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SOME EXPERIMENTAL RESULTS ON 

THE STATISTICAL PROPERTIES O F  LEAST SQUARES ESTIMATES 


IN CONTROL PROBLEMS' 

The statistical properties of the certainty equivalence control rule and of the least squares 
estimates generated by this rule are examined experimentally in a linear model with two 
unknown parameters. It is found that the least squares certainty equivalence rule converges 
to its true value with probability one and is asymptotically efficient, having an asymptotic 
distribution with a variance as small as any other strongly consistent rule. However, while 
a linear combination of the parameter estimates is consistent, the evidence does not confirm 
that the individual estimates themselves are consistent. If these converge to their true 
values at all, they do so very slowly (on the order of (log t ) - I ) .  

1. INTRODUCTION 

LET y, ,y,, . . .be a sequence of random variables determined by the linear relation 

where u,, u,, . . . is a sequence of independent and identically distributed random 
variables with zero mean and finite variance a2,where x,,  x,, . . . is a sequence of 
control variables, and where a and P are unknown parameters. A control problem 
within the context of (1.1) having applications in the fields of stabilization and 
regulation is to choose a control sequence (or rule) x,,  x,, . . . so as to bring each 
element in the sequence y,, y,, . . . as close as possible to some target value y*. 
Particular choices for a control sequence will differ both in the implied behavior 
of the dependent variable y, and in the quality of the parameter estimates of a and P. 

The purpose of this paper is to examine by Monte Carlo experimentation the 
properties of a control sequence in which x, and x, are distinct but otherwise 
arbitrary and 

where 
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where 8,- ,  and bt- ,  are the least squares estimates of u and p based on y,, . . . ,yt- , 
and x , ,  . . . ,x,- ,, and where k is a pre-assigned positive number representing 
a bound on the control rule. (A bounded rule is considered because the moments 
of r, for t = 3 do not exist when u, is normally distributed.) This rule may be called 
the least squares certainty equivalence (LSCE) control rule, because it is obtained 
by treating the parameters as known with certainty and equal to their least squares 
estimates. The experiments reported here concern not only the performance of x, ,  
but also the joint distribution of 8, and f i t .  The properties of these estimates have 
previously been given little treatment in the control literature despite their 
importance in practical problems. 

Previous studies which have been concerned with the sampling properties of 
control rules and parameter estimates in this type of model are Taylor [6] and 
Aoki [2]. The former paper deals with the case where u is known and shows that 
the least squares certainty equivalence control rule is strongly consistent and has 
an asymptotic distribution with a variance as small as any other control rule in 
the class of strongly consistent rules. Aoki [2] considers the more general case 
where u and p are unknown but is only able to show that an approximation to (1.2) 
is consistent with no discussion of the asymptotic distribution. 

There have also been numerous papers which have approached this problem 
from a Bayesian point of view. (See Aoki [I], Zellner [S], and Prescott [5].) However, 
because optimal Bayes control rules have been analytically as well as computa- 
tionally difficult to find, most recent research has been devoted to finding approx- 
imations to these Bayes rules. (See Tse [7] and Chow [3], for example.) A distinctive 
feature of most of these studies is finding rules which give better control perform- 
ance than certainty equivalence rules without regard to the behavior of the 
parameter estimates (although it is sometimes conjectured that better parameter 
estimates lead to better control performance). 

The experimental findings of this paper suggest that the least squares certainty 
equivalence rule for (1.1)performs quite well. The sequence of values of the control 
variable is strongly consistent and has the same asymptotic normal distribution 
derived by Taylor [6] where u is known. This implies that the LSCE control rule 
cannot be improved on asymptotically by experimenting to  obtain better parameter 
estimates. The results also suggest that the distribution of x, converges to  the 
normal surprisingly quickly. The asymptotic approximation is close even for 
sample sizes as small as t = 10. However, the distributions of the least squares 
parameter estimates 8, and f i ,  indicate that these will usually be poor estimates of 
a and p. While plots of the joint distribution of 8, and b, indicate that a certain 
linear combination of the estimates is consistently estimated (with the usual rate 
of convergence), the parameters themselves converge to  their true values so slowly 
that they are of questionable value. In addition, the usual estimates of the variances 
of 8, and b,are inaccurate. These results therefore indicate that control rules which 
are designed for experimentation are useful not so much in improving control 
performance, but in improving the parameter estimates themselves. However, 
improving the parameter estimates can be accomplished only by sacrificing control 
performance. 
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2. TRANSFORMATION TO CANONICAL FORM 

The control rule and coefficient estimates were investigated for five different 
combinations of parameter values. In order to focus on parameter combinations 
which are really different in their effect on these estimates, the model was first 
transformed to a canonical form. This canonical form involves three free parameters 
and allows for easier interpretation of the Monte Carlo results. 

