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We propose, in this paper, a teaching program based on a grammar of

scientific language borrowed mostly from the area of knowledge represen-

tation in computer science and logic. The paper introduces an operationiz-

able framework for understanding knowledge using knowledge representation

(KR) methodology. We start with organizing concepts based on their cognitive

function, followed by assigning valid and authentic semantic relations to the

concepts. We propose that in science education, students can understand bet-

ter if they organize their knowledge using the KR principles. The process, we

claim, can help them to align their conceptual framework with that of experts’

conceptual framework which we assume is the goal of science education.

Introduction

At the turn of the last century a group of philosophers of science, popularly

known as logical positivists, began to build the grammar of science. In the

current intellectual atmosphere logical positivism is more or less consid-

ered a sin. One main reason for that being the epistemological ground of

positivism, that scientific theories are grounded and logically connected in

observational language, was more or less convincingly demonstrated to be

incorrect. In the process the baby was thrown with the bath water. What

we are trying to do here is to propose a way to fetch what was lost in that

bath water, the grammar of scientific language.

It is justified to believe that science, unlike folk-lore or common sense,

is more rigidly organized body of knowledge. Exact sciences like mathe-

matics and physics tend to be very economical in the number of concepts

used to describe the phenomena and the connectors, to express the possible

relations, between the concepts. It is the objective of science to eliminate

ambiguity and use concepts as precisely as possible. Scientists do this by
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creating an artificial language of their own, a constrained ‘natural’ lan-

guage. This constrained natural language is a very small sub-set of any

natural language in which science is communicated.

Since communication of science is often done in a natural language

(most commonly in English) we fail to explicitly realize that the grammar

of this scientific language is distinct from those of natural languages. Con-

sequently when we teach science we fail to communicate its grammar. We

think that the practice of science teaching also suffers due to a lack of ex-

plicit teaching program to introduce the grammar of science. With this as-

sumption in mind we began exploring to create a teaching program based

on a grammar of scientific language borrowed mostly from the area of

knowledge representation in computer science and logic. What we present

here are some preliminary results.

In one preliminary study we found that students encounter about 4000

concepts of biology (excluding the names of all the species of plants and

animals) up to higher secondary level of education (equivalent to K12) in a

typical Indian school[20]. Complexity of biological science is well known,

and describing such a phenomena obviously requires a richer language.

Added to this is the fact that most of biological terms are derivatives of Latin

or Greek. When confronted with such a large and ‘remote’ vocabulary, bi-

ology teachers often explain the etymology and explain the formation rules

of such terms explaining in terms of suffix and prefix derivatives. Another

very interesting recourse that biology teachers take is the abundant use of

diagrams. This does help to a large extent. Carefully illustrated diagrams

communicate the precision required in science, sometimes more success-

fully than written words. Apart from these normally followed methods,

we think, it is important to add to it an explicit teaching of the grammar

of scientific knowledge. This approach, in addition to enhancing precision

in science communication, will also help in improving conceptual under-

standing of the subject.

A grammar of a scientific language consists of a finite (not necessarily

known) set of possible relations between the concepts. For example, in the

statements “Ribosomes are part of a cell.”, “A cell is a structure.”, and “Rab-

bit is a mammal.”, we employed the relation types, ‘part of’, and ‘is a’, be-

tween the terms. Our hypothesis is that though the terms are numerous the
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type of relations are not. A set of such type of relations constitute knowledge

organizers (see section on methodology) of a body of knowledge, which we

assume are not only constant but few in number. Our hypothesis is: dur-

ing the course of science education if students are trained to understand

the scientific knowledge using the knowledge organizers, then meaningful

learning vis-a-vis rote learning, as explicated by Ausubel[1], takes place.

When we explored for a set of required knowledge organizers for science

(or for the domain of biology) from the literature, we could not obtain with

the exceptions of CYC[12], UMLS[16], any such set readily available. This

indicates that there is a need to develop an authentic set of knowledge or-

ganizers for use in science education. Our research objective is to fill this

gap.

