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CHAPTER I
INTRODUCTION

Investigations of optimization in economic systems usually
assume that economic agents have complete information ﬁbout the param-
eters of the model used to describe the system, However, any economic
model contains parameters about which there is only incomplete informa-
tion. Macroeconomic models used for stabilization or planning purposes
‘contain parameters whose true values are unknown to the planner. Micro-
economic models of the firm or consumer involve parameters whose true
values are unknown to the entrepreneur or consumer whose behavior they
describe., If these models are to be utilized, it is necessary to have
a theory which explains how this incomplete information affects optimi-
zation strategies,

In situations where the model is used in only a single period
there has been much research concerning various statistical and eco-
nomic policy issues both at the macro level and at the micro level.

The work of Fisher (1962), Brainard (1967), Basu (1972), and Leland
(1972), for example, deals with some of these issues in the single
period problem when there is uncertainty in the parameters of the model.

However, in situations wﬁere the model is to be used for more
than one period, there has been relatively little fesearch. In multi-

period problems, present period decisions affect not only present period



performance, but also the amount of information one can learn about the
unknown parameters., For example, a firm facing an unknown demand curve
may experiment with different prices in order to learn more about demand.
But such experimentation is costly if it requires deviating from the
profit maximizing price, Similar possibilities for experimentation
might be available to a macroeconomic planner to obtain information for
more accurate planning in the future.

The purpose of this study is to investigate methods of optimi-
zation in such multiperiod control problems with unknown parameters.
Particular emphasis is placed on the statistical estimation aspects,
which determine how one learns about the unknown parameters through
experience as the process evolves over time. Since the main differ-
ence between the single period problem and the multiperiod problem is
this estimation aspect, it is of interest to investigate how it affects

control behavior.

1.1 A Review of the Literature

As will be discussed in Chapter II multiperiod contreol is a
problem in sequential statistical decision making about which there is
" a great deal of literature starting with the important works of Wald
(1947) and Arrow, Blackwell, and Girshick (1949). The latter paper
was the first to use the method of backward induction, a method which
has become fundamental to dynamic programming in general, There are
many problems of this type which are scattered through the statistics,

engineering, and operations research literature,



The first attempts to apply these methods to the multiperiod
control problem seem to have been in the engineering literature, 1In
a series of four papers, Fel'dbaum (1960) applied the methods of Wald
to general systems of equations using Bayesian methods, calling the
approach dual control. This approach was also taken by Acki (1967) in
a book which summarizes much of the engineering literature on the sub-
jeet until that time,

Economists have been concerned with multiperiod control under
uncertainty for quite some time, but the additional elements of learn-
ing and estimation have been considered only recently. Simon (1956)
and Theil (1957) showed how in a very special case one could use the
principle of certainty equivalence to solve such problems, but neither
author considered estimation aspects. Prescott (1967) discussed the
problem from a Bayesian viewpoint, proposed a heuristic procedure for
solving it, and applied the solution to a small macroeconomic model,
Zellner (1971) considered the two period problem and some possible
approximations,

In a recent paper Prescott (1972) examined a linear model with
one unknown parameter and characterized how experimentation is reflected
in the control decision. He also performed numerical integration to
calculate the Bayes rule for this special case. We discuss his results
in more detail in Chapter 1II,

All these studies have approached the multiperiod control prob-
lem from a Bayesian pecint of view. This approach is rather straight-

forward to set up and solutions can be written down, in principle,



However, the calculation of specific control rules or even the charac-
terization of their properties has proved quite difficﬁlt. In addition,
the results are subject to the prior distribution assumptions, which are
made partly on the basis of convénience. The approach of this study is

not restricted to the Bayesian viewpoint,

1.2 Plan of Study

Before proceeding it will be useful to briefly review the plan
of study. 1In Chapter II we describe the sequential statistical decision
model which will serve as the framework of analysis for this study. The
Bayes method is described in detail here and is used to demonstrate the
trade-off between estimation and single period performance, (Those
readers who are familiar with the Bayes approach to this problem may
want to skim these sections.) Several control rules other than the
Bayes optimal control rule are defined at the end of the chapter.

An investigation of the properties of these control rules is
contained in Chapter III, We show that, under certain assumptions,
various control rules converge with probability 1 to the value which
would be used if the parameters were known with certainty. Since the
data which is used for estimation purposes is controlled, it must be
considered random, a complication which requires more general methods
than are usually necessary to prove consistency in econometric investi-
gations, We also examine the asymptotic distribution of the control
rules, These distributions can be used for making confidence statements

about the parameter estimates as well as the control itself. In



addition, we use these results as measures of control performance in
Chapter IV, The results of this chapter show that even some of the
simple control rules have certain desirable properties and converge
to their true value rather rapidly.

In Chapter IV we consider the possibility of using criteria
from the theory of estimation as criteria for the control problem,
Such criteria are free from prior distributional assumptions on the
parameters and do not require specific distributions for the random
disturbance terms, They therefore are attractive alternatives to the
Bayes approach to the control problem, Thé results of Chapter III are
then used to show that some simple control rules behave quite nicely
and that for long horizon problems there is little to gain from experi-
mentation, Since the results hold only asymptotically we do not know
how accurate they are in problems of short time horizon. It is hoped
that this method of analysis might prove useful in other control prob-
lems and serve as a complement to the Bayesian viewpoint which has
dominated analyses of these problems,

In Chapter V we show that, in addition to normative implica-
tions, these results have some important implications for the theory
of economic behavior., We consider a model of a firm which faces an
unknown market demand curve, define equilibrium for such a firm, and
show that under certain price adjustment assumptions the equilibrium
is stable with probability ome, We also consider an alternative model
which leads to different conclusions and compare the assumptions of the

two approaches,



CHAPTER II

THE MODEL DESCRIPTION AND CONTROL RULES

2.1 Introduction

This chapter describes in detail the framework which we use in
analyzing multiperiod control problems in models with unknown parameters,
The framework is restricted to the linear models which we comsider in
this study, but can be generalized to include other problems, We begin
by describing the'sequential statistical decision model and then de-
scribe various approaches to finding control rules. The Bayesian
approach is described in detail here and is used to motivate the intui-
tive considerations which lie behind the problem. Finally, on the basis
of the development of the chapter, we define several possible control
rules., We investigate a number of these rules in Chapter IIL with an

aim at developing some new criteria for studying control,

2.2 The Sequential Statistical Decision Model

The previous analyses of the linear control problem mentioned
in the introduction have been from a strictly Bayesian viewpoint; where
expected loss with respect to some prior distribution is minimized. As
a consequence, prior distributions on the parameters and the updating
mechanisms have been included as part of the structure of the decision

model. For the purpose of calculating Bayes control rules, this is a



satisfactory procedure, but an unfortunate by-product is confusion be-
tween the statement of the problem and the method of solution, Since
we do not restrict ourselves to Bayesian methods in this study, we
first set up the complete model in sequential statistical decisiom
theoretic terms., Other methods for selectingrcontrol rules can then
be clearly seen,

The first element in the decision model is a description of the

possible states of the world., 1In the case of the contrel problem we

assume that there is a linear relation between an endogenous variable
x_ and a control variable u_ which is subject to an unobservable
t t
. . - . 2
random disturbance term € with zero mean and finite variance o .,

That is,

(2.1) x, = 51 + Bzut te o

with €, independently and identically distributed and having distri-

bution F(+) for all t . In the most general case we consider, Bl s

BZ and the distribution of €. are unknown, so that the possible

states of the world are described by (2.1) where (ﬁl, Bz) € R2 and

F ¢ {all distribution functions with zero mean and finite variance}.
The second element of the decision model is a description of

the available control rules which can be used to control the endogenous

variable in equation (2,1}, We would like a control rule to utilize
the information which accumulates over time in the form of observations

on X and u, . Therefore, we require that the set of available



controls consist of all sequences {ut}, the elements of which are chosen

sequentially on the basis of past observations, More specifically each

element of {ut} is a function of all random variables observed prior to

time t ; that is,

(2.2) u, =u {x

t £1? ) .

sesy X s u

t_l, sesy U

1? t-1

Thus, a particular control rule can be thought of as a set of instruc-
tions which specifies the control action to take at each point in time
for all possible developments of the process until that point in time,

The third element of the decision model is a loss function which

describes the loss incurred when a particular comtrol rule is used in a
given gtate of the world, In general, loss is defined as a function of
the sequences {xt} and {ut}; however, for most of this discussion we
will deal with a more specific type of loss function which we introduce
immediately, We assume that there is some desired level a Ffor the
endogenous variable x, and that this desired level remains fixed for
all t , The penalty associated with deviations of X, from a is
assumed to be the quadratic (xt - a)2 . In a finite horizon model,
with time horizon T , the loss function is assumed to be the sum of
these squared deviations:

T

z (x
t=1

2

-a)” .

(2.3a) L

t

In an infinite horizon model the sum of these losses might not converge,



80 we could introduce a discount factor, 0 < p <1 and set

T ¢ 2
(2.3b) L = 1lim r p (xt - a) .
T+ @ =]

In some infinite horizon problems it may not be appropriate to
discount the future (for example in stabilizing the rate of inflation
in an economy)., In such cases a more appropriate loss function might

be an average loss over all time periods. That is,

T
= (x, - a)?
(2.3c) L = 1lip <& .
T=> o T

However, such an average loss function would not be appropriate if the
penalty associated with deviations of X, from a c&nverges to zero,
for then the above loss function would be identically zero. In such
situations one could divide the sum of the losses by a function which
diverges more slowly than T . In Section 4.4 of this study the penalty
for deviations of X, from a is assumed to be the regret obtained by
subtracting the expected loss if B were known from actual loss; this

2 2]

regret is [(xt - a)" - a.l . As will be shown this function converges

‘to zero with probability one (as will the time average), so that a loss
function such as (2,3¢) is not appropriate, We therefore consider the

loss function

T
T [(xt - a)2 - Oi]
t:

(2.34d) L = lim

T e log T
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which we will later show does not converge to zero, There has been
;elatively little research done with loss functions such as (2,3c)
or (2.3d), although they seem especially useful in problems where dis-
counting seems inappropriate.

