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Abstract: This study analyzed daily maximum streamflow data of each month from 

three gauge stations on Cekerek Stream for simulation using stochastic approaches. Initially 
non-parametric test (Mann-Kendall) was used to identify the trend during study period. The two 
approaches of stochastic modeling, ARIMA and Thomas-Fiering models, were used to simulate 
monthly maximum data. The error estimates (RMSE and MAE) of predictions from both 
approaches were compared to identify the most suitable approach for reliable simulation. The 
two error estimates calculated for two approaches indicate that ARIMA model appear to be 
slightly better than Thomas-Fiering. However, both approaches were identified as appropriate 
method for simulating daily maximum streamflow data of each month from three gauge stations 
on Cekerek Stream. 
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Introduction 
 
The prediction of flood resulting from heavy rain over a catchment is one of the major 

problems in applied hydrology. The engineering design of hydraulic structure demands reliable 
information concerning the peak flow to be expected after a rainstorm of a given probability of 
occurrence. The estimation of design floods is, in practice, often based on small samples of 
data, which may cause a severe uncertainty. In this sense, the hydrologist often faced with the 
problem of predicting extreme flood events on basis of samples of historical flood records. 
Therefore, the main problem is to obtain reliable estimates of floods with given return period or, 
alternatively, estimates of exceedance probabilities of certain flood magnitudes. But, for many 
water resource studies the available streamflow records are often scarce, which implies an 
uncertainty of the flood prediction. In many hydrologic applications, information based on 
continuous discharge or flow measurements is the basis of analysis and decision-making. Haan 
(1977) expressed that ultimately design decisions must be based on a stochastic model or a 
combination of stochastic and deterministic models. This is because any system must be 
designed to operate in the future. Therefore, simulation is important to obtain adequate and 
reliable information related to hydraulic design and management of any structure.   

 
Most of the statistical methods used in hydrologic studies are based on the assumption 

that the observations are independently distributed in time. The occurrence of an event is 
assumed to be independent of all previous events. This assumption is not always valid for 
hydrologic time series (Chow 1964). 

 
Sharma et al. (1997) cited that it is very important to generate synthetic streamflow 

sequences to analyze alternative designs, operation policies, and rules for water resources 
systems, and that the dependence structure of streamflow sequences is often assumed to be 
Markovian, that is, dependent on only a fine set of prior values. Iturbe et al. (1972) noted that 
generating extreme values are the most significant in design and planning. Therefore, they 
compared Markovian model, fractional Gaussian noise and crossing theory in simulation studies 
of hydrologic record, and stated that crossing theory preserved more properties of hydrologic 
interest more easily than the two other models. Additional to these, McMichael and Hunter 
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(1972) stated that providing good forecast functions for time dependent data was a common 
problem. 

 
 See and Openshaw (1998) enchanced flood forecasting on the river Ouse by using 

ARIMA model. Hsu et al. (1995) used an ARMA model for the prediction of streamflow on a 
medium sized basin in Mississippi. Chaloulakou et al. (1999) forecasted the daily maximum 1-
hour ozone concentrations by ARIMA model. 

 
The work in this paper is concerned with the application of autoregressive integrated 

moving average and Thomas-Fiering models to simulate the daily maximum streamflow data of 
each month (hereafter referred to as monthly maximum data) from three gauge stations on 
Cekerek Stream. 

 
Material And Method 
 
Study Area 
 
In this study, monthly maximum data from three gauge stations as numbered 1404, 

1409 and 1424, which are managed by General Directorate of Electric Power Research Survey 
and Development Administration (EIE), in Cekerek Stream watershed were used as materials. 
The approximate locations of the gauge stations were given in Figure 1 and a summary of 
identification number, names and drainage areas for the gauge stations was presented in Table 
1. 

Cekerek Stream watershed is bounded 39º 30' and 40º 45' N latitudes, 35º 15' and 36º 
15' E longitudes, covering approximately 1165440 ha which is about 1.5% of Turkey’s total 
area. The study area is located on the north Anatolia fault line that is one of the most effective 
faults in the world. Therefore, tectonic movement affects this watershed area. Cekerek Stream 
is formed by joining together of small streams that originate from Kızık, Dinar, Calı and Kavak 
hills, near the Camlıbel district. Cekerek Stream joins to Yesilirmak River near Kayabası. The 
stream is approximately 276 km in length and water quality of the stream is C2S1 for irrigation 
(Anonymous 1970).   

