
Convex Optimization in Julia

Madeleine Udell
udell@stanford.edu

Karanveer Mohan
kvmohan@stanford.edu

David Zeng
dzeng0@stanford.edu

Jenny Hong
jyunhong@stanford.edu

Steven Diamond
stevend2@stanford.edu

Stephen Boyd
boyd@stanford.edu

ABSTRACT
This paper describes Convex1, a convex optimization mod-
eling framework in Julia. Convex translates problems from
a user-friendly functional language into an abstract syntax
tree describing the problem. This concise representation of
the global structure of the problem allows Convex to infer
whether the problem complies with the rules of disciplined
convex programming (DCP), and to pass the problem to a
suitable solver. These operations are carried out in Julia us-
ing multiple dispatch, which dramatically reduces the time
required to verify DCP compliance and to parse a problem
into conic form. Convex then automatically chooses an ap-
propriate backend solver to solve the conic form problem.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Convex Pro-
gramming

; D.2.4 [Software Engineering]: Software/Program Ver-
ification—Model checking

General Terms
Languages

Keywords
Convex programming, automatic verification, symbolic com-
putation, multiple dispatch

1. INTRODUCTION
The purpose of an optimization modeling language is to

translate an optimization problem from a user-friendly lan-
guage into a solver-friendly language. In this paper, we
present an approach to bridging the gap. We show that
mathematical optimization problems can be parsed from a
simple human-readable form, using the trope of function

1available online at http://github.com/cvxgrp/Convex.jl

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPTCDL November 16-21, 2014, New Orleans, Louisiana, USA
Copyright 2014 ACM 978-1-4799-5500-8/14 ...$15.00.

composition, into an abstract syntax tree (AST) represent-
ing the problem.

Representing the problem as an AST facilitates subse-
quent computations. For example, Convex can efficiently
check if a problem is convex by applying the rules of dis-
ciplined convex programming (DCP), pioneered by Michael
Grant and Stephen Boyd in [23, 22]. Convex can also use the
AST to convert the problem into a conic form optimization
problem, allowing a solver access to a complete and compu-
tationally concise global description of the problem [41].

Julia.
The Julia language [6] is a high-level, high-performance

dynamic programming language for technical computing.
With a syntax familiar to users of other technical computing
languages such as Matlab, it takes advantage of LLVM-based
just-in-time (JIT) compilation [29] to approach and often
match the performance of C [5]. In Convex, we make par-
ticular use of multiple dispatch in Julia, an object-oriented
paradigm in which different methods may be called to im-
plement a function depending on the data types (classes) of
the arguments to the function, rather than having functions
encapsulated inside classes [4].

The Convex project supports the assertion that “technical
computing is [the] killer application [of multiple dispatch]”
[4]. We show in this paper that Julia’s multiple dispatch al-
lows the authors of a technical computing package to write
extremely performant code using a high level of abstrac-
tion. Indeed, the abstraction and generality of the code has
pushed the authors of this paper toward more abstract and
general formulations of the mathematics of disciplined con-
vex programming, while producing code whose performance
rivals and often surpasses codes with similar functionality in
other languages.

Moreover, multiple dispatch enforces a separation of the
fundamental objects in Convex— functions — from the meth-
ods for operating on them. This separation has other ben-
efits: in Convex, it is easy to implement new methods for
operating on the AST of an optimization problem, opening
the door to new structural paradigms for parsing and solving
optimization problems.

Mathematical optimization.
A traditional and familiar form for specifying a mathe-

matical optimization problem (MOP) is to write

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

with variable x ∈ Rn. Here, a problem instance is specified
as list of functions f0, . . . , fm, h1, . . . , hp : Rn → R. The
function f0 is called the objective function; f1 . . . , fm are
called the inequality constraint functions; and h1, . . . , hp are
called the equality constraint functions. The field of mathe-
matical optimization is concerned with finding methods for
solving MOP.

Some special structural forms of MOP are well known.
For example, if all the functions f0, . . . , fm and h1, . . . , hp

are affine, the MOP is called a linear program (LP). When
each of the functions f0, . . . , fm is convex, and h1, . . . , hp

are all affine, it is called a convex program (CP). This paper
focusses on solving CPs, which can be solved much more
quickly than general MOPs [26].

Perhaps the most consistent theme of the convex opti-
mization literature concerns the importance of using the
structural form of the CP (that is, the properties of the func-
tions f0, . . . , fm, h1, . . . , hp) in order to devise faster solution
methods. The advantage of this structural approach is that
it allows for a division of labor between users of optimiza-
tion and designers of optimization algorithms. Designers of
optimization algorithms write solvers specialized to a par-
ticular structural form of MOP. Users can take advantage of
innovations in optimization algorithms and theory so long
as they can identify the structural form of their problem,
and apply the appropriate solver.

A number of general purpose solvers have been developed,
including ACADO [25, 24, 2], Ipopt [7], NLopt [26]), and the
solvers in AMPL [17], GAMS [10, 11], and Excel [19], along
with associated modeling languages that make it easy to
formulate problems for these solvers, including AMPL [17],
GAMS [10, 11], and JuMP [33]. However, these solvers can
be significantly slower than ones designed for special prob-
lem classes [28, 38, 40]. A modeling language that retains
information about the structure of the problem can often
choose a solver that will significantly outperform a general
purpose solver.