The epistemological presuppositions (the working hypotheses) of this

undertaking are: (1) a cognitive agent understands a new concept when

relations are established between the preexisting concepts with the new

concept[1, 13, 15]; (2) to educate a person therefore is to facilitate the

process of establishing the relevant relations between concepts so as to

align with that of an expert; (3) learning therefore involves restructuring

of conceptual schemes; and (4) misunderstandings are due to mismatch-

ing between conceptual schemes between the agents. According to this

approach no concept gains any meaning independent of its relations with

other concepts. Thus, meaning of a concept is the network it forms with

others. A central difference between the approach followed by Novak and

ours is the emphasis on a minimal set of unambiguous knowledge organiz-

ers instead of using many often ambiguous relations names.

The sense of understanding used here is stronger since we are seeking

that the relations between the concepts be made explicit. For example,

when we look at a tree, and recognize that it is indeed a tree, is also under-

standing of a sort, but it is implicit. Also the term ‘education’ is used here in

a strong sense. This does not cover the various forms of behavioral mastery,

such as skills, that children learn and execute without any explicit under-

standing. One of the challenges in education, particularly of exact sciences,

is to gradually train learners towards more and more explicit forms of

representation. Formal sciences like theoretical physics, mathematics and

logic, for example, are domains of discourse where procedural knowledge

is declaratively stated and declarative knowledge is procedurally stated
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reaching a highest degree of explicit knowledge representation[9, 6].

This knowledge organization (KO) approach helps in building a frame-

work for curriculum development, and also to understand the transforma-

tion (conceptual change) of novice into an expert. Curriculum designed

using KO approach follows a principled disambiguous approach, which is

used by the experts in their respective domains. Incorporating the princi-

pled/logical approach is very essential to transform a novice into an expert,

which we assume, is the goal of education. Based on a comparison of a

novice with an expert[2], studies have shown that an experts’ knowledge

structure is coherent, economical and tightly integrated, while a novice’s

knowledge structure is often inconsistent, ambiguous, and loosely orga-

nized. While attempting to organize knowledge, an expert starts with the

core concepts, however a novice starts to organize the knowledge from pe-

riphery. The approach followed by an expert is principled i.e. logical, which

is not the case with a novice.

Based on these assumptions we began to employ the basic concepts

of knowledge representation (KR) and its possible use in the current en-

deavor. It was noted by Fisher[5] that KR helps students in order to learn

better. The following is a summary of the arguments given by Fisher for

using KR approach in science education. The act of creating an organized

structure of ideas on paper or on a computer helps in creating a knowl-

edge structure in the mind. KR helps in making the implicit (often fuzzy)

knowledge into an explicit and precise knowledge. It incorporates cognitive

and metacognitive skills, thus occurs meaning-making. KR helps students

to make finer discriminations between ideas and helps to organize better.

The more one practices the better one becomes at organizing and relating

concepts. Structural (organized, semantic) knowledge is essential to assim-

ilate, recall and comprehend. Structural knowledge is essential to problem

solving. A collaborative task occurs on the discussions about the meanings

of concepts and the relations between the students. It has also been noted

that there exists significant differences between the structural knowledge

of novices and experts, and hence for novices a natural part of learning is

to work on their structural knowledge to make it more expert-like.

Many educational researchers have found it useful to adopt a network

representation format for explicitly representing knowledge structure. There
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exists various methods to represent knowledge such as—concept map[15],

knowledge Vee[15], Concept Circle Diagrams[5], SemNet[5], Conceptual

Graphs[19]. After analyzing the concept mapping methodology, we identi-

fied several problems on the basis of the assumptions stated above, and par-

ticularly due to the use of knowledge organizers. In the traditional concept

mapping methodology the relation types (linking words) such as—is-a, for

e.g. are ambiguously used; too many linking words are used to express the

same meaning; the hierarchies are not ordered and not validated. Hence,

the graphical representation is misleading to evaluate concept maps. A crit-

icism of concept mapping methodology is discussed separately in a work-

ing paper, Towards Principled Approach of Concept Mapping[10]. We find

the conceptual graphs approach by Sowa[18] highly instructive and we

plan to make use of this technique for representing scientific knowledge.

