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A method to solve and estimate multivariate linear rational expectations models is described. The 
method is based on an iterative factorization of the polynomial matrix that describes the lags and 
expected leads in the model. Our experience is that the method works well in a variety of 
applications where other methods are either difficult or expensive to use. 

This note describes a method that can be used to solve and estimate multi- 
variate linear rational expectations models. A number of methods to solve and 
estimate linear rational expectations models have been described in the litera- 
ture [e.g., Blanchard and Kahn (1980), Chow (1983), Fair and Taylor (1983), 
Hansen and Sargent (1981), Taylor (1980), and Wallis (198O)J. The method 
described here is a generalization of the factorization techniques used in 
Hansen and Sargent (1981) and Taylor (1980) to general non-symmetric 
polynomial matrices. We have had considerable success during the last few 
years using the method on linear models where some of the other methods 
appear to us to be difficult to apply or expensive to use. Although we do not 
have detailed information about the relative advantages and disadvantages of 
this method compared to the other methods, our experience indicates that a 
description of the method may be of interest to others studying the quantita- 
tive implications of rational expectations. The computer routines necessary to 
use the method have been programmed as part of a general multivariate time 
series computer package and are fairly easy to use. 

*This research was supported by a grant from the National Science Foundation at the National 
Bureau of Economic Research. The matrix polynomial factorization algorithm described in this 
paper was developed while the authors were at Columbia University and was programmed for his 
time series computer package VARMA by Ates Dagli in 1980. We are grateful to Jesse Abraham, 
Gregory Chow, Richard Quandt, Dawn Rehm, Robert Trevor and two anonymous referees for 
helpful comments. 
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We consider the following linear rational expectations model: 

B,y,+B,y,-1+ -** +B,y,-,+A&+ **- +A4j$+4=rX,+U,, (1) 

where the matrices Ai and Bi are n X n, y, is an n-dimensional vector of 
endogenous variables at time t, x, is a k-dimensional vector of exogenous 
variables at time I, r is an n X k matrix of parameters, and u, is an 
n-dimensional vector of disturbances which is not generally serially indepen- 
dent. The hat over a variable indicates its conditional expectation based on 
information through time t - 1. (The method can also be used for the case 
where the conditioning set includes information through time t.) 

The error term U, is assumed to follow a stationary stochastic process which 
we represent in the general linear form as 

u, = Wbl,, (4 

where si, is an independent and identically distributed random vector with 
mean 0, and A(L) is a matrix polynomial in the lag operator L. In order to 
compute future expectations it is necessary to postulate a stationary stochastic 
process for the exogenous variables which we represent as 

where e2, is an independent and identically distributed random vector with 
mean 0, and A(L) is a matrix polynomial in the lag operator L. Agents 
described by the model are assumed to know A(L) and past realizations of X, 
and y, at time t; they are assumed not to know the future realizations of x, at 
time t. We assume for the purposes of forming the likelihood function for 
estimation that the random vector E; = (E;,, I$,) is normally distributed with 
mean zero and covariance matrix 0. We also use the normalization that A, 
and A, are equal to identity matrices. 

The solution method gives the coefficients (in numerical form) of a con- 
strained simultaneous vector autoregressive moving average (VARMA) model 
which is equivalent to (1) but in which expectations do not appear. This 
VARMA model can then be used for simulations or full information maximum 
likelihood estimation. The VARMA model is assumed to be stationary and is 
given by 

%Yt= CWY, + w4x, + Jw~l,, (4) 
where 

C(L)=B(&-ye,-IQ(L)), (5) 

D(L) = (&@&z(L) +~)A-l(L), 
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where C(L), D(L), and R(L) are matrix polynomials in the lag operator L 
which are defined in terms of three other matrix polynomials in the lag 
operator: $i( L), 11/z(L) and 0(L) with zero-order coefficient matrix 0,. These 
latter three polynomials are defined as follows: Let 

H(L)=B,L+ ... +B,LJ’+(B,+A,)+A,L-‘+ ... +A,L-? (8) 

Assume that there is a unique factorization of H(L), 

where 

@(L-1)=1+ *** +QqL-q and B,(L)=f$+ ... +B,LP 

are both real where the roots of the determinental polynomials of e(L) and 
Q(L) have all roots outside the unit circle. Then the matrix polynomial 8(L) 
in (5), (6) and (7) is given by (9) and ‘k,(L) and \k,(L) are given by 

*l(L) = [(@CL-‘I)-Ld(L)] +, 

9*(L)= [(@(L-‘))-‘rA(L)]+, 

00) 

01) 

where [ .I’ denotes that all terms involving non-positive powers of L have been 
dropped from the expression inside the brackets. 

