
Geosci. Model Dev., 8, 1877–1883, 2015

www.geosci-model-dev.net/8/1877/2015/

doi:10.5194/gmd-8-1877-2015

© Author(s) 2015. CC Attribution 3.0 License.

NCIO 1.0: a simple Fortran NetCDF interface

A. Robinson1,2,3 and M. Perrette3

1Universidad Complutense de Madrid, 28040 Madrid, Spain
2Instituto de Geociencias, UCM-CSIC, 28040 Madrid, Spain
3Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany

Correspondence to: A. Robinson (robinson@fis.ucm.es)

Received: 19 November 2014 – Published in Geosci. Model Dev. Discuss.: 16 January 2015

Revised: 10 June 2015 – Accepted: 16 June 2015 – Published: 30 June 2015

Abstract. The NetCDF (Network Common Data Form) li-

brary has become an indispensable tool for data and model

output management in geoscience. However for simple tasks,

particularly in Fortran, the complexity of native NetCDF

functionality can be cumbersome. The NCIO (NetCDF In-

put/Output) module has been designed as an interface to the

NetCDF library with simplicity and ease of use in mind.

While this implies that some NetCDF functionality is masked

from the user, the subroutines provided here are adequate for

basic serial reading and writing tasks of up to 6-D data arrays

along with corresponding data attributes. The code is avail-

able online via a GitHub repository (http://www.github.com/

alex-robinson/ncio), which includes an example program to

illustrate the approach.

1 Introduction

The NetCDF (Network Common Data Form) library devel-

oped by Unidata (Unidata, 2014) has revolutionized the stor-

age of large geoscientific data sets, reproducibility of exper-

iments and archiving of model output. It eliminates the de-

pendencies of binary output on a given computing system

and ensures that data is fully self-described within a file. The

fact that its use has been adopted so widely in the geoscien-

tific community has ensured that many tools are available for

data processing and analysis based on this storage format.

To provide a library that is useful over a wide range of ap-

plications, the low-level functionality of NetCDF gives users

full control over how a program interacts with the data files.

For this reason, the native NetCDF interface relies on a series

of intermediate function calls and helper variables to be able

to read or write data. This flexibility can be critical for some

applications, for example for storing large, complex data

sets with many attributes or for parallel I/O (input/output)

in global circulation models (GCMs; Huang et al., 2014).

However, for more common tasks, these intermediate steps

tend to make programming data I/O with NetCDF more com-

plex and even cumbersome, in some cases. Several versions

of NetCDF wrappers already exist to make NetCDF writ-

ing more straightforward, such as Gtool5 (Ishiwatari et al.,

2012) meant for use in GCMs, or the Climate Model Out-

put Rewriter (CMOR, 2015), which aides in writing climate

and forecast (CF, 2015) compliant files. These libraries share

common characteristics in that they mask some of the inter-

mediate steps of loading and writing NetCDF data from the

user. However, at least for Fortran, a NetCDF wrapper that

was both generic and simple has not been available until now.

The NCIO (NetCDF Input/Output) module is intended to

fill that gap. The goal of the module is to provide access to

NetCDF functionality in Fortran in the simplest way possi-

ble. This implies that it is not appropriate for every appli-

cation, but it should be generic enough to be widely useful.

Here NCIO is described and provided, in the hope that it will

be helpful for others developing geoscientific models. The

application programming interface (API) is provided in the

Appendix.

2 Reading from NetCDF

NCIO contains one subroutine for reading data from NetCDF

files: nc_read. This subroutine can handle the reading of

scalars, vectors and arrays of up to 6 dimensions. The data

to be read can be of type integer, float, double precision or

logical. The subroutine has an internal module interface for

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://www.github.com/alex-robinson/ncio
http://www.github.com/alex-robinson/ncio


1878 A. Robinson and M. Perrette: NCIO 1.0: a simple Fortran NetCDF interface

each data type and data size, so it automatically handles any

of the above inputs from the user.