This transformation is defined by 

so that the process in equation (1.1)becomes 

(2.4) yp = xp + up 

Thus, the target value for yp is 0, the true value of the intercept coefficient a0  is 0, 
and the true value of the slope coefficient P o  is 1. The least squares estimates of 
these coefficients can be written in terms of the least squares estimates of the 
coefficients of (1.1)as 

1 y* - a 
(2.5) a; = -[a, + b,,- - y*] and 

o P 

From these a control sequence in canonical form is defined by xy and x ;  distinct 
and 

where rp = -6:- l / f l p - t = 3 ,4 , .  . . , and k 0  = (a + Pk - y*)/o. All models of 
the form (2.4)with control rule (2.7)are therefore completely characterized by the 
initial values xy and x ;  and the bound k O .Further, any properties of a:, B:, and xp 
can be transformed into properties of a,, B,, and x ,  through equations (2.5), (2.6), 
and (2.7). 

It is clear that equation (1.1) is in canonical form when a = 0, p = 1, o2 = 1 ,  
and y* = 0. Throughout the remainder of this paper these parameters are set 
at these values so that a,, b,,and x ,  are in canonical form. We can therefore dispense 
with superscript notation. All the following experiments were run in canonical form. 
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3. DESCRIPTION OF THE EXPERIMENTS 

All results reported in this paper are based on 100replications. The five different 
combinations of parameter values are listed in Table I. These represent a fairly 
wide variety of initial conditions. Since the primary focus of the investigation is 
on the asymptotic properties of x,,&,, and b,,the value of the bound k is not crucial 

TABLE I 
PARAMETER INVESTIGATEDVALUES 


Model x, x2 x l  + x2 x ,  - x, k2 8,
~ a r  ~ a r  COV(&,, 8,) 

TABLE I1 

ESTIMATED OF THE CONTROLMOMENTS RULE 

Model t E(xt+ l )  MSE (x ,+I)  Var (x,+ 

"Significant at the five per cent level 
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and was chosen to be 10 for all experiments. This bound is rarely reached in the 
models considered and only for very small t. 

All five models were run for 3,000 periods. The long runs were necessary to 
investigate the asymptotic distribution of the parameter estimates which evolves 
very slowly and to test for the strong convergence of the control. In all experiments 
the random variable u, is symmetric and approximately normal. The same 
300,000 random numbers were used for all experiments. 

4. THE STATISTICAL PROPERTIES OF THE CONTROL RULE 

It has been shown analytically by Taylor [6]that when a is known, x, converges 
with probability one to (y* - a)/p which equals 0 in canonical form, and 
f i [ x , + ,  - (y* - a)/P] has a limiting normal distribution with mean 0 and variance 
02/p2which equals one in canonical form. The conjecture that the control rule also 
has these properties when a is unknown is confirmed experimentally as described 
below. 

The estimated rnoments of the control rule for the five models and six time periods 
are presented in Table 11. The estimate of the variance of x,,, (and the other 
estimated variances presented in this paper) are calculated by dividing the sum of 
deviations by 100 in orden that the estimated mean square error (MSE) is the 
sum of the estimated variance and the square of the estimated bias. Since all 
models are in canonical form the mean square error of x, + ,,which is defined by 
E[x,+, - (y* - a)/PI2, is equal to the second moment Ex:. Probability intervals 
for these estimated moments are found in Table 111. Since x,,, is a function of 

TABLE 111 
95 PER CENT PROBABILITY FORINTERVALS ESTIMATED 

MOMENTSOF X, 

Interval for Interval for 
t E(x,+,)  MSE (xt+1 

I0 &6.20(-2) 7.42(-2) 1.30(- I) 
50 _+2.76(-2) 1.48(-2) 2.59(-2) 

I00 9 - 2 )  7.42(-3) 1.30(-2) 
500 i8.77(- 3) 1.48(- 3) 2.59(- 3) 

1,000 +6.20(- 3) 7.42(-4) 1.30(- 3) 
3,000 :3.58(- 3) 2.47(-4) 4.32(-4) 

t observations, the intervals are computed assuming xt+ , is N(0, t-I). Thus the 
estimate of Ex,, , will have a normal distribution with mean 0 and variance 
(loot)-', and the estimate of MSE(x,+ ,) will be distributed as ~~,,/(100t)- '  (with 
mean t- '  and variance (50t2)-I). As can be seen from Table I1 the estimated 
MSE(x,+,) are within the 95 per cent interval for all models and all reported time 
periods. The estimated var (x,,,) is always within this interval. These results 
confirm the conjecture that the variance of the limiting distribution of &xt+ ,is 
equal to one. They also indicate that the speed of convergence to this variance is 
quite rapid, being very close at t = 10 for all models. The estimate of Ex,+, indicates 
that there is slight positive bias though this is statistically significant in only a 
few cases. 



