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1. INTRODUCTION

The topic of dissipation in quantum optics is both important
and subtle. Dissipation is important because many quantum
optical systems are open; therefore tracking all of the out
flowing energy is often not possible, but accounting for it is
often quite crucial. Dissipation is subtle because energy in
quantum systems cannot simply disappear, and naively de-
scribing dissipation with phenomenological damping factors
in the system’s equations of motion is formally incorrect, lead-
ing to a non-Hermitian Hamiltonian, violation of commutation
relations [1], and time-reversal invariance [2].

A correct treatment of dissipation entails coupling the sys-
tem under study, which usually contains discrete energy lev-
els, to a reservoir that is modeled as having a continuum of
energy states [1]. When this is done, the presence of dissipa-
tion in the system is accompanied by a source of fluctuation
from the reservoir, enabling two-way energy exchange.

In quantum optics, the system-reservoir model is treated
with many different approaches. In the Schrédinger picture,
this model has been treated in the master equation approach,
where multiple-time averages are calculated via the quantum
regression theorem [2]. Alternatively in the Schrédinger pic-
ture one can use the stochastic approach of the Monte Carlo
wave function [3], which involves evolving the wave function
of the system with a non-Hermitian Hamiltonian term. In the
Heisenberg picture, the input—output formalism [4] is widely
used. In typical use of the input-output formalism, one as-
sumes that the input is a weak coherent state. The nonlinear
response is then often treated approximately in the weak
excitation limit [5]. The input-output formalism is attractive
because the external degrees of freedom, such as those of
the reservoir, are integrated out, allowing one to focus on the
dynamics of the system alone.

Recently, there has been great interest in describing the
properties of photons propagating in a waveguide coupled
to quantum multilevel atoms either directly [6-16] or through
the use of a microcavity [17,18]. The one-dimensional nature
of waveguide propagation allows incident and scattered
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photons to interfere coherently, which can give rise to signifi-
switching [17,24], and amplification [9,15,25] processes for
few-photon states.

A formulation of input—output formalism has been recently
developed that enables analytical calculation of few-photon
scattering matrices in these systems of waveguide coupled
to quantum multilevel atoms. In this paper we extend this
formalism to include dissipation. We model loss by introduc-
ing an auxiliary reservoir that transports energy away from
the atom.

In applying the input—output formalism to treat two-photon
transport [8,18], a key step is to insert a complete set of basis
states for the single-excitation Hilbert space. Here we show
that, to obtain the correct result for two-photon transport
in the presence of dissipation, such a basis set needs to
include the states of the reservoir.

The paper is organized as follows. In Section 2 we present
the Hamiltonian describing a two-level atom with reservoir
coupling. In Section 3 we obtain the one and two-photon
S-matrices of the system using the input-output formalism,
showing that excluding the reservoir from the system
description leads to violation of outgoing particle exchange
symmetry. Finally, in Section 4 we conclude with a general
recipe for the inclusion of dissipation in a general class of
important and relevant systems.

2. SYSTEM HAMILTONIAN

We consider a two-level atom side-coupled to a waveguide
with right and left moving photons, as described by the
Hamiltonian

vag+at0m = /dx(_ivgcje (%) %CR (x)+ iUgCZ (@) %CL ()
+ J/x6(x) [cj,3 @)o_ +o, cp(@)+c)(@o_+o,c, (x)])

+§O'z. (1)
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Here C}; (®)[cg(x)] and cz (®)[cr,(x)] create (annihilate) a right or
left moving photon with group velocity v, respectively. « is
the coupling rate between the atom and waveguide. The form
of the interaction here assumes the rotating-wave approxima-
tion. o, (c_) raises (lowers) the state of the two-level atom
whose transition frequency is Q. We note that the waveguide
model in H g, aom can describe any single-mode dielectric
or plasmonic waveguide in the optical regime [13] or a trans-
mission line in the microwave regime [26]. Since the atomic
linewidth is typically quite narrow, a linear approximation
of the waveguide dispersion relation, which we adopt here,
is generally sufficient to describe the waveguide. We further
note that the two-level atom in H g 51om can describe either a
real atom or an artificial atom, such as a quantum dot [13] or
superconducting qubit [15].