In its most basic form, the user supplies the filename to

be read from, the name of the variable to read and the scalar

or array that will hold the data. In this case, the size of the

variable in the file and the dimensions of the array should

be consistent. The user can also optionally supply start

and count vectors, which indicate which slices of the array

should be read from the file (analogous to low-level NetCDF

functions). If neither is given, the subroutine will start from

the beginning of the data record in each dimension and count

up to the size of the array in each dimension.

nc_read can handle missing data, as long as the vari-

able attribute missing_value is defined in the NetCDF

file. The user can specify a new value to represent missing

data via the nc_read subroutine call. NCIO reads the data

from the file and replaces missing data points with the de-

sired value.

In order to facilitate the reading of data of unknown di-

mension sizes, an additional helper function nc_size is

available. This function returns the size of a dimension vari-

able in the NetCDF file. This can be used, for example, to

determine the dimensions of the array to allocate in Fortran

before reading data from the NetCDF file.

Additionally, it is possible to read string attributes from the

file using nc_read_attr. The user provides the filename,

the name of the attribute of interest and optionally the per-

tinent variable name (if it is not a global attribute), and the

subroutine will return the string associated with that attribute

in the file.

3 Writing to NetCDF

Writing NetCDF files is achieved through one sub-

routine for writing variables (nc_write), two neces-

sary subroutines for file initialization (nc_create and

nc_write_dim), and two optional ones for adding at-

tributes (nc_write_attr and nc_write_map). The

data to be written to a file, as with nc_read, can be a scalar,

vector, or an array of up to 6 dimensions and of type integer,

float, double precision or logical. The subroutine has an in-

ternal module interface for each data type and data size, so it

automatically handles any of the above inputs from the user.

The subroutine nc_create is used to initialize the new

NetCDF file. It does nothing more than open a new file, op-

tionally write a few typical global attributes and close the file.

This leaves an empty NetCDF file available to be filled with

dimensions and data. By default this function will overwrite

any previous file with the same name, and it will write in the

classic NetCDF format. After creating the file, the user can

optionally write additional global attributes to the file with

nc_write_attr. This subroutine is useful for specifying

references and data set information, for example.

It is also possible to specify a grid mapping variable in the

file via nc_write_map, which can be used to define a pro-

jection or other type of map to associate with a grid variable.

Such a map definition is helpful to (and sometimes neces-

sary for) programs that plot NetCDF data, such as Panoply

(Schmunk, 2014), when the spatial coordinates of the data

are not longitude and latitude. Currently, only stereographic

and polar stereographic projections are handled by this sub-

routine, but it is planned to be made more generic in the fu-

ture.

Once the NetCDF file is prepared with global information,

the next step is to define dimension variables, which is done

with the subroutine nc_write_dim. To write a dimension

variable, the user must supply the filename and name of the

variable to be written. The vector of dimension values can be

provided directly, or a vector of values can be generated from

a starting value, the total number of points and the distance

between them. When the argument unlimited=.TRUE.

is specified, then the dimension can be extended via calls

to nc_write (see below). Additionally, some Climate and

Forecast (CF) variable attributes can be supplied via this sub-

routine, such as long_name and units, while the subrou-

tine nc_write_attr can be used directly to write any ad-

ditional variable specific attributes. It should be noted that

all dimension variables must be written to the file before any

data can be written.

The NetCDF file should now be ready for storing data. The

initialization of a new variable in the file, as well as writing

of the data, is achieved via the subroutine nc_write. To

write a variable to the file, the user must supply the filename

and name of the variable to be written, along with the data

array and the names of the dimensions to be associated with

the variable. The dimension variables should already exist in

the file or an exception will be thrown. Additional variable

attributes can be written if desired. Similar to nc_read, the

user can optionally specify start and count vectors to

write the data to a specific slice of the variable in the file.

nc_write will check if the variable exists in the file and, if

not, the variable will be created with the specified character-

istics. In future calls to the subroutine, only the data will be

written to the file.

4 Discussion

The NCIO module is intended to provide a clean and di-

rect interface to the reading and writing of NetCDF files in

Fortran. All NCIO functionality is contained in one portable

module file (ncio.f90). No additional configuration is needed

for its use, other than a use ncio statement in the For-

tran program (replacing any use netcdf statements). Er-

ror handling follows the native NetCDF error protocol to

maintain transparency. The simplicity of this approach facili-

tates the use of the NetCDF data format even for rather small

programs or during prototyping. In other words, the goal is

Geosci. Model Dev., 8, 1877–1883, 2015 www.geosci-model-dev.net/8/1877/2015/



A. Robinson and M. Perrette: NCIO 1.0: a simple Fortran NetCDF interface 1879

to make reading and writing NetCDF files as easy as read-

ing and writing binary or ASCII data. The subroutine design

in NCIO mimics what is available in other languages, such

as the ncdf library in R (Pierce, 2014), and should be useful

for a wide range of applications. The basic functionality pro-

vided here has been tested thoroughly and works robustly in

several real geoscientific programs.