Cone programs.
Convex targets a special class of convex programs called

cone programs, which includes LPs, QPs, QCQPs, SOCPs,
SDPs, and exponential cone programs as special cases (see
§4 for more details). Cone programs occur frequently in a
variety of fields [31, 51, 52], can be solved quickly, both in
theory and in practice [42].

A number of modeling systems have been developed to au-
tomatically perform translations of a problem into standard
conic form. The first parser-solver, SDPSOL, was written
using Bison and Flex in 1996, and was able to automati-
cally parse and solve SDPs with a few hundred variables [54].
YALMIP [32] was its first modern successor, followed shortly
thereafter by CVX [23], both of which embedded a convex
optimization modeling language into MATLAB, a propri-
etary language. Diamond et. al. followed with CVXPY [15],
a convex optimization modeling language in python which
uses an object-oriented approach. The present paper con-
cerns Convex, which borrows many ideas from CVXPY, but
takes advantage of language features in Julia (notably, multi-
ple dispatch) to make the modeling layer simpler and faster.

A few more specialized conic parsing/modeling tools have
also appeared targeting small QPs and SOCPs with very
tight performance requirements, including CVXGEN [35]
and QCML [12].

Organization.
This paper is organized as follows. In §2, we discuss how

Convex represents optimization problems, and show how
this representation suits the requirements of both users and
solvers. In §3, we show how to use the AST to verify con-
vexity of the problem using the rules of disciplined convex
programming. In §4, we show how to use the AST to trans-
form the problem into conic form, and pass the problem to
a conic solver. Finally, in §5 we compare the performance of
Convex to other codes for disciplined convex programming.

2. FUNCTIONAL REPRESENTATION
In this section, we describe the functional representation

used by Convex. The basic building block of Convex is called
an expression, which can represent a variable, a constant, or
a function of another expression. We discuss each kind of
expression in turn.

Variables.
The simplest kind of expression in Convex is a variable.

Variables in Convex are declared using the Variable key-
word, along with the dimensions of the variable.

Scalar variable

x = Variable()

4x1 vector variable

y = Variable(4)

4x2 matrix variable

z = Variable(4, 2)

Variables may also be declared as having special proper-
ties, such as being (entrywise) positive or negative, or (for
a matrix) being symmetric, with nonnegative eigenvalues
(i.e., positive semidefinite). These properties are treated as
constraints in any problem constructed using the variables.

Positive scalar variable

x = Variable(Positive())

Negative 4x1 vector variable

y = Variable(4, Negative())

Symmetric positive semidefinite

4x4 matrix variable

z = Semidefinite(4)

Constants.
Numbers, vectors, and matrices present in the Julia en-

vironment are wrapped automatically into a Constant ex-
pression when used in a Convex expression. The Constant

expression stores a pointer to the underlying value, so the
expression and any derived expression will reflect changes
made to the value after the expression is formed. In other
words, a Convex expression is parametrized by the constants
it encapsulates.

Atoms.
Functions of expressions may be composed using elements

called atoms, which represent simple functions with known
properties such as +, *, abs, and norm. A list of some of the
atoms available in Convex is given in Table 3.

Atoms are applied to expressions using operator overload-
ing. Hence, 2+2 calls Julia’s built-in addition operator, while
2+x calls the Convex addition method and returns a Convex

expression with top-level atom + and arguments 2 and x.
Many of the useful language features in Julia, such as arith-
metic, array indexing, and matrix transpose are overloaded
in Convex so they may be used with variables and expres-
sions just as they are used with native Julia types.

For example, all of the following form valid expressions.

indexing, multiplication, addition

e1 = y[1] + 2*x

expressions can be affine, convex, or concave

e3 = sqrt(x) + log(x)

more atoms

e2 = 4 * pos(x) + max(abs(y)) + norm(z[:,1],2)

For each atom, we define five methods that allow Convex

to solve problems involving that atom. The methods are
called on expressions, and are dispatched based on the type
(i.e., the top-level atom) of the expression.

• sign returns the sign of the function the top-level
atom represents (positive, negative, or no sign) over
the range of its arguments.

• evaluate evaluates the function the top-level atom
represents on the values of its arguments.

• curvature returns the curvature of the function the
top-level atom represents (convex, concave, affine, or
neither) over the range of its arguments.

• monotonicity returns the curvature of the function the
atom represents (nondecreasing, nonincreasing, or not
monotonic) over the range of its arguments.

• conic_form returns the conic form of an expression;
see §4 for details.

These methods are computed using local combination rules,
so they are never wrong, but sometimes miss strong classifi-
cations that cannot be deduced from local information. For
example, square(x) + x - x is nonnegative for any value
of x, but Convex will return no sign.

To define a new atom that can be used to solve problems in
Convex, it suffices to define these five methods. We discuss
how these methods are used to verify convexity and solve
conic problems in §3) and §4, respectively.

Atoms may also be defined by composing other atoms;
we call these composite atoms. For example, norm(x, 1) is
implemented as sum(abs(x)).

Expressions.
Formally, expressions are defined recursively to be a vari-

able, a constant, or the result of applying an atom to one or
more expressions. In Convex, each expression is represented
as an AST with a variable or constant at each leaf node, and
a atom at each internal node. We refer to the arguments to
the atom at a certain node as the children of that node. The
top-level atom is called the head of the AST.

Considered as a tree without leaves, the AST may be seen
as representing a function formed by composing the atoms
at each node according to the structure of the tree; with the

leaves, it may be interpreted as a function with a closure, a
curried function, or simply a function of named arguments.