 
 

        

        

        

        

        

       
 

 

Figure 1. Location of gauge stations on Cekerek Stream 
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Table 1. Cekerek Stream Gauge Station Identification 
Station 
Number 

Station Name Drainage Area, 
km2 

Number of years of 
data 

1404 Cekerek-Kayabası 11724.0 13 
1409 Cekerek-Akcakecili  5267.6 38 
1424 Cekerek-Cırdak Bridge 1032.8 27 

 
 
Time Series Analysis for Monthly Maximum Streamflow Data 
  
In order to analyze time series for monthly maximum data from the three gauge stations, linear 
stochastic models known as either Box-Jenkins or ARIMA (autoregressive integrated moving 
average) and Thomas-Fiering were used in this study.  
 
 ARIMA Model 

 
For fitting seasonal ARIMA model to the time series of monthly maximum streamflow 

data, three-stage procedure of model identification, estimation of model parameters and 
diagnostic checking of estimated parameters has been adopted. This seasonal ARIMA model 
(Hipel et al. 1977) denoted as ARIMA (p,d,q)*(P,D,Q)s is expressed as 

 
Ø(B)Φ(Bs)(wi – µ) = θ(B)Θ(Bs)ai       (1) 
 
wi = (1-B)d (1-Bs)D xi        (2) 
 
In Equation 1, wi should be taken as zi if the series is stationary.  
 
Identification stage is purposed to determine the differencing required to produce 

stationarity and also the order of both the seasonal and nonseasonal AR and MA operators for a 
given series. By plotting original series (monthly series), seasonality, trends in the mean and 
variance may be revealed (Box and Jenkins 1976). The following non-parametric test (Mann-
Kendall) can be applied to decide whether trend exists in the monthly maximum data. The 
Mann-Kendall test recommended by Hirsch et al. (1982) is given as: 
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1m =   if S < 0 
0m =   if S = 0 

1m −=  if S > 0         (7) 
 
To determine whether there is a trend, uc statistic in Equation 3 should be compared to 

the z-table critical value. If the uc statistic lies within the 5% significance interval, there is no 
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trend for the data set. The hypothesis of an upward or downward trend cannot be rejected at the 
α significance level if the absolute value of uc > u1- α/2, where u1- α/2 is the 1- α/2 quantile of 
standard normal distribution. 

 
Autocorrelation function (ACF) and partial autocorrelation function (PACF) should be 

used to gather information about the seasonal and nonseasonal AR and MA operators for the 
monthly maximum series.  Autocorrelation function measures the amount of linear dependence 
between observations in a time series. Therefore, the most useful device is the autocorrelation 
function of the time series. In this sense, the identification of the appropriate parametric time 
series model depends on the shape of ACF. Additional to ACF, a powerful complementary 
identification tool, the partial autocorrelation function (PACF) can also be used (Janacek and 
Swift 1993).  

 
Estimation stage consists of using the data to estimate and to make inferences about 

values of the parameters conditional on the tentatively identified model. In an ARIMA model, the 
residuals (ai) are assumed to be independent, homoscedastic, and usually normally distributed. 
However, if the constant variance and normality assumptions are not true, they are often 
reasonably well satisfied when the observations are transformed by a Box-Cox transformation. 
The transformations can be expressed as either of the following equations (Wei 1990): 
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Box and Jenkins (1976) cited that the model should be parsimonious. Therefore, they 

recommended the need to use as few model parameters as possible so that the model fulfils all 
the diagnostic checks. Akaike (1974) suggests a mathematical formulation of the parsimony 
criterion of model building as AIC (Akaike Information Criterion) for the purpose of selecting an 
optimal model fits to a given data. Mathematical formulation of AIC is defined as:     

 
AIC (M) = n lnσa

2 + 2M        (10) 
 
Where M is the number of AR and MA parameters to estimate. The model that gives the 

minimum AIC is selected as a parsimonious model. 
 