To model dissipation we introduce reservoir—-atom cou-
pling as described by H, and consider the composite
system H = H g am + H, as shown schematically in Fig. 1,
where

H, = /dyc(—imb+ () %b(x) + /7@ (@)o_ + o+b(x)]).
@

Here b(x) and b'(x) are the reservoir photon operators
and y is the atom-reservoir coupling rate. We assume the res-
ervoir has a continuum of modes centered around the atomic
transition frequency Q. We further assume that within the
spectral range of interest the dispersion of these reservoir
modes is well described by a group velocity v,. The reservoir
will initially be set to the vacuum state. As a result of interac-
tion with the atom, photons originating in the waveguide may
leak back into the waveguide, described in Eq. (1), or they
may leak into the reservoir as described in Eq. (2), resulting
in loss.

To proceed, we exploit the spatial inversion symmetry of H
and decompose it to even and odd subspaces H = H, + H,,,
where [H,,H,] = 0. We transform from right- and left-moving
waveguide photon operators to even and odd photon opera-
tors. We omit from here on the subscripts of the even mode
operators:

ap(x) + a;(-x)

a(@) = NG ; (32)
(|
"4
Q
K

G )

Fig. 1. Schematic of sample system considered. A waveguide side
coupled with rate x to a two-level atom with transition frequency
Q. The atom is additionally coupled with rate y to a reservoir. The
initial state in the waveguide is either a one- or a two-photon Fock
state, whereas the auxiliary waveguide is initially in the vacuum state.
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ap(x) - ar(-x)
V2

with the above operators, the even subspace Hamiltonian H,
and the odd subspace Hamiltonian H, follow

o () = (3b)

H,= /dx(—ivga* () O%a(x) —iv,b" () c%cb(x)

+ Vé@)a' @)o_ + o, a@)] + V,5@) b (x)o_ + 6+b(x)])

1
+ §ng7

. d
H, = -iv, fdxaz(x)%ao(x).

Here H, describes a one-way propagating chiral waveguide
mode that interacts with the atom. H, describes a one-way
propagating waveguide mode without any interaction with
the atom. Once the solutions for H, are known, the solution
to Hyygyam + H, can be straightforwardly obtained by using
Eqgs. (3a) and (3b). In what follows we consider only the even
Hamiltonian, since it contains all of the nontrivial physics of
the system.

The Hamiltonian H, can be recast in k-space by
defining momentum-space photon operators a; = (1/+/27)
[ dra(x)e ™ and by, = (1/4/27) [ dxb(x)e ™,

H, = / d]c(kvga;‘ak + kv, blb, + ‘/i[a;;a_ t o,

[y 1
+ g[b;o', + O'+bk]) + EQUZ

We note that the total number of excitations N =
[ dkaja, + [ dkbjb, + o, 6. commutes with H,, H,, allowing
for the solution to proceed independently in each excitation
number manifold.

3. INPUT-OUTPUT FORMALISM

In the absence of dissipation, the one- and two-photon scat-
tering matrices of this system were solved in [10], to which
we refer the reader for a detailed derivation of the formalism
we use. Our focus here is on the addition of dissipation to the
formalism.

By defining input and output field operators for the
waveguide,

i (t) = \/%—” / dkay,(to)e H-1o),
1 .
oull) = —= f ke (1 e+,

and reservoir,

bin(1) = dlby, (1)t

1
=/
1 .
bout () = Jiz—ﬂ/dkbk(h)e%k(t*tl),
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we obtain (in the limits ) — —co0 and ¢; — o) the input—output
equations,

Ao () = ain(t) — i/K0_(8), @
bout (1) = bin(8) —1/yo_(1), )
d”ét(t) = -@(sz - zg - zg) o_(t) + ik, () (1)

+ iﬁo'z(t)bin(t)- (6)

We see that the presence of dissipation in Eq. (6) in the form of
damping rate y is accompanied by the input field operator
1.,/76,(t)bin (t) from the reservoir. Below we use Egs. (4)-(6)
to obtain one and two-photon S-matrices.