That model (4) is a characterization of (1) is discussed in Whiteman (1983). 
Model (4) is a unique stationary characterization of (1) if the factorization (9) 
is unique. In what follows we assume that (4) is unique, and focus on the 
problem of obtaining (4) numerically. 

The main computational problem in going from (1) to (4) is the matrix 
polynomial factorization in (9). Evaluation of (10) and (11) is straightforward 
in the case where A(L) and A(L) are finite order, and the methods of Hansen 
and Sargent (1981) can be used to evaluate (10) and (11) when A(L) and 
A(L) are infinite order. 

The algorithm for factoring (9) that is described here is an interative one and 
does not require calculation of the characteristic roots of the determinental 
polynomials. In special cases more direct non-iterative methods might be used. 
Our experience is that the iterative procedure converges quickly, though no 
formal proof of convergence is available. 

I.E.D.C. F 
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Eq. (9) implies a set of identities in the coefficients which can be obtained by 
equating coefficients of like-powered lag operators on both sides of the 
equation. These identities are 

mNp.q-k) 
H-k= C @k+ieir k = O>***> 47 02) 

i-0 

min(q,p-k) 
Hk= igo +t’k+ir k=O,...,p, 03) 

where we have included one of the identitites (k = 0) twice for ease of 
exposition below. 

Note that, if B(L) is given, the Gik can be computed using (12) as follows: 

min(p.q-k) 

c @k+jei 0,-j-‘, k=q,q-l,..., 0. 
i-l 1 

Similarly, if Q(L) is given, the ek can be computed recursively using (13). The 
algorithm exploits this form of the equations to perform a series of successive 
approximations, starting with a guess of one polynomial, computing the 
second, using the second to get a new guess for the first, and so on. Let f?(j)(L) 
be the value of B(L) on iteration j and let @(j)(L) be the value of @p(L) on 
iteration j. The algorithm can then be described in the following steps: 

(a) Pick a starting value f?(‘)(L) for e(L) on the first iteration. 

(b) Computer the @jj) using (12) with 8(L) = @j-‘)(L) starting with j = 1. 

(c) Computer the ep using (13) with Q(L) = @(j)( ,!,). 

(d) If the coefficients 0ij) and eij-l), k = 0,. . . , p, are within a specified 
tolerance range of each other, then stop. Otherwise repeat starting from 
step b, increasing j by 1. 

Note that if @(L-l) and f?(L) constitute a factorization of H(L), so do 
@L-l) = @(L-‘)C and &JY) = C-‘B(L) for any non-singular matrix C. We 
adopt the normalization convention that @a = I and impose it on the result of 
the factorization. Thus, if the factorization converges at the mth iteration, we 
use 

~(L)=~‘“‘(L)[~~““]-l and e(L) = [qp)]e(m)(L). 
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We have no theoretically-based guides for choosing a starting value. How- 
ever, we have had considerable experimental success with the simple choice 
B(")(L)=Ho+H,L+ ... + HpLp, or equivalently, with @(O)(L) = I. 

When this factorization method is used during the numerical maximization 
of the likelihood function, the algorithm is called upon to factor a sequence of 
H( L)'s each differing slightly from the previous one. In such cases, the choice 
of the 8(L) from the previous factorization as the starting value in the current 
one has proved to be extremely effective in reducing the number of iterations. 

It is easily seen that when a row of H(L) has no forward terms, neither does 
the corresponding row of @(L-l). This result, coupled with the observation 
that most rational expectations models have forward components in only a 
subset of the equations, allows us to economize further on computation. 

An alternative characterization of the algorithm may be given in terms of the 
formal long division of matrix polynomials. For any matrix polynomial P(L) 
of degree n, define 

P(L)=L"P(L-')=P,L"+ *** +p,,, 

and note that the non-zero roots of ]P( L)I are the reciprocals of the non-zero 
roots of IP(L Let 

E(L)=L'IH(L)=E,+E,L+ ... +Ep+qLP+q. 

Thus 

E(L)=Lw(L-')e(L)=qL)e(L). 

The factorization problem may now be recast as the problem of factoring 
E(L) into a(L) of degree q with all its roots inside the unit circle and 8(L) of 
degree p with all its roots outside the unit circle. Step (b) of the algorithm is 
equivalent to the right-division of l?(L) by 8(ib1)(L) to obtain @(i)(L) as the 
quotient; that is E(L) = W( L)B (j-i)(L) + remainder. Analogously, step (c) 
is the left-division of E(L) by @j)(L) to give B(j)(L) as the quotient; that is, 
E(L) = @j)(L)@(j)(L) + remainder. 