The AST is a directed acyclic graph (DAG) [18]. The idea
of using a DAG to study global properties of optimization
problems dates back to work by Kantorovich in the 1950s
[27].

Expressions may be evaluated when every leaf node in
their AST has already been assigned a value. For example,

x = Variable()

e = max(x,0)

x.value = -4

evaluate!(e)

evaluates to 0.
One novel aspect of Convex is that expressions are iden-

tified via a unique identifier computed as a hash on the
name of the atom at the head of the AST, together with
the unique identifiers of its children in the AST. Thus, two
different instances of the same expression will automatically
be assigned the same unique identifier. This identification
allows Convex to identify when the same expression is used
in multiple places in the problem, to memoize and reuse the
results of computations on a given expression, and to reduce
the complexity of the problem that is ultimately passed to
the solver.

Constraints.
Constraints in Convex are declared using the standard

comparison operators <=, >=, and ==. They specify rela-
tions that must hold between two expressions. Convex does
not distinguish between strict and non-strict inequality con-
straints.

affine equality constraint

A = randn(3,4); b = randn(3)

c1 = A*y == b

convex inequality constraint

c2 = norm(y,2) <= 2

Problems.
A problem in Convex consists of a sense (minimize, max-

imize, or satisfy), an objective (an expression to which the
sense verb is to be applied), and a list of zero or more con-
straints which must be satisfied at the solution.

For example, the problem

minimize ‖x‖∞
subject to x1 + x2 = 5

x3 ≤ x2,

where x ∈ R3 is the optimization variable, can be expressed
in Convex as

x = Variable(3)

constraints = [x[1]+x[2] == 5, x[3] <= x[2]]

p = minimize(norm_inf(x), constraints)

When the user types this code, the input problem de-
scription is parsed internally into a Problem object with two
attributes: an objective and a list of constraints. Each ex-
pression appearing in the problem is represented as an AST.
For example, the problem p constructed above has the fol-
lowing properties:

Problem

Objective Array{CvxConstr}

minimize CvxExpr CvxConstr CvxConstr

norm_inf x == CvxExpr 5 <= x[3] x[2]

+ x[1] x[2]

Figure 1: Graphical representation of a problem

p.objective = (:norm_inf, x)

p.constraints = [(:==, 5, (:+, (:getindex, x, 1),

(:getindex, x, 2))),

(:<=, getindex(x, 3), getindex(x, 2)]

Here, we use Polish (prefix) notation to display the ASTs.
Figure 1 gives a graphical representation of the structure of
problem p.

Solving problems.
The solve! method in Convex checks that the problem is

a disciplined convex program, converts it into conic form,
and passes the problem to a solver:

solve!(p)

After solve! has been called on problem p, the optimal
value of p can be queried with p.optval, and any expres-
sion x used in p is annotated with a value, accessible via
x.value. If the solver computes dual variables, these are
populated in the constraints; for example, the dual vari-
able corresponding to the first constraint can be accessed as
p.constraints[1].dual_value.

3. DISCIPLINED CONVEX PROGRAMMING
Checking if a function is convex is a difficult problem in

general. Many approaches to verifying convexity have been
proposed [45, 14], and implemented in modeling systems
ranging from AMPL to Microsoft Excel [18, 39, 19].

In Convex, we have chosen to use the framework of disci-
plined convex programming (DCP) to verify problem convex-
ity, which has a number of advantages. First, the simplic-
ity of the DCP rules makes the determination of convexity
transparent to the user [9]. Second, a problem that complies
with the DCP rules can be converted to an equivalent conic
form problem. Hence Convex is able to take advantage of
extremely fast and reliable solvers for any problem whose
convexity it can verify.

Disciplined convex expressions.
In Convex, we define five different kinds of curvature: con-

stant, affine, convex, concave and not DCP. The simplest

expressions are single variables, which are affine, and con-
stants, which are (unsurprisingly) constant. A constant ex-
pression is also affine, and an expression is affine if and only
if it is convex and concave.

We determine the curvature of other expressions recur-
sively using the following rule. Suppose that the curvatures
of the expressions e1, . . . , en are known. Then the expres-
sion f(e1, . . . , en) is convex if the function f is convex on
the range of (e1, . . . , en), and for each i = 1, . . . , n,

• f is nondecreasing in its ith argument over the range
of (e1, . . . , en), and ei is convex;

• f is nonincreasing in its ith argument over the range
of (e1, . . . , en), and ei is concave; or

• ei is affine.

The expression f(e1, . . . , en) is concave if (−f)(e1, . . . , en) is
convex, and it is affine if it is both convex and concave. Note
that the curvature of an expression need not be the same as
the curvature of the top-level atom in that expression. For
example, the atom + has affine curvature, but the expression
2 + square(x) is convex.

Disciplined convex expressions (also called DCP compli-
ant, or simply DCP, expressions) are defined inductively. We
say that an expression is DCP if its curvature (affine, con-
vex, or concave) can be inferred from these rules; otherwise,
we say it is not DCP. Hence in order to decide if an expres-
sion is DCP, we must be able to calculate the curvature of f
and the monotonicity of f in each argument for every atom
f appearing in the expression.

The set of DCP expressions depends on the set of atoms.
For example, log(

∑n
i=1 expxi) is convex, but its convexity

cannot be derived from the DCP rules using only the atoms
log and exp [22]. In Convex, it is easy to add new atoms,
allowing sophisticated users to expand the set of functions
that Convex can recognize as convex.

