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ON AN EFFICIENT TWO-STEP ESTIMATOR FOR DYNAMIC 

SIMULTANEOUS EQUATIONS MODELS WITH 


AUTOREGRESSIVE ERRORS* 


1 .  INTRODUCTION 

where y,. is an m-element vector of the dependent variables of the system and 
w,.is an s-element vector of exogenous variables; the error term obeys 

where R is a stable matrix and { E : . :  t = 0, k1, k 2 ,  , . .) is a sequence of in- 
dependent identically distributed (i.i.d.) random variables having mean zero 
and nonsingular covariance matrix Z. 

It is assumed that whatever the process generating {w:.:t = 0, kl,  +2, ..-)  
the latter sequence is independent of (6:. : t = 0, A 1, t2,  ...). 

In Dhry~nes [I] under the additional assumption of normality for the E-proc- 
ess the full information maximum likelihood (ML) estimator wasobtai ned as 
well as the three-stage-least-squares-like estimator, termed there the full infor- 
mation dynamic autoregressive (FIDA). The converging iterate of the latter 
(CIFIDA) was compared with the ML estimator and it was determined that the 
difference between the two lies in the way in which the (jointly) dependent 
variables of the system are purged of their stochastic component. 

In Dhryines and Erlat [3] the asymptotic distribution of the converging iterate 
of FIDA was obtained. 

The purpose of this paper is twofold: First, to show that the asymptotic dis- 
tributions of the converging iterate of FIDA and the ML estimator are identi- 
cal and second, to provide a simple two step procedure which is fully as efficient 
as CIFIDA and ML estimators. This is a natural extension of the results in 
Dhrymes [2] and Hatanaka [5].  

2. EQUIVALENCE OF ML AND CIFIDA ESTIMATORS 

Write the Equation (I) compactly as 

ZA = U 

* Manuscript received April 3, 1975; revised October 28, 1975. 
1 The research on which this paper is based was in part supported by NSF grant SOC 74-

18671. Results similar to the ones reported in this paper were independently derived by 
Hatanaka in [6].  
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where 

( 7 )  

Vi*= (a,,0, 0), a *  = diag ( a ? ,  a,*, . . ,F;) 
the zeros in the definition of FT corresponding, in dimension, to iY-l, Wi. 

It is also shown in [I] that the asymptotic distribution of the ML estimator 
of b and R does not depend on any properties of the asymptotic distribution of 
the estimator of X,so long as the latter is estimated consistently. 

Thus, for the purposes of comparison we shall consider only the first two sets 
of Equations in (6). 

On the assumption that, in both Equations (4) and (6), a solution can be found 
by iteration beginning with initial consistent estimators for I3 and R, the solution 
is a consistent estimator of I3 and R, and moreover, ajter slight rearrangement, 
we can write for the solution vector of CIFIDA 

where 

U-l = Z - ~ I ,E = Vec (E), E = 

t =  2, . - . , T a n d  i =  1 , 2 , . . .  m .  

The equations defining the ML estimator, on the other hand, are 

( 1  ( - 1  I )  - F *( S  I ) )  ( I  U )  
( ) (f)[$-l@ Ui,)N 2-1@ 

where 

N =  [Z* - (R'@I)ZTl] .  

To show the equivalence of the two estimators, we proceed somewhat formal- 
ly giving in the form of Lemmata a number of preliminary required results. 
We begin by showing that the matrices in the left member of Equations (8) and 
(9) have identical probability limits. Thus, 

mailto:(R'@I)ZTl]
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we have 

and consequently 

(2-1 @ ULl)P = plim (2-1@ OLl)P* = ( 2 '  @ I)Pl . 
T- T-r-

PROOF.Obvious from Lemma 3. 
Finally, letting 

and 

M = plim-AT 
T- T 

we have 

LEMMA5. The matrices in the left members oJ Equations (8) and (9)have the 
same probability limit, which is given by 

PROOF.Obvious from Lemmata 2, 3 and 4. 
Thus, to establish the identity of the asymptotic distribution of the two esti- 

mators it will be sufficient to establish that the right members converge in dis- 
tribution to the same limit. To this effect note that since 

2-1@ UL1= 2-1@ 2'2L1= (2-1 @ Jf)(l@ ZL1) 

we have that 

which converges in distribution to the degenerate random variable zero. Con-
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PROOF. 
-
2-1 - s-1 = Z- l ( , y - 2)s-1 

and thus 

dT(8-1- s-1)-x-l[dT(s- 2)p-1 
Now 

SO 

-
f l ( S - 2 ) = ( 1 - B ' ) d T  E'E 

We observe that 

B = Y - Q E  
where P is the unrestricted estimator of F. Similarly, we observe that 

E ( I  - B1-l = Y - QP 
where P is the restricted estimator of F derived from the ML estimator of the 
elements of A. Thus 

Provided d T ( P  - F )  has a well defined limiting distribution 

f l ( s  - 8)- ( I  - B ) ' [ ~ T ( P- F ) I M ~ ~ F+ F ' M ~ ~ - ~ F ( PF )-
- - ~ F ( P - P ) M ~ , F- FM~,VT(P - E)] ( I- B )  = o 

where 

MQQ= plim- Q'Q 
T- T 

Thus dT(S- 2)converges in distribution to the zero random variable. 
Q.E.D. 
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We have therefore proved 

THEOREM1. Consider the model in ( I )  and (2)  subject to the following con-
ditions: 

( i ) I - B is nonsingular. 
( i i )  R, Co(I- B)-I are both stable. 
(iii) plim (QfQ/T )  exists and is nonsingular.