Where one is concerned with bringing a variable like the rate
of inflation to some desirable level, quadratic loss functions are com-
mont, If the model represented the demand curve of a firm with price

u_ and quantity sold x_ then, under fixed production costs, the loss

t t

in each period would be X UL . We will refer to this alternative type
of loss function at various points in the analysis,

Given these three elements of the decision model for the comntrol
problem (the set of possible states of the world, the set of available
control rules, and the loss function), the objective is to choose a con-
trol rule to minimize expected loss, where the expectation is taken with
respect to the distribution of the random disturbances [et}. In general,
this expected loss, or risk R , will depend on the unknown parameters,
With the model (2.1) and the above loss function we have that
R=R(B,B,02).

1 2

However, the fact that the risk depends on the unknown parameters
- means that we cannot expect a control rule which minimizes risk for all
values of (Bl, BZ, 02) to exist except in special cases, Therefore,
the decision problem as stated so far is not complete, This is, of
course, the usual situation in statistical decision problems and there
are several possible methods that can be used to arrive at a reasonable

control rule,
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One general method is to restrict the class of available control
rules to those satisfying a certain desirable property. Out of this
restricted class it then might be possible to find a control rule which
minimizes R(ﬁl, B2’ GZ) for all values, Two methods of restriction

which are frequently employed are unbiasedness and invariance. Even

if these were desirable in the control problem, they would be difficult
to apply because of the complicated structure of R(ﬁl, B, 02) .
Another methed of restriction, which is used in the theory of
estimation, is to restrict the class of control rules to those which are
consistent and asymptotically normal, and then find the control rules
out of this class which have the smallest asymptotic variance, This
latter method has special appeal in the control problem where one is
concerned with the behavior of an entire sequence and where the risk
is difficult to evaluate. Further, in situations where the risk may not
be finite for any control rule, the variance of the asymptotic distribu-
tion is a viable alternative, 1In problems with a long time horizon this
method would be especially useful and we discuss it in detail in Chap-
ter IV after deriving the necessary results in Chapter III,
A second general method is to decide on a principle which leads
to an ordering of the available decision rules. Two such principles
are minimax and Bayes, Since the minimax principle usually requires
calculation via the Bayes rule we will only consider the latter here,
The Bayes method assumes that prior knowledge of the unknown

parameters can be characterized by a prior distribution function, One

can then compute the expectation of the risk R(Bl, 62, 02) with
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respect to this prior distribution and arrive at the Bayes risk r .
The Bayes rule is then to choose that control rule which minimizes the

Bayes risk, Such a control rule will be called the Bayes optimal con-

trol rule., As mentioned above the Bayes method has been the favorite
method of previous investigations, and has suggested several control
rules which are either numerical or analytic approximations to the Bayes
optimal control rule, We discuss this approach in some special cases

under some particular prior distribution assumptions below,.

2.3 The Baves Qptimal Control Rule

The advantage of the Bayesian approach to the multiperiod con-
trol problem is that it provides a convenient way to describe how in-
formation accumulates from one time period to the next and, therefore,
permits the use of the backward induction method of dynamic programming,
We discuss this procedure first in a model with known intercept ( 51
known) and, secondly, in a model with both unknown intercept and un-

known slope,

2.3.1 The Case of One Unknown Parameter

Without loss of generality1 we assume that Bl =0 and,

therefore, drop the subscript on 52 = 8 . Thus, the model (2.1)

0

becomes

1If the known intercept were « # 0 then, by redefining the

endogenous variable Xy = X - o and the target a® = a - o, the model
could be reduced to the zero intercept case of equation (2.4).
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(2.4) X = But + €

t t

We assume that the prior distribution function of B is normal

N(bo, cg) and that the distribution of €, is alseo normal N(O, 02) .
Thus we assume that the variance of the distribution of the disturbance
term is known and equal to 1,

. . . . . 2
Under such distribution assumptions, it can be shown~ that the

posterior distribution of $ at any time t is also normal N(bt, Oi)
where
bt-]. +xtut
c2 02
_ _t-1
(2.5) bt = —-———"——;E— s
a1, %
0‘2 02
t-1
and
UZ
(2.6) i
O't ct-l a

These recursive relations show how information in the form of observa-

tions updates the prior distributions into posterior distributions,

2 .
See Raiffa and Schlaifer (1961), p. 337 for this calculation.
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We will assume that the problem has a finite time horizon and
that the loss function can be written
T

z (xt - a)2 .
t=1

It

2.7 L

The Bayes optimal control rule for this problem is given by that con-
trol rule which minimizes the Bayes risk, where the Bayes risk is found
by integrating (2.7) with respect to the distribution of the error terms
and the prior distributions of the unknown parameter B , The backward
induction method of dynamic programming can be used,

In the last period we minimize the Bayes risk given all observa-
tions until that period, Letting z, = (ul, cees U3 Xpy xt) and

substituting from (2.4) into the last term of (2.7) we compute

-Ho o 2
I f (ﬁuT + e, - a) dP(eT)dP(BIZT_l)

-l =00

(2.8) BL(x, - a)%]z,]

2

w 2
I [(Bu, - &)° + 0 ]dP(B]ZT_l)

since the conditional distribution P(ﬁlz is N(b

-1’ t-1° 91

Minimizing (2,8) with respect to u_, results in

T
ab
* -
(2.9 up = -*—""“3-15-- s
b + 0
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which would be the Bayes optimal control rule in a one period problem,

But for the multiperiod problem we must compute the rest of the sequence

fud .

Substituting (2.9) into (2.8) we get the minimizing value of the

Bayes risk in the last period:

02 a2
* -
(2.10) e =2l 2
T b2 + g
T=-1 T~1

In the next to last period we minimize the Bayes risk given all observa-

tions until that period., That is, we compute
+o 4w 2 *.2
(2.11) j_wj_m[(auT_l +epy - )+ l%r (e, dR(BlZ, L) .

The integration of the squared error term involves no difficulties as
%
it is exactly analogous to (2.8). But the integration of tp is not so

easy, as can be seen by substituting from (2.5) into (2.10) to get

2
* a
@.12) o= o2 2
T-2 2 1 2 2
2 tPup ) tup g8 7 tup,) to
T-2 Or-2

We know of no way to integrate analytically this expression multiplied
by the normal density, Thus even in this extremely simple problem it
seems that analytic expressions for Bayes optimal control rules are not
feasible. Further, if there are more than two time periods in the prob-

lem we must continue this backward induction procedure with increasingly
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complicated integrations, Such computation problems are not uncommon to
dynamic programming formulations and the usual recourse is to numerical
methods or other approximations. This is one reason why we consider
alternative approaches in Chapters III and 1V,

Before proceeding in the analysis several points should be made.

The expectation of (2.12) will be a function of u If we could

T-1 °

%*
ignore L in (2.4), then the minimizing value of Ur_q would look
exactly like Up 3 and in general, if we could ignore future risk, the

control rule would be
(2.13) u = 53

*
for all t . But, since the expectation of Ty will be a function of

*
Up_y » 38 can be seen from (2,12), we cannot ignore r,, when minimizing

T
and in general we cannot ignore the future.

The reason that future risk depends on the present control value
in this problem even though there is no formal mechanism relating the
two in the model, is that present action influences the amount of future

information about the unknown parameters, For example (2,6) shows that

2
h .
the variance Op_1
2

Yr-q

of the posterior distribution will be smaller the

%
larger is The expectation of r represents the expected value

T

of this information in the next period, and is therefore also a function
of u .
T-1
Intuitively this result makes sense. In a model with known

intercept, we get more information by taking observations as far away
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as possible from the known intercept. However, there is a limit to such

experimentation with wu because we are also concerned with present

T-1

period performance, That is, an excessively large value for uT_1 ’

for experimentation, would result in an excessive mean square error loss
in period T-1 , Thus there is a trade-off between learning for the
future and present period performance., Prescott (1972) proved that the
Bayes optimal rule will always be larger in absolute value than the
single period rule under the distributional assumptions of this section,
This result confirms these intuitive conjectures,

The important implication of this discussion is that the multi-
period control problem is quite different than the one period control
problem, The choice of control influences the amount of information
which can be obtained about the unknown parameters, This feature occurs
even in models such as {2.4) which do not contain lagged dependent vari-
ables and are thus essentially static, The ability to use the control
for learning purposes has made a dynamic model out of what at first

appears to be a static model,

2.3.2 The Case of Two Unknown Parameters

When the intercept in the linear model is also unknown
the complexity of the Bayes procedure greatly increases., In addition,
our intuition as to how the optimal control rule might reflect experi-
mentation also breaks down,
In model (2.1) we now assume that the prior distribution function

of the unknown parameters ﬁl and B is bivariate normal; that is

2
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q

a

(2.14) Py P10 110 %120
’ ~ N ’ L
By P20 %10 %220
and that the distributions of e, is also normal N(O, 02) . Under

these distribution assumptions it can be shown that the posterior dis-

tribution will also be normal with mean

-1 -1
(2.15) b1t %1 %12e ot Yo+t
b ) o g ¥ ;5 u u2
2t+l |\ 21t 22t t+l t+1
_ ~1
, %1e %12t b1e . Xet1
x + =5
| \%21¢  C22¢ ®¢ O\ Yt Fen
and covariance
-1 -1 -1
(2.16) %11t41 Z12e01 %91c %21t ) 1 Y
a (9] i [s) (8] * ;'-i U2 )
21t+1 22¢t+1 12t 22¢t Y4 £+l

We assume a finite horizon model with the loss function defined in
Equation (2.7).