The subroutines have been designed to mask any inter-

mediate and temporary variables from the user. For exam-

ple, low-level NetCDF functions make use of ID values of

the file and other variables to know what is being loaded

or written. Here only the filename and name of the vari-

able are needed to find the right field in the NetCDF file,

because the low-level functions are wrapped by the NCIO

subroutines. In this way, the only variable that needs to be

defined in the user’s program is the data itself. Variable

initialization and attribute definition, as well as data writ-

ing, are all easily handled with one subroutine call. Thus,

for quick diagnostic output to a NetCDF file, for example,

a user can easily write the variable to a file without ad-

ditional variable definitions or subroutine calls. For exam-

ple, Unidata provides a NetCDF tutorial program to write

4-D temperature and pressure fields (pres_temp_4D_wr.f90

found at http://www.unidata.ucar.edu/software/netcdf/docs/

netcdf-tutorial). The native NetCDF approach require 25

lines of code and 25 intermediate variable definitions, while

NCIO achieves the same result with only 7 lines of code.

Such ease of use does incur minor computational costs.

One such cost comes from the overhead of opening and clos-

ing the NetCDF file within each subroutine call, rather than

leaving the NetCDF file open for writing throughout the en-

tire program. The reason for this approach was to maintain

the simplest interface possible – otherwise additional func-

tions and external variables would be needed for opening and

closing the file. In testing the NCIO module, it was found

that in most cases, any additional overhead incurred is small

in absolute terms and does not appear to affect the speed of

a program significantly. Comparing the native and NCIO-

based tutorial program pres_temp_4D_wr.f90, we find that

one iteration of writing these variables takes about 4 times

longer using NCIO. For 1000 iterations, using NCIO takes

about 80 times longer than the native NetCDF calls. How-

ever, in absolute terms, the total time for 1000 iterations us-

ing NCIO is about 1 s.

Nonetheless, for programs that write data with a very high

frequency, this approach could result in noticeably slower ex-

ecution than using the low-level NetCDF functions directly.

For this reason, all reading/writing subroutines include an

optional “ncid” argument and two additional subroutines are

provided in the library: nc_open and nc_close. These

subroutines allow the user to keep a given NetCDF file

through multiple NCIO subroutine calls and identify the open

file using the “ncid” intermediate variable. Using this ap-

proach reduces the cost of 1 and 1000 iterations as above

to about 2 and 20 times longer than the native calls, respec-

tively. It should be noted that the timing is dependent on the

size of the arrays being written as well. The default test is for

rather small arrays (12 × 6 × 2 grid points). When writing

larger arrays (e.g., 100 × 100 × 2 grid points), NCIO consis-

tently needs about 10 times longer than the native calls using

either approach.

5 Conclusions

NCIO is intended to provide an easy-to-use interface to the

NetCDF library in Fortran. At the cost of more complex na-

tive NetCDF functionality, a minimal set of subroutines was

developed to handle the most common reading and writing

tasks of up to 6-D arrays. The functions available to the user

have been described here, such that simply downloading and

compiling the module will allow the user to immediately be-

gin using it.

www.geosci-model-dev.net/8/1877/2015/ Geosci. Model Dev., 8, 1877–1883, 2015

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial


1880 A. Robinson and M. Perrette: NCIO 1.0: a simple Fortran NetCDF interface

Appendix A

Table A1. Subroutine call and argument descriptions for nc_read.

subroutine nc_read(filename,name,dat,[start],[count],[missing_value],[ncid])

filename name of the NetCDF data file to read from

name name of the variable in the NetCDF file to be read

dat output: Fortran data type into which data will be loaded

start vector of values specifying starting indices for reading data from each dimension (optional)

count vector of values specifying how many values to read in each dimension (optional)

missing_value value to assign to missing data read from the file (optional)

ncid file ID for a file that remains open for various NCIO calls (optional)

