain the final algorithm, we eliminate ỹk+1
i j and xk+1

i j and simplify some steps.

Simplifying y variables. Substituting for yk+1
i j in the ỹk+1

i j update gives that

ỹk+1
i j := −

(
yk+1/2

i + ỹk
i −

N∑
j=1

(yk+1/2
i j + ỹk

i j )
)
/ (N + 1) ,

and similarly,

ỹk+1
i :=

(
yk+1/2

i + ỹk
i −

N∑
j=1

(yk+1/2
i j + ỹk

i j )
)
/ (N + 1) .

Since ỹk+1
i = −ỹk+1

i j (for all j , for fixed i) after the first iteration, we eliminate the

ỹk+1
i j updates and replace ỹk+1

i j with −ỹk+1
i in the graph projection and exchange steps.

The exchange update for yk+1
i simplifies as follows:
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yk+1
i := yk+1/2

i + ỹk
i −

(
yk+1/2

i + ỹk
i −

N∑
j=1

(yk+1/2
i j + ỹk

i j )
)
/ (N + 1)

= yk+1/2
i −

(
yk+1/2

i −
N∑

j=1
yk+1/2

i j

)
/ (N + 1)

= exch(yk+1/2
i , {yk+1/2

i j }N
j=1),

i.e., there is no longer any dependence on the dual variables.

Simplifying x variables. To lighten notation, we use xi j for xk+1/2
i j , x+

i j for xk+1
i j , x̃i j

for x̃ k
i j , and x̃+

i j for x̃ k+1
i j . Adding together the dual updates for x̃+

i j (across i for fixed
j) and x̃+

j , we get

x̃+
j +

M∑
i=1

x̃+
i j = x̃ j + x j +

M∑
i=1

(
x̃i j + xi j

)
−

M∑
i=1

(
x+

j +
M∑

i=1
x+

i j

)
.

Since x+
i j = x+

j after the averaging step, this becomes

x̃+
j +

M∑

i=1

x̃+
i j = x̃ j + x j +

M∑

i=1

(
x̃i j + xi j

)
− (M + 1)x+

j .

Plugging

x+
j =

(
x̃ j + x j +

M∑
i=1

(x̃i j + xi j )
)
/ (M + 1)

into the righthand side shows that x̃+
j + ∑M

i=1 x̃+
i j = 0. Thus the averaging step

simplifies to

(xk+1
j , {xk+1

i j }M
i=1) := avg(xk+1/2

j , {xk+1/2
i j }).

Since xk+1
i j = xk+1

j (for all i , for fixed j), we can eliminate xk+1
i j , replacing it with xk+1

j
throughout. Combined with the steps above, this gives the simplified block splitting
algorithm given earlier in the paper.
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