The Bayes optimal control rule for this problem can be computed
in principle by the same method of backward induction described above.
In the last period we minimize the Bayes risk given all observations

until that period, This Bayes risk is computed as
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4o 4w 2
(2.17) J I @ +eup+ep - 0% arep) @, 8ylz, )

+oo 4o 2 2
[ J 1@ +eu -+ a1z, )

a
2 12T7-1,2
= (bypq * by ju - a) 4o, (u, + 2T
1T-1 27-1' T 22T-10T 0,0 o
o c - (o )2
+ 11T-1 "22T-1 12T-1 4 c2

9227-1

which, when minimized with respect to Un s gives

2.18) G S e R Uy o8
L] T 2 -

T221-1 ¥ Parag

This value can then be gubstituted into (2.17) to obtain the minimized
value of the risk in the last period. We can then proceed by backwards
induction to the next to last period, but as in the last section, this
results in an integration which seems to have no closed form. As yet
there has been no progress in either numerical or analytic approxima-
tions to the problem, and since our main interest is not in deriving
the Bayes control rule we will not continue the analysis here,

In the problem with known intercept, we found that experimenta-
tion could be carried out by using larger control values, in absolute

value, than one otherwise would. In this case experimentation is not
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so obvious, Alternating between large and small values of the control
would seem to be ; good strategy for learning about the unknown param-
eters Bl and B2 . On the other hand, we are not basically interested
in these two patameters, but only in the point where the linear relation
X, = 51 + 52ut intersects the line X, =a, rIt is not obwvious that
the best way to obtain information about this point is to obtain the
most information about the individual parameters. Perhaps values close

to the point would give more information., This would suggest a much

different control rule,

2.4 Other Control Rules

The above section has defined the Bayes optimal control rule
for two different control problems. Other control rules which may be
chosen for various reasons are discussed in this section, In the model
with known intercept a particularly easy to calculate control rule is

the sequence defined by # 0 but otherwise arbitrary, and

"1
(2.19) u = = , t=1,2, ...,
P

where ét is the least squares estimate of B . This is the value of
the control which would be used if one treated $ as known with cer-
tainty and equal to the least squares estimate., This has been called
the certainty equivalence rule, In other problems, where the unknown
parameters are additive, certainty equivalence rules have been shown

to be Bayes optimal rules, 1In this problem, of course, (2.19) is not
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equal to the Bayes control rule, We call this rule the least squares

certainty equivalence rule., It is of particular interest to investigate

the properties of this rule since we expect that it is frequently used
in practical applications,

A related control rule would be preferred to (2.19) if there
were some prior knowledge about the unknown parameter B . This prior
knowledge may be due to some observations which have been made before
the control problem starts, Such a control rule is defined by the

sequence

= 2 =
(2.20) Uy — 5 ¢ F o, 1,
where bt is the mean of the posterior distribution of £ at time ¢t ,
If one were estimating B with Bayes procedures and quadratic loss,

then bt would be the Bayes estimate for B . For this reason we call

this rule the Bayesian certainty equivalence control rule and hope that

the apparent contradiction is not confusing,

A third rule which takes the uncertainty about the knowledge of

B into account, but not experimentation, is the Bayesian myopic control

rule defined by the sequence

(2.21) u = 5 ., t=0,1, ..

This is the result of minimizing the squared error loss at each time

period as if the problem had no future,
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Analogous control rules can be defined for the model with un-
known intercept; corresponding to (2.19), (2.20) and (2.21) respectively

these are:

ar- é1::
2.22) Wy T s t=1,2, ..,
Pat
a -b
1t
(2.23) u = ——2t -0, 1, ...,
£+1 b,
(a -b ), -0
(2.24) U, ;t 2e 12t -0, 1, ... .
boe T %2t

Each of these control rules are in the set of available control
rules defined in the description of the decision model, They are func-
tions of the observed data and describe what control value to use at any

time under any eventuality.

2.5 Concluding Remarks on the Bayesian Method

In the context of the statistical decision model, the Bayes
principle for ordering control rules was discussed in this chapter,.
The procedure has three possible difficulties: (1) the risk may be
impossible to calculate even with existing numerical methods, (2) the
risk may not exist for some loss functions, and (3) the resulting con-

trol rule depends on the prior distribution of the parameters.
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The main purpose of the next two chapters is to develop control
criteria which do not have these difficulties, We study the behavior
of various control rules under less specific distributional assumptions
on the error term and without any prior distribution assumptions on the

unknown parameters.



CHAPTER III

ASYMPTOTIC PROPERTIES OF THE CONTROLS
AND PARAMETER ESTIMATES

3.1 Introduction

In this chapter we investigate the asymptotic behavior of two
of tﬁe control rules defined and discussed in Chapter II. Because the
control rules are functions of the estimates of the unknown parameters,
the study of their asymptotic behavior ig similar to that of statistical
estimates. However, the problem is complicated by the fact that each
control value becomes a data point which is used to estimate the con-
trol in the next period. That is, the use of controls necessarily im-
plies choosing the data for estimation, In terms of the regression
model this means that the regressors must be treated as random variables
whose behavior is determined by previous estimates of the parameters,
The problem is therefore similar to the autoregressive model [see
Anderson (1959)] except that the structure relating one regressor to
the next is more complicated. Because of this more complicated struc-
ture we will find it necessary to use methods which are more general
than those that have been used in the autoregressive model. The
methods include nonprobabilistic lemmas about sequences of numbers and
the use of martingales, Because of this greater generality the methods

might be useful in other studies where predetermined variables are

- 2% -
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complicated functions of other random variables,

In Section 3.2 we consider the model where the intercept is

known and the slope is unknown, We prove that the least squares cer-

tainty equivalence and the Bayesian certainty equivalence control rules
converge with probability one to the true value. Convergence to the
true value is certainly a criterion which a good control rule must

; satisfy, But it is a rather weak criterion in that it does not indicate
how fast a particular control rule converges. Speed of convergence is
particularly important in models with unknovn parameters, since it may
be possible to experiment with controls in order to get better estimates
and thus faster convergence. To answer these questions, in the second

é part of Section 3.2 we derive the asymptotic distribution of these two
control rules and the corresponding parameter estimatés. The normali-

zation on these distributions then measures the speed of convergence.

These asymptotic distributions can also be used for testing hypotheses
and making confidence statements about the unknown parameters.

| In Section 3.3 we briefly consider the more general model where

the intercept as well as the slope is unknown. This case is more subtle
than in the model with known intercept, The difficulty is due to the
fact that, as the control converges to a particular point, the informa-

tion about the individual parameters gets smaller., Thus, if convergence

were too fast, one might obtain inconsistent estimates of parameters aund
i of the control, Further, even if the control converged to the true
value, the estimates of the individual parameters might not be con-

sistent. A rigorous mathematical derivation of the asymptotic properties,
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(on the level of Section 3.1) remains to be done in this case, Section
3,2 provides a brief discussion of some of the mathematical difficulties
and possible approaches,.

For completeness we might also consider the case where the
jntercept is unknown and the slope is known. However, the convergence
proofs are rather straightforward in this case and follow directly from

the strong law of large numbers.

3.2 The Model with Unknown Slope and Known Intercept

3.2.1 The Model and Assumptions

: . . , 1
We first consider the model with an unknown intercept;

that is,
(3.1) x, = But + ¢
where u, is used to control x, about some desired level a , where

B is an unknown parameter and where {et} is an independent sequence

. .. . 2
with zero mean and finite variance ¢ , Then the least squares cer-

tainty equivalence control rule is uy fixed and nonzero and

3.2) u = 2 =12, ...,

and the Bayesian certainty equivalence control rule is

1See footnote 1 in Section 2.3.1.
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a
(3.3) Uy n e t=0,1, ...,
t
where
t
Z uixi
E - i=l
t r 2
= ui
i=1

is the least squares estimate, and where

b t
-% +'JE Z uixl
a g i=1
b = 0
t t
Led i
00 g 1i=1
and
t
Lo-bed i
Ut GO g i=1

are the mean and variance of the posterior distribution, which is normal
when the prior distribution is N(bo, Ug) and the error term is distri-
buted WN(O, 02) . The rationale behind these control rules was dis-
cussed in the last chapter.

The theorems which follow are not based on the distribution
assumptions of the Bayesian method. These assumptions are only used
to suggest the Bayesian certainty equivalence control. The following
analysis assumes only that the error terms are independently and identi-
cally distributed with zero mean and finite variance. Subject to these

conditions the distribution may have any form,
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3.2.2 Convergence of Control Rules

In this section we show that under suitable conditioms
the two control rules defined above converge to the value a/f with
probability 1, This is the value which would be used if the unknown
pdfameter were known with certainty. We choose to prove convergence
with probability 1 rather than convergence in probability (which is
usually enough in econometric investigations) for three reasons, First,
since we are interested in bringing the endogenous variable to its de-
sired level for all time periods, we would hope that the control con-
verges to the true value and stays there with high probability. This
is guaranteed by convergence with probability 1, but not by convergence
in probability, The latter says only that, for any sufficiently large
fixed t, the probability that the control is near its true value is
arbitrarily close to one, Convergence in probability is enough in most
econcmetric investigations because one is usually referring to some
fixed sample,

Secondly, for comparison with some related sequential statisti-
cal decision problems, it is necessary to prove strong convergence,
For example, some yrules in the two-armed bandit problem have a positive
probability of converging to the wrong value [Rothschild (1971)], while
in stochastic approximation, most rules do converge with probability
one to the true value [Wetherill (1966)]. To compare the results of
this paper with such problems, it is necessary to examine strong con-
vergence,

A third reason, related to the first, is that the use of stromg
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convergence allows one to use some non-probabilistic results for arbi-
trary sequences of numbers, Once a sequence of random variables is
shown to have a certain property with probability 1, we then can ignore
all sample points where the property does not occur and apply nonproba-
bilistic results to the remaining points. This technique is quite
useful for the control problem of this paper where the structure of
the random sequences is quite complicated.