A. One-Photon S-Matrix

The one-photon S-matrix relates an incoming free-photon
state |k) with momentum k to an outgoing free-photon state
|p) with momentum p and is given by (p|S|k) = (p~|k"), where
S is the scattering operator and [k*) = a], (k)|0) is an incoming
one-excitation interacting eigenstate that evolved from a
free-photon state |k) in the distant past. [p~) = a];ut(p) |0) is an
outgoing one-excitation interacting eigenstate that will evolve
into a free photon state |p) in the distant future. The one-
photon S-matrix can be reexpressed as follows:

(p7Ik") = (Olaou(P)ay,(k)|0) = 8k - p) - i/k(0lo_ () |k+),

where we have used the input-output relation in Eq. (4)
and (0|ay, (p)[k+) = 6(k - p) [10]. To obtain the matrix element
(0lo_(p)|kT), we solve for its time-domain counterpart
(0lo_(¢)|k*) using Eq. (6), noting that (0]c,(H)by,(H)kT) =0
and (0]o, (D (1) |k*) = —(1//2x)e”*, where [k*), = b}, (k)|0)
is an incoming reservoir eigenstate. The resulting one-photon
transport matrix elements are

Vxd(k - p)

(Olo_(p)Ik™) = mzské(k -D),
_ kD) ) = O
<0|6—(p)|k+>r_k_Q+i§+i%5(k p) =58k - p),
oy 2 K2 R6D)
{p |k+)—k_Q_'_i(%_'_%)é(k—p)—tké(k—p),
(D) = —i./kyd(k - p)

Ck-Q+i(5+1)
=15k - p).

We note that, as a result of reservoir damping, s, # t;s;.
This seemingly innocuous difference between the dissipative
case and the dissipation-free case stems from the fact that
the set |[kT) is not complete in the presence of dissipation.
We will see the crucial importance of this fact in the two-
photon calculation.

B. Two-Photon S-Matrix
The transport of two waveguide photons is given by the two-
photon S-matrix, which describes the probability amplitude of
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incoming photons with momenta k; and k, to scatter into two
outgoing photons with momenta p; and p, and can be
expressed as

@I,pglkf,k;) = (0|%ut(Pz)aout(Pl)aiTn(kl)a;rn(kz)|0>~

To proceed, we insert the resolution of the identity in the
single-excitation subspace

1, = /dk|k+)(lc+| + /dk|k+)rr(k+|7

which comprises of a sum of both waveguide and reservoir
interacting eigenstates outer products

(07,3 kT k)
- / (i I+ (6 toug (02) ] ()t () 0)
+ / (i [+ 1 (5 s (02) 1 () () 0)

= by, 07 [Cou @) KT kT ) + 65 (07 |aou (02) KT K3 ).

where we have used the definitions of the one-photon
scattering amplitudes (p7|k™) = {6(k-p) and ,(p7|k™) =
(p7lk*), = 16k - p). Inserting the Fourier transform
of Eq. (4) and noting that ,(p{|aw(2)|kT. k) =0, we
have

= tp, [6(k1 = p1)(kz — D2) + 8(k{ — p2)d(kz — 1))

— /Kty (DT lo_ (o) Ik . k) = /Ly, (0 lo_ ) e K ).
Q)

We now need to solve for the matrix elements
(o lo_(p) |k k3) and ,(pflo_(wa)lk . k). To do so we
sandwich Eq. (6) between the appropriate states, getting
the equations

9 orlo_)l; k) = —z'(sz—ig—ig)@;|a_(t)|k+,k;>
iR e ), ®)

2
+ ikr(pf lo.(Dan )|k . k3). ®

d . KoY
4 oilo_ Ikt k) = —z(sz - i -15), il Ol )

where we note that (pf|o. ()b, (0K .k5) =0 and
(0T o (Db (DT, kF) = 0. To proceed, we solve for the
source terms in Egs. (8) and (9) by using ¢, =26,0_-1
and inserting a resolution of the identity I, = |0)(0| in the
zero-excitation Hilbert space,
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e ket 1 )
Ik} ) == 25500070 <5001 - o) |

e—iklt 1 .
t 5 [;anskle“pl‘kl” -8(p1 - kl)],

—ik.

ekt 1 )
07 Lo (Dan |k k) = o s, elerh)t

—S
/—277.'77: D1
e—ik1t1 )

—S
+ /‘—277:77 D1

sklei(pl—kl)t'

Having calculated the source terms, we may now solve
Egs. (8) and (9) and Fourier transform their solution to
obtain

1
HPTlo-@a) k) = =~ 85,57, 51, + 51,1001 + 2 = oy = k),

(10)
w7 lo- (o) k)
= 8y, {62 — k1601 — k2) + 8(p2 — k2)S(p1 — k1))
L3050+ 101 + P2~y k) (11)