FIGURE1.-Distribution of X ,  ,,Model V. 

FIGURE2.-Distribution of X , ,  ,Model V .  
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-0.5 ) , I I r I t I I ~ I I 1 I I 1 1 I I I 

1 2 5 10 20 30 40 50 60 70 80 90 95 98 99 
FIGURE3.-Distribution of XI,, , Model V. 

The sample distribution for Model V is plotted on norma1,probability paper in 
Figures 1,2, and 3 for t = 10,50, and 100 along with the normal distribution with 
the appropriate ~ a r i a n c e . ~  = 10 the sample distribution is nearly normal For t 
but shifted slightly to the right, giving a smaller probability for negative values 
than the normal. The normal approximation for t = 50 and 100 is even closer. 
Thus, the conjecture of asymptotic normality is experimentally confirmed 

Convergence in probability of the control rule is implied by the mean square 
convergence evident in Table 11. To test for convergence with probability one 
P[max,, ,(x,+,(< E] was estimated for several &and T.The results ofthis estimation 
for each model are presented in Table IV. The five values of E were set to3 Jmfor t = 10, 50, 100, 500, and 1,000. These values are the bounds 
appropriate for the mean of a random sample with the same expectation and 
variance as x,, ,,as given by the law of the iterated logarithm. The probability was 
not estimated for T larger than 1,000 so that the infinite range of the maximum is 
approximated by at least 2,000 periods. The results indicate that x, + ,does converge 
with probability one. For any fixed E we can find a T to make the probability 
arbitrarily close to one. In addition, since all entries below the main diagonal of 
these tables are approximately one, the law of the iterated logarithm gives a good 
estimate of the upper bound. (There is one series in Model I for which IxI4,,,1 is 
greater than .2336, thus keeping the estimated probability at .99.) 

In each, 99 points are plotted; one value was deleted at random 

The notation log refers to the natural logarithm. 
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TABLE IV 
ESTIMATESOF P[max lx,+ ,I < E] 

t > T  

& 

Model T ,4084 ,2336 ,1748 ,0855 ,0622 

The implication of these experimental results is that the variance of the control 
rule in a model with two unknown parameters decreases as l l t  and is asymptotically 
no larger than the variance in a model with only one unknown parameter. This 
also implies that out of the class of strongly consistent controls, the least squares 
certainty equivalence control rule considered here is asymptotically efficient in the 
sense that its asymptotic variance is as small as any other control rule in this class. 

If the measure of loss is (y ,  - y*)', then the expected loss in the first t periods is 

In canonical form it is C:=, E(x,2)+ t .  Since the expected loss with knowledge of 
a and j? is t , the "regret" is Ct= ,  E ( x , ~ )and can be considered as the loss due to the 
lack of knowledge of the parameters. The estimate of this quantity is given in 
Table VI. 

The experimental results indicate that the limit of the normalized single period 
regret is given by 

(4.2) lim tE[(y,- y*)' - 02]= o2  
f +m 
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TABLE V 

ESTIMATED OF THE PARAMETERMOMENTS ESTIMATES 

Model t E ( 4 )  var (0,) E(B,) Var @,I Cov (&,,8,)  Cor (4,B,) 

"Significant at the five per cent level 

Let 9, be the value of the dependent variable when a consistent control rule other 
than the LSCE rule is being used and let 

(4.3) 2' = lim tE[(j, - y*)' - g2]. 
f-+m 

Then the asymptotic efficiency of the LSCE rule implies that o 2  < 2'. This also 
implies that 

2 E[(yt - y*I2 - c21 
c2

(4.4) lim '7' = - < I .  
T-+m 2* 
C E[(9t - y*I2 - 021 


This can be shown by dividing the numerator and denominator of the above 
expression by log T. (See Knopp [4, p. 321.) 
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5 .  THE STATISTICAL PROPERTIES OF THE PARAMETER ESTIMATES 

The estimated moments of the parameter estimates in canonical form for all 
models are presented in Table V. The estimate of a shows a small negative bias 
for all models. The values of the estimate of Ed, that are significantly different from 
zero at the 5 per cent level of significance (two-sided test) are marked in Table V ; 
there are 6 out of 30 such values significant. The estimated variance of d, decreases 
approximately as llt ,  though it is considerably larger than the estimated var (x,). 
(Note that x,, , = -d ~ b ,and b, estimates one.) The estimate of p shows a positive 
bias which is quite large for some models; its variance decreases very slowly, 
as l/log t for large t. The correlation between 8, and pi is negative for all models and 
significantly different from zero for some values in four of the five models. The 
sequences do not show a tendency to converge to zero. The test of significance for 
the correlation is a t test on the basis that (d,, b,) are approximately normally 
distributed. 