Sowa’s approach is sufficiently formal to represent knowledge in precise

terms, and is comprehensive enough to use in several domains of knowl-

edge. Based on the current wisdom in KR, we developed a modeling tool to

undertake the task. The tool is called GNOWSYS (Gnowledge Networking

and Organizing SYStem)[8]. After introducing the model of GNOWSYS,

we introduce the model followed for representing a small domain of biol-

ogy. The purpose of this communication is limited to share the approach

and assumptions followed.

GNOWSYS (Gnowledge Networking and Organiz-

ing SYStem)

While designing the architecture of GNOWSYS, we kept in mind the need

for drawing concept graphs, semantic nets and concept maps. Recently,

several researchers used concept maps[15, 14] and SemNet[4, 5] to en-

hance conceptual learning in the context of science education. Most of

these tools, suggested in the above citations, are essentially drawing tools,

and the maps drawn by the students or experts could not be stored in an

accessible knowledge base. Graphs were stored as separate files, which

makes reusing a component of a graph difficult. Since the graphs were

encoded in a format that is internal to the applications, it is difficult to

compare two concept graphs, made by different applications and remain
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Figure 1: A diagram representing the architecture of GNOWSYS.

unsharable. The objective of matching and mismatching of concept graphs

of two or more agents could not be achieved without a sharable encod-

ing. While designing GNOWSYS these problems were kept in mind, so the

graphs generated by various applications could be shared and published by

the system through XML based representations schemes.

The architecture of GNOWSYS[7] is structured to accommodate differ-

ent dimensions of KR such as—generality, semantics, complexity, inference

as shown in figure 1.

Generality dimension: We come across a wide variety of concepts in our

discourse either in the form of particulars or generals, and even those

concepts which belong to higher levels of abstraction. These con-

cepts need to be organized based on their order of generality. In

GNOWSYS, three different levels of generality, such as tokens (for

particulars), types (for generals), and metatypes (for types of types),

are possible.
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Semantic dimension: In GNOWSYS we can store propositions in three

layers with increasing order of semantics and consistency. The first

layer consists of simple propositions in the form of well formed for-

mulae (WFF). In the first layer, all kinds of propositions are allowed

to store without any semantic constraints. In the second layer, these

WFF can then be combined with the semantic constraints, logical con-

nectives, modalities, propositional attitudes, quantifiers etc. The sys-

tem does not check for contradictions, and consistencies in this layer

too, but consistency is implicit and therefore referred to as implicit

structured system (ISS). In the third layer, the validity constraints are

imposed explicitly and therefore gives rise to explicit consistent systems

(ECS), which is quite similar to the experts’ knowledge system. This

way GNOWSYS proposes to represent knowledge of novices and ex-

perts, with the assumption that the ECS matches that of an expert and

the loosely structured ISS representation with that of novice. The se-

mantic dimension is not represented in the figure. Since it is possible

to build different ontologies from a given set of vocabulary and WFF,

it is possible to store multiple ontologies and epistemologies within a

single or a distributed knowledge base.

Complexity dimension: Along the complexity dimension, the system sup-

ports vocabularies like simple terms, and predicates, and very com-

plex forms like rules, arguments, axiomatic systems and other com-

plex compositions. The basic components provided are ObjectType

(OT), Object (O), RelationType (RT), Relation (R), MetaType (MT),

EventType (ET), Event (E), FlowType (FT), Flow (F), which helps to

store the terms, propositions and procedures. Complex compositions

are provided by the structure groups consisting of ProcessType (PT),

Process (P), StructureType (ST), Structure (S), Encapsulated Class,

Programs and ProgramType.