As a check on the correctness of the factorization, we recommend that the 
locations of the zeroes of ]@( L)( and ]e( L)I relative to the unit circle be 
determined. Methods to perform this task without having to compute the 
zeroes themselves exist [see Marden (1966)], and have been implemented as 
computer programs by the authors. 

An example of how eqs. (12) and (13) are solved in each iteration for 
particular values of p and q may be helpful. Suppose that p = 3 and q = 2. In 
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this case, eqs. (12) and (13) become 

Ho = qpo + qe, + G2e2, 

(12’) 

03’) 

H,,= @,e, + Qi,e, + qe2. 

The objective is to solve this set of equations for the matrices &,, f3,, 8,, f$, @i 
and 4’~~. Given a guess of @a, @i and Qz2 (such as Qi, = 1 and @t = Q2 = 0), it is 
clear how one can compute f$,, 8,, B,, and t$, using eq. (13’). Moreover, given 
computed values for these 0 matrices, a new set of guesses for @a, @r and Q2 
can be calculated using eq. (12’). These new values of @a, Qj, and @z can in 
turn be used to start a new iteration again by computing a new set of 0 
coefficients, and so on. 

The above approach to estimating rational expectations models has been 
applied in several empirical studies with apparent success. A macroeconomet- 
ric model of the U.S. similar to that described in Taylor (1979) was estimated 
using full information maximum likelihood and the factorization procedure. 
The model contains five endogenous variables, lagged dependent variables in 
four of the five equations, and builds up from a full IS-LM structure so that 
the expected inflation rate appears (via the expectation of next period’s price 
level) in the aggregate demand equation. The model also contains anticipatory 
wage behavior so that expected future wages and output appear in the wage 
setting equation. The resulting model was therefore of the form of (1) with 
p = 7 (seven leads of wages and unemployment in the wage equation, and one 
lead of price in the demand equation) and q = 7. The model was then 
estimated using the procedure outlined above. An open economy macroecono- 
metric model of the U.S. and Germany was estimated by Rehm (1982) using 
full information maximum likelihood. The model contains eight equations with 
five leads and five lags ( p = q = 5). The factorization method was also used for 
solving the model and characterizing its dynamic properties. 

Other applications of the factorization method include work by Johnson 
(1982) and Abraham (1983). Johnson’s application is to a two-country rational 
expectations model, which can be reduced to a two-dimensional, two-sided 
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matrix polynomial with p = 4 = 1. The factorization algorithm was used to 
solve (but not to estimate) the model. In the application of Abraham (1983), 
model (1) is derived from a formal utility maximization problem along the 
lines of Hansen and Sargent (1981). However, because the matrix equations do 
not satisfy certain non-singularity conditions required for the application of 
the Hansen-Sargent method, he uses the factorization algorithm reported in 
this paper. The method seems to work successfully in that the roots of the 
factored polynomials are on the correct side of the unit circle. 

In addition to these applications, we can report on experiments with 40 test 
polynomials to which we applied the algorithm. These test polynomials were 
constructed by multiplying @(L-l) and B(L) pairs with the appropriate root 
properties to form the H( L)‘s. Thus, in each case, we knew the correct solution 
to the factorization problem. The @(L-l) and tY( L), in turn, were built up as 
the product of factors of the form I + DiL, with the Di generated pseudo- 
randomly and scaled so as to have all their characteristic roots inside the unit 
circle. This ensures that the zeroes of I + D,L all lie outside the unit circle. The 
forty polynomials ranged from 2 X 2 systems with p = q = 1 to 9 X 9 systems 
with p = q = 6. They were not designed to correspond to any economic 
application. The algorithm converged in all cases. In one case (a 3 X 3 system 
with p = 4 and q = 9) the converged values of @(L-l) and 0(L) did not equal 
the correct solution. In this case @( L-‘)8( L) was quite different from the true 
H(L); in practice such an incorrect solution could be detected by a procedure 
which checked that the converged values satisfy the original polynomial 
equations @( L-‘)B( L) = H(L) to within a given degree of accuracy. 

The timings for convergence of the forty test cases (on an IBM 4341 Model 
Group 2 computer) varied from about 0.01 second for the 2 X 2 system to 1.9 
seconds for the 9 X 9 system. 
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