Shibata (1976) has shown that the AIC criterion tends to overestimate the order of the 

autoregression. But, Akaike (1978, 1979) has developed a Bayesian extension of minimum AIC 
procedure, called as BIC. Similar to Akaike’s BIC, Schwarz (1978) suggested the following 
Bayesian criterion for model selection, which has been called Schwarz Bayesian Criterion 
(SBC): 

 
SBC (M) = n lnσa

2 + M lnn        (11) 
 
Diagnostic check stage determines whether residuals are independent, homoscedastic 

and normally distributed. The residual autocorrelation function (RACF) should be obtained to 
determine whether residuals are white noise. There are two useful applications related to RACF 
for independence of residuals. The first one is the correlogram drawn by plotting rk (a) against 
lag k. If some of the RACF are significantly different from zero, this may mean that the present 
model is inadequate. The second one is Q (r) statistic suggested by Ljung-Box (1978). A test of 
this hypothesis can be done for the model adequacy by choosing a level of significance and 
then comparing the value of calculated χ2 to χ2-table of critical value. If the calculated χ2 value is 
less than the χ2-table critical value, the present model is adequate on the basis of available 
data. The Q (r) statistic is calculated by using: 
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The following test described by Breusch and Pagan (1979) is very useful to determine 

whether a transformation of the data is needed. If there is a change in variance 
(heteroscedasticity) of residuals, a transformation is necessary for the data. For the test, the 
residuals from the model fitted to the data are divided into two groups. Then, residual sum of 
squares (ESSF, ESSS) for these groups are obtained. Breusch-Pagan test statistic (Fcal) is 
obtained from the following equation. If Fcal is smaller than F-table critical value, the residuals 
are assumed to be homoscedastic. 
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There are many standard tests available to check whether the residuals are normally 

distributed.  Chow et al. (1988) cited that if historical data are normally distributed, the graph of 
the cumulative distribution for the data should appear as a straight line when it is plotted on 
normal probability paper. Haan (1977) expressed that the other way to check normality of 
residuals is the Kolmogorov-Smirnov (K-S) method. 

 
Thomas-Fiering Model 
 
Thomas-Fiering model presents a set of 12 regression equations. This linear stochastic 

model is used for generating synthetic monthly data. The well-known Thomas –Fiering model 
equation can be given as (Clarke 1984): 
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Comparison of the Results 
 
Two error estimates were taken into consideration for comparison of the results from 

ARIMA and Thomas-Fiering approaches (Antonopoulos et al. 2001). The first is the Root Mean 
Square Error (RMSE) which is given as: 
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The second is the Mean Absolute Error (MAE), which is defined as  
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Results and Discussion 
 
To determine whether there is a trend in monthly maximum streamflow data sequences 

from 1404, 1409 and 1424 gauge stations, the non-parametric test (Mann-Kendal test) at 5% 
significance level was applied to monthly maximum data sequences. Mann-Kendal test results 
were given in Table 2. The Mann-Kendal statistic (uc) values of monthly maximum data from 
three gauge stations were between z-table critical values (±1.96) at 5% significant level. This 
suggests that there is no linear trend in monthly maximum data sequences of each mentioned 
gauge station.  
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The plots of the ACFs and PACFs drawn for monthly maximum data sequences are 

examined in order to identify the form of the ARIMA model. The ACFs for monthly maximum 
data follow an attenuating sine wave pattern that reflects the random periodicity of the data and 
possibly indicates the need for non-seasonal and/or seasonal AR terms in the model. For these 
data sequences, the cyclic seasonal component was removed by taking the seasonal 
differencing operator as one (1).  

 
All the ACFs were significantly different from zero. Additional to this, Ljung-Box Q 

statistics were estimated. They emphasize that the ACFs obtained from monthly maximum data 
sequences were significantly different from zero. In other words, there was a linear dependence 
between monthly maximum observations. However, the ACFs did not cut off but rather damped 
out. This may suggest the presence of autoregressive (AR) terms. The PACFs possess 
significant values at some lags but rather tail off. This may imply the presence of moving 
average (MA) terms. The ACFs have significant values at lags that are multiples of 12. This may 
stress that seasonal AR terms are required but these values attenuate. There are peaks on 
graphs of the PACFs at lags that are multiples of 12 that may suggest seasonal MA terms, but 
these peaks damp out. 