The set of DCP expressions also depends on what is known
about the monotonicity of atoms as a function of their ar-
guments. For example, the quadratic-over-linear function
f(x, y) = xTx/y is not convex on R2, but it is convex on

R× (0,∞). This observation is known as a signed convexity
rule [15]. Our formulation of the DCP rule above in terms
of the ranges of the expressions (e1, . . . , en) generalizes this
observation. Convex implements a signed monotonicity rule:
the monotonicity of an atom depends on the sign of the
atom’s children.

Verifying DCP using multiple dispatch.
Convex checks that expressions are DCP using multiple

dispatch.
Arithmetic is defined directly on Vexity and Monotonicity

types so that addition of curvatures and multiplication of
curvatures by monotonicities enforce the DCP rule. For
example, adding ConvexVexity to AffineVexity results in
ConvexVexity; multiplying ConvexVexity by Nonincreasing

monotonicity results in ConcaveVexity. The curvature of an
expression can then be calculated by applying the following
function:

function vexity(x::AbstractExpr)

monotonicities = monotonicity(x)

vexity = curvature(x)

for i = 1:length(x.children)

vexity += monotonicities[i]

* vexity(x.children[i])

end

return vexity

end

This approach to checking convexity has a number of ad-
vantages over using if-else statements to enforce the DCP
rules. First, the implementation is aesthetically appealing:
the code follows the mathematics. Second, this structure
makes it easy to write new atoms, since one only needs to
implement the curvature and monotonicity methods to al-
low Convex to determine the curvature of expressions in-
volving the new atom. Third, it reduces the time needed to
verify convexity, since multiple dispatch is implemented as
a lookup table rather than via a (slower) if statement.

Disciplined convex constraints.
A constraint is called a disciplined convex constraint (or

DCP constraint) if it has the form

• e1 ≤ e2, where e1 is a convex DCP expression and e2
is a concave DCP expression;

• e1 ≥ e2, where e1 is a concave DCP expression and e2
is a convex DCP expression; or

• e1 = e2, where e1 and e2 are both affine DCP expres-
sions.

(For the purposes of this definition, remember that constant
expressions are affine, and affine expressions are both convex
and concave.)

Disciplined convex programs.
A problem is called a disciplined convex program if

1. the (sense, objective) are

• (minimize, convex DCP expression),

• (maximize, concave DCP expression), or

• (satisfy,); and

2. every constraint in the problem is DCP compliant.

(Note that the sense satisfy does not take an objective.)
When an optimization problem is formed, Convex applies
the DCP rules recursively to determine whether the problem
is DCP.

4. CONIC FORM OPTIMIZATION
A conic form optimization problem is written as

minimize cTx
subject to Ax = b

x ∈ K,
(1)

with variable x. Here K is a cone: a set of points such that
x ∈ K iff rx ∈ K for every r ≥ 0. If in addition K is convex,
it is called a convex cone.

Examples of convex cones include the following.

• The zero cone. K1
0 = {0}

• The free cone. Kn
free = Rn

• The positive orthant. Kn
+ = {x ∈ Rn : x ≥ 0}

• The second order cone.
Kn+1

SOC = {(x, t) ∈ Rn : ‖x‖ ≤ t}

• The semidefinite cone.

Kn2

SDP = {X ∈ Rn×n : λmin(X) ≥ 0, X = XT }

• The exponential cone.
K3

exp = {(x, y, z) ∈ R3 : yex/y ≤ z, y > 0}

In general, a cone K may also be given as a product of
simpler cones,

K = K1 × · · · × Kp.

A conic form optimization problem is specified by the
problem data A, b, c, and a cone K. In this paper, we
extend this definition: we say a problem is in conic form if
every expression in the problem is affine, and the constraints
are all conic constraints, since it is trivial to rewrite such a
problem in the form 1.

A number of fast solvers exist for conic form problems
in a variety of languages. We list some of these solvers in
Table 4.
Convex is able to automatically rewrite a problem speci-

fied as a DCP in standard cone format, and to pick a cone
solver automatically depending on the cones required to rep-
resent the problem and the solvers available on the user’s
computer, using the loadconicproblem! interface in Math-
ProgBase [33]. This allows Convex to, for example, choose
a SOCP solver if no exponential or SDP cones are present
in the problem, which can result in significantly faster solve
time [1].

4.1 Example
Here, we describe how Convex transforms a DCP problem

into conic form.

Conic form expression.
The value of the function f(x) (for fixed x) is the optimal

value of the trivial optimization problem

minimize f(x),

with no variable. We say a function is cone-representable if
the value of the function is the optimal value of a (nontrival)
conic form optimization problem. This conic form optimiza-
tion problem is usually constructed by introducing auxiliary
variables. For example, f(x) = |x| is cone-representable,
since |x| is the optimal value of the conic problem

minimize t
subject to t− x ∈ K+

t+ x ∈ K+,

with variable t.
In general, define the conic form template of a function

f to be a constructor for a conic form optimization prob-
lem. The conic form template of f takes a list of arguments
x1, . . . , xn, and returns a conic form optimization problem
whose optimal value is f(x1, . . . , xn). Concretely, it returns
a sense, an objective, and a (possibly empty) set of con-
straints (s, o, C) such that every expression appearing in the
objective or constraints is affine in x1, . . . , xn. Note that the
objective of the conic form problem may be vector or matrix
valued. For example, the conic form template for f(x) = Ax
is simply

minimize Ax

(as a function of x).
The conic form template of a function is also known as

the graph form of the function [21]. For convex functions f ,
any feasible point (x1, . . . , xn, t) for the conic form problem
is a point in the epigraph {(x, t) : f(x) ≤ t} of f ; for concave
functions, any feasible point of the conic form problem lies
in the hypograph of f .
Convex uses the conic form templates of the atoms in an

expression recursively in order to construct the conic form
of a expression. Recall that every expression is represented
as an AST with a function (atom) as its top-level node. We
refer to the arguments to the function at a certain node as
the children of that node. The conic form of an expression
e is constructed recursively as follows:

• If e is affine, return (e, ∅).