Table A2. Function call and argument descriptions for nc_size.

function nc_size(filename,name,[ncid]) result(size)

filename name of the NetCDF data file to read from

name name of the dimension variable in the NetCDF file of which to determine size

size output: integer size (length) of the dimension variable returned from the function

ncid file ID for a file that remains open for various NCIO calls (optional)

Table A3. Subroutine call and argument descriptions for nc_read_attr.

subroutine nc_read_attr(filename,[varname],name,value,[ncid])

filename name of the NetCDF file from which to read attribute

varname name of the variable from which to read the attribute (optional)

name name of the attribute to be read

value output: value of the attribute to be read

ncid file ID for a file that remains open for various NCIO calls (optional)

Table A4. Subroutine call and argument descriptions for nc_create.

subroutine

nc_create(filename,[overwrite],[netcdf4],[author],[creation_date],

[institution],[description])

filename name of the NetCDF file to be created

overwrite switch to determine whether file on disk should be overwritten (optional, default TRUE)

netcdf4 switch to determine whether file format should be NetCDF4 (optional, default FALSE)

author name of the author of the file (optional)

creation_date date of the file creation, string format (optional)

institution name of the author’s institution (optional)

Geosci. Model Dev., 8, 1877–1883, 2015 www.geosci-model-dev.net/8/1877/2015/



A. Robinson and M. Perrette: NCIO 1.0: a simple Fortran NetCDF interface 1881

Table A5. Subroutine call and argument descriptions for nc_write_attr.

subroutine nc_write_attr(filename,[varname],name,value,[ncid])

filename name of the NetCDF file in which to write attribute

varname name of the variable to which the attribute should be associated (optional)

name name of the attribute to be written

value value of the attribute to be written

ncid file ID for a file that remains open for various NCIO calls (optional)

Table A6. Subroutine call and argument descriptions for nc_write_map.

subroutine nc_write_map(filename,name,[lambda],[phi],[x_e],[y_n],[ncid])

filename name of the NetCDF file in which to write the grid map definition

name name of the grid mapping to be defined

lambda longitude of projection origin (optional)

phi latitude of projection origin (optional)

x_e false easting (optional)

y_n false northing (optional)

ncid file ID for a file that remains open for various NCIO calls (optional)

Table A7. Subroutine call and argument descriptions for nc_write_dim.

subroutine nc_write_dim(filename,name,[x],[dx],[nx],[long_name],

[standard_name],[units],[axis],[calendar],[unlimited],[ncid])

filename name of the NetCDF file in which to define dimension

name name of the dimension to be defined in NetCDF file

x Fortran data type (scalar or vector) specifying values of dimension. If nx is present and

size(x)==1, x specifies the starting point of the dimension variable

dx distance between each dimension value (optional)

nx length of dimension variable (optional)

long_name NetCDF attribute, a long descriptive name of the variable (optional)

standard_name NetCDF attribute specifying the CF convention standard name of the variable (optional)

units NetCDF attribute of the units of the variable (optional)

axis NetCDF attribute of the standard axis of the variable (optional)

calendar NetCDF attribute of the calendar type to be used for time dimensions (optional)

unlimited NetCDF attribute to determine whether the dimension can be extended after its initial definition

or not

ncid file ID for a file that remains open for various NCIO calls (optional)

www.geosci-model-dev.net/8/1877/2015/ Geosci. Model Dev., 8, 1877–1883, 2015



1882 A. Robinson and M. Perrette: NCIO 1.0: a simple Fortran NetCDF interface

Table A8. Subroutine call and argument descriptions for nc_write.

subroutine

nc_write(filename,name,dat,[dims],[dim1,...,dim6],[start],[count],

[long_name],[standard_name],[grid_mapping],[units],[missing_value],[ncid])

filename name of the NetCDF file in which to write data

name name of the variable in NetCDF file to be written

dat data to be written

dims vector of dimension names of the variable in the NetCDF file (optional)

dim1,...,dim6 individual dimension names of the variable in the NetCDF file (optional)

start vector of values specifying starting indices for reading data from each dimension (optional)

count vector of values specifying how many values to read in each dimension (optional)

long_name NetCDF attribute, a long descriptive name of the variable (optional)

standard_name NetCDF attribute specifying the CF convention standard name of the variable (optional)

grid_mapping name of the grid this variable is mapped on (optional)

units NetCDF attribute of the units of the variable (optional)

missing_value value of missing data to be written to file (optional)

ncid file ID for a file that remains open for various NCIO calls (optional)