 
Alternative ARIMA models were estimated by considering the ACFs and PACFs graphs 

from the monthly maximum data. The SBC was taken into account for obtaining a parsimonious 
model among these alternatives. The model that has the minimum SBC was assumed to be 
parsimonious. In addition to this, model parameters were analyzed at 5% significant level by 
using t-test to select the best model fit to the data. If there is any parameter significant at a level 
5%, it was eliminated.      

 
Diagnostic checks were applied in order to determine whether the residuals of the 

selected models from the ACF and PACF graphs were independent, homoscedastic and 
normally distributed. A Box-Cox transformation was required for monthly maximum data for all 
gauge stations. By substituting λ, as -0.5 for monthly maximum data sequences from gauge 
stations 1409 and 1424, and as zero (0.0) for monthly maximum data sequences from gauge 
station 1404, and constant (c), as 1.0 for 1409 and 1424 and 0.0 for 1404 gauge station in 
Equations (6) and (7), a Box-Cox transformation caused the residuals to be homoscedastic and 
approximately normally distributed.   

 
The models with the minimum SBC among the selected models that fulfilled all the 

diagnostic checks were selected as the best model for monthly maximum data sequences from 
the gauge stations. The selected best models for the gauge stations are presented in Table 2.  
The critical assumption of independence for the RACFs of the residuals was done by using the 
χ2 distributed Ljung-Box Q statistic. The probabilities of Q statistics calculated for the best 
models were given in Table 2. Since the probabilities of Q statistics are greater than 0.05, the 
residuals from the best models are not significantly different from zero. Similarly, the RACF 
drawn for the best models indicated that the residuals were not significantly different from a 
white noise series at 5% significance level. Inspection of the RACF and the residual integrated 
periodogram (Figure 2) confirmed a strong model fit. 

 
In Table 2, test results from Kolmogorov-Smirnov method for the normality and test 

results from Breusch-Pagan approach for homoscedascity of the residuals are also given. Since 
the normality and Breusch-Pagan test results are greater than 0.025 and 0.05, respectively, all 
the diagnostic checks for the residuals are fulfilled (Table 2). 
 
Table 2. The ARIMA models selected for Cekerek Stream gauge stations 

Model Statistics Gauge 
Station  

ARIMA 
Model  uc  AIC SBC LBQ/P Norm Homosce σa

2 
1404 (1,0,0)(0,1,1) 0.008  349.9 355.8 0.625 0.584 0.994 0.570 
1409 (1,0,2)(0,1,1) 0.004  -219.5 -203.1 0.569 0.035 0.900 0.034 
1424 (2,0,1)(0,1,1) 0.000  -34.2 -19.20 0.281 0.217 0.820 0.048 
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The value (V) of the parameters associated standard errors (SEV), t-ratios and 

probabilities (<5%) for the standard errors are listed in Table 3. The standard errors calculated 
for the model parameters were rather small compared to the parameter values. Therefore, all of 
the parameters are significant and these parameters should be included in the models (Table 
3). 
 
 
Table 3. Statistical analysis for the model parameters 

Variables in the Model Gauge Station Model 
Parameters V SEV t-ratio Probability 

Ø1 0.519 0.068 7.69 0.000 1404 Θ1 0.884 0.104 8.48 0.000 
Ø1 0.874 0.049 17.71 0.000 
θ1 0.468 0.069 6.76 0.000 
θ2 0.125 0.057 2.17 0.031 1409 

Θ1 0.919 0.029 32.06 0.000 
Ø1 -0.333 0.125 -2.65 0.008 
Ø2 0.545 0.069 7.94 0.000 
θ1 -0.881 0.129 -6.84 0.000 1424 

Θ1 0.936 0.046 20.38 0.000 
 
 

 
Figure 3 shows the relationship between five-years of monthly maximum data at each 

gauge station and predicted data for the same years by using the best models from ARIMA and 
Thomas-Fiering approaches for each gauge station. As shown in Figure 3, the predicted data 
obtained from these approaches follow monthly maximum data very closely for three gauge 
stations on Cekerek Stream. Therefore, both models seem to be adequate for simulating 
monthly maximum data. Table 4 gives the error estimates obtained for monthly maximum data 
of the two different approaches used in the study for forecasting. The two error estimates 
(RMSE and MAE) obtained for two approaches indicate that ARIMA approach appear to be 
slightly better than Thomas-Fiering.  