Finally, we insert Egs. (10) and (11) into Eq. (7) to get the
two-photon S-matrix,

(o1 D3Ik k)
= lp, bp,[6(D2 = k1)6(D1 = k) + 5(p2 — k2)6(D1 - k1))

K
0SS, [Sk, + Sk, 101 + D2 — k1 — k3). (12)

We note that the two-photon S-matrix is invariant under ex-
change of incoming and outgoing momenta k;, ks <>p;, ps as
required by time-reversal symmetry, and also with respect
to exchange of incoming or outgoing momenta k;<>k; and
P1€D9, as required by the Bose statistics of photons.

Instead of the correct approach outlined above, one might
instead consider an ad hoc approach where an imaginary
part is added to the frequency of the atom, resulting in the
following Hamiltonian:

Kot
Hgnoe = /dk(kvgalak + \/%[aka— + ”+ak])
1 Y
+ 5 (Q - @i)()'z.

From this ad hoc Hamiltonian, one then follows the steps in
[10]. With this approach, the Hilbert space consists of only
waveguide and atom states—with no reservoir. For one pho-
ton, this approach yields the correct S-matrix. For two pho-
tons, the term of Eq. (10) would have been missing, and
the resulting incorrect two-photon S-matrix would have been

(o1 D3Ik k3)
= lp, tp,[6(D2 = k1)1 — k) + 5(p2 — k2)6(D1 — k1))

1o
+ ’L; \/EtplSpISpZ [-S']c1 + Skz]5@1 + D2 — kl - ]{32) (13)
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This form of the S-matrix violates the particle exchange
symmetries mentioned above.

If we examine the form of the S-matrix in Eq. (13), it
might seem odd that, even though the result is expressible
by single-photon scattering amplitudes, it violates exchange
symmetry of outgoing particle momenta while the one-
photon S-matrix does not. This is explained as follows.
The physical origin of the symmetry violation is in the scat-
tering amplitude (p]|o,|0). This amplitude is proportional
to the Fourier coefficient s; of the atom’s spontaneous
emission amplitude into the waveguide. However, in the
presence of dissipation, the atom may also spontaneously
emit a photon into the reservoir, corresponding to the am-
plitude ,.(p; |6, |0). This amplitude is provided by the term in
Eq. (10) and originates in our inclusion of the reservoir
Yvhen inserting the two-excitation resolution of the identity
Iy = [akle*) (k™| + [ dkl"),, (k.

4. A GENERAL RULE FOR DISSIPATION

When examining the correct form of the two-photon S-
matrix in Eq. (12), we see that the presence of dissipation
is seen as the addition of a i(y/2) term in the one-excitation
transmission and atomic excitation amplitudes. It follows
that the one- and two-photon S-matrices of a two-level
atom with reservoir coupling rate y, as described by
H g yam + H,, can be obtained from the dissipation-free
S-matrices by making the replacement Q' = Q -1i(y/2).
However, we stress that this substitution should be made
in the S-matrix and not in the Hamiltonian, since, as de-
scribed above, doing so would leads to an incorrect result
in the two-photon case.

This result is even more general. In the presence of
N reservoir dissipation channels with coupling rates
Y172, ..., 7N, the resulting S-matrix is obtained from the
dissipation-free S-matrix by making the substitution Q' =
Q-iYN . y,/2. Moreover, this result holds for a general
quantum multilevel system as long as the Hamiltonian light-
matter interaction term can be described in the rotating-
wave approximation. Furthermore, the quantum multilevel
system can be either in a cavity or directly coupled to a
waveguide.

Finally, the eigenstate of the ad hoc Hamiltonian turns out
to be the same as the true scattering eigenstate—other than
the reservoir degree of freedom, which it is missing. This fact
allows a correct real-space interacting eigenstate solution
[6,7,27,28] for the nonreservoir dynamics that account for
the loss of energy that accompanies reservoir coupling, in
complete agreement with the solutions presented here. In
particular, the existence of two-photon bound states, which
is one of the important predictions made by using the
wave-function method, is still valid in the presence of dissipa-
tion. In conclusion, the method described in this paper
provides a straightforward and correct construction of the
S-matrix in the presence of dissipation while working with
the full Hermitian Hamiltonian of the system in the context
of the input-output formalism.
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