Table A9. Subroutine call and argument descriptions for nc_open.

subroutine nc_open(filename,ncid,[writable])

filename name of the NetCDF file from which to read attribute

ncid output: integer variable to identify a NetCDF file through multiple NCIO calls

writable switch to determine whether file should be opened for writing (optional, default TRUE)

Table A10. Subroutine call and argument descriptions for nc_close.

subroutine nc_close(ncid)

ncid integer variable to identify a NetCDF file to be closed

Geosci. Model Dev., 8, 1877–1883, 2015 www.geosci-model-dev.net/8/1877/2015/



A. Robinson and M. Perrette: NCIO 1.0: a simple Fortran NetCDF interface 1883

Code availability

The NCIO module is open source and available under the

MIT License, making it suitable for community-driven de-

velopment or for each user to adapt the module to more par-

ticular needs. The code is hosted in a public Git repository lo-

cated at http://www.github.com/alex-robinson/ncio. Sugges-

tions and improvements are welcome. Any GitHub users who

wish to make a contribution should email the authors to add

them as contributors. The above-mentioned tutorial compari-

son is included in the repository, as well as a simple test pro-

gram with its output to ensure the code is working properly

and to provide examples of subroutine calls.

Acknowledgements. We would like to thank Mario Krapp and

Reinhard Calov for valuable input and testing of the NCIO module.

A. Robinson is supported by the Marie Curie 7th framework

programme (project 2012-IEF-331835, EURICE).

Edited by: D. Roche

References

CF: Climate and Forecast Conventions and Metadata, available at:

http://cfconventions.org/ (last access: 25 June 2015), 2015.

CMOR: Climate Model Output Rewriter, available at: http://pcmdi.

github.io/cmor-site/index.html (last access: 25 June 2015), 2015.

Huang, X. M., Wang, W. C., Fu, H. H., Yang, G. W., Wang, B., and

Zhang, C.: A fast input/output library for high-resolution climate

models, Geosci. Model Dev., 7, 93–103, doi:10.5194/gmd-7-93-

2014, 2014.

Ishiwatari, M., Toyoda, E., Morikawa, Y., Takehiro, S., Sasaki,

Y., Nishizawa, S., Odaka, M., Otobe, N., Takahashi, Y. O.,

Nakajima, K., Horinouchi, T., Shiotani, M., Hayashi, Y.-Y., and

Gtool development group: “Gtool5”: a Fortran90 library of in-

put/output interfaces for self-descriptive multi-dimensional nu-

merical data, Geosci. Model Dev., 5, 449–455, doi:10.5194/gmd-

5-449-2012, 2012.

Pierce, D.: ncdf: Interface to Unidata netCDF data files, avail-

able at: http://CRAN.R-project.org/package=ncdf (last access:

25 June 2015), r package version 1.6.8, 2014.

Schmunk, R. B.: Panoply, available at: http://www.giss.nasa.gov/

tools/panoply/ (last access: 25 June 2015), 2014.

Unidata: NetCDF, available at: http://www.unidata.ucar.edu/

software/netcdf/ (last access: 25 June 2015), 2014.

www.geosci-model-dev.net/8/1877/2015/ Geosci. Model Dev., 8, 1877–1883, 2015

http://www.github.com/alex-robinson/ncio
http://cfconventions.org/
http://pcmdi.github.io/cmor-site/index.html
http://pcmdi.github.io/cmor-site/index.html
http://dx.doi.org/10.5194/gmd-7-93-2014
http://dx.doi.org/10.5194/gmd-7-93-2014
http://dx.doi.org/10.5194/gmd-5-449-2012
http://dx.doi.org/10.5194/gmd-5-449-2012
http://CRAN.R-project.org/package=ncdf
http://www.giss.nasa.gov/tools/panoply/
http://www.giss.nasa.gov/tools/panoply/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/

	Abstract
	Introduction
	Reading from NetCDF
	Writing to NetCDF
	Discussion
	Conclusions
	Appendix A
	Acknowledgements
	References