Inference dimension: Epistemic values such as validity and truth can be

checked along the inference dimension of GNOWSYS. Based on the

rules, and axioms it is possible to deduce consequences using deduc-

tive inference. It is also possible to add ampliative (induction and ab-

duction) and analogical inference engines to the system. This module

is not part of the core system but any existing inference engines can

be employed using the communication interface of GNOWSYS.
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Methodology

In the methodology adopted by us, we have followed the KR approach to

organize biological knowledge and create a knowledge base. The steps fol-

lowed are: to organize concepts on the basis of their cognitive function;

to assign valid and authentic semantic relations to the concepts; to ana-

lyze the knowledge-base based on the usage of different kinds of semantic

relations applied; to compare the novice’s knowledge structure with that

of an experts knowledge structure; to restructure (reorganize) to align the

novice’s knowledge structure with the experts knowledge structure; and fi-

nally to develop a minimal set of relation types (knowledge organizers) for

representing the entire domain of biology. Graphical representation such

as concept maps, concept graphs can be generated based on the knowledge

base. We would like to point out that at this stage, we have managed to

fulfill the first two objectives which are presented in this article and the

latter ones are part of our ongoing research project[11].

Organizing concepts on the basis of their cognitive func-

tion

Knowledge organizers consists of (1) concepts (ObjectTypes) and the types

of concepts (MetaTypes) used in knowledge (2) types of relations used to

relate the concepts (RelationTypes) and (3) logical connectors and quanti-

fiers used to express the knowledge. We start with organizing the body of

knowledge into concepts and relations (monadic predicates as attributes,

and dyadic predicates as relations). The type of concepts are organized in

the MetaType layer. The type concepts (general) are organized in the Type

layer and the instances (specific) are organized in the Token layer.

Concepts are first to be organized based on their cognitive function de-

pending upon what they explain. For example, ‘mitochondria’ refers to a

structural part of a cell, and so it is instantiated under MetaType structural

concept; ‘protein synthesis’ refers to a process and hence it is instantiated

under MetaType process concept; ‘prophase’ which is one of the stages in-

volved during the cell division (mitosis), is instantiated under MetaType

stage concept. It may be noted that relations established in this step are
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Figure 2: Classifying the concepts based on their cognitive function.

between the concept types and concepts, as shown in figure 2.

Figure 2, shows the organized form of body of knowledge about the

structures in the cell. In the metatype layer, the concepts are categorized

as structural concept, taxonomical concept, relational concept etc. In the

type layer, the structures, process are represented (in the form of an in-

stance of the metatype layer); and the different kinds of structures of the

cell (nucleus, mitochondria etc.) or processes of the cell (protein synthe-

sis, lipid synthesis) are organized as the subtypes of the types within type

layer. Most of the knowledge is organized in the type layer. The last layer

i.e. the token layer represents the individuals i.e. specific instances of the

types. Since in science we talk about generals rather than particulars, in a

knowledge base of sciences we do not expect many tokens. However, data

collected during experimental activities is most about particulars.

Much of the core biological knowledge is contained in physiology, molec-

9



ular biology, developmental biology, ecology etc. Based on our earlier anal-

ysis of biological terms, most biologically significant knowledge of this field

is expressed in terms of concepts that describe processes (events), states, or

stages, and cycles[20]. It is possible to represent the structures in biologi-

cal sciences using the different kinds of inclusion relations, however mod-

eling of processes for knowledge representation is quite challenging. The

major concerns for knowledge representation, are regarding time, change,

sequence, context etc. According to Sandewall, the processes are classified,

based on the complexity, as: discrete or continuous; linear or branching, in-

dependent or ramified; immediate or delayed; sequential or concurrent; pre-

dictable or surprising; normal or equinormal; flat or hierarchical; timeless or

time-bound; forgetful or memory-bound[19]. In a process, basically a state

gets transformed into another state. Such state-transition processes can

also be represented using the Petri nets. At present, the component classes

required to do process modeling are being developed.