To show convergence we first prove three preliminary lemmas,

of which the first two are nonprobabilistie.

LEMMA 1: ZLet {zt] be an arbitrary sequence of numbers such that

#0 . If

Zl 2

t
(3.4) s, = ¥

then S, < 2/zi for every t .

PROOF: For each t we can maximize S, with respect to

Zyos Z_qs enes z, in turn to obtain an upper bound. For t = 2 we

can maximize with respect to z to show that

2
z2
(3.5) s = l+ 2 <._];__+_1._=l(1+..]:_ .
2 22 (22 + 22)2 - 22 422 22 2
1 1 2 1 1 1



where

then

(3.6)

where

(3.7)

where

Since

(3.8)

z
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a, = 4 , For 't =3 , by maximizing with respect to
2 we have
z2 z2
33=i2+ 22?.’“2322
z3 (z1 + zz) (z1 + z, + z3)
z2
1 2 1
=z 7 % + 252 +4(z2+22)
1 1 2 1 2
< -L-(l + L s
1
a2 -1 5 )
a, = {1 + }" . Similarly, for any t we have
3 a2 + 1
1 1
s, = 2 1+ at) s
21
a -1
t-1 2
a, = 1+
t at_1+1

z

3

and
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| LEMMA 2: Let {z } be a sequence of numbers and let {at} he an
t

. . s t
increasing sequence of positive numbers such that Ei-l zi/ai converges,

? t

§ (i) f a * o, then lim L r z, =0,
| t £+ o % 1=l 7

i t

(ii) 1f a + M <w , then 1lim L z z; exists,
t* o "t i=l

PROOF: Part (i) is Kronecker's lemma. [See Feller (1966), p. 239.]

We need only consider part (ii). Define sg = 0 and let

rt
'-lq
Jmd

t
(3.9) 8¢ T .Z zi/ai » t=1, 2, ...,
i=1

then

(3.10) zp = a.(sg - se) o

and therefore

1 t t

(3.11) - ¥ z, = == ¥ a,(s; - s, ;)
| at i=1 i at i=1 il i-1
| L, tl
= St T4 E (g - 2g)s; -

? i - Now by assumption, s, converges to s , say, so that to complete the

proof of the lemma we must show that the secound term on the right hand
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side of (3.11) converges.

For an arbitrary ¢ > 0 choose t, so that, for all

0

t > t0 s |st - sl <e , Sucha to exists by the convergence assump-

tion, We then have

, 1
(3.12) 3 2 (@ - 2)s;
t i=
. . to-l
==(a_-al)s+— I (a a.)(s, - s)
at 1 at -1 i+l i i
, £l
+ o '§ (@, 4 - 23a)(s; -s) .
t i=t

0

Now, because a_ converges and to is fixed, the first two terms on

the right-hand side converge. Further

t-1
1 1
(3.13) I;— = (ai+1 - ai)(si - s)[ < (at - a, Y e<e,

t i=t0 t 0

and, since € 1is arbitrary, the third term in (3,12) is arbitrarily

P o
small, Thus Zi=1 zi/at converges.

The following lemma is probabilistic and uses the martingale

convergence theorem, [See Feller (1966), p. 242.1
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LEMMA 3: Llet {ei] be an independent sequence of random variables

with Eei =0 and Eei = 02 <= and let {ui} be a sequence of random

variables with u; fixed and nonzero and e independent of

{ui, Ui qr sees Uy ei-l’ cees el}, i=2,3, ... . Then

t uie
(3-14) s = 2 .
t P
* L u;
=1
converges with probability 1.
PROOF: We have that
u. e,
(3.15) El— syqr -oes 5y
L u
j=1 -
Ut
I sgops see Sq) ECegleg s s sp)
Z u
j:
e
B W A S LA "0
Z u,
3=
= 0
since |ui|/2§=1 u? < 1/|u1] . Thus {st} is a martingale and to use

. . 2 .
the martingale convergence theorem it must be shown that Est remains

bounded for all t . From the independence assumptions we have
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2 2
t u.e, u,
(3.16) gt =) =fg[——]| <* S,
i=1\ & 2 : u?
T u, zoou, 1
j=1 J j:l J
where the last inequality follows from LEMMA 1 with 2y = Uy Thus the

variance remains bounded for all t and by the martingale convergence
gheorem s, converges with probability 1.

The following theorem contains the main convergence results
about the multiperiod control rules, The proof involves showing that,
with probability 1, each control rule does not stop obtaining informa-

tion about the unknown parameter,

THEOREM 1: In the model x = fu +e_, if [et} ig an independent

sequence of random variables with Eet =0 and Eei = 02 < o and

B#0, then (i) the least squares certainty equivalence control rule

converges to a/f with probability 1, and (ii) if bo # 0 and Og # 0

then the Bayesian certainty equivalence control rule converges to a/p

with probability 1,

PROOF: (i) The least squares certainty equivalence control rule can be

written
a
(3.17) Yeur t :
z ulei
8 + i=1
t o2
Zou,
- 1

[ ]
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We first must establish that E§=1 ui *+ @ ywith probability 1, let W

be any sample point ir the sample space Q , Then we have from LEMMA 3

that
t u,(We. (W
(3.18) Plo| ¢ =—t — converges| = 1
i=1 5 u%(w)
= !

Thus we can apply LEMMA 2, parts (i) and (ii), at each sample point with

_ _ ol 2 .
z, = ui(w)ei(w) and a, = Ej=1 uj(W) to obtain
t
.El ui(w)ei(w)
(3.19) Plw|: : converges| =1 ,
T ui(u})
i=l
But this implies that
: 1
151 ui(w)ei(w)
(3.20) Plw| 1im alp + c #F0{=1
t + @ 5 ui(lﬂ)
i=1
and, from (3.17)
(3.21) Plw} 1im U W #01 =1,

t > ®
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and therefore we have that

t
(3.22) P[wl T ui(m) diverges] =1 .
i=1

Having proved that E? ui * « with probability 1, we can now

i=]
apply LEMMA 2(i) at every sample point to obtain

t

T u, (e, @)
(3.23) plw 1‘1t >0l=1,

T Ui (w)
i=1

and from (3.17) this implies that

(3.24) Uy >

w|m

with probability 1.

(ii) The argument for the Bayesian certainty equivalence con-
trol rule is similar, except that we must insure that the weights on the
prior parameters converge to zero with probability one, With Bayesian

estimates we have



B t .
l? +-JE Z u?
oy, o i= *
(3.25) Y T @ bo 1 t o, t
>+t 3@ Dyt Bue)
g g i=]1 i=1
.—0 —
2
a-g— L +1
ozt o
0 = ui
- i=1
t
2 u.¢€
b 2 ._. 11
0 ¢ + B+ i=1
? L £,
0 ¥ u. z u,
i=1 i=1 *
Now, since
2
(3.26) Z tl +1
% 342
N 1
i=1

is nonzero, we can use the argument of equations (3.18) and (3.19) to

show that

(3.27) Plo| 1im u @ £0] =1,
t?r >

and therefore
o2

(3.28) P[w, = ui(w) diverges] =1

i=1
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Thus, from LEMMA 2(i) applied at every sample point,

t
% ui(m)ei(w)

(3.29) plw i=1t 0] =1,
by ui(w)
i=1
and also
(3.30) Pw—-E—l——+O =1 .
) Ui(w)
i=1

From equation (3.25) this implies that

(3.31)

[
t
+
™|

with probability 1.
This completes the proof of THEOREM 1 from which we have the
following corollary which states that both the least squares estimate

and the Bayesian estimate of § are strongly consistent,

COROLLARY 1: Under the assumptions of THEQREM 1

(i) ét + B with probability 1, and

(ii) bt + B and Oi + 0 with probability 1.
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PROOF: Once we have established that Z§=1 ui + o with probability 1,
the corollary follows immediately from LEMMA 2(i) as described in the

proof of THEOREM 1,

3.2.3 The Asymptotic Distribution of Control Rules

Additional information about the behavior of multiperiod
control rules can be obtained by examining their asymptotic distribu-
tions, To obtain these distributions we first derive the asymptotic
distributions of the estimates of the unknown parameter B . We begin

by proving a preliminary lemma,

LEMMA 4: Let {vi} be a sequence of random variables such that

Vi + 0 with probability 1 and let {ei} be an independent sequence

of random variables with Eei = and Eei = 02 < ® and ei indepen-

dent of {e . ., ...h €15 Viy Vg5 enes vl 1=2,3, ... . Then

t
o Vie Mt -0 .

PROOF: We use a method of truncation, Define vi and v; as

2 .
In the following lemma and theorems we use the notation nBy

for converges in probability and ndy w for converges in distribution,
With the exception of LEMMA 4 we use only the weak consistency property
of the control rules and parameter estimates to derive the asymptotic
distributions.
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(3.32) vi =V, v =20 if [v.] <¢c,
vp=0 , V=v, o if lv;| > ¢,
then v, = v; + V' and
1 ¢ 1 L ¢t
(3.33) = L wve, =+ T ve, +-= T Je,
Jt joq b 1 Jt joq L1 Jt jop 11

Now, since v; 1is bounded and since vi > 0 with probability

1 we have that E(\)]!_)2 * 0 . Therefore

vie 2 o) E(v')2
i1 . i

(3.34) Ellft L= = +0,

tfbﬂn

and by Chebyshev's inequality E§=1 vieiﬁ/f P .

. R t . e
It remains to consider Ei=1 v;eiﬂff . From the definition of

v; we have

(3.35) PLV] # 0] = e[|v.| 2 c]

But since vy * 0 with probabilicty 1

(3.36) Plu|jv, @] > ¢ infinitely often] =0 ,

Therefore,
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(3.37) P[w|v'i'(w) # 0 infinitely often] = 0 ,

so that
oo

(3,38) P[wl ¥ v;(w)ei(w) has a finite number of nonzero terms] =1 ,
i=l

and therefore

t
P v; 0»)ei0»)

(3.39) plw]i=E e ol =1 .