• Otherwise:

1. Compute the conic forms (si, oi, Ci) for each child
i = 1, . . . , n of the top-level node of e.

2. Apply the conic form template for the top-level
node to the list of objectives (o1, . . . , on), produc-
ing a conic form problem (s, o, C).

3. Return (s, o, C ∪ (∪iCi)).

Conic form problem.
Now that we have defined the conic form for an expres-

sion, it is simple to define the conic form for an optimization
problem. The conic form of an optimization problem, given
as an objective and constraint set, is computed as follows:

1. Let (s, o, C) be the conic form of the objective.

2. For each constraint in the constraint set,

(a) Compute the conic forms (sl, ol, Cl) and (sr, or, Cr)
for the left and right hand sides of the constraint.

(b) Add Cl and Cr to C.

(c) If the sense of the constraint is

• ≤, add or − ol ∈ K+ to C;
• ≥, add ol − or ∈ K+ to C;
• =, add or − ol ∈ K0 to C.

(d) Return (s, o, C).

Notice that we have not used the sense of the conic forms
of the arguments to an expression in constructing its conic
form. This would be worrisome, were it not for the following
theorem:

Theorem 1 ([22]). Let p be a problem with variable x
and dual variable λ, and let Φ(p) be the conic form of the
problem with variables x and t and dual variables λ and µ.
Here we suppose t and µ are the primal and dual variables,
respectively, that have been introduced in the transformation
to conic form. If p is DCP, then any primal-dual solution
(x, t, λ, µ) to Φ(p) provides a solution (x, λ) to p.

To build intuition for this theorem, note that in a DCP
expression, a convex function f will have objectives with
the sense minimize spliced into argument slots in which f is
increasing, and objectives with the sense maximize spliced
into argument slots in which f is decreasing. At the solution,
the coincidence of these senses, monotonicity, and curvature
will force the variables participating in the conic form of each
atom to lie on the graph of the atom, rather than simply
in the epigraph. Using this reasoning, the theorem can be
proved by induction on the depth of the AST.

4.2 Solvers
Julia has a rich ecosystem of optimization routines. The

JuliaOpt project collects mathematical optimization solvers,
and interfaces to solvers written in other languages, in a sin-
gle GitHub repository, while MathProgBase enforces consis-
tent interfaces to these solvers. Through integration with
MathProgBase, Convex is able to use all of the solvers that
accept problems in conic form, which includes all the lin-
ear programming solvers in JuliaOpt (including GLPK [34]
and the commercial solvers CPLEX [13], Gurobi [13], and
Mosek [36]), as well as the open source interior-point SOCP
solver ECOS [16], and the open source first-order primal-
dual conic solver SCS [43]. A list of solvers which can be
used with Convex is presented in Table 4.

5. SPEED
Here we present a comparison of Convex with CVXPY2

[15] and CVX3 [23] on a number of representative problems.
The problems are chosen to be easy to solve (indeed, they
are all easily solved by inspection) but difficult to parse. We
concentrate on problems involving a large number of affine
expressions; other atoms are treated very similarly in the
different frameworks. The code for the tests in the three
languages may be found in Appendix A.

We compare both the time required to convert the prob-
lem to conic form, and the time required to solve the re-
sulting problem, since in general the conic form problems

2available at https://pypi.python.org/pypi/cvxpy as of
October 15, 2014
3CVX v3.0 beta, available at www.cvxr.com as of October
15, 2014

produced in different modeling frameworks may be differ-
ent. We use all three modeling languages with the solver
ECOS [16], and call the solver with the same parameters
(abstol=1e-7, reltol=1e-7, feastol=1e-7, maxit=100) so
that solve times are comparable between the modeling frame-
works.

Parse times are presented in Table 1 and solve times in
Table 2. Parse times are computed by subtracting solve time
from the total time to form and solve the problem.

We present two different timings for Convex. Julia uses
just in time (JIT) compilation; the code is compiled at the
first evaluation, and the faster compiled version is used on
subsequent calls, so the first time a function is called is
in general slower than the second time. The third column
shows the runtime of the first (uncompiled) evaluation, and
the fourth column the second (compiled) time. While the
perfomance of Convex is comparable to CVX and CVXPY
at first evaluation, it substantially outperforms upon the
second evaluation. For applications in which convex opti-
mization routines are called in an inner loop of a larger
optimization algorithm (for example, in sequential convex
programming), users will see the fast performance on every
iteration of the loop after the first.

6. DISCUSSION
The parsing and modeling methodology applied here need

not be restricted to conic form problems. Indeed, there
are many other interesting and useful problem structures.
In general, any problem structure that has been identified
and for which there are specialized, fast solvers may be
a good candidate for inclusion into a modeling framework
like Convex. Such problem structures include integer linear
programs (which have been a focus of the operations re-
search community for decades, yielding fast solvers in prac-
tice [37, 53]); biconvex problems (which may be heuristi-
cally solved by alternating minimization [49]); sums of prox-
capable functions (which can be efficiently solved by split-
ting methods like ADMM, even when the problem includes
spectral functions of large matrices [8, 3]); difference-of-
convex programs (for which sequential convex programming
often produces successful solutions in practice [30, 50]); and
sigmoidal programming problems (which often admit fast
solutions via a specialized branch and bound method [47,
48]); to name only a few. The number of structural forms
that might be useful far exceeds the number that a potential
consumer of optimization might care to remember.