T* 

(iv) The sequence {w:.:t = 0,  -1- 1, -1- 2, . . } is independent of the error proc-
ess{e:.:t = 0, -1- 1, i~2, a * . } .  

( v )  Theprocess {s:.:t = 0, -1- 1, -1- 2,  ..} is one of independent i.i.d. (nor-
mal) random vectors with zero mean and nonsingular covariance matrix 
8. 

(vi) The ML estimators dT(3- A'), 1/T-( A  - A) have well behaved limit-
ing distinctions. 

Then, the converging iterate of the full information dynamic autoregressive 
(CIFIDA) and ML estimators of 6 have the same asymptotic distribution which 
is 

where 

PROOF.Lemmata 5,  6 ,  7, 8, 9. 

3. A SIMPLIFIED TWO STEP ESTIMATOR 

In demonstrating the asymptotic equivalence of a simplified estimator to the 
CIFIDA and ML estimators the following lemma is quite useful: 

LEMMA10. Let 8* be a consistent estimator of a parameter vector Bo obtained 
by minimizing some function, say S(8), and suppose that @(0* --00)-has a 
limiting distribution. Let 8 be a consistent estimator of O0 such that .\/T (0 -00) 
has a limiting distribution and let r ( 8 )  be a matrix such that 

a 2 sr ( 8 )  = -(8) + o,(T)aeae 
where T is the sample size. Define the estimator 8 by 

Then 8 has the same asymptotic distribution as 8*. 

PROOF.By the mean value theorem 
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We have therefore proved 

THEOREM2. Consider the model stated in Theorem I ;  an estimator which is  
asymptotically equivalent to the ML  and the converging iterate of FIDA can be 
obtained as follows: 

( 	i ) form a consistent estimator, say by instrumental variables, of the un- 
known elements of A. Denote this by A. 

( ii ) 	Compute the residual matrix 

0=zA. 

( iii ) 	Obtain the estimator 

( iv ) Compute 


E = 0- U - ~ R .  

( v ) 	 Estimate 

( vi ) 	 Form the quantities 

(vi i )  	Obtain the jeasible Aitken type estimator by regressing y - ( a ' @  I ) Y - ~  
on Z* - (kt@ I)Z", ( I  @ 0-1) using (2-1 @ I )  as the estimated 
covariance matrix. 

(viii) 	 Add to the solution vector (0, i')'. 

Remark 1. The theorem above outlines an estimating procedure which in- 
volves estimation of the structural parameters by instrumental variables, compu- 
tation of the residuals and the elements of the autocorrelation matrix R ,  fol-
lowed by transformatioil of the data and another regression. No iteration is 
involved, although as a practical matter one might wish to iterate at least once 
in order to reduce the dependence of the procedure on the initial choice of in- 
struments-which is rather arbitrary. 

Remark 2. Even though Z as it appears in (iv) of Theorem 2 was earlier de- 
fined with the Pcomponeilt given by P = Qp, p = (QfQ)-'Q'Y, it is clear that 
we can define P by QP where fl is the restricted reduced form obtained from A 
and fi as given in (i) and (iii) respectively. Thus, we only need an initial instru- 
mental variables estimator and a feasible Aitken procedure to obtain this two-step 
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estimator. 

Remark 3. The limited information analogue may be obtained by setting 
2 = I and then minimizing 

with respect to the unknown elements of A a_nd R. The analogue in the two- 
step procedure will occur if in (17)we set ,X' = I. Needless to say unless R is 
a diagonal matrix this is not a single equation procedure. 

Remark 4. Outside the almost tautological condition that the matrix M be 
invertible, it is not clear what corresponds precisely to the rank and order con- 
dition (in the standard model) in setting forth the identifiability characteristics 
of the model. 

Remark 5. The instrumental variables procedure given in Fair [4] is not an 
efficient one unless it is iterated to convergence. What Fair proposes, using the 
notation of this paper, is to write the model as 

y - (Rr@ I)y-1 = [Z* - (R' @ I)ZT,Ia + & 

and obtain instrumental variables estimators using the instrumental matrix 

P' (2- I  I )  

substituting for R a prior consistent estimate thereof. It can be shown that the 
resulting estimator will depend on the asymptotic distribution properties of the 
particular estimate of R and will, in general, be inefficient unless the procedure 
is iterated with a new estimate of R until convergence. 

Columbia University, U.S.A. 

APPENDIX 

In the discussion of the paper we have used a number of results involving 
matrix differentiation. For completeness we give a summary derivation here. 

In particular we have to obtain the matrix of partial derivatives of 

S = t r Z - l ( ~ ~- Z-lAR)'(ZA - Z-1AR) 

with respect to the unknown elements of A and R. No restrictions are assumed 
to be placed on R and certain zero restrictions are known to hold with respect 
to the elenlents of A. We first observe that, using the restrictions on A we can 
write, in the notation of the text, 

(A.I) S = [ y  - (R' @ I)y-1 - (2" - (R' @ I ) z T ~ ) ~ ] ' ( J - '@ I )  

x [ y  - (Rr@ I)y-1 - (Z* - (R' @ I)Z*-i)8I. 

From this we easily establish 
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A more illuminating representation of the right member of the Hessian is 
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