From (3.33) we therefore have that E;=1 vieikft —Ey 0

THEOREM 2: VUnder the agssumptions of THEOREM 1,

@  Ved, - p B e, B b
a
and
d 2 2
G ek, - B N, 5 oh
a

PROOF: (i) To find the limiting distribution of ft(ét - B) , we have

from the definition of the least squares estimate,
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t
z u. e,
- __t i=1
(3.40) Ve(B, - B) = ¢ 7t
2
z u,
i=1 *
-, ) .
z {u, -~ D)e L e,
ot | F P Lai= ”
t St B/t :
z u
=1~ | J

From LEMMA 4 the first term in brackets converges to zero in probability

with vi =u - % . In addition, from THEOREM 1 we have that

ui + (a/B) with probability 1, so that3

(3.41)

with probability 1, Therefore, the difference between the right hand

side of equation (3.40) and

Bizt ~
(3.42) "

converges in probability to zero., By the central limit theorem (3.42)

If a sequence converges then the arithmetic mean of the sequence
also converges to the same point, [See Knopp (1956), p. 35.] We apply
this result at every sample point to obtain the result of equation (3.41).



- 43 -

2
converges in distribution to N(0, Bzozla ) .

(ii) To find the limiting distribution of Jf(bt - B) we have,

from the definition of bt

(3.43) Jeb, - B) = >

Now, since uy + a/Pp with probability 1, we have

(3.44) A SN 0

with probability 1, using the result of equation (3.41). Therefore
equation (3.,43) converges in probability to equation (3.40) and we can
apply the same argument as in part (i) to show that /f(bt - B) has
the same limiting distribution as \/t(ét - B .

The results of THEOREM 2 can now be used to derive the asymptotic

distribution of the contrel rules themselves in the following theorem.



THEOREM 3: Under the assumptions of THEOREM 1, if [ut} is defined as

either (i) the least squares certainty equivalence control rule, or (ii)

the Bayesian certainty equivalence control rule, then

a, _d, 23
(3-45) \/-t(ut = B) N(01 Bz)

PROOF: (i) The limiting distribution of ft(ut - a/B) 1in the least

squares case follows from

a a fad
B)=55ft(a'at) .
t t

(3.46) e -
p
From COROLLARY 1(i) ét -2, B , so that the difference between
the right hand side of equation (3.46) and /t(p - ét)a/B2 converges to
zero in probability, The first part of the THEOREM then follows from
2 2 d 02
(3.47) Je(p - Ba/B” —> N, =) ,
B
which follows directly from THEQREM 2 (i),
(ii) Similarly in the case of Bayesian certainty equivalence

control we have

(3.48) Al i I T4 O N
t t

P

and from COROLLARY 1({ii), bt-—~9 B , so that the difference between

the right hand side of equation (3.48) and /t(B - bt)a/B2 converges
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to zero in probability, From THECREM 2(ii) we have

2

(3.49) /e - b)a/s” S e, S
p

which completes the proof of the THEOREM,

It is interesting to note that the two control rules have the
same asymptotic distribution, This is due to the fact that in the second
rule the weights on the prior parameters converge to zero faster than
/t (as expressed by the fact that Z§=1 ui = 0(t) with probability 1),
Note also that the desired level a does not affect the asymptotic
variance, Further the asymptotic variance depends inversely on the

square of the slope,

Another way to look at these asymptotic distributions is that

(3.50) Jepu, - a) — N0, oF) .

0

That is, the variance of (But - a) decreases to zero approximately as
2 R .
0"/t . Whether this speed of convergence is as fast as one could hope

for, even with other rules using experimentation, is discussed below,

3.3 [The Model with Unknown Slope_and Unknown Intercept

In this section we discuss control rules in the more general

regression model

(3.51) X, = Bl -+ BZUt + g
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where Bl and 32 are unknown, the assumptions on €, are the same
as in Section 3.2 and the desired level of L remains fixed at a .

To show that a particular control rule converges to the time
value (a - ﬁl)/B2 with probability 1, is considerably more difficult
in this model with two unknown parameters. As in the known intercept
case the regressor must be treated as 2 random variable whose behavior
is determined by previous estimates of parameters, But an additional
complication is that, in order to consistently estimate two unknown
parameters, the observations on the regressors must be sufficiently
spread out. However, if the control rule converges to a constant (as
we would like to show), then the observations do not have as much
spread as they would without convergence. To establish that these
observations have sufficient spread to obtain enough information about
the true control value, it is therefore necessary to show that the
speed of convergence is not too rapid. Along with some mathematical
technicalities, establishing this speed of convergence is the essential
difficulty in this model.

To illustrate these points we will consider the least squares
certainty equivalence control rule defined by: u, and u fixed and

1 2

distinect and

(3.52) Uy =77 t =2, 3, ...

~

where Blt and éZt are the least squares estimates of Bl and ﬁz

defined by
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. £\ t
B t T u, Z x,
1t j=1 1 g=1 1
(3.53) =
. t t 2 t
B Zu z u, Zu.x
2t g=1 L 4=1 % j=1 * i
Substituting from (3.53) into (3.52) we obtain
t _ t
T
a - Bl + u. 7T - + t
Z (u, -u)
=1 > *
(3.54) U T : i
iil(ul - ut)e:
P * 7T .
L (u, - u)
=1+t

Since EE=1 ei/t converges to zero with probability 1 by the strong

law of large numbers, we could show that u_ comnverges to

t
lEl(ui - ut)e
(3.55) .
- .2
iE (ui - ut)

converges to zero with probability 1.
This latter expression is similar to the second term in the

denominator of (3.17) except that uy is replaced by (ui - Gt)

Thus instead of showing that E§=1 ui diverges with probability 1,
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we must show that 2§=1(ui - u )2 diverges with probability 1, This

t

latter sum will diverge if u, does not converge to a constant too
rapidly.

An additional problem is that we cannot use methods analogous

to Section 3.2.2, even if we could prove that Z;=1(ui - at)z diverges,

In that section we consider convergence of the martingale

t
(3.56) s = I

and then use LEMMA 2(i) to show that

e
W[ et
e

b

converges to zero with probability 1. But the expression equivalent to

(3.56) in this case is

t
(3.57) z

which is not a martingale because €, is not independent of Gt for

i <t ., Thus a different method of proof must be used.

One possibility is to comsider a vector analogy to the proof
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in Section 3.2.2, ZLetting the expression

. t -1, ¢t

B - B 3 Zou, zZe

te 71 i=1 * i=1
(3.58) =

. t £, t

B,. - B T u, % oul Tu.e,

2t 2 i=1 i i=1 i i=1 i1

correspond to é - B= E§=1 uiei/E§=1 ui s the related martingale would
be
-1
t i 1 uj i
(3.59) z z 5 >
i= j=1 uJ uj use.

This vector series can be shown to converge with probability 1
using the martingale convergence theorem. Thus to show that {3.58) con-
verges to the zero vector, we need a vector version of LEMMA 2, Unfor-
tunately, such a lemma is not true in the full generality of LEMMA 2,

A possibility for future research would be to find conditions under
which such a lemma is true and if it can be applied here,

A problem related to convergence of the control is convergence
of the parameter estimates, Even if the control converges to the true
value it is possible that the individual parameter estimates do not
converge to their true values. Again the speed of convergence of the
control is crucial,

Even if these estimates were consistent, their standard errors

would be larger than in the usual regression model where the data is
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t - .2
spread out such that Ei=1(ui - ut) /t does not converge to zero,
That is, in the usual regression model the variance of the estimates
decreases approximately at the rate 1/t , while in this model the rate

will be as 1/z§=1(ui - u )2 , which may be considerably less than 1/t ,

t
If these convergence results could be established, further

research might then consider the asymptotic distribution of the con-

trol rule, Intuition suggests that the limiting distribution of the

control minus its true value normalized by /t would be normal with

. 2,.2 c " . .
mean zero and variance O /52 . To see this consider the identity

t
L e,
a - B a -~ 8 IR |
1 1 - 1,,2 i=1
(3.60) Velu, , - 5, ) = ; Ve, - B—z)(ﬁZt - B - -
2t A

The conjectured limiting distribution would follow if the first term in
brackets converges to zero in probability, If the slope is consistently
estimated and if the rate of convergence of the mean is faster than of

the control itself, then the result would follow,

3.4 Concluding Remarks on the Theorems and Methods of Proof

In this chapter we have discussed the properties of some possi-
ble control rules in the linear control model, The results have been
independent of any prior distributions and are therefore more general
than the usual Bayesian approach, In the model with known intercept

we have shown that the various decision rules converge to the true
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value with probability 1, We made use of the fact that even though the
regressors are random, we could obtain full information about the un-
known slope with probability 1. The intuitive idea was to show that
with any sequence of controls, which follow the suggested decision rule,r
the sum 2;21 ui diverges with probability 1.