The framework developed in Convex makes it easy to write
new transformations on the AST to detect and transform
these problem types into a standard format. Automatic de-
tection of some of the problem types mentioned above is the
subject of ongoing research.

Significant work also remains to allow Convex to handle
extremely large scale problems. For example, Convex cur-
rently performs all computations serially; developments in
Julia’s parallelism ecosystem, and particularly its nascent
threading capabilities, will enable Convex to leverage paral-
lelism.

7. CONCLUSIONS
This paper shows that a convex optimization modeling li-

brary may be efficiently and simply implemented using mul-
tiple dispatch. The software package Convex uses language

features of Julia (notably, multiple dispatch and JIT com-
pilation) to parse DCP problems into conic form as fast or
faster than other (significantly more mature) codes for mod-
eling convex optimization.

Acknowledgments
This work was developed with support from the National
Science Foundation Graduate Research Fellowship program
(under Grant No. DGE-1147470), the Gabilan Stanford
Graduate Fellowship, the Gerald J. Lieberman Fellowship,
and the DARPA X-DATA program.

8. REFERENCES
[1] F. Alizadeh and D. Goldfarb. Second-order cone

programming. Mathematical programming, 95(1):3–51,
2003.

[2] D. Ariens, B. Houska, and H. Ferreau. Acado for
Matlab user’s manual. www.acadotoolkit.org,
2010–2011.

[3] S. Becker, E. Candes, and M. Grant. TFOCS: Flexible
first-order methods for rank minimization. In
Low-rank Matrix Optimization Symposium, SIAM
Conference on Optimization, 2011.

[4] J. Bezanson, J. Chen, S. Karpinski, V. Shah, and
A. Edelman. Array operators using multiple dispatch:
a design methodology for array implementations in
dynamic languages. arXiv preprint arXiv:1407.3845,
2014.

[5] J. Bezanson, S. Karpinski, V. B. Shah, and
A. Edelman. The Julia language.
http://julialang.org/.

[6] J. Bezanson, S. Karpinski, V. B. Shah, and
A. Edelman. Julia: A fast dynamic language for
technical computing. arXiv preprint arXiv:1209.5145,
2012.

[7] L. T. Biegler and V. M. Zavala. Large-scale nonlinear
programming using ipopt: An integrating framework
for enterprise-wide dynamic optimization. Computers
& Chemical Engineering, 33(3):575–582, 2009.

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of
multipliers. Foundations and Trends in Machine
Learning, 3(1):1–122, 2011.

[9] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[10] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman.
The general algebraic modeling system. GAMS
Development Corporation, 1998.

[11] M. R. Bussieck and A. Meeraus. General algebraic
modeling system (GAMS). In Modeling languages in
mathematical optimization, pages 137–157. Springer,
2004.

[12] E. Chu, N. Parikh, A. Domahidi, and S. Boyd. Code
generation for embedded second-order cone
programming. In European Control Conference
(ECC), pages 1547–1552. IEEE, 2013.

[13] CPLEX, IBM ILOG. V12.1: User’s manual for
CPLEX. International Business Machines
Corporation, 46(53):157, 2009.

Table 1: Speed comparisons: parse time (s)
Test CVX CVXPY Convex Convex compiled
sum 2.29 4.45 5.46 1.94
index 3.62 9.69 8.40 5.78
transpose 1.24 0.55 3.08 0.40
matrix constraint 1.38 0.54 2.49 0.34

Table 2: Speed comparisons: solve time (s)
Test CVX CVXPY Convex Convex compiled
sum 0.01 5e-4 2e-4 1e-4
index 0.01 0.08 0.076 0.061
transpose 0.66 1.54 14.23 11.99
matrix constraint 0.66 2.20 3.44 3.29

Table 3: Examples of atoms implemented in Convex

Function Atom Monotonicity Curvature
Slicing and shaping atoms

f(x, i) = xi getindex(x,i) nondecreasing Affine
f(x, y) = [x y] hcat(x,y) nondecreasing Affine
f(x, y) = [x, y] vertcat(x,y) nondecreasing Affine
f(X) = (X11, . . . , Xnn) diag(X) nondecreasing Affine

f(X) = XT transpose(X) nondecreasing Affine
Positive orthant atoms

f(x) =
∑

i xi sum(x) nondecreasing Affine
f(x) = (|x1|, . . . , |xn|) abs(x) nondecreasing Convex
f(x) = maxixi max(x) nondecreasing Convex
f(x) = minixi min(x) nondecreasing Concave
f(x) = max(x, 0) pos(x) nondecreasing Convex
f(x) = max(−x, 0) neg(x) nonincreasing Convex
f(x) = ‖x‖1 norm_1(x) nondecreasing x ≥ 0

nonincreasing x ≤ 0
Convex

f(x) = ‖x‖∞ norm_inf(x) nondecreasing Convex
Second-order cone atoms

f(x) = ‖x‖2 norm_2(x) nondecreasing x ≥ 0
nonincreasing x ≤ 0

Convex

f(X) = ‖X‖F norm_fro(X) nondecreasing X ≥ 0
nonincreasing X ≤ 0

Convex

f(x) = x2 square(x) nondecreasing x ≥ 0
nonincreasing x ≥ 0

Convex

f(x) =
√
x sqrt(x) nondecreasing x ≥ 0 Concave

f(x, y) =
√
xy geo_mean(x,y) nondecreasing Concave

f(x, y) = xTx/y quad_over_lin(x,y) nonincreasing in y for y > 0
nondecreasing in x for x ≥ 0
nonincreasing in x for x ≤ 0