 
 

Table 4. Comparison of the results from different approaches  
ARIMA Thomas-Fiering  

Gauge Station RMSE MAE RMSE MAE 
1404 0.78 0.59 0.97 0.73 
1409 0.19 0.13 0.95 0.67 
1424 0.23 0.17 0.98 0.66 
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Figure 2. Residual ACF- monthly maximum flood data 
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Figure 3. Comparison of observed data to predicted data using different approaches 

 
 
 

Conclusion 
  

In many scientific or technical applications, data are generated in the form of a time 
series. Therefore, time series analysis is among the major tasks in research and development. 
Especially, the engineering design of hydraulic structure demands reliable information 
concerning the peak flow to be expected after a rainstorm of a given probability of occurrence. 
The estimation of design floods is, in practice, often based on small samples of data, which may 
cause a severe uncertainty. In this sense, the hydrologist often faced with the problem of 
predicting extreme flood events on basis of samples of historical flood records. Therefore, the 
main problem is to obtain reliable estimates of floods with given return period or, alternatively, 
estimates of exceedance probabilities of certain flood magnitudes. But, for many water resource 
studies the available streamflow records are often scarce, which implies an uncertainty of the 
flood prediction. In many hydrologic applications, information based on continuous discharge or 
flow measurements is the basis of analysis and decision-making. The accuracy of time series 
forecasting is fundamental to many decision processes and hence research for improving the 
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effectiveness of forecasting models has never stopped. Generally, providing good forecast 
functions is a common problem.  

 
In this study, performance of two stochastic models including ARIMA and Thomas-

Fiering approaches was focused on. These models were applied to monthly maximum 
streamflow sequences from Cekerek Stream. The error estimates of RMSE and MAE for both 
approaches were taken into consideration to identify the most appropriate approach for reliable 
simulation. Based on the error estimates, we propose to take the ARIMA model to time series 
forecasting related to monthly maximum streamflows from Cekerek Stream. The ARIMA model 
appears to be slightly better than Thomas-Fiering. But, as the predicted data obtained from 
these approaches follow monthly maximum data very closely, both approaches were concluded 
to be able to accurately use in generating monthly maximum data.  

 
Nomenclature 

 
ai white noise time series value at time i 
aij independent standard normal variable at time i in the jth  month 
B backward shift operator 
c constant for Box-Cox transformation 
d order of the nonseasonal differencing operator 
D order of the seasonal differencing operator 
ei the number of data in the ith (tied) group  
ESSF the residual sum of square for first group 
ESSS the residual sum of square for second group 
kp degree of freedom 
LBQ/P  probability for Q(r) 
n the number of observation 
nF the number of residuals in the first group 
nS the number of residuals in the second group 

jQ  the mean monthly discharges during month j 
Q(r) Ljung-Box statistic at lag m 
Qobs observed discharge 
Qpred predicted discharge 
rj the serial correlation coefficient for discharge in the jth month from the (j-1)th month 
rk(a) ACF of ai at lag k 
s seasonal length 
Sj the standard deviation monthly discharges during month j 
t the number of tied groups 
uc Mann-Kendall statistic 
xi discrete time series value at time i 
Xi,j predicted discharge for the jth month from the (j-1)th month at time i 
wi stationary series formed by differencing the xi 
zi transformation of xi series 

 
Greek Symbols 

 
λ exponent for Box-Cox transformation 
µ mean level of the wi series (if D+d>0 often µ ≈0) 
Øi ith nonseasonal AR parameter 
Φi ith seasonal AR parameter 
θi ith nonseasonal MA parameter 
Θi ith seasonal MA parameter 
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