Throughout these convergence proofs we used methods which are
not usually employed in econometric analysis; namely strong comsistency
and martingales., While the strong convergence property is certainly
more desirable than the weak one, especially in dynamic problems, we
also found these methods particularly well adapted to this problem., In
econometric analysis, if the regressors are random, they are usually
assumed to follow some relatively simple process (such as an autore-
gressive scheme). This structure can then be used in the proof of
consistency., However, in the control problem the structure relating
one regressor to the next is quite complicated, and after only a small
number of steps the analytic representation is impossible, We therefore
found it necessary to find a method which was more general and did not
depend on the specific structure of the controls. This method is sum-
marized in the preliminary lemmas to THEOREM 1. Because of the gener-
ality of these procedures it is hoped that these methods might have use
in other econometric problems where the regressors are random with a
complicated structure,

In addition to proving convergence of these control rules, we
were also able to obtain the asymptotic distribution of the controls

and the parameter estimates in the model with known intercept. These
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distributions will bé used in the next chapter as criteria of control
which are alternatives to the usual Bayesian methods, In addition,
they can be used for making approximate tests of significance and con-
fidence statements, Besides the usual central limit theorem, we used
a method of truncation in these proofs. Although convergence in proba-
bility is sufficient in deriving asymptotic distributions, the method
of truncation requires that the control converge with probability 1,
Therefore, we used the strong consistency property in proving asymp-
totic normality,

In the model with both unknown intercept and unknown slope we
have not proved convergence or asymptotic normality, and this would

certainly be the prime focus of future research,



CHAPTER IV

ASYMPTOTIC EFFICIENCY AND CRITERIA OF CONTROL

4,1 Introduction

In this chapter we consider how the asymptotic normality results
of Chapter III might be used as criteria for judging the effectiveness
of the control rulesg, as well as for suggesting whether there exist
other rules which might do better, Once a particular control rule has
been decided upon, its behavior over time will depend on the data gener-
ated by the random disturbance term, That is, each element of a control
rule (whether it is Bayes, minimax, or other) is a function of all past
observations on the endogenous variable as well as of all past controls,
and thus ultimately is a function of the random disturbance term, Thus
the control rule itself is a random variable and whether it is a good
control can be judged by considering the distribution of the values
which it will assume at any point in time,

The situation is similar to problems in the theory of estimation
where the sampling distribution of an estimate is investigated, In that
theory an estimate is considered good if its sampling distribution is.
concentrated, in some sense, about the true parameter which is being
estimated. The usual measure of concentration of unbiased estimates
is the variance (corresponding to mean square error). An estimate which

has the smallest variance out of a class of unbiased estimates is said

- 53 -
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to be efficient. 1In problems where the exact sampling distribution is
difficult or impossible to determine and where there is a large sample,
one might be able to find the asymptotic distribution of the estimate
and then extend the concept of efficiency to asymptotic efficiency.
The usual approach in this case is to call an estimate asymptotically
efficient, out of a class of estimates which are consistent and have
an asymptotic normal distribution, if it has the smallest asymptotic
normal variance, (Consistency is also used as a criterion of estima-
tion, If an estimate is good, then it is consistent.)

Since asymptotic efficiency and consistency have proved success-
ful as criteria of estimation,1 and since control of a system with un-
known parameters necessitates estimating those parameters, it seems
worthwhile to study how these criteria of estimation might be used as
criteria of control. Such a study is the aim of this chapter. However,
the control problem has aspects which the estimation problem does not;
for example, concern with performance over time rather than at one point
in time, The next section discusses some of these differences with an
aim at determining what it means for a control rule to be efficient,

After this preliminary discussion we then show, in Section 4.3,
in what sense the three controls in the model with known intercept are
asymptotically efficient. We show that, out of a fairly wide class,

the least squares control rule and the Bayesian control rule lead to

1
See L. J, Savage (1954) for a discussion of the decision

theoretic justification of consistency and asymptotic efficiency,
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estimates which are asymptotically efficient, We also address ourselves
to the question of whether there is anything to gain from experimenting
in early stages. 1In the process of considering this, we show that a
rule especially designed for experimentation cannot do any better than
the more simple least squares certainty equivalence or Bayesian cer-
tainty equivalence rules, This result is surprising in that the
Bayesian analysis suggested that the longer the time horizon the more
there is to gain by experimenting in early periods, and our asymptotic
theory really relates to an infinite time horizonm.

This study of criteria is done entirely in the model with known
intercept as the asymptotic distribution in the more complicated case
of unknown intercept is not known, In Section 4.5 we briefly consider
the implications if the asymptotic distribution conjectured in Section

3.4 is the true one,

4.2 Estimation versus Control

In this section, except for a few passing comments, we take as
given the rationale for using asymptotic efficiency as a criterion of
estimation, Therefore, to evaluate the concept of efficiency in the
control problem, we need only discuss the difference between estimation
and control,

One essential difference between the control problem with un-
known parameters and the pure estimation problem is that in the former
we are concerned with performance over many periods while in the latter

we are concerned with obtaining a single estimate, This difference is
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captured by the corresponding loss functions: in the control problem
we wish to minimize (ﬂut - a.)2 in all periods and thus might write

the loss function as z$=1(5ut - a)2 » whereas in the estimation problem
we find a é to minimize (é - B)Z s say. But whatever the form of the
loss function we would like to keep X, close to the desired level for
all t . It seems that the concept of asymptotic efficiency is readily
applicable to this type of situation., In fact, when we say that an
estimate (or a control in this case), is asymptotically efficient, we
really mean that the sequence is asymptotically efficient.2 That is,

we are referring to a property which holds for all t (sufficiently

1) _

large). More precisely, if /}(ﬁut

a) has a limiting distribution

N(C, 0%1)) , while /f(ﬁugz) - a) has a limiting distribution N(O, ©

. 2 2
with 0(2) > 0(1) s then for every & >0

2
2

(4.1) P[|au£1) - a| < 8//t] >P[|Bu§2) - al < 8//t]

for all t sufficiently large. Since we are concerned with properties

of the sequence and not just elements of the sequence, it seems that the
concept of asymptotic efficiency is quite useful in the control problem,
To emphasize this point, in estimation we make an estimate, not a

sequence of estimates, so that we really do not care about what charac-

terizes a good sequence., In control we do care about what characterizes

The "ellipsis'" of referring to a sequence of estimates as an

estimate and the possible consequence is discussed in L, J. Savage
(1954), p. 227,
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a good sequence, Since asymptotic efficiency refers to a characteristic
of a sequence, we conclude that the concept has applicability to the
control problem,

Although our main concern iﬁ this section is efficiency the
above comments also apply to consistency, a concept which refers to a
sequence. In the introduction of Chapter IIT we argued that the concept
of strong consistency is more useful for the control problem than that
of weak consistency, since it makes a joint probability statement about
all elements of the sequence. Note that in this context, inequality
(4.1) is not such a joint probability concept, so that a stronger state-
ment could be made, although we do not do so.

A second difference between control and estimation which is
related to the above is the idea of a time horizon in.the control prob-
lem, In applying asymptotic theory in estimation, we associate the
results for t > ® with large t , although how large t needs to be
is usually uncertain, To apply asymptotic theory to the control problem
the analogous association is between an infinite horizon and some finite
horizon. But, as with estimation, we are uncertain as to how large the
time horizon must be before the theory becomes applicable, This diffi-
culty is inherent in any asymptotic theory and is no more a problem in
control than in pure estimation.

On the other hand, in many control situations, there are good
arguments for formulating the problem in terms of an infinite horizon.
If there is no natural stopping point in the foreseeable future, then

an infinite horizon may be assumed, For example, in the problem of
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stabilizing the rate of inflation in an economy, it is difficult to
conceive of a terminal point, when either the economy will end or when
we will no longer care about inflation. In such preoblems with an un-
known terminal date, the concept of asymptotic efficiency is even more
appealing than in estimation problemé.

One objection to this idea, even in infinite horizon problems,
is that a discount rate should be included in the analysis. This is
necessary in some formulations where the loss function might otherwise
be infinite. However, in problems like controlling inflation a discount
rafe does not seem appropriate, so the objection is not valid. We &is-
cuss this point further in Section 4.4 where we introduce a loss funec-
tion for a finite horizon problem without a discount rate.

A third difference between the contrel problem and pure estima-
tion is the question of experimental design. As discussed in Chapter II,
controls in earlier periods might be used to obtain information for use
in later periods. If the control problem has an infinite horizon, this
aspect should reveal itself in the efficiency of the control, because
the asymptotic normal variance reflects the amount of information that
is obtained by the control rule, That is, if experimentation gives more
" information, this should show up in the variance. However, if the con-
trol problem is of short duration the benefits of experimentation might
not show up in the asymptotic variance.

The last point is a difficulty which occuré in any use of the
asymptotic norhal variance as a measure of efficiency. In some situa-
tions one might be more interested in the limit of the variance, which

may be quite different than the asymptotic normal variance. Hodges
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and Lehmann (1956) argue that the variance of the asymptotic distribu-
tion has relevancé in situations where one is concerned more with the
frequency of small.deviations from the true value than with large but
improbable deviations. Further, if one were concerned more with the
latter, then we would question the usefulness of squared error loss
when the deviations are large. In addition for some problems the limit
of the variance may not exist, in which case the asymptotic normal vari-

ance would be better criterion.

4.3 .Asymptotically Efficient Controls

Having discussed the usefulness of asymptotic efficiency as

a criterion of control we now prove the following theorem which is a *
formal statement of how the control rules defined and studied in this

Paper are asymptotically efficient.

THEOREM 4: 1In the model X, = But + €, > under the assumptions of

THEQREM 1, let {ut] be any control rule which converges to a/p

with pxobability 1. Then the limiting distribution of /f(ﬁt - B

and of /E(bt - B) 1is W(o, (BZ/aZ)GZ) .

PROOF: 1In the proof of THEOREM 2 the only property of the least squares
certainty equivalence rule and the Bayesian certainty equivalence rule
which we use is_convergence to the true value a/p with probability 1.
This is enough to show that the first term in brackets in equation (4.4)
converges in probability to zero and that 2;21 ui/t N az/ﬁ2 . Since
by assumption any contrel rule in the class defined in this theorem

has this convergence property, we obtain the same results about the
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% limiting distributions of /E(ét - B) and ./'t(bt - B) .