Convex

f(x) = 1/x inv_pos(x) nonincreasing Convex

f(x) =
∑

i x
2
i sum_squares nondecreasing in x for x ≥ 0

nonincreasing in x for x ≤ 0
Convex

Exponential cone atoms
f(x) = exp(x) exp(x) nondecreasing Convex
f(X) = log(x) log(x) nondecreasing x > 0 Concave
f(x) = log(

∑
i exp(xi)) logsumexp(x) nondecreasing Convex

SDP atoms
f(X) = ‖X‖2 operatornorm(x) Convex
f(X) = ‖X‖∗ nuclearnorm(x) Convex

Table 4: Conic Form Problem Solvers
Name Language LP SOCP SDP Exp Method Open source
CLP [46] C++ X Simplex X
Gurobi [44] X X Simplex, Interior Point, . . .
GLPK [34] C X Simplex, Interior Point, . . . X
MOSEK [36] X X X Simplex, Interior Point, . . .
ECOS [16] C X X Interior Point X
SDPA [20] C++ X X X Interior Point X
SCS [43] C X X X X Primal-Dual Operator Splitting X

[14] C. Crusius. Automated analysis of convexity properties
of nonlinear programs. PhD thesis, Stanford
University, 2003.

[15] S. Diamond, E. Chu, and S. Boyd. CVXPY: A
Python-embedded modeling language for convex
optimization, version 0.2. http://cvxpy.org/, May
2014.

[16] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP
solver for embedded systems. In European Control
Conference, Zurich, Switzerland, 2013.

[17] R. Fourer, D. Gay, and B. Kernighan. AMPL. Boyd &
Fraser, 1993.

[18] R. Fourer, C. Maheshwari, A. Neumaier, D. Orban,
and H. Schicl. Convexity and concavity detection in
computation graphs: Tree walks for convexity
assessment. INFORMS Journal on Computing,
22:26–43, 2010.

[19] Frontline Solvers. Excel solver, optimization software,
Monte Carlo simulation, data mining - Frontline
Systems. www.solver.com.

[20] K. Fujisawa, M. Kojima, and K. Nakata. SDPA

(semidefinite programming algorithm) userâĂŹs
manual, version 4.10. Technical report, Department of
Mathematical and Computing Science, Tokyo
Institute of Technology, Tokyo, 1998.

[21] M. Grant and S. Boyd. Graph implementations for
nonsmooth convex programs. In V. Blondel, S. Boyd,
and H. Kimura, editors, Recent Advances in Learning
and Control, Lecture Notes in Control and
Information Sciences, pages 95–110. Springer, 2008.

[22] M. Grant, S. Boyd, and Y. Ye. Disciplined convex
programming. In L. Liberti and N. Maculan, editors,
Global Optimization: From Theory to Implementation,
Nonconvex Optimization and its Applications, pages
155–210. Springer, 2006.

[23] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software
for disciplined convex programming, ver. 2.0, build
870. http://cvxr.com, Sept. 2012.

[24] B. Houska and H. Ferreau. ACADO toolkit user’s
manual. www.acadotoolkit.org, 2009–2011.

[25] B. Houska, H. Ferreau, and M. Diehl. ACADO Toolkit
– An open source framework for automatic control
and dynamic optimization. Optimal Control
Applications and Methods, 32(3):298–312, 2011.

[26] S. G. Johnson. The NLopt nonlinear-optimization
package, 2010.

[27] L. V. Kantorovich. On a mathematical symbolism
convenient for performing machine calculations. Dokl.
Akad. Nauk SSSR, 113(4):738–741, 1957.

[28] N. Karmarkar. A new polynomial-time algorithm for
linear programming. In Proceedings of the 16th annual
ACM Symposium on Theory of Computing, pages
302–311. ACM, 1984.

[29] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In International Symposium on Code
Generation and Optimization, pages 75–86. IEEE,
2004.

[30] T. Lipp and S. Boyd. Variations and extensions of the
convex-concave procedure.
http://stanford.edu/~boyd/papers/cvx_ccv.html,
2014.

[31] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret.
Applications of second-order cone programming.
Linear Algebra and Its Applications, 284:193–228,
1998.

[32] J. Lofberg. YALMIP: A toolbox for modeling and
optimization in MATLAB. In IEEE International
Symposium on Computed Aided Control Systems
Design, pages 294–289, Sep 2004.

[33] M. Lubin and I. Dunning. Computing in operations
research using Julia. arXiv preprint arXiv:1312.1431,
2013.

[34] A. Makhorin. GLPK (GNU linear programming kit),
2008.

[35] J. Mattingley and S. Boyd. CVXGEN: A code
generator for embedded convex optimization.
Optimization and Engineering, 13:1–27, 2012.

[36] A. Mosek. The MOSEK optimization software. 54,
2010.

[37] G. Nemhauser and L. Wolsey. Integer and
combinatorial optimization, volume 18. Wiley New
York, 1988.