TABLE VI 


ESTIMATED OF THE ELEMENTS At
MOMENTS OF MATRIX 

Model r E ($x,)  Var ($ x,)  E(  f x:) ( f x:) E ( i  (xs -~ a r  
1 
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Scatter plots of 8, and b, are found in Figures 4,5, and 6 for Model V for t = 50, 
100, and 1,000. The plot for t = 50 is influenced by the initial conditions for this 
model which give a small var PI, and a large var 8,. At t = 50 the scatter shows a 
slight horizontal tendency, but as t grows the scatter becomes vertical, thus showing 
the quick convergence of 8, relative to the slow convergence of b,. 

The scatter is vertical because the model is in canonical form. Any transformation 
of this canonical form for which the transformed a is nonzero will lead to scatter 
which is tilted away from the vertical. Therefore, in any such model the estimates 
of a or of will converge as slowly as the canonical b,does for these results (though 
the linear combination (2.5) will converge as rapidly as the canonical B,). The 
poor performance of these estimates could lead to serious mistakes in practical 
problems. 

For further investigation of the asymptotic properties of these estimates we 
examine the elements of the random matrix A ,  defined by 

0.7 / I I I I I I I I I I 

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 

FIGURE4.-Distribution of & and f l ,  Model V, t = 50. B 



0.7 I I I I I I I I I I 

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.: 

FIGURE5.-Distribution of ff and 8, Model V, t = 100. ff 

FIGURE6.-Distribution of ff and 8, Model V, t = 1,000. 
ff 
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which is used in the calculation of the least squares estimates. If the x,'s were 
independent nonstochastic variables, the covariance matrix of (&,, b,) would be 
A;' and the variance of b, would be 1/Cf=, (x, - xi)'. The estimated moments of 
the stochastic elements of A, are contained in Table VI. The estimated values of 

TABLE VII 
ESTIMATEDAVERAGECORRELATIONI N  A,[E(p,)] 

t Model I Model I1 Model 111 Model IV Model V 

"ignificant at the five per cent level. 

E(C;,, x:) increase with t about as fast as log log t , which is very slow. Table VII 
contains estimates of the means of 

These estimates are positive; 11 out of 30 are significantly different from zero 
(5 per cent, two-sided test). The sequences do not exhibit a strong tendency to 
move towards zero. 

Since the first two values of the control variable x, and x, can be selected 
arbitrarily, it is of interest to study the effect of their choice on the properties of 
the rule. The estimates of E(x,+ ,) and var (xi+ ,) are somewhat larger for Models 
I and I11 than for Models 11, IV, and V, particularly at t = 3,000. In Models I and 
111, x, - x, is small and var (b,) is large. 

In these two models (I and 111) the estimates of var (B,) are about four times llt 
while in the other three models var (d,) is hardly larger than lit. In the two models 
with large var (I,), /?,exhibits a large bias and relatively large variance. In these 
cases var (b,) tends to be much larger than 1/C;=, (x, - xJ2. The fact that the 
ratios of the variances &,and b, to elements of the inverse of the averages of A, 
varies, indicates that A; is not a good estimate of the covariance matrix of d,, PI,. 
The lower accuracy of &,, b, in Models I and I11 is reflected in the slower approach 
of xi to 0. 

The lower accuracy of the parameter estimates in Models I and I11 can be 
related to the facts that Cf =, x: and Xi=,(x, - 2,)' are considerably smaller for 
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TABLE VIII 


these models than for the other three at every value of t .  Table VIII gives the 
estimated expected value for t = 2, 10, and 3,000. The estimates of var (b,) are 
roughly in the same order as the reciprocals of the estimates of E C f = ,  (x, - E,)'. 

In every model the increase in the estimate of E C f =, x: from t = 10 to t = 3,000 
(2,990 time periods) is small relative to the value at t = 10. In Models I1 and IV 
the increase from t = 2 to t = 10 (or t = 3,000) is small. In these cases where 
Cf=, (x, - 2,)' is large (that is, (x, - x,) is large) and, correspondingly, var (PI,) 
is small, almost all the information in estimating the slope is in the first two 
observations. Note that the accuracy in estimation is at the cost of a high expected 
loss. 

One of the most interesting questions in this area is whether fit + 1 with 
probability one (or in probability). A related question is whether C t = ,  (x, - 2,)2 , 
cc with probability one (or in probability). Our evidence pertaining to these 
questions is inconclusive. 

Stanford University and London School of Economics 
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