The importance of this theorem is that that least squares cer-
tainty equivalence control and the Bayesian certainty equivalence con-
trol lead to parameter estimates which have as small an asymptotic
variance as any other control rule in the class of rules having the
property of convergence to the true value with probability 1, This
class includes controls designed especially for experimentation as long
as the control converges with probability 1 to a/B ., The implication
is that asymptotically there is nothing to gain by experimenting with
controls to obtain more information about parameter estimates. In the
| long run as much iﬁformation can be obtained by the more easily calcu-

lated control rules of this paper,

To emphasize this point consider a control rule which is de-
signed for experimentation, being larger in absolute value than the
certainty equivalence rules. That is, suppose

(4.2) u == 1+ £(R) ,

[

t+l

T

where f(t) =‘O(1/t) and is greater than zero, Then it can be easily

shown that this control rule has the same asymptotic distribution as the

least squares certainty equivalence rule,
The result of this section may be surprising, It says that as
é long as the deviation from the present period control rule for experi-
mentation purposes is finite, then any benefit from that experimentation

washes away in the limit. In other words, any additional information
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which comes from using a larger absolute value for the control becomes
negligible in comparison to the information which is accumulated without
the extra experimentation. Mathematically, this result is expressed by
the fact that EE=1 ui/t > (a/ﬁ)2 with probability 1, if u > afp
with probability 1 regardless of the values which the elements of the

sequence {ut } assume,

4,4 A Criterion for Control Performance

In the last section we showed how the least squares certainty
equivalence and the Bayesian certainty equivalence control rules lead
to parameter estimates which are asymptotically efficient, While it
certainly seems that efficient parameter estimates are necessary for
good control performance, it is not clear what criterion of control
performance we are implicitly assuming. To clarify this point and
relate the analysis of this chapter to the decision theoretic framework,
in this section we specify a loss function which is appropriate to many
infinite horizon control problems, We then show that, under certain
assumptions, the two certainty equivalence control rules minimize this
loss functiom,

The criterion3 which we propose is

3 C o . .

The expectation is with respect to the sequence of random vari-
ables [et} ; we do not assume that P is a random variable as in the
Bayesian approach,
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T .
£ [E(x, - a)? - ¢4

(4.3) 1im £

T+

log T

which we discussed briefly in Section 2,2, The rationale behind this
criterion is that in many stabilization problems there is no natural
terminal date and no reason to discount the future, The loss in each
time period is defined as the difference between expected squared error
loss and the minimum obtainable expected squared error loss (if B were

known then u, = af/B and Eei 02) . Thus we are actually using a

regret in each period, 1In order tc avoid the pfoblem of unbounded loss
without a discount rate we normalize the sum of these losses in each
period by a suitable function of time, Since the regret in each period
converges to zero, dividing by T would lead to a loss function identi-
cally equal to zero, but dividing by log T leads to a nonzero but
finite quantity,

The main objection to this criterion is that there is no dis-
counting of the future, However, a careful perusal of the literature
on control theory in economics, indicates that discount rates are fre-
quently used for the mathematical convenience of a finite loss rather
than for economic reasons, In his original study, Ramsey (1928) goes
so far as to state that,

... 1t is assumed that we do not discount later enjoy-

ments in comparison with earlier ones, a practice which

is ethically indefensible and arises merely from the

weakness of our imagination.

Certainly in many problems a discount rate is unwarranted and the cri-

terion of (4.3) seems to be a viable altermative in such cases,
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We now show that the certainty equivalence rules minimize this
criterion out of a certain class of rules. The results of Sections 4.2
and 4.3 use the fact that the controls suitably normalized have a limit-
ing distribution which is normal, COne way to relate these distributions
to the limit of the expected loss is to assume that the control rules
are bounded; then we can use the fact that for bounded random variables
the variance of the limiting distribution is equal to the limit of the
normalized variance, For the remainder of this section we therefore
agsume that the control rules are bounded.

Under this boundedness assumption we have from the asymptotic
distribution (3.50) that, with the least squares certainty equivalence

or the Bayesian certainty equivalence control rules,

G.4) lim I:[E(xt - a)2 - 02]

t > @

lim tE(Bu, - a)2

t - w

which implies4 that

4'I‘he following lemma is used, [See Knopp (1956), p. 32,] Let

P, be a sequence of positive numbers with Z:_l P, diverging to
infinity and suppose that a sequence z, + z , then

T T ‘
Deal Pe2/Ti PL Y 2
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T
£ [E(x, - ) - o]
t=1
(4.5) log T
T T
z % z [E(xt - a)2 - 02]
- t=1 t=1
log T T 1
Et
t=1
- 02 .

Now let us consider any other bounded control rule which is a
linear function of either the least squares certainty equivalence or the
Bayesian certainty equivalence rules and which converge to a/ff . By an
argument similar to that at the end of Section 4,3 we can show that with
any such rule, /E(But - a) has a normal limiting distribution with
. Thus for-this class of control rules

. 2
variance at least as large as ©

we have

[ e

[E(x - a)® - g1
1 * 2

t .
log T

(4.6) min lim

T 3> o

Both the least squares certainty equivalence and the Bayesian certainty

equivalence rules attain this minimum,
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4,5 The Case of Unknown Intercept: Discussion

Since the results of Chapter III do not include an asymptotic
distribution in the model where both the slope and intercept are unknown,
we cannot make any judgments on control policy in terms of efficiency,.
However, if the conjecture of equation (3.60) is correct then we have
a rather strong result, Since the asymptotic variance which results
i from (3.60) is OZ/BS , the same as when we know the intercept, then the

controls in this model must also be efficient., That is, we obtain as

much information about the control value in a model with two unknown
parameters as in the model with one unknown parameter, This is

| especially interesting in that'it has generally been thought that ex-

| perimentation could be quite beneficial in this model.

% As a final indication of how experimenting is not bemeficial

| (if the result of (3.60) is true), we consider the asymptotic variance

é of the estimate for (a - élt)/éZt when cbntrols are used purely for
experiments; that is, when u, is non-stochastic and does not converge.
i Therefore, Z§=1(ui - Gt)zlt does not converge to zero, In that case,

the asymptotic variance can be computed easily from the fixed regressor

case; it is

t

t
2 2 2.2
2 Ppt Zoup 4288t Tu +eTp
1im 2 i=1 i=1
‘ 2 t
5 t>®p 2 Y
2 th z (ui ut)

i=1

which can be shown to be greater than 02/55 for any sequence {ut}

which does not converge.
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The preliminary indication of these few remarks is that we
obtain most information about a point on a regression line not by
obtaining the most information about the slope and intercept but by
trying values near that point, However, a rigorous statement of these
results is not possible until the asymptotic distribution has been

mathematically derived for this model.

4,6 Conclusion

This chapter has used the asymptotic normality results derived
In Chapter III as criteria of control in the model with known intercept.
Unlike the Bayesian methods, which have been used to suggest various
control rules, these methods do not depend on any particular specifi-
cation of the prior distribution. In this sense the results are more
general than the Bayesian analysis which previous studies have used,

On the other hand, the results are asymptotic and are therefore more
relevant to problems with long time horizons,

The important results of the investigation are that (1) the
least squares certainty equivalence, and the Bayesian certainty equival-
ence control rules lead to efficient parameter estimates and (2) the
benefits of using a control, which obtains extra information by experi-
menting, become negligible asymptotically., Since the calculation of
optimal rules which allow for experimentation has proven so difficult,
or impossible in more complicated cases, the suggestion of this analysis
is that the computationally easier rules be used instead, especially

in problems with a long time horizon,
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|

| Which of the two easier rules to use cannot be examined by this
!

? analysis as they are equally efficient, However, since the Bayesian

!

|

| certainty equivalence rule can incorporate data which may have accumu-
E lated prior to the formulation of the problem, it would be preferred

in such situations.




CHAPTER V

THEORIES OF FIRM PRICING UNDER UNKNOWN DEMAND

5.1 Introduction

In addition to normative implications for economic policy, the
convergence results derived in Chapter III have some implications for
economic theory, 1In this chapter we illustrate thesg implications by
considering a simple model of firm pricing.behavior. In doing so we
will also compare the control problem of this study with a related
sequential statistical decision model, the two-armed bandit problem
[Robbins (1952), Bellman (1956)].

Conventional theories of imperfect competition assume that
firms have complete knowledge of the parameters in their demand function.
This assumption is also made in recent research on firms facing uncer-
tain demand, in which a random disturbance term is added to an otherwise
deterministic demand function [see, for example, Leland (1972)]. These

theories do not consider how firms obtain knowledge about the parameters

~in their demand function, and have no explanation of how firms adjust

price on the basis of new information, The models discussed in this

study suggest a way to include such considerations in the theory of

the firm,
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5.2 A Structural Model of Firm Pricing

Consider a profit maximizing firm facing a market demand curve
for a single product. We assume that the firm knows the structure of
demand, namely that there is a linear relation between the price charged
and the quantity purchased, but that the slope of this linear relation
is unknown, Further it is assumed that observed contradictions to this
demand structure will be thought of as shocks or unexplainable errors
in the relationship between price and quantity. Under such assumption

the demand curve can be represented by

(5.1) q. = @ + Bpt + € t =1, 2, ...,

where P, is price charged, 9, is quantity sold, €, is a random
disturbance term, P is the unknown slope of the demand curve, and
@ is a known intercept. The firm can obtain information about B
over time by observing the quantity sold at various prices.

We assume that the firm has only fixed costs so that profits

in any time period can be represented as

(5.2) Ht=ptqt—c t =1, 2, ...,

where C 1is a constant. The objective of the firm is to maximize
profits over time. This objective might be represented by the sum of
discounted profits or average profits over time, but we will not be

concerned with specifying the exact criterion., We are more interested
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in how the existence of an unknown parameter affects equilibrium and
price adjustment,

With unknown demand an appropriate definition of firm equilib-
rium becomes difficult, Since new information will change the firm's
beliefs about the unknown parameters it is likely that it will also
cause a change in price., Thus the information available to the firm
must be included in the definition of an equilibrium, Hayek (1937)
noted this problem in the definition of equilibrium:

Any change in the relevant knowledge of a person
disrupts the equilibrium between his actions.