Assigning authentic and valid semantic relations to the con-

cepts

Our understanding and expression of knowledge of the world depends on

characterizing and establishing relationships between concepts. Structur-

ing of relationships serve as foundations for organizing knowledge. Rela-

tions are ubiquitous, and play a central role in our mental and external

worlds. “Our mental world—that is, knowledge—is in turn full of rep-

resentations that correspond in salient ways to the external world”[17].

Merely classifying concepts into different organizational layers is not suf-

ficient. Concepts get meaning on the basis of the semantic relations with

other concepts. So, concepts have to be assigned valid and authentic se-

mantic relations.

In figure 3, we present different kinds of semantic relations assigned

for the concepts for representing some of the anatomical details of the

cell and also to represent some of the taxonomic classification. Semantic

relations have been categorized as inclusion (meronymic, class, spatial),

attribution, attachment etc[21]. The relation types used in figure 3 are—

includes, part-of, located-on, wound-around, occurs-in, function, etc. The
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Figure 3: By assigning valid semantic relations between concepts, knowl-

edge base is built.

propositions thus created are as follows—vertebrata includes fish, mammal;

plankton includes phytoplankton, zooplankton; amino acids includes alanine,

glutamine; purines includes adenine, guanine (class inclusion); mitochondria

part-of cell (meronymic inclusion); DNA wound-around histones; ribosomes

located-on endoplasmic reticulum; protein synthesis occurs-in cytoplasm (spa-

tial inclusion); nucleus function DNA synthesis (function relation). Currently

the support for specifying scope of relations (quantification) and modal-

ity of assertions are being developed in GNOWSYS. This feature enables

to represent propositions such as: Some ribosomes located-on endoplasmic

reticulum; All DNA wound-around histones in Eukaryotic cell.
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Figure 4: Knowledge organizers for understanding organic molecules. A

concept map of biomolecules drawn using principled approach using just 2

relation types (knowledge organizers).

Drawing concept map following the principled/logical ap-

proach

A principled or a logical approach is based on the grammar of scientific

knowledge. We can draw principled or logical based concept maps (using

the KR approach) which are different from the concept maps influenced by

Novak.

Figure 4, shows a principled concept map on organic molecules gener-

ated from our knowledge base. The concept map depict the minimal set of

knowledge organizers i.e. relation types for representing the biomolecules.

It is possible to represent some of the knowledge about organic molecules

with using just two relation types i.e. semantic relations (knowledge orga-

nizers) as depicted in the figure. We intend to develop a set of such knowl-
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edge organizers for each domain which can be applied in science education.

In the domain of KO, various tools exists such as Cyc[12], UMLS[16] etc.

which have been built using the logical approach. The principled concept

map is very close to the way an expert tries to represent scientific knowl-

edge in terms of unambiguous relations. Parsimony is maintained in the

representation of scientific knowledge and the relations used are clear and

precise which helps for a better understanding of scientific knowledge after

teaching normal concept maps. We propose that if we teach the students to

draw concept maps using this principled/logical or KR approach, then re-

structuring of knowledge can occur in a novice which helps in transforming

a novice into an expert, which is the goal of science education. However,

for each domain of science an acceptable grammar of science among the

practitioners should be arrived after careful discussions.

Conclusion

The study is regarding characterizing and organizing knowledge based on

KR using the grammar of scientific knowledge. We introduce the model

for representing a small domain of biology. The purpose of this commu-

nication is limited to share the approach and assumptions followed. Our

methodology sought to classify and organize a small domain of biological

knowledge and arrive at a minimal set of knowledge organizers for rep-

resenting the structural relations in the biological domain. Using these

knowledge organizers, we can eliminate ambiguity, maintain parsimony

and apply precision to the scientific body of knowledge. At present, we are

working on building a process ontology inorder to represent the processes

(events), states or stages and cycles of the biological sciences.

We propose that if the students (novices) are trained to characterize and

organize knowledge using KR principles i.e. following the grammar of sci-

entific language, then their conceptual framework can be aligned with that

of experts’ conceptual framework. We think that the principled approach,

in place of standard concept mapping, has a direct role to play in science

education.
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