[38] A. S. Nemirovsky and D. B. Yudin. Informational
Complexity and Efficient Methods for Solution of
Convex Extremal Problems. Wiley, New York, 1983.

[39] I. P. Nenov, D. H. Fylstra, and L. V. Kolev. Convexity
determination in the Microsoft Excel solver using
automatic differentiation techniques. In Fourth
International Workshop on Automatic Differentiation,
2004.

[40] Y. Nesterov. Interior-point methods: An old and new
approach to nonlinear programming. Mathematical
Programming, 79(1):285–297, 1997.

[41] Y. Nesterov. Introductory lectures on convex
optimization: A basic course, volume 87. Springer,
2004.

[42] Y. Nesterov and A. Nemirovskii. Interior-point

polynomial algorithms in convex programming,
volume 13. SIAM, 1994.

[43] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd.
Operator splitting for conic optimization via
homogeneous self-dual embedding. arXiv preprint
arXiv:1312.3039, 2013.

[44] G. Optimization. Gurobi optimizer reference manual.
2012.

[45] D. R. Stoutmeyer. Automatic categorization of
optimization problems: An application of computer
symbolic mathematics. Operations Research,
26:773–738, 1978.

[46] The Computational Infrastructure for Operations
Research project. COIN-OR linear program solver.
2014.

[47] M. Udell and S. Boyd. Maximizing a sum of sigmoids.
http://stanford.edu/~boyd/papers/max_sum_

sigmoids.html, 2013.

[48] M. Udell and S. Boyd. Bounding duality gap for
separable functions. arXiv preprint arXiv:1410.4158,
2014.

[49] M. Udell, C. Horn, R. Zadeh, and S. Boyd.
Generalized low rank models. arXiv preprint
arXiv:1410.0342, 2014.

[50] T. Van Voorhis and F. A. Al-Khayyal. Difference of
convex solution of quadratically constrained
optimization problems. European Journal of
Operational Research, 148(2):349–362, 2003.

[51] L. Vandenberghe and S. Boyd. Semidefinite
programming. SIAM review, 38(1):49–95, 1996.

[52] H. Wolkowicz, R. Saigal, and L. Vandenberghe.
Handbook of semidefinite programming: theory,
algorithms, and applications, volume 27. Springer,
2000.

[53] L. Wolsey. Integer programming, volume 42. Wiley
New York, 1998.

[54] S.-P. Wu and S. Boyd. SDPSOL: A parser/solver for
SDP and MAXDET problems with matrix structure.
Available at www.stanford.edu/~boyd/old_

software/SDPSOL.html, Nov 1995.

APPENDIX
A. SPEED TESTS: CODE

A.1 Summation

Convex .

n = 10000

@time begin

x = Variable();

e = 0;

for i = 1:n

e = e + x;

end

p = minimize(norm2(e-1), x >= 0);

solve!(p, ECOS.ECOSMathProgModel())

end

CVX.

n = 10000;

tic()

cvx_begin

variable x

e = 0

for i=1:n

e = e + x;

end

minimize norm(e-1, 2)

subject to

x >= 0;

cvx_end

toc()

CVXPY.

%%timeit

n = 10000;

x = Variable()

e = 0

for i in range(n):

e = e + x

p = Problem(Minimize(norm(e-1,2)), [x>=0])

p.solve("ECOS", verbose=True)

A.2 Indexing

Convex .

n = 10000

@time begin

x = Variable(n);

e = 0;

for i = 1:n

e = e + x[i];

end

p = minimize(norm2(e-1), x >= 0);

solve!(p, ECOS.ECOSMathProgModel())

end

CVX.

n = 10000;

tic()

cvx_begin

variable x(n)

e = 0;

for i=1:n

e = e + x(i);

end

minimize norm(e - 1, 2)

subject to

x >= 0;

cvx_end

toc()

CVXPY.

%%timeit

n = 10000

x = Variable(n)

e = 0

for i in range(n):

e += x[i];

p = Problem(Minimize(norm(e-1,2)), [x>=0])

p.solve("ECOS", verbose=True)

A.3 Transpose

Convex .

n = 500

A = randn(n, n);

@time begin

X = Variable(n, n);

p = minimize(vecnorm(X’ - A), X[1,1] == 1);

solve!(p, ECOS.ECOSMathProgModel())

end

CVX.

n = 500;

A = randn(n, n);

tic()

cvx_begin

variable X(n, n);

minimize(norm(transpose(X) - A, ’fro’))

subject to

X(1,1) == 1;

cvx_end

toc()

CVXPY.

n = 500

A = numpy.random.randn(n,n)

%%timeit

X = Variable(n,n)

p = Problem(Minimize(norm(X.T-A,’fro’)), [X[1,1] == 1])

p.solve("ECOS", verbose=True)

A.4 Matrix constraint

Convex .

n = 500;

A = randn(n, n);

B = randn(n, n);

@time begin

X = Variable(n, n);

p = minimize(vecnorm(X - A), X == B);

solve!(p, ECOS.ECOSMathProgModel())

end

CVX.

n = 500;

A = randn(n, n);

B = randn(n, n);

tic()

cvx_begin

variable X(n, n);

minimize(norm(X - A, ’fro’))

subject to

X == B;

cvx_end

toc()

CVXPY.

n = 500

A = numpy.random.randn(n,n)

B = numpy.random.randn(n,n)

%%timeit

X = Variable(n,n)

p = Problem(Minimize(norm(X-A,’fro’)), [X == B])

p.solve(verbose=True)