One definition of equilibrium which has these characteristics

is: an equilibrium price is the price the firm would charge with per-

fect information about the unknown parameters. For the profit maxi-
mizing firm in this discussion there is only one such equilibrium price,
namely p = -of2B . Note that this does not mean tha; once this price
is charged there is no incentive to change price, This lack of incen-
tive to change price occurs only when the firm has acquired enough
information.

Having defined this equilibrium it is of interest to know
whether it is stable and whether there are any price adjustment schemes
which will converge to this equilibrium price. One possible price
adjustment scheme is given by the least squares certainty equivalence

control rule; namely

(5.3) -
t+1 28

o
L]
>
-
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where Bt is the least squares estimate of B , This is the price that
the firm would charge if it maximized profits by treating B as known
with certainty and equal to the least squares estimate, Such a pricing
scheme generates a sequence of prices over time. The use of least
squares estimates may be questionable as a description of behavior, but
it seems like the most harmless assumption which incorporates learning
on the basis of observation on quantity and price. An alternative price

adjustment scheme might be

(5.4) Pt+1 = - 2% ’
t
where bt is the Bayes estimate of P .

A slight modification of the arguments of Chapter III can be
used to show that both these price adjustment mechanisms converge with
probability one to the equilibrium price. That is, the equilibrium is
stable.

With these price adjustment mechanisms, price is a function of
all past prices and quantities sold. In disequilibrium prices are

changed as the firm learns about the true value of the unknown param-

~eter. Such a behavioral description of price dynamics seems more

realistic than ad hoc mechanisms in which today's price is a function

of prices in the last few periods only.



- 72 -

5.3 A Two-Armed Bandit Model of Firm Pricing

Rothschild (1971) has considered a different model to describe
firm behavior under unknown demand. Say that there are two (this can
be generalized) possible prices, Py and Py which the firm may charge
for its product, and that the probabilities that a consumer will buy the
product at each price are H1 and Hz . The unknown demand for this
firm is represented by the fact that Hl and H2 are not known to the
firm. If the firm wishes to maeximize profits, then the above definition
of equilibrium implies that the price which leads to highest expected
profits is the equilibrium price.

This problem is exactly equivalent to the two-armed bandit prob-
lem where a gambler is faced with the prospect of playing two slot
machines whose probability of pay-off is unknown, Rothschild extends
an argument of Bellman (1956) to show that, if the firm follows an
optimal pricing policy, then with positive probability, it will charge
the price with lower expected profits infinitely often. That is, there
is not convergence with probability 1 to the equilibrium price.
Rothschild then shows that this result gives an endogenous reason for
price variability in equilibrium.

The reason for the lack of convergence is that, with positive
probability, a bad string of luck will lead the firm to believe that
the wrong price should be charged rather than the true price, Once
this wrong price is used, it is not possible to obtain information

about the other price, Thus the wrong price might be charged forever,
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5.4 A Comparison of the Two Models

The two models introduced above to describe firm behavior under
unknown demand have led to entirely different conclusions. In the
structural model the price adjustment mechanism converges with proba-
bility one to the true equilibrium price while in the two-armed bandit
model the price adjustment mechanism has a positive probability of con-
verging to the wrong price. The main reason for this difference seems
to be that in the model with known structure the firm can obtain infor-
mation about the entire demand relation at any price it charges, while
in the two-armed bandit model the firm obtains information about demand
only at the one price that is being charged. Without a structural rela-
tion between price and quantity it is possible for the two-armed bandit
firm to remain ignorant about demand at prices other than the ones that
are charged., Thus the assumption that the firm has some knowledge of
the structure seems crucial to get the convergence result, Further
research might be concerned with "how much structure" is sufficient to
lead to convergence with probability one.

Since the results of the two models are different it is interest-
ing to ask which is the better representation of firm behavior. It seems
that most firms have some notion as to how their price affects the
quantity purchased {(e.g,, downward sloping demand), and that observed
contradictions to this notion will be called shocks or unexplainable
errors, In such situations a structural model seems more appropriate,
On the other hand, the two-armed bandit approach would be more useful

in situations where there is little or no structure (e.g., technological
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innovations). In any case, it seems that the two approaches complement
each other in suggesting ways to handle the problem of unknown param-

eters in the theory of economic behavior.



CHAPTER VI
SUMMARY AND CONCLUSIONS

This study has investigated the problem of controlling an
endogenous variable in a linear model over time when fhe parameters of
the model are unknown and must be estimated. .Such a model is repre-
sentative of a large variety of economic models both at the macroeco-
nomic level and the microeconomic level, so that the results should
suggest other applications than those discussed in this paper.

In summary, we have proved that two different control rules
converge with probability 1 to their true value, This was done in a
model with one unknown parameter, where we demonstrated that enough
information would be accumulated by each control rule to consistently
estimate the single unknown parameter, Because the structure relating
control values at different points in time is quite complicated, we had
to develop methods of proof which are general enough to avoid using
this structure. It is hoped that these methods might be useful in
other econometric investigations where the regressors are random vari-
ables with a complicated structure, In addition to these convergence
results we also proved that the control rules were asymptotically
normal, The normalization of this distribution is /t , so that the
variance of the control about its true value decreases as 1/t .

Since asymptotic efficiency has proved to be a useful criterion
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in the theory of estimation we suggested applying this method in the
control problem. We discussed the differences between control and
estimation in order to show the advantages and disadvantages of such
an approach. THEOREM 4 was then used to show that the three simple
control rules are asymptotically efficient, Further, we demonstrated
how the value of experimentation is negligible in the long run by
showing that a control designed for experimentation has the same
asymptotic variance as a nonexperimenting contgol. A performance
criterion of control was specified to clarify the assumptions behind
these conclusions, This criterion is most appropriate in problems
with a long time horizon and no discounting.

Finally in the last chapter we showed how these results have
implications for the theory of economic behavior under uncertainty,
The model provides a description of such behavior which is a useful
alternative to other approaches,

The unifying conclusion from this analysis is that the simple
"quick and easy" control rules perform quite well relative to those

rules which are designed for experimentation,



APPENDIX
PROCEDURES FOR APPROXIMATING BAYES OPTIMAL CONTROL RULES

As was pointed out in Chapter II there is no exact analytic
solution for the Bayes optimal control rule, even in the model with
only one unknown parameter, for any time horizon greater than one time
period. Therefore, it is necessary to develop approximation procedures
if this rule is to be employed. There are several types of approxima-
tions which might be used. One is a numerical approximation where
particular values of the parameters are chosen, and numerical integra-
tion and minimization of numerical functions are used to solve the
problem, Prescott {1972) used such a method and calculated the Bayes
optimal control rxule for various prior distributions and various time
horizons. The results of that analysis further confirm the intuitive
suggestions of Section 2.3. However, in models of any more generality
than (2.4) such procedures become quite difficult to employ in practice
because of the large number of numerical integrations and minimizations
which must be performed,

Another approach is to approximate the future risk with a func-
tion which can be integrated analytically. For example, consider the
two-period version of the problem introduced in Section 2.3.1. We can
approximate the risk r* as follows, If we set =z = bllc1 , then the

2

*
expectation of r, in (2,10) becomes
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e a2 2
(a.1) G = 2, BEw ),

-0z

where &(z; u, 72) is the normal distribution with mean

_ A 2
0
and variance
2 _ 22

One approximation to a2/(1 + zz) is a multiple of the normal
density function with the height, location, and area under the two

curves the same. Such an approximation is

2
(A.4) A(z) = aze-z AP

and can be integrated analytically with respect to the normal distribu-
tion ¢ to obtain an approximation of the future rigk as a function
of up . This can be added to the present risk in period one and mini-
mized with respect to u . The results of this method were compared
with the numerical integration results; for the parameters selected the
results were very similar. As our main purpose here is an exposition
of possible techniques, we do not present a detailed study comparing

the two methods.
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Another technique is to investigate the properties of {(A,1)
directly and approximate it with a function which has the same prop-

erties, It can be shown that (A.1) has the following properties:

2 2
a UO
(A.5) G(O) = > 2 »
of + b2
(a.6) G'(0) =0,
2 2.2
(b, - ¢)
.7 6"(0) = -2a°0) | ——2—| ,

2 2.2
(b0 + cro)

and G(ul) is a decreasing positive function of |u1| which approaches

Zero as |u1] gets large, A relatively simple function which has all

these properties is

- 2
(A.8) G(u,) = & i

1 2

2 2 2

b, - O b
2 0 0 0
u +—+1
1 b2 + 02 02
0, 0 o]

This function added to the risk in period one can be minimized with
respect to u  to obtain an approximation to the Bayes optimal control
rule. Comparing this method with the first two approximations shows

that this is a rougher approximation, Its advantage is that it can be
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readily generalized to more than one control and in addition gives a
simple measure of how much future risk can be reduced by experimenting
with u; .

This brief discussion of approximation procedures has aimed at
demonstrating what can be done when the risk functions are impossible
to calculate analytically., A more serious problem which frequently
arises in these multiperiod control models is that for a given loss

function the risk may not be finite. For example, suppose that {(as

in Chapter V)

. = o+ Bu + ¢

(A.9) x, Bu, + e,

represents the demand curve of a monopolist who wishes to maximize
profits over a two period time horizon, where o 1s known with cer-

tainty and B has the usual prior distribution. Then the loss function

2

is L = —Zt=1 xtut .

The optimal price in the last period is

* A
u, = -042b2 with corresponding risk r, =d /4b2 . When calculating
the optimal price in the first period, we must take the expected value
of r: . But since b2 is normally distributed this expectation does
" not exist,

Such difficulties are usually avoided in theoretical analyses by
assuming from the start that all expectations are finite. However, if
these problems are to be used in practice one must have alternative pro-
cedures. The main approach of this study, which is developed in Chapters

I11 and IV, does not rely on calculating expected loss in future periods

and, therefore, does not have this